gemma-3-omni-processor / processing_gemma3_omni.py
voidful's picture
Update processing_gemma3_omni.py
460868e verified
import re
from typing import List, Optional, Union, Dict, Any, Tuple # Added Tuple
import numpy as np
import scipy.signal
import torch
from torch.nn.utils.rnn import pad_sequence
from transformers.audio_utils import AudioInput # type: ignore
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import make_nested_list_of_images # If image processing is used
from transformers.processing_utils import ProcessorMixin, ProcessingKwargs, ImagesKwargs
from transformers.utils import TensorType, to_py_obj, logging
# Constants
DEFAULT_SAMPLING_RATE = 16000
DEFAULT_N_FFT = 512
DEFAULT_WIN_LENGTH = 400
DEFAULT_HOP_LENGTH = 160
DEFAULT_N_MELS = 80
DEFAULT_COMPRESSION_RATE = 4
DEFAULT_QFORMER_RATE = 4 # Used for default in __init__ (as audio_downsample_rate)
DEFAULT_FEAT_STRIDE = 4 # Used for default in __init__
IMAGE_TOKEN_PATTERN = r"<\|image_\d+\|>"
AUDIO_TOKEN_PATTERN = r"<\|audio_\d+\|>"
DEFAULT_MAX_LENGTH = 16384
logger = logging.get_logger(__name__)
def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
"""Create a Mel filter-bank the same as SpeechLib FbankFC.
Args:
sample_rate (int): Sample rate in Hz. number > 0 [scalar]
n_fft (int): FFT size. int > 0 [scalar]
n_mel (int): Mel filter size. int > 0 [scalar]
fmin (float): lowest frequency (in Hz). If None use 0.0.
float >= 0 [scalar]
fmax: highest frequency (in Hz). If None use sample_rate / 2.
float >= 0 [scalar]
Returns
out (numpy.ndarray): Mel transform matrix
[shape=(n_mels, 1 + n_fft/2)]
"""
bank_width = int(n_fft // 2 + 1)
if fmax is None:
fmax = sample_rate / 2
if fmin is None:
fmin = 0
assert fmin >= 0, "fmin cannot be negtive"
assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"
def mel(f):
return 1127.0 * np.log(1.0 + f / 700.0)
def bin2mel(fft_bin):
return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))
def f2bin(f):
return int((f * n_fft / sample_rate) + 0.5)
# Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
klo = f2bin(fmin) + 1
khi = f2bin(fmax)
khi = max(khi, klo)
# Spec 2: SpeechLib uses trianges in Mel space
mlo = mel(fmin)
mhi = mel(fmax)
m_centers = np.linspace(mlo, mhi, n_mels + 2)
ms = (mhi - mlo) / (n_mels + 1)
matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
for m in range(0, n_mels):
left = m_centers[m]
center = m_centers[m + 1]
right = m_centers[m + 2]
for fft_bin in range(klo, khi):
mbin = bin2mel(fft_bin)
if left < mbin < right:
matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms
return matrix
# --- Start of Refactored Audio Feature Extractor (to match Phi4M - Snippet A) ---
class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor): # MODIFIED CLASS NAME AND __INIT__
model_input_names = ["input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"]
def __init__(self,
audio_compression_rate: int = DEFAULT_COMPRESSION_RATE, # ADDED DEFAULT
audio_downsample_rate: int = DEFAULT_QFORMER_RATE, # ADDED DEFAULT (maps to qformer_rate)
