segmentation_model_test

This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0228
  • Mean Iou: 0.4990
  • Mean Accuracy: 0.5000
  • Overall Accuracy: 0.9977
  • Per Category Iou: [0.9976658568580316, 0.00038483740619588223]
  • Per Category Accuracy: [0.9996102929714499, 0.00046175157765122367]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.2991 0.2439 20 0.4820 0.4511 0.5010 0.9002 [0.9002190670776196, 0.0019511332665075433] [0.9017984806798052, 0.10021548406957057]
0.2151 0.4878 40 0.2171 0.4792 0.5054 0.9560 [0.9559757000209818, 0.0023380252240607505] [0.9577409321311929, 0.05300908111436047]
0.1517 0.7317 60 0.1387 0.4839 0.5006 0.9659 [0.9658788431968783, 0.0019119587675839745] [0.9676989446127423, 0.033584731414499]
0.1488 0.9756 80 0.1050 0.4909 0.4991 0.9802 [0.9801804275352807, 0.0015904464567297464] [0.982060661522954, 0.01622287209481299]
0.0917 1.2195 100 0.0828 0.4924 0.5034 0.9823 [0.9822702579449976, 0.0024875496119523724] [0.9841420602017377, 0.022718177620440202]
0.0998 1.4634 120 0.0917 0.4915 0.5004 0.9812 [0.981240710481487, 0.0018249920306024864] [0.9831202984930748, 0.017623518547021703]
0.1005 1.7073 140 0.0599 0.4979 0.4990 0.9956 [0.9955563366152819, 0.0002021822200955648] [0.9974966613047062, 0.00046175157765122367]
0.0662 1.9512 160 0.0757 0.4970 0.4981 0.9939 [0.9938520901192224, 0.00014614399080267152] [0.9957890932572371, 0.00046175157765122367]
0.0564 2.1951 180 0.0590 0.4982 0.4993 0.9959 [0.9959318937190048, 0.00037537537537537537] [0.9978723226736982, 0.0007849776820070802]
0.0506 2.4390 200 0.0426 0.4989 0.4999 0.9974 [0.9974019346864065, 0.00034575755480257246] [0.9993458564193857, 0.00046175157765122367]
0.0497 2.6829 220 0.0463 0.4983 0.4994 0.9964 [0.9964040866211079, 0.0002498355249460772] [0.998346063562852, 0.00046175157765122367]
0.0397 2.9268 240 0.0500 0.4984 0.4995 0.9966 [0.9966042672899276, 0.00026455959645842886] [0.9985466343808574, 0.00046175157765122367]
0.0382 3.1707 260 0.0461 0.4983 0.4994 0.9964 [0.9963626606350271, 0.00024699082840723847] [0.9983045568381324, 0.00046175157765122367]
0.0369 3.4146 280 0.0407 0.4987 0.4998 0.9972 [0.9971528096493613, 0.0003155138142465004] [0.9990962458412993, 0.00046175157765122367]
0.0291 3.6585 300 0.0350 0.4987 0.4997 0.9971 [0.9970553103111885, 0.00030507026785169515] [0.9989985564783473, 0.00046175157765122367]
0.0438 3.9024 320 0.0440 0.4987 0.4998 0.9971 [0.9971233951024839, 0.000312288554624473] [0.9990667739659018, 0.00046175157765122367]
0.0277 4.1463 340 0.0346 0.4988 0.4999 0.9974 [0.9973527207347574, 0.00033933196846474905] [0.9992965465504671, 0.00046175157765122367]
0.0277 4.3902 360 0.0302 0.4989 0.5000 0.9975 [0.9975251642646684, 0.0003629676232880027] [0.999469326170287, 0.00046175157765122367]
0.0255 4.6341 380 0.0330 0.4989 0.4999 0.9975 [0.9974865539276777, 0.00035739388379933527] [0.9994306405823162, 0.00046175157765122367]
0.0239 4.8780 400 0.0280 0.4990 0.5000 0.9977 [0.9976912875609835, 0.0003890747801727492] [0.9996357732384688, 0.00046175157765122367]
