File size: 7,625 Bytes
93769c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
- generated_from_trainer
model-index:
- name: segmentation_model_50ep
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segmentation_model_50ep

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0063
- Mean Iou: 0.9981
- Mean Accuracy: 1.0
- Overall Accuracy: 1.0
- Per Category Iou: [0.9980539089681099]
- Per Category Accuracy: [1.0]

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou     | Per Category Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------:|:---------------------:|
| 0.049         | 1.2195  | 100  | 0.0429          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.029         | 2.4390  | 200  | 0.0274          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0171        | 3.6585  | 300  | 0.0192          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0158        | 4.8780  | 400  | 0.0187          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.019         | 6.0976  | 500  | 0.0169          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.013         | 7.3171  | 600  | 0.0125          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0131        | 8.5366  | 700  | 0.0124          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0111        | 9.7561  | 800  | 0.0101          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0089        | 10.9756 | 900  | 0.0102          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0106        | 12.1951 | 1000 | 0.0088          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0093        | 13.4146 | 1100 | 0.0084          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0088        | 14.6341 | 1200 | 0.0079          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0084        | 15.8537 | 1300 | 0.0080          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0089        | 17.0732 | 1400 | 0.0077          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0087        | 18.2927 | 1500 | 0.0069          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0072        | 19.5122 | 1600 | 0.0075          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0087        | 20.7317 | 1700 | 0.0068          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0094        | 21.9512 | 1800 | 0.0070          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0074        | 23.1707 | 1900 | 0.0070          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0075        | 24.3902 | 2000 | 0.0069          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.007         | 25.6098 | 2100 | 0.0064          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0053        | 26.8293 | 2200 | 0.0065          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0072        | 28.0488 | 2300 | 0.0063          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0082        | 29.2683 | 2400 | 0.0065          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0065        | 30.4878 | 2500 | 0.0066          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0054        | 31.7073 | 2600 | 0.0065          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0079        | 32.9268 | 2700 | 0.0066          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.006         | 34.1463 | 2800 | 0.0064          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0053        | 35.3659 | 2900 | 0.0063          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0059        | 36.5854 | 3000 | 0.0064          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0061        | 37.8049 | 3100 | 0.0066          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.007         | 39.0244 | 3200 | 0.0064          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0058        | 40.2439 | 3300 | 0.0063          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0055        | 41.4634 | 3400 | 0.0062          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0068        | 42.6829 | 3500 | 0.0064          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0058        | 43.9024 | 3600 | 0.0063          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0061        | 45.1220 | 3700 | 0.0064          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.003         | 46.3415 | 3800 | 0.0063          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0058        | 47.5610 | 3900 | 0.0063          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.0087        | 48.7805 | 4000 | 0.0063          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |
| 0.006         | 50.0    | 4100 | 0.0063          | 0.9981   | 1.0           | 1.0              | [0.9980539089681099] | [1.0]                 |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.0
- Datasets 2.4.0
- Tokenizers 0.20.3