audio_feat_stride: int = DEFAULT_FEAT_STRIDE, # ADDED DEFAULT
feature_size: int = DEFAULT_N_MELS, # Added default based on constants
sampling_rate: int = DEFAULT_SAMPLING_RATE, # Added default based on constants
padding_value: float = 0.0, # Added default
eightk_method: str = "fillzero", # Added default for this custom param
**kwargs):
# If feature_size, sampling_rate, padding_value are in kwargs, they will override defaults.
# The super().__init__ expects feature_size, sampling_rate, padding_value.
# We ensure they are passed, either from defaults or kwargs.
_feature_size = kwargs.pop("feature_size", feature_size)
_sampling_rate = kwargs.pop("sampling_rate", sampling_rate)
_padding_value = kwargs.pop("padding_value", padding_value)
super().__init__(feature_size=_feature_size, sampling_rate=_sampling_rate, padding_value=_padding_value,
**kwargs)
self.compression_rate = audio_compression_rate
self.qformer_compression_rate = audio_downsample_rate
self.feat_stride = audio_feat_stride
self._eightk_method = eightk_method # Use the argument, which has a default
# Ensure _sampling_rate is used for mel filterbank if it was overridden by kwargs for superclass
# However, Phi4M logic hardcodes 16000Hz for its mel parameters.
# self.sampling_rate from super() will be the target sampling rate.
if self.sampling_rate != 16000:
logger.warning(
f"The feature extractor's target sampling rate is {self.sampling_rate}, "
"but Phi4M-consistent Mel parameters are based on 16000 Hz. "
"This might lead to inconsistencies if the input audio is not resampled to 16000 Hz by this extractor."
)
self._mel = speechlib_mel(16000, 512, 80, fmin=None, fmax=7690).T
self._hamming400 = np.hamming(400)
self._hamming200 = np.hamming(200)
def __call__(
self,
audios: List[Union[AudioInput, Tuple[np.ndarray, int]]],
return_tensors: Optional[Union[str, TensorType]] = None,
# sampling_rate: Optional[int] = None, # This was in original B, but Phi4M gets sr from AudioInput
):
returned_input_audio_embeds = []
returned_audio_embed_sizes = []
audio_frames_list = []
for audio_input_item in audios:
if not isinstance(audio_input_item, tuple) or len(audio_input_item) != 2:
raise ValueError(
"Each item in 'audios' must be a tuple (waveform: np.ndarray, sample_rate: int)."
)
audio_data, sample_rate = audio_input_item # sample_rate is from the input audio
if isinstance(audio_data, list):
audio_data = np.array(audio_data, dtype=np.float32)
if not isinstance(audio_data, np.ndarray):
raise TypeError(f"Waveform data must be a numpy array, got {type(audio_data)}")
# _extract_features will handle resampling to self.sampling_rate (16000 Hz)
audio_embeds_np = self._extract_features(audio_data, sample_rate)
num_mel_frames = audio_embeds_np.shape[0]
current_audio_frames = num_mel_frames * self.feat_stride
audio_embed_size = self._compute_audio_embed_size(current_audio_frames)
returned_input_audio_embeds.append(torch.from_numpy(audio_embeds_np))
returned_audio_embed_sizes.append(torch.tensor(audio_embed_size).long())
audio_frames_list.append(current_audio_frames)
padded_input_audio_embeds = pad_sequence(
returned_input_audio_embeds, batch_first=True, padding_value=self.padding_value
)
stacked_audio_embed_sizes = torch.stack(returned_audio_embed_sizes, dim=0)
tensor_audio_frames_list = torch.tensor(audio_frames_list, dtype=torch.long)
max_audio_frames = 0
if len(audios) > 0 and tensor_audio_frames_list.numel() > 0:
max_audio_frames = tensor_audio_frames_list.max().item()
returned_audio_attention_mask = None
if max_audio_frames > 0:
if len(audios) > 1:
returned_audio_attention_mask = torch.arange(0, max_audio_frames,
device=tensor_audio_frames_list.device).unsqueeze(
0) < tensor_audio_frames_list.unsqueeze(1)
elif len(audios) == 1:
returned_audio_attention_mask = torch.ones(1, max_audio_frames, dtype=torch.bool,
device=tensor_audio_frames_list.device)
data = {
"input_audio_embeds": padded_input_audio_embeds,
"audio_embed_sizes": stacked_audio_embed_sizes,
}
if returned_audio_attention_mask is not None:
data["audio_attention_mask"] = returned_audio_attention_mask
return BatchFeature(data=data, tensor_type=return_tensors)
def _extract_spectrogram(self, wav: np.ndarray, fs: int) -> np.ndarray:
