File size: 32,756 Bytes
129c05b 3fa62c9 19649d5 129c05b 6cb34fb 129c05b 3fa62c9 129c05b 3fa62c9 eaad0f5 129c05b 9faac02 129c05b ddf58eb 129c05b 460868e 9e58a2b 315e5b5 129c05b 9e58a2b 701891b 129c05b d0ae9f9 3fa62c9 ddf58eb 3fa62c9 ddf58eb 3fa62c9 ddf58eb 3fa62c9 ddf58eb 3fa62c9 701891b ddf58eb eaad0f5 3fa62c9 7a85e64 ddf58eb 3fa62c9 ddf58eb 129c05b 3fa62c9 ddf58eb 3fa62c9 ddf58eb 315e5b5 ddf58eb 3fa62c9 315e5b5 ddf58eb 9faac02 3fa62c9 ddf58eb 129c05b 3fa62c9 0173a9f 3fa62c9 eaad0f5 3fa62c9 ddf58eb 3fa62c9 ddf58eb 3fa62c9 eaad0f5 3fa62c9 315e5b5 3fa62c9 ddf58eb 3fa62c9 ddf58eb 3fa62c9 ddf58eb 3fa62c9 ddf58eb 3fa62c9 ddf58eb 3fa62c9 ddf58eb 3fa62c9 ddf58eb 9faac02 3fa62c9 eaad0f5 3fa62c9 ddf58eb 3fa62c9 eaad0f5 3fa62c9 0173a9f 3fa62c9 ddf58eb 3fa62c9 d0ae9f9 3fa62c9 eaad0f5 ddf58eb 3fa62c9 ddf58eb 3fa62c9 129c05b 3fa62c9 eaad0f5 3fa62c9 ddf58eb 3fa62c9 eaad0f5 3fa62c9 ddf58eb 3fa62c9 eaad0f5 3fa62c9 0173a9f 3fa62c9 eaad0f5 129c05b 41e945a 9faac02 41e945a eaad0f5 129c05b d0ae9f9 129c05b 7a85e64 41e945a eaad0f5 41e945a 315e5b5 41e945a 129c05b eaad0f5 3fa62c9 eaad0f5 129c05b 6cb34fb 5fc5a97 129c05b 41e945a 129c05b e475890 eaad0f5 315e5b5 eaad0f5 315e5b5 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 315e5b5 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 315e5b5 eaad0f5 315e5b5 eaad0f5 3fa62c9 eaad0f5 3fa62c9 129c05b eaad0f5 3fa62c9 eaad0f5 129c05b eaad0f5 3fa62c9 eaad0f5 3fa62c9 129c05b e475890 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 9e58a2b eaad0f5 3fa62c9 9e58a2b 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 41e945a eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 315e5b5 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 315e5b5 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 0173a9f 129c05b eaad0f5 3fa62c9 eaad0f5 3fa62c9 eaad0f5 9e58a2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
import re
from typing import List, Optional, Union, Dict, Any, Tuple # Added Tuple
import numpy as np
import scipy.signal
import torch
from torch.nn.utils.rnn import pad_sequence
from transformers.audio_utils import AudioInput # type: ignore
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import make_nested_list_of_images # If image processing is used
from transformers.processing_utils import ProcessorMixin, ProcessingKwargs, ImagesKwargs
from transformers.utils import TensorType, to_py_obj, logging
# Constants
DEFAULT_SAMPLING_RATE = 16000
DEFAULT_N_FFT = 512
DEFAULT_WIN_LENGTH = 400
DEFAULT_HOP_LENGTH = 160
DEFAULT_N_MELS = 80
DEFAULT_COMPRESSION_RATE = 4
DEFAULT_QFORMER_RATE = 4 # Used for default in __init__ (as audio_downsample_rate)
DEFAULT_FEAT_STRIDE = 4 # Used for default in __init__
IMAGE_TOKEN_PATTERN = r"<\|image_\d+\|>"
AUDIO_TOKEN_PATTERN = r"<\|audio_\d+\|>"
DEFAULT_MAX_LENGTH = 16384
logger = logging.get_logger(__name__)
def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
"""Create a Mel filter-bank the same as SpeechLib FbankFC.