0.0286 5.1220 420 0.0282 0.4989 0.4999 0.9975 [0.9974798442958035, 0.0003564427018356799] [0.999423917873468, 0.00046175157765122367]
0.0267 5.3659 440 0.0238 0.4991 0.5001 0.9977 [0.9977252550723469, 0.00039488232506713] [0.9996698069520132, 0.00046175157765122367]
0.0186 5.6098 460 0.0299 0.4990 0.5000 0.9976 [0.9976214654542921, 0.00037765776653196875] [0.999565815049516, 0.00046175157765122367]
0.0308 5.8537 480 0.0233 0.4991 0.5001 0.9977 [0.9977203426632961, 0.00039403173268887255] [0.9996648849687493, 0.00046175157765122367]
0.0303 6.0976 500 0.0238 0.4990 0.5000 0.9976 [0.9976369515242876, 0.0003801317790167258] [0.9995813313016347, 0.00046175157765122367]
0.028 6.3415 520 0.0241 0.4991 0.5001 0.9978 [0.997765872308157, 0.0004020585397233837] [0.9997105033502199, 0.00046175157765122367]
0.0168 6.5854 540 0.0262 0.4990 0.5000 0.9976 [0.9976165230915276, 0.0003768749528906309] [0.999560863054159, 0.00046175157765122367]
0.0186 6.8293 560 0.0268 0.4990 0.5000 0.9976 [0.9976118503121866, 0.0003761378168961107] [0.9995561811676397, 0.00046175157765122367]
0.026 7.0732 580 0.0283 0.4990 0.5000 0.9976 [0.9975737491883292, 0.00037023324694557573] [0.9995180057852511, 0.00046175157765122367]
0.0208 7.3171 600 0.0267 0.4990 0.5000 0.9975 [0.9975480489019538, 0.0003663540445486518] [0.9994922554093947, 0.00046175157765122367]
0.0216 7.5610 620 0.0242 0.4990 0.5001 0.9977 [0.9977005133048106, 0.0003906351727909581] [0.9996450169631351, 0.00046175157765122367]
0.0246 7.8049 640 0.0243 0.4990 0.5000 0.9976 [0.9975747676145958, 0.00037038866116845276] [0.9995190261964156, 0.00046175157765122367]
0.0199 8.0488 660 0.0243 0.4991 0.5001 0.9977 [0.9977276813231586, 0.0003953037909633553] [0.9996722379315521, 0.00046175157765122367]
0.0204 8.2927 680 0.0225 0.4990 0.5000 0.9977 [0.9976660066266002, 0.0003848620910840282] [0.9996104430319153, 0.00046175157765122367]
0.021 8.5366 700 0.0242 0.4990 0.5000 0.9976 [0.997612030034469, 0.00037616611495636473] [0.9995563612401981, 0.00046175157765122367]
0.0156 8.7805 720 0.0223 0.4990 0.5000 0.9977 [0.9976639398203532, 0.00038452171906843205] [0.9996083721974932, 0.00046175157765122367]
0.0226 9.0244 740 0.0218 0.4990 0.5001 0.9977 [0.997695900432897, 0.0003898534151159164] [0.9996403951008019, 0.00046175157765122367]
0.0204 9.2683 760 0.0228 0.4990 0.5000 0.9977 [0.9976748729258625, 0.0003863291008834059] [0.9996193266114648, 0.00046175157765122367]
0.022 9.5122 780 0.0222 0.4990 0.5001 0.9977 [0.9976952114974814, 0.0003897369275738876] [0.9996397048226613, 0.00046175157765122367]
0.0221 9.7561 800 0.0221 0.4990 0.5000 0.9977 [0.9976826608914309, 0.00038762694782541285] [0.9996271297556637, 0.00046175157765122367]
0.0203 10.0 820 0.0228 0.4990 0.5000 0.9977 [0.9976658568580316, 0.00038483740619588223] [0.9996102929714499, 0.00046175157765122367]

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.0
  • Datasets 2.4.0
  • Tokenizers 0.20.3
Downloads last month
4
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for whyoke/segmentation_model_test

Base model

nvidia/mit-b0
Finetuned
(428)
this model