# This method expects fs to be the original sampling rate of wav.
# It will resample to self.sampling_rate (16000Hz) or 8000Hz as needed.
if wav.ndim > 1:
wav = np.squeeze(wav)
if len(wav.shape) == 2:
wav = wav.mean(axis=1).astype(np.float32)
wav = wav.astype(np.float32)
current_fs = fs
if current_fs > self.sampling_rate: # self.sampling_rate is 16000
wav = scipy.signal.resample_poly(wav, self.sampling_rate, current_fs)
current_fs = self.sampling_rate
elif 8000 < current_fs < self.sampling_rate:
wav = scipy.signal.resample_poly(wav, 8000, current_fs)
current_fs = 8000
elif current_fs < 8000 and current_fs > 0:
logger.warning(f"Sample rate {current_fs} is less than 8000Hz. Resampling to 8000Hz.")
wav = scipy.signal.resample_poly(wav, 8000, current_fs)
current_fs = 8000
elif current_fs <= 0:
raise RuntimeError(f"Unsupported sample rate {current_fs}")
# After this block, current_fs is either 16000Hz or 8000Hz, or an error was raised.
# Or it's the original fs if it was already 16000 or 8000.
if current_fs == 8000:
if self._eightk_method == "resample":
wav = scipy.signal.resample_poly(wav, self.sampling_rate, 8000)
current_fs = self.sampling_rate
elif current_fs != self.sampling_rate:
# This case should ideally not be hit if logic above is correct and self.sampling_rate is 16000
raise RuntimeError(
f"Audio sample rate {current_fs} not supported. Expected {self.sampling_rate} or 8000 for 8k methods.")
preemphasis_coeff = 0.97
# current_fs is now the rate for STFT parameters (either 16000 or 8000 if fillzero)
if current_fs == 8000: # This implies _eightk_method == "fillzero"
n_fft, win_length, hop_length, fft_window = 256, 200, 80, self._hamming200
elif current_fs == 16000: # This is the standard path
n_fft, win_length, hop_length, fft_window = 512, 400, 160, self._hamming400
else:
raise RuntimeError(f"Inconsistent fs {current_fs} for parameter selection. Should be 16000 or 8000.")
if len(wav) < win_length:
wav = np.pad(wav, (0, win_length - len(wav)), 'constant', constant_values=(0.0,))
num_frames = (wav.shape[0] - win_length) // hop_length + 1
if num_frames <= 0:
# For n_fft=512 (16k), output bins = 257. For n_fft=256 (8k), output bins = 129
# If fillzero for 8k, it will be padded to 257 later.
# So, the number of freq bins depends on n_fft here.
return np.zeros((0, n_fft // 2 + 1), dtype=np.float32)
y_frames = np.array(
[wav[i * hop_length: i * hop_length + win_length] for i in range(num_frames)],
dtype=np.float32,
)
_y_frames_rolled = np.roll(y_frames, 1, axis=1)
_y_frames_rolled[:, 0] = _y_frames_rolled[:, 1]
y_frames_preemphasized = (y_frames - preemphasis_coeff * _y_frames_rolled) * 32768.0
S = np.fft.rfft(fft_window * y_frames_preemphasized, n=n_fft, axis=1).astype(np.complex64)
if current_fs == 8000 and self._eightk_method == "fillzero":