Args:
sample_rate (int): Sample rate in Hz. number > 0 [scalar]
n_fft (int): FFT size. int > 0 [scalar]
n_mel (int): Mel filter size. int > 0 [scalar]
fmin (float): lowest frequency (in Hz). If None use 0.0.
float >= 0 [scalar]
fmax: highest frequency (in Hz). If None use sample_rate / 2.
float >= 0 [scalar]
Returns
out (numpy.ndarray): Mel transform matrix
[shape=(n_mels, 1 + n_fft/2)]
"""
bank_width = int(n_fft // 2 + 1)
if fmax is None:
fmax = sample_rate / 2
if fmin is None:
fmin = 0
assert fmin >= 0, "fmin cannot be negtive"
assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"
def mel(f):
return 1127.0 * np.log(1.0 + f / 700.0)
def bin2mel(fft_bin):
return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))
def f2bin(f):
return int((f * n_fft / sample_rate) + 0.5)
# Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
klo = f2bin(fmin) + 1
khi = f2bin(fmax)
khi = max(khi, klo)
# Spec 2: SpeechLib uses trianges in Mel space
mlo = mel(fmin)
mhi = mel(fmax)
m_centers = np.linspace(mlo, mhi, n_mels + 2)
ms = (mhi - mlo) / (n_mels + 1)
matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
for m in range(0, n_mels):
left = m_centers[m]
center = m_centers[m + 1]
right = m_centers[m + 2]
for fft_bin in range(klo, khi):
mbin = bin2mel(fft_bin)
if left < mbin < right:
matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms
return matrix
# --- Start of Refactored Audio Feature Extractor (to match Phi4M - Snippet A) ---
class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor): # MODIFIED CLASS NAME AND __INIT__
model_input_names = ["input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"]
def __init__(self,
audio_compression_rate: int = DEFAULT_COMPRESSION_RATE, # ADDED DEFAULT
audio_downsample_rate: int = DEFAULT_QFORMER_RATE, # ADDED DEFAULT (maps to qformer_rate)
audio_feat_stride: int = DEFAULT_FEAT_STRIDE, # ADDED DEFAULT
feature_size: int = DEFAULT_N_MELS, # Added default based on constants
sampling_rate: int = DEFAULT_SAMPLING_RATE, # Added default based on constants
padding_value: float = 0.0, # Added default
eightk_method: str = "fillzero", # Added default for this custom param
**kwargs):
# If feature_size, sampling_rate, padding_value are in kwargs, they will override defaults.
# The super().__init__ expects feature_size, sampling_rate, padding_value.
# We ensure they are passed, either from defaults or kwargs.
_feature_size = kwargs.pop("feature_size", feature_size)
_sampling_rate = kwargs.pop("sampling_rate", sampling_rate)
_padding_value = kwargs.pop("padding_value", padding_value)
super().__init__(feature_size=_feature_size, sampling_rate=_sampling_rate, padding_value=_padding_value,
**kwargs)
self.compression_rate = audio_compression_rate
self.qformer_compression_rate = audio_downsample_rate
self.feat_stride = audio_feat_stride
self._eightk_method = eightk_method # Use the argument, which has a default
# Ensure _sampling_rate is used for mel filterbank if it was overridden by kwargs for superclass
# However, Phi4M logic hardcodes 16000Hz for its mel parameters.
# self.sampling_rate from super() will be the target sampling rate.
if self.sampling_rate != 16000:
logger.warning(
f"The feature extractor's target sampling rate is {self.sampling_rate}, "
"but Phi4M-consistent Mel parameters are based on 16000 Hz. "
"This might lead to inconsistencies if the input audio is not resampled to 16000 Hz by this extractor."
