Improve language tag
#4
by
lbourdois
- opened
README.md
CHANGED
@@ -1,77 +1,89 @@
|
|
1 |
-
---
|
2 |
-
base_model:
|
3 |
-
- Qwen/Qwen2.5-1.5B-Instruct
|
4 |
-
- google/siglip-so400m-patch14-384
|
5 |
-
datasets:
|
6 |
-
- weizhiwang/Open-Qwen2VL-Data
|
7 |
-
- MAmmoTH-VL/MAmmoTH-VL-Instruct-12M
|
8 |
-
language:
|
9 |
-
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- Qwen/Qwen2.5-1.5B-Instruct
|
4 |
+
- google/siglip-so400m-patch14-384
|
5 |
+
datasets:
|
6 |
+
- weizhiwang/Open-Qwen2VL-Data
|
7 |
+
- MAmmoTH-VL/MAmmoTH-VL-Instruct-12M
|
8 |
+
language:
|
9 |
+
- zho
|
10 |
+
- eng
|
11 |
+
- fra
|
12 |
+
- spa
|
13 |
+
- por
|
14 |
+
- deu
|
15 |
+
- ita
|
16 |
+
- rus
|
17 |
+
- jpn
|
18 |
+
- kor
|
19 |
+
- vie
|
20 |
+
- tha
|
21 |
+
- ara
|
22 |
+
license: cc
|
23 |
+
pipeline_tag: image-text-to-text
|
24 |
+
---
|
25 |
+
|
26 |
+
# Model Card for Open-Qwen2VL
|
27 |
+
|
28 |
+
Open-Qwen2VL is a multimodal model that takes images and text as input and produces text as output. This model is described in the paper [Open-Qwen2VL: Compute-Efficient Pre-Training of Fully-Open Multimodal LLMs on Academic Resources](https://huggingface.co/papers/2504.00595). The code is available at [https://github.com/Victorwz/Open-Qwen2VL](https://github.com/Victorwz/Open-Qwen2VL).
|
29 |
+
|
30 |
+
## Updates
|
31 |
+
- [4/1/2025] The codebase, model, data, and paper are released.
|
32 |
+
|
33 |
+
<!-- ## Model Details -->
|
34 |
+
|
35 |
+
## How to Use
|
36 |
+
|
37 |
+
Please firstly install Open-Qwen2VL via
|
38 |
+
```
|
39 |
+
pip install git+https://github.com/Victorwz/Open-Qwen2VL.git#subdirectory=prismatic-vlms
|
40 |
+
```
|
41 |
+
|
42 |
+
You can load the model and perform inference as follows:
|
43 |
+
```python
|
44 |
+
import requests
|
45 |
+
import torch
|
46 |
+
from PIL import Image
|
47 |
+
from prismatic import load
|
48 |
+
|
49 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
50 |
+
|
51 |
+
# Load a pretrained VLM (either local path, or ID to auto-download from the HF Hub)
|
52 |
+
vlm = load("Open-Qwen2VL")
|
53 |
+
vlm.to(device, dtype=torch.bfloat16)
|
54 |
+
|
55 |
+
# Download an image and specify a prompt
|
56 |
+
image_url = "https://huggingface.co/adept/fuyu-8b/resolve/main/bus.png"
|
57 |
+
# image = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
|
58 |
+
image = [vlm.vision_backbone.image_transform(Image.open(requests.get(image_url, stream=True).raw).convert("RGB")).unsqueeze(0)]
|
59 |
+
user_prompt = "<image>\nDescribe the image."
|
60 |
+
|
61 |
+
# Generate!
|
62 |
+
generated_text = vlm.generate_batch(
|
63 |
+
image,
|
64 |
+
[user_prompt],
|
65 |
+
do_sample=False,
|
66 |
+
max_new_tokens=512,
|
67 |
+
min_length=1,
|
68 |
+
)
|
69 |
+
print(generated_text[0])
|
70 |
+
```
|
71 |
+
The image caption results look like:
|
72 |
+
```
|
73 |
+
The image depicts a blue and orange bus parked on the side of a street. ...
|
74 |
+
```
|
75 |
+
|
76 |
+
|
77 |
+
## Acknowledgement
|
78 |
+
This work was partially supported by the BioPACIFIC Materials Innovation Platform of the National Science Foundation under Award No. DMR-1933487
|
79 |
+
|
80 |
+
## Citation
|
81 |
+
```bibtex
|
82 |
+
@article{Open-Qwen2VL,
|
83 |
+
title={Open-Qwen2VL: Compute-Efficient Pre-Training of Fully-Open Multimodal LLMs on Academic Resources},
|
84 |
+
author={Wang, Weizhi and Tian, Yu and Yang, Linjie and Wang, Heng and Yan, Xifeng},
|
85 |
+
journal={arXiv preprint arXiv:2504.00595},
|
86 |
+
year={2025}
|
87 |
+
}
|
88 |
+
```
|
89 |
+
|