# S.shape[1] is 129 for n_fft=256. Target is 257 for n_fft=512 equivalence.
target_bins = (512 // 2) + 1
S_core = S[:, :-1] # Drop 8kHz Nyquist bin (1 bin)
# Pad to target_bins. Number of columns to add: target_bins - S_core.shape[1]
padarray = np.zeros((S_core.shape[0], target_bins - S_core.shape[1]), dtype=S.dtype)
S = np.concatenate((S_core, padarray), axis=1)
spec = np.abs(S).astype(np.float32)
return spec
def _extract_features(self, wav: np.ndarray, fs: int) -> np.ndarray:
spec = self._extract_spectrogram(wav, fs)
if spec.shape[0] == 0:
# self.feature_size is n_mels (e.g. 80)
return np.zeros((0, self.feature_size), dtype=np.float32)
spec_power = spec ** 2
fbank_power = np.clip(spec_power.dot(self._mel), 1.0, None)
log_fbank = np.log(fbank_power).astype(np.float32)
return log_fbank
def _compute_audio_embed_size(self, audio_frames: int) -> int:
integer = audio_frames // self.compression_rate
remainder = audio_frames % self.compression_rate
result = integer if remainder == 0 else integer + 1
integer = result // self.qformer_compression_rate
remainder = result % self.qformer_compression_rate
result = integer if remainder == 0 else integer + 1
return result
class Gemma3ImagesKwargs(ImagesKwargs):
do_pan_and_scan: Optional[bool]
pan_and_scan_min_crop_size: Optional[int]
pan_and_scan_max_num_crops: Optional[int]
pan_and_scan_min_ratio_to_activate: Optional[float]
do_convert_rgb: Optional[bool]
class Gemma3ProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: Optional[Dict[str, Any]] = None
audio_kwargs: Optional[Dict[str, Any]] = None
text_kwargs: Optional[Dict[str, Any]] = None
_defaults = {
"text_kwargs": {"padding": False, "truncation": False, "max_length": DEFAULT_MAX_LENGTH},
"images_kwargs": {},
"audio_kwargs": {}
}
class Gemma3OmniProcessor(ProcessorMixin):
attributes = ["image_processor", "audio_processor", "tokenizer"]
valid_kwargs = ["chat_template", "image_seq_length"]
image_processor_class = "AutoImageProcessor"
audio_processor_class = "AutoFeatureExtractor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
audio_processor=None, # User can pass an instance of RefactoredGemma3... here
tokenizer=None,
chat_template=None,
image_seq_length: int = 256,
**kwargs
):
super().__init__(
image_processor=image_processor,
audio_processor=audio_processor,
tokenizer=tokenizer,
chat_template=chat_template,
**kwargs
)
self.image_seq_length = image_seq_length
if self.tokenizer is not None:
self.image_token_id = getattr(self.tokenizer, "image_token_id",
self.tokenizer.unk_token_id if hasattr(self.tokenizer,
"unk_token_id") else None)
self.boi_token = getattr(self.tokenizer, "boi_token", "<image>")
self.image_token = getattr(self.tokenizer, "image_token", "<image>")
self.eoi_token = getattr(self.tokenizer, "eoi_token", "")
self.audio_token_str_from_user_code = "<audio_soft_token>" # Example
# Ensure this token is actually in the tokenizer vocab as a special token
self.audio_token_id = self.tokenizer.convert_tokens_to_ids(self.audio_token_str_from_user_code)
if hasattr(self.tokenizer, "unk_token_id") and self.audio_token_id == self.tokenizer.unk_token_id:
logger.warning(
f"The audio token string '{self.audio_token_str_from_user_code}' maps to the UNK token. "
"Please ensure it is added to the tokenizer's vocabulary as a special token."
)
self.full_image_sequence = f"\n\n{self.boi_token}{''.join([self.image_token] * image_seq_length)}{self.eoi_token}\n\n"
else:
logger.error(
"Gemma3OmniProcessor initialized, but self.tokenizer is None. Token-dependent attributes will use placeholders or defaults.")