)
self._mel = speechlib_mel(16000, 512, 80, fmin=None, fmax=7690).T
self._hamming400 = np.hamming(400)
self._hamming200 = np.hamming(200)
def __call__(
self,
audios: List[Union[AudioInput, Tuple[np.ndarray, int]]],
return_tensors: Optional[Union[str, TensorType]] = None,
# sampling_rate: Optional[int] = None, # This was in original B, but Phi4M gets sr from AudioInput
):
returned_input_audio_embeds = []
returned_audio_embed_sizes = []
audio_frames_list = []
for audio_input_item in audios:
if not isinstance(audio_input_item, tuple) or len(audio_input_item) != 2:
raise ValueError(
"Each item in 'audios' must be a tuple (waveform: np.ndarray, sample_rate: int)."
)
audio_data, sample_rate = audio_input_item # sample_rate is from the input audio
if isinstance(audio_data, list):
audio_data = np.array(audio_data, dtype=np.float32)
if not isinstance(audio_data, np.ndarray):
raise TypeError(f"Waveform data must be a numpy array, got {type(audio_data)}")
# _extract_features will handle resampling to self.sampling_rate (16000 Hz)
audio_embeds_np = self._extract_features(audio_data, sample_rate)
num_mel_frames = audio_embeds_np.shape[0]
current_audio_frames = num_mel_frames * self.feat_stride
audio_embed_size = self._compute_audio_embed_size(current_audio_frames)
returned_input_audio_embeds.append(torch.from_numpy(audio_embeds_np))
returned_audio_embed_sizes.append(torch.tensor(audio_embed_size).long())
audio_frames_list.append(current_audio_frames)
padded_input_audio_embeds = pad_sequence(
returned_input_audio_embeds, batch_first=True, padding_value=self.padding_value
)
stacked_audio_embed_sizes = torch.stack(returned_audio_embed_sizes, dim=0)
tensor_audio_frames_list = torch.tensor(audio_frames_list, dtype=torch.long)
max_audio_frames = 0
if len(audios) > 0 and tensor_audio_frames_list.numel() > 0:
max_audio_frames = tensor_audio_frames_list.max().item()
returned_audio_attention_mask = None
if max_audio_frames > 0:
if len(audios) > 1:
returned_audio_attention_mask = torch.arange(0, max_audio_frames,
device=tensor_audio_frames_list.device).unsqueeze(
0) < tensor_audio_frames_list.unsqueeze(1)
elif len(audios) == 1:
returned_audio_attention_mask = torch.ones(1, max_audio_frames, dtype=torch.bool,
device=tensor_audio_frames_list.device)
data = {
"input_audio_embeds": padded_input_audio_embeds,
"audio_embed_sizes": stacked_audio_embed_sizes,
}
if returned_audio_attention_mask is not None:
data["audio_attention_mask"] = returned_audio_attention_mask
return BatchFeature(data=data, tensor_type=return_tensors)
def _extract_spectrogram(self, wav: np.ndarray, fs: int) -> np.ndarray:
# This method expects fs to be the original sampling rate of wav.
# It will resample to self.sampling_rate (16000Hz) or 8000Hz as needed.
if wav.ndim > 1:
wav = np.squeeze(wav)
if len(wav.shape) == 2:
wav = wav.mean(axis=1).astype(np.float32)
wav = wav.astype(np.float32)
current_fs = fs
if current_fs > self.sampling_rate: # self.sampling_rate is 16000
wav = scipy.signal.resample_poly(wav, self.sampling_rate, current_fs)
current_fs = self.sampling_rate
elif 8000 < current_fs < self.sampling_rate:
wav = scipy.signal.resample_poly(wav, 8000, current_fs)
current_fs = 8000
elif current_fs < 8000 and current_fs > 0:
logger.warning(f"Sample rate {current_fs} is less than 8000Hz. Resampling to 8000Hz.")
