segmentation_model_50ep
This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0063
- Mean Iou: 0.9981
- Mean Accuracy: 1.0
- Overall Accuracy: 1.0
- Per Category Iou: [0.9980539089681099]
- Per Category Accuracy: [1.0]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
0.049 | 1.2195 | 100 | 0.0429 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.029 | 2.4390 | 200 | 0.0274 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0171 | 3.6585 | 300 | 0.0192 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0158 | 4.8780 | 400 | 0.0187 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.019 | 6.0976 | 500 | 0.0169 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.013 | 7.3171 | 600 | 0.0125 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0131 | 8.5366 | 700 | 0.0124 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0111 | 9.7561 | 800 | 0.0101 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0089 | 10.9756 | 900 | 0.0102 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0106 | 12.1951 | 1000 | 0.0088 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0093 | 13.4146 | 1100 | 0.0084 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0088 | 14.6341 | 1200 | 0.0079 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0084 | 15.8537 | 1300 | 0.0080 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0089 | 17.0732 | 1400 | 0.0077 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0087 | 18.2927 | 1500 | 0.0069 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0072 | 19.5122 | 1600 | 0.0075 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0087 | 20.7317 | 1700 | 0.0068 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0094 | 21.9512 | 1800 | 0.0070 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0074 | 23.1707 | 1900 | 0.0070 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0075 | 24.3902 | 2000 | 0.0069 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.007 | 25.6098 | 2100 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0053 | 26.8293 | 2200 | 0.0065 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0072 | 28.0488 | 2300 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0082 | 29.2683 | 2400 | 0.0065 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0065 | 30.4878 | 2500 | 0.0066 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0054 | 31.7073 | 2600 | 0.0065 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0079 | 32.9268 | 2700 | 0.0066 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.006 | 34.1463 | 2800 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0053 | 35.3659 | 2900 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0059 | 36.5854 | 3000 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0061 | 37.8049 | 3100 | 0.0066 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.007 | 39.0244 | 3200 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0058 | 40.2439 | 3300 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0055 | 41.4634 | 3400 | 0.0062 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0068 | 42.6829 | 3500 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0058 | 43.9024 | 3600 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0061 | 45.1220 | 3700 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.003 | 46.3415 | 3800 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0058 | 47.5610 | 3900 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.0087 | 48.7805 | 4000 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
0.006 | 50.0 | 4100 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.0
- Datasets 2.4.0
- Tokenizers 0.20.3
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for whyoke/segmentation_model_50ep
Base model
nvidia/mit-b0