self.image_token_id = None
self.boi_token = "<image>"
self.image_token = "<image>"
self.eoi_token = ""
self.audio_token_str_from_user_code = "<audio_soft_token>"
self.audio_token_id = -1 # Placeholder if tokenizer is missing
self.full_image_sequence = ""
# These attributes are specific to Gemma3OmniProcessor for its internal _compute_audio_embed_size
self.prompt_audio_compression_rate = kwargs.pop("prompt_audio_compression_rate", DEFAULT_COMPRESSION_RATE)
self.prompt_audio_qformer_rate = kwargs.pop("prompt_audio_qformer_rate", DEFAULT_QFORMER_RATE)
# self.prompt_audio_feat_stride = kwargs.pop("prompt_audio_feat_stride", DEFAULT_FEAT_STRIDE) # Not used by its _compute_audio_embed_size
self.audio_placeholder_token = kwargs.pop("audio_placeholder_token", "<|audio_placeholder|>")
def _merge_kwargs(self, KwargsClassWithDefaults, tokenizer_init_kwargs, **kwargs_from_call):
final_kwargs = {}
_defaults = getattr(KwargsClassWithDefaults, "_defaults", {})
if not isinstance(_defaults, dict): _defaults = {}
for modality_key, default_modality_kwargs in _defaults.items():
final_kwargs[modality_key] = default_modality_kwargs.copy()
for modality_key_in_call, modality_kwargs_in_call in kwargs_from_call.items():
if modality_key_in_call in final_kwargs:
if isinstance(modality_kwargs_in_call, dict):
final_kwargs[modality_key_in_call].update(modality_kwargs_in_call)
elif isinstance(modality_kwargs_in_call, dict): # New modality not in defaults
final_kwargs[modality_key_in_call] = modality_kwargs_in_call.copy()
if self.tokenizer: # Ensure tokenizer exists before accessing its attributes
for modality_key in final_kwargs:
modality_dict = final_kwargs[modality_key]
if isinstance(modality_dict, dict): # Check if it's a dictionary
for key_in_mod_dict in list(modality_dict.keys()): # Iterate over keys
if key_in_mod_dict in tokenizer_init_kwargs:
value = (
getattr(self.tokenizer, key_in_mod_dict)
if hasattr(self.tokenizer, key_in_mod_dict)
else tokenizer_init_kwargs[key_in_mod_dict]
)
modality_dict[key_in_mod_dict] = value
if "text_kwargs" not in final_kwargs: final_kwargs["text_kwargs"] = {} # Ensure text_kwargs exists
final_kwargs["text_kwargs"]["truncation"] = final_kwargs["text_kwargs"].get("truncation", False)
final_kwargs["text_kwargs"]["max_length"] = final_kwargs["text_kwargs"].get("max_length", DEFAULT_MAX_LENGTH)
return final_kwargs
def _compute_audio_embed_size(self, audio_mel_frames: int) -> int:
integer = audio_mel_frames // self.prompt_audio_compression_rate
remainder = audio_mel_frames % self.prompt_audio_compression_rate
result = integer if remainder == 0 else integer + 1
# Second compression
integer = result // self.prompt_audio_qformer_rate
remainder = result % self.prompt_audio_qformer_rate
result = integer if remainder == 0 else integer + 1
return result
def __call__(
self,
text: Union[str, List[str]] = None,
images: Optional[Any] = None,
audios: Optional[Union[AudioInput, List[AudioInput]]] = None,
sampling_rate: Optional[int] = None, # sampling_rate for raw audio arrays
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs: Any
) -> BatchFeature:
if text is None and images is None and audios is None:
raise ValueError("Provide at least one of `text`, `images`, or `audios`.")
final_rt = return_tensors # Store original return_tensors
# Properly merge kwargs for text, images, audio
merged_call_kwargs = self._merge_kwargs(
Gemma3ProcessorKwargs, # The class defining _defaults
self.tokenizer.init_kwargs if hasattr(self.tokenizer, 'init_kwargs') else {}, # Tokenizer defaults
**kwargs # User-provided kwargs from the call
)
# Determine final return_tensors, prioritizing call > text_kwargs > default
if final_rt is None: # If not specified in call
final_rt = merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", TensorType.PYTORCH)
else: # If specified in call, remove from text_kwargs to avoid conflict
merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", None)
if text is None: # If no text, create empty strings based on other inputs
num_samples = 0
if images is not None:
_images_list = images if isinstance(images, list) and (
not images or not isinstance(images[0], (int, float))) else [images]
num_samples = len(_images_list)
elif audios is not None:
_audios_list = audios if isinstance(audios, list) and not (
isinstance(audios[0], tuple) and isinstance(audios[0][0], (int, float))) else [
audios] # check if audios is list of items or list of (wave,sr)
num_samples = len(_audios_list)
text = [""] * num_samples if num_samples > 0 else [""] # Default to one empty string if no inputs
if isinstance(text, str): text = [text] # Ensure text is a list
if not (isinstance(text, list) and all(isinstance(t, str) for t in text)):
raise ValueError("Input `text` must be a string or a list of strings.")
image_features_dict = {}
if images is not None:
if self.image_processor is None: raise ValueError("Images provided but self.image_processor is None.")