wav = scipy.signal.resample_poly(wav, 8000, current_fs)
current_fs = 8000
elif current_fs <= 0:
raise RuntimeError(f"Unsupported sample rate {current_fs}")
# After this block, current_fs is either 16000Hz or 8000Hz, or an error was raised.
# Or it's the original fs if it was already 16000 or 8000.
if current_fs == 8000:
if self._eightk_method == "resample":
wav = scipy.signal.resample_poly(wav, self.sampling_rate, 8000)
current_fs = self.sampling_rate
elif current_fs != self.sampling_rate:
# This case should ideally not be hit if logic above is correct and self.sampling_rate is 16000
raise RuntimeError(
f"Audio sample rate {current_fs} not supported. Expected {self.sampling_rate} or 8000 for 8k methods.")
preemphasis_coeff = 0.97
# current_fs is now the rate for STFT parameters (either 16000 or 8000 if fillzero)
if current_fs == 8000: # This implies _eightk_method == "fillzero"
n_fft, win_length, hop_length, fft_window = 256, 200, 80, self._hamming200
elif current_fs == 16000: # This is the standard path
n_fft, win_length, hop_length, fft_window = 512, 400, 160, self._hamming400
else:
raise RuntimeError(f"Inconsistent fs {current_fs} for parameter selection. Should be 16000 or 8000.")
if len(wav) < win_length:
wav = np.pad(wav, (0, win_length - len(wav)), 'constant', constant_values=(0.0,))
num_frames = (wav.shape[0] - win_length) // hop_length + 1
if num_frames <= 0:
# For n_fft=512 (16k), output bins = 257. For n_fft=256 (8k), output bins = 129
# If fillzero for 8k, it will be padded to 257 later.
# So, the number of freq bins depends on n_fft here.
return np.zeros((0, n_fft // 2 + 1), dtype=np.float32)
y_frames = np.array(
[wav[i * hop_length: i * hop_length + win_length] for i in range(num_frames)],
dtype=np.float32,
)
_y_frames_rolled = np.roll(y_frames, 1, axis=1)
_y_frames_rolled[:, 0] = _y_frames_rolled[:, 1]
y_frames_preemphasized = (y_frames - preemphasis_coeff * _y_frames_rolled) * 32768.0
S = np.fft.rfft(fft_window * y_frames_preemphasized, n=n_fft, axis=1).astype(np.complex64)
if current_fs == 8000 and self._eightk_method == "fillzero":
# S.shape[1] is 129 for n_fft=256. Target is 257 for n_fft=512 equivalence.
target_bins = (512 // 2) + 1
S_core = S[:, :-1] # Drop 8kHz Nyquist bin (1 bin)
# Pad to target_bins. Number of columns to add: target_bins - S_core.shape[1]
padarray = np.zeros((S_core.shape[0], target_bins - S_core.shape[1]), dtype=S.dtype)
S = np.concatenate((S_core, padarray), axis=1)
spec = np.abs(S).astype(np.float32)
return spec
def _extract_features(self, wav: np.ndarray, fs: int) -> np.ndarray:
spec = self._extract_spectrogram(wav, fs)
if spec.shape[0] == 0:
# self.feature_size is n_mels (e.g. 80)
return np.zeros((0, self.feature_size), dtype=np.float32)
spec_power = spec ** 2
fbank_power = np.clip(spec_power.dot(self._mel), 1.0, None)
log_fbank = np.log(fbank_power).astype(np.float32)
return log_fbank
def _compute_audio_embed_size(self, audio_frames: int) -> int:
integer = audio_frames // self.compression_rate
remainder = audio_frames % self.compression_rate
result = integer if remainder == 0 else integer + 1
integer = result // self.qformer_compression_rate
remainder = result % self.qformer_compression_rate
result = integer if remainder == 0 else integer + 1
return result
class Gemma3ImagesKwargs(ImagesKwargs):
do_pan_and_scan: Optional[bool]
pan_and_scan_min_crop_size: Optional[int]
pan_and_scan_max_num_crops: Optional[int]
pan_and_scan_min_ratio_to_activate: Optional[float]
do_convert_rgb: Optional[bool]
class Gemma3ProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: Optional[Dict[str, Any]] = None
audio_kwargs: Optional[Dict[str, Any]] = None
text_kwargs: Optional[Dict[str, Any]] = None
_defaults = {
"text_kwargs": {"padding": False, "truncation": False, "max_length": DEFAULT_MAX_LENGTH},
"images_kwargs": {},
"audio_kwargs": {}
}
class Gemma3OmniProcessor(ProcessorMixin):
attributes = ["image_processor", "audio_processor", "tokenizer"]
valid_kwargs = ["chat_template", "image_seq_length"]
image_processor_class = "AutoImageProcessor"
audio_processor_class = "AutoFeatureExtractor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
audio_processor=None, # User can pass an instance of RefactoredGemma3... here
tokenizer=None,
chat_template=None,
image_seq_length: int = 256,
**kwargs
):
super().__init__(
image_processor=image_processor,
audio_processor=audio_processor,
tokenizer=tokenizer,
chat_template=chat_template,
**kwargs
)
self.image_seq_length = image_seq_length
if self.tokenizer is not None:
self.image_token_id = getattr(self.tokenizer, "image_token_id",
self.tokenizer.unk_token_id if hasattr(self.tokenizer,
"unk_token_id") else None)
self.boi_token = getattr(self.tokenizer, "boi_token", "<image>")
self.image_token = getattr(self.tokenizer, "image_token", "<image>")
self.eoi_token = getattr(self.tokenizer, "eoi_token", "")
self.audio_token_str_from_user_code = "<audio_soft_token>" # Example
# Ensure this token is actually in the tokenizer vocab as a special token
self.audio_token_id = self.tokenizer.convert_tokens_to_ids(self.audio_token_str_from_user_code)
if hasattr(self.tokenizer, "unk_token_id") and self.audio_token_id == self.tokenizer.unk_token_id:
logger.warning(
f"The audio token string '{self.audio_token_str_from_user_code}' maps to the UNK token. "
"Please ensure it is added to the tokenizer's vocabulary as a special token."
)
self.full_image_sequence = f"\n\n{self.boi_token}{''.join([self.image_token] * image_seq_length)}{self.eoi_token}\n\n"
else:
logger.error(
"Gemma3OmniProcessor initialized, but self.tokenizer is None. Token-dependent attributes will use placeholders or defaults.")
self.image_token_id = None
self.boi_token = "<image>"
self.image_token = "<image>"
self.eoi_token = ""
self.audio_token_str_from_user_code = "<audio_soft_token>"
self.audio_token_id = -1 # Placeholder if tokenizer is missing
self.full_image_sequence = ""
# These attributes are specific to Gemma3OmniProcessor for its internal _compute_audio_embed_size
self.prompt_audio_compression_rate = kwargs.pop("prompt_audio_compression_rate", DEFAULT_COMPRESSION_RATE)
self.prompt_audio_qformer_rate = kwargs.pop("prompt_audio_qformer_rate", DEFAULT_QFORMER_RATE)
# self.prompt_audio_feat_stride = kwargs.pop("prompt_audio_feat_stride", DEFAULT_FEAT_STRIDE) # Not used by its _compute_audio_embed_size
self.audio_placeholder_token = kwargs.pop("audio_placeholder_token", "<|audio_placeholder|>")
def _merge_kwargs(self, KwargsClassWithDefaults, tokenizer_init_kwargs, **kwargs_from_call):
final_kwargs = {}
_defaults = getattr(KwargsClassWithDefaults, "_defaults", {})
if not isinstance(_defaults, dict): _defaults = {}
for modality_key, default_modality_kwargs in _defaults.items():
final_kwargs[modality_key] = default_modality_kwargs.copy()
for modality_key_in_call, modality_kwargs_in_call in kwargs_from_call.items():
if modality_key_in_call in final_kwargs:
if isinstance(modality_kwargs_in_call, dict):
final_kwargs[modality_key_in_call].update(modality_kwargs_in_call)