# Ensure images are correctly batched
batched_images = make_nested_list_of_images(images) # handles various image input types
_img_kwargs = merged_call_kwargs.get("images_kwargs", {})
_img_proc_output = self.image_processor(batched_images, return_tensors=None,
**_img_kwargs) # Pass None to handle tensors later
image_features_dict = _img_proc_output.data if isinstance(_img_proc_output,
BatchFeature) else _img_proc_output
if len(text) == 1 and text[0] == "" and len(
batched_images) > 0: # If text is default empty and images exist
text = [" ".join([self.boi_token] * len(img_batch)) for img_batch in batched_images]
elif len(batched_images) != len(text): # If text was provided, ensure consistency
raise ValueError(
f"Inconsistent batch: {len(batched_images)} image groups, {len(text)} texts. Ensure one text prompt per image group."
)
num_crops_popped = image_features_dict.pop("num_crops", None)
if num_crops_popped is not None:
num_crops_all = to_py_obj(num_crops_popped)
temp_text_img, current_crop_idx_offset = [], 0
for batch_idx, (prompt, current_imgs_in_batch) in enumerate(zip(text, batched_images)):
crops_for_this_batch_sample = [] # Number of *additional* crops for each original image
if num_crops_all: # If num_crops_all is not None or empty
for _ in current_imgs_in_batch: # For each original image in the current batch sample
if current_crop_idx_offset < len(num_crops_all):
# num_crops_all contains total items (original + crops) for each image
# We need number of *additional* crops. Assuming num_crops_all[i] >= 1
crops_for_this_batch_sample.append(max(0, num_crops_all[current_crop_idx_offset] - 1))
current_crop_idx_offset += 1
else:
crops_for_this_batch_sample.append(0) # Should not happen if num_crops_all is correct
image_placeholders_in_prompt = [m.start() for m in re.finditer(re.escape(self.boi_token), prompt)]
processed_prompt = prompt
# Iterate backwards to preserve indices for replacement
iter_count = min(len(crops_for_this_batch_sample), len(image_placeholders_in_prompt))
for i_placeholder_idx in range(iter_count - 1, -1, -1):
num_additional_crops_for_this_image = crops_for_this_batch_sample[i_placeholder_idx]
original_token_idx_in_prompt = image_placeholders_in_prompt[i_placeholder_idx]
if num_additional_crops_for_this_image > 0:
# Create replacement text: original image placeholder + placeholders for additional crops
replacement_text = self.boi_token + "".join(
[self.boi_token] * num_additional_crops_for_this_image)
# Replace the single original boi_token with the new sequence
processed_prompt = (
processed_prompt[:original_token_idx_in_prompt] +
replacement_text +
processed_prompt[original_token_idx_in_prompt + len(self.boi_token):]
)
temp_text_img.append(processed_prompt)
text = temp_text_img
# Replace all BOI tokens with the full image sequence (BOI + IMAGE*N + EOI)
# This step assumes that if additional crops were handled, self.boi_token still marks each image.
text = [p.replace(self.boi_token, self.full_image_sequence) for p in text]
audio_features_dict = {}
if audios is not None:
if self.audio_processor is None: raise ValueError("Audios provided but self.audio_processor is None.")
audio_call_kwargs = merged_call_kwargs.get("audio_kwargs", {})
# Pass sampling_rate from __call__ to audio_processor if provided (for raw arrays)
if sampling_rate is not None: audio_call_kwargs["sampling_rate"] = sampling_rate
# The audio_processor (e.g., RefactoredGemma3...) will return its model_input_names
# e.g., {"input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"}
_audio_proc_output = self.audio_processor(audios=audios, return_tensors=None, **audio_call_kwargs)
audio_features_dict = _audio_proc_output.data
new_text_with_audio = []
# Determine the number of actual audio items processed by the audio_processor
# This should match len(text) if batching is consistent.
# The 'audio_attention_mask' or 'input_audio_embeds' can indicate this.
num_audio_samples_processed = audio_features_dict[self.audio_processor.model_input_names[0]].shape[0]
if num_audio_samples_processed != len(text):
raise ValueError(
f"Inconsistent batch for audio/text: {num_audio_samples_processed} audio samples processed, {len(text)} text prompts."