elif isinstance(modality_kwargs_in_call, dict): # New modality not in defaults
final_kwargs[modality_key_in_call] = modality_kwargs_in_call.copy()
if self.tokenizer: # Ensure tokenizer exists before accessing its attributes
for modality_key in final_kwargs:
modality_dict = final_kwargs[modality_key]
if isinstance(modality_dict, dict): # Check if it's a dictionary
for key_in_mod_dict in list(modality_dict.keys()): # Iterate over keys
if key_in_mod_dict in tokenizer_init_kwargs:
value = (
getattr(self.tokenizer, key_in_mod_dict)
if hasattr(self.tokenizer, key_in_mod_dict)
else tokenizer_init_kwargs[key_in_mod_dict]
)
modality_dict[key_in_mod_dict] = value
if "text_kwargs" not in final_kwargs: final_kwargs["text_kwargs"] = {} # Ensure text_kwargs exists
final_kwargs["text_kwargs"]["truncation"] = final_kwargs["text_kwargs"].get("truncation", False)
final_kwargs["text_kwargs"]["max_length"] = final_kwargs["text_kwargs"].get("max_length", DEFAULT_MAX_LENGTH)
return final_kwargs
def _compute_audio_embed_size(self, audio_mel_frames: int) -> int:
integer = audio_mel_frames // self.prompt_audio_compression_rate
remainder = audio_mel_frames % self.prompt_audio_compression_rate
result = integer if remainder == 0 else integer + 1
# Second compression
integer = result // self.prompt_audio_qformer_rate
remainder = result % self.prompt_audio_qformer_rate
result = integer if remainder == 0 else integer + 1
return result
def __call__(
self,
text: Union[str, List[str]] = None,
images: Optional[Any] = None,
audios: Optional[Union[AudioInput, List[AudioInput]]] = None,
sampling_rate: Optional[int] = None, # sampling_rate for raw audio arrays
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs: Any
) -> BatchFeature:
if text is None and images is None and audios is None:
raise ValueError("Provide at least one of `text`, `images`, or `audios`.")
final_rt = return_tensors # Store original return_tensors
# Properly merge kwargs for text, images, audio
merged_call_kwargs = self._merge_kwargs(
Gemma3ProcessorKwargs, # The class defining _defaults
self.tokenizer.init_kwargs if hasattr(self.tokenizer, 'init_kwargs') else {}, # Tokenizer defaults
**kwargs # User-provided kwargs from the call
)
# Determine final return_tensors, prioritizing call > text_kwargs > default
if final_rt is None: # If not specified in call
final_rt = merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", TensorType.PYTORCH)
else: # If specified in call, remove from text_kwargs to avoid conflict
merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", None)
if text is None: # If no text, create empty strings based on other inputs
num_samples = 0
if images is not None:
_images_list = images if isinstance(images, list) and (
not images or not isinstance(images[0], (int, float))) else [images]
num_samples = len(_images_list)
elif audios is not None:
_audios_list = audios if isinstance(audios, list) and not (
isinstance(audios[0], tuple) and isinstance(audios[0][0], (int, float))) else [
audios] # check if audios is list of items or list of (wave,sr)
num_samples = len(_audios_list)
text = [""] * num_samples if num_samples > 0 else [""] # Default to one empty string if no inputs
if isinstance(text, str): text = [text] # Ensure text is a list
if not (isinstance(text, list) and all(isinstance(t, str) for t in text)):
raise ValueError("Input `text` must be a string or a list of strings.")
image_features_dict = {}
if images is not None:
if self.image_processor is None: raise ValueError("Images provided but self.image_processor is None.")
# Ensure images are correctly batched
batched_images = make_nested_list_of_images(images) # handles various image input types
_img_kwargs = merged_call_kwargs.get("images_kwargs", {})
_img_proc_output = self.image_processor(batched_images, return_tensors=None,
**_img_kwargs) # Pass None to handle tensors later
image_features_dict = _img_proc_output.data if isinstance(_img_proc_output,
BatchFeature) else _img_proc_output
if len(text) == 1 and text[0] == "" and len(
batched_images) > 0: # If text is default empty and images exist
text = [" ".join([self.boi_token] * len(img_batch)) for img_batch in batched_images]
elif len(batched_images) != len(text): # If text was provided, ensure consistency
raise ValueError(
f"Inconsistent batch: {len(batched_images)} image groups, {len(text)} texts. Ensure one text prompt per image group."
)
num_crops_popped = image_features_dict.pop("num_crops", None)
if num_crops_popped is not None:
num_crops_all = to_py_obj(num_crops_popped)
temp_text_img, current_crop_idx_offset = [], 0
for batch_idx, (prompt, current_imgs_in_batch) in enumerate(zip(text, batched_images)):
crops_for_this_batch_sample = [] # Number of *additional* crops for each original image
if num_crops_all: # If num_crops_all is not None or empty
for _ in current_imgs_in_batch: # For each original image in the current batch sample
if current_crop_idx_offset < len(num_crops_all):
# num_crops_all contains total items (original + crops) for each image
# We need number of *additional* crops. Assuming num_crops_all[i] >= 1
crops_for_this_batch_sample.append(max(0, num_crops_all[current_crop_idx_offset] - 1))
current_crop_idx_offset += 1
else:
crops_for_this_batch_sample.append(0) # Should not happen if num_crops_all is correct
image_placeholders_in_prompt = [m.start() for m in re.finditer(re.escape(self.boi_token), prompt)]
processed_prompt = prompt
# Iterate backwards to preserve indices for replacement
iter_count = min(len(crops_for_this_batch_sample), len(image_placeholders_in_prompt))
for i_placeholder_idx in range(iter_count - 1, -1, -1):
num_additional_crops_for_this_image = crops_for_this_batch_sample[i_placeholder_idx]
original_token_idx_in_prompt = image_placeholders_in_prompt[i_placeholder_idx]
if num_additional_crops_for_this_image > 0:
# Create replacement text: original image placeholder + placeholders for additional crops
replacement_text = self.boi_token + "".join(
[self.boi_token] * num_additional_crops_for_this_image)
# Replace the single original boi_token with the new sequence
processed_prompt = (
processed_prompt[:original_token_idx_in_prompt] +
replacement_text +
processed_prompt[original_token_idx_in_prompt + len(self.boi_token):]
)
temp_text_img.append(processed_prompt)
text = temp_text_img
# Replace all BOI tokens with the full image sequence (BOI + IMAGE*N + EOI)
# This step assumes that if additional crops were handled, self.boi_token still marks each image.
text = [p.replace(self.boi_token, self.full_image_sequence) for p in text]
audio_features_dict = {}
if audios is not None:
if self.audio_processor is None: raise ValueError("Audios provided but self.audio_processor is None.")
audio_call_kwargs = merged_call_kwargs.get("audio_kwargs", {})
# Pass sampling_rate from __call__ to audio_processor if provided (for raw arrays)
if sampling_rate is not None: audio_call_kwargs["sampling_rate"] = sampling_rate
# The audio_processor (e.g., RefactoredGemma3...) will return its model_input_names
# e.g., {"input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"}
_audio_proc_output = self.audio_processor(audios=audios, return_tensors=None, **audio_call_kwargs)
audio_features_dict = _audio_proc_output.data
new_text_with_audio = []
# Determine the number of actual audio items processed by the audio_processor
# This should match len(text) if batching is consistent.
# The 'audio_attention_mask' or 'input_audio_embeds' can indicate this.
num_audio_samples_processed = audio_features_dict[self.audio_processor.model_input_names[0]].shape[0]
if num_audio_samples_processed != len(text):
raise ValueError(
f"Inconsistent batch for audio/text: {num_audio_samples_processed} audio samples processed, {len(text)} text prompts."