)
frames_for_embed_size_calc = to_py_obj(audio_features_dict[self.audio_processor.model_input_names[2]].sum(
axis=-1)) # sum of audio_attention_mask
for i, prompt in enumerate(text):
# num_soft_tokens should be the final number of audio tokens to insert in the text.
# This is calculated by the Gemma3OmniProcessor's own method.
num_soft_tokens = self._compute_audio_embed_size(frames_for_embed_size_calc[i])
audio_token_sequence_str = self.audio_token_str_from_user_code * num_soft_tokens
if self.audio_placeholder_token in prompt:
prompt = prompt.replace(self.audio_placeholder_token, audio_token_sequence_str,
1) # Replace only first
else:
prompt += audio_token_sequence_str # Append if no placeholder
new_text_with_audio.append(prompt)
text = new_text_with_audio
text_tokenizer_kwargs = merged_call_kwargs.get("text_kwargs", {})
text_features_dict = self.tokenizer(text=text, return_tensors=None,
**text_tokenizer_kwargs) # Pass None for tensors
# Create token_type_ids
input_ids_list_of_lists = text_features_dict["input_ids"]
# Ensure it's a list of lists
if not isinstance(input_ids_list_of_lists, list) or not (
input_ids_list_of_lists and isinstance(input_ids_list_of_lists[0], list)):
if isinstance(input_ids_list_of_lists, (torch.Tensor, np.ndarray)):
input_ids_list_of_lists = to_py_obj(input_ids_list_of_lists) # to nested python lists
elif isinstance(input_ids_list_of_lists, list) and (
not input_ids_list_of_lists or isinstance(input_ids_list_of_lists[0], int)):
input_ids_list_of_lists = [input_ids_list_of_lists] # wrap single list
token_type_ids_list = []
for ids_sample in input_ids_list_of_lists:
types = [0] * len(ids_sample) # 0 for text
for j, token_id_val in enumerate(ids_sample):
if self.image_token_id is not None and token_id_val == self.image_token_id:
types[j] = 1 # 1 for image
elif self.audio_token_id != -1 and token_id_val == self.audio_token_id: # Check if audio_token_id is valid
types[j] = 2 # 2 for audio
token_type_ids_list.append(types)
text_features_dict["token_type_ids"] = token_type_ids_list
final_batch_data = {**text_features_dict}
if image_features_dict: final_batch_data.update(image_features_dict)
if audio_features_dict: final_batch_data.update(audio_features_dict)
# Convert all data to tensors if final_rt is specified
return BatchFeature(data=final_batch_data, tensor_type=final_rt)
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self) -> List[str]:
input_names = set()
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
# Make sure model_input_names is a list/set before +
tokenizer_inputs = self.tokenizer.model_input_names
if isinstance(tokenizer_inputs, (list, set)):
input_names.update(tokenizer_inputs)
else: # Fallback if it's a single string
input_names.add(str(tokenizer_inputs))
input_names.add("token_type_ids")
if hasattr(self, 'image_processor') and self.image_processor is not None:
# Similar check for image_processor
image_inputs = self.image_processor.model_input_names
if isinstance(image_inputs, (list, set)):
input_names.update(image_inputs)
else:
input_names.add(str(image_inputs))
if hasattr(self, 'audio_processor') and self.audio_processor is not None:
# Use model_input_names from the instantiated audio_processor
# This will correctly reflect the names from RefactoredGemma3... if it's used.
audio_inputs = self.audio_processor.model_input_names
if isinstance(audio_inputs, (list, set)):
input_names.update(audio_inputs)
else:
input_names.add(str(audio_inputs))
return list(input_names)