)
frames_for_embed_size_calc = to_py_obj(audio_features_dict[self.audio_processor.model_input_names[2]].sum(
axis=-1)) # sum of audio_attention_mask
for i, prompt in enumerate(text):
# num_soft_tokens should be the final number of audio tokens to insert in the text.
# This is calculated by the Gemma3OmniProcessor's own method.
num_soft_tokens = self._compute_audio_embed_size(frames_for_embed_size_calc[i])
audio_token_sequence_str = self.audio_token_str_from_user_code * num_soft_tokens
if self.audio_placeholder_token in prompt:
prompt = prompt.replace(self.audio_placeholder_token, audio_token_sequence_str,
1) # Replace only first
else:
prompt += audio_token_sequence_str # Append if no placeholder
new_text_with_audio.append(prompt)
text = new_text_with_audio
text_tokenizer_kwargs = merged_call_kwargs.get("text_kwargs", {})
text_features_dict = self.tokenizer(text=text, return_tensors=None,
**text_tokenizer_kwargs) # Pass None for tensors
# Create token_type_ids
input_ids_list_of_lists = text_features_dict["input_ids"]
# Ensure it's a list of lists
if not isinstance(input_ids_list_of_lists, list) or not (
input_ids_list_of_lists and isinstance(input_ids_list_of_lists[0], list)):
if isinstance(input_ids_list_of_lists, (torch.Tensor, np.ndarray)):
input_ids_list_of_lists = to_py_obj(input_ids_list_of_lists) # to nested python lists
elif isinstance(input_ids_list_of_lists, list) and (
not input_ids_list_of_lists or isinstance(input_ids_list_of_lists[0], int)):
input_ids_list_of_lists = [input_ids_list_of_lists] # wrap single list
token_type_ids_list = []
for ids_sample in input_ids_list_of_lists:
types = [0] * len(ids_sample) # 0 for text
for j, token_id_val in enumerate(ids_sample):
if self.image_token_id is not None and token_id_val == self.image_token_id:
types[j] = 1 # 1 for image
elif self.audio_token_id != -1 and token_id_val == self.audio_token_id: # Check if audio_token_id is valid
types[j] = 2 # 2 for audio
token_type_ids_list.append(types)
text_features_dict["token_type_ids"] = token_type_ids_list
final_batch_data = {**text_features_dict}
if image_features_dict: final_batch_data.update(image_features_dict)
if audio_features_dict: final_batch_data.update(audio_features_dict)
# Convert all data to tensors if final_rt is specified
return BatchFeature(data=final_batch_data, tensor_type=final_rt)
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self) -> List[str]:
input_names = set()
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
# Make sure model_input_names is a list/set before +
tokenizer_inputs = self.tokenizer.model_input_names
if isinstance(tokenizer_inputs, (list, set)):
input_names.update(tokenizer_inputs)
else: # Fallback if it's a single string
input_names.add(str(tokenizer_inputs))
input_names.add("token_type_ids")
if hasattr(self, 'image_processor') and self.image_processor is not None:
# Similar check for image_processor
image_inputs = self.image_processor.model_input_names
if isinstance(image_inputs, (list, set)):
input_names.update(image_inputs)
else:
input_names.add(str(image_inputs))
if hasattr(self, 'audio_processor') and self.audio_processor is not None:
# Use model_input_names from the instantiated audio_processor
# This will correctly reflect the names from RefactoredGemma3... if it's used.
audio_inputs = self.audio_processor.model_input_names
if isinstance(audio_inputs, (list, set)):
input_names.update(audio_inputs)
else:
input_names.add(str(audio_inputs))
return list(input_names)
|