File size: 9,672 Bytes
dd9ad94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
- generated_from_trainer
model-index:
- name: segmentation_model_test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segmentation_model_test

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0228
- Mean Iou: 0.4990
- Mean Accuracy: 0.5000
- Overall Accuracy: 0.9977
- Per Category Iou: [0.9976658568580316, 0.00038483740619588223]
- Per Category Accuracy: [0.9996102929714499, 0.00046175157765122367]

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou                             | Per Category Accuracy                        |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------------------:|:--------------------------------------------:|
| 0.2991        | 0.2439 | 20   | 0.4820          | 0.4511   | 0.5010        | 0.9002           | [0.9002190670776196, 0.0019511332665075433]  | [0.9017984806798052, 0.10021548406957057]    |
| 0.2151        | 0.4878 | 40   | 0.2171          | 0.4792   | 0.5054        | 0.9560           | [0.9559757000209818, 0.0023380252240607505]  | [0.9577409321311929, 0.05300908111436047]    |
| 0.1517        | 0.7317 | 60   | 0.1387          | 0.4839   | 0.5006        | 0.9659           | [0.9658788431968783, 0.0019119587675839745]  | [0.9676989446127423, 0.033584731414499]      |
| 0.1488        | 0.9756 | 80   | 0.1050          | 0.4909   | 0.4991        | 0.9802           | [0.9801804275352807, 0.0015904464567297464]  | [0.982060661522954, 0.01622287209481299]     |
| 0.0917        | 1.2195 | 100  | 0.0828          | 0.4924   | 0.5034        | 0.9823           | [0.9822702579449976, 0.0024875496119523724]  | [0.9841420602017377, 0.022718177620440202]   |
| 0.0998        | 1.4634 | 120  | 0.0917          | 0.4915   | 0.5004        | 0.9812           | [0.981240710481487, 0.0018249920306024864]   | [0.9831202984930748, 0.017623518547021703]   |
| 0.1005        | 1.7073 | 140  | 0.0599          | 0.4979   | 0.4990        | 0.9956           | [0.9955563366152819, 0.0002021822200955648]  | [0.9974966613047062, 0.00046175157765122367] |
| 0.0662        | 1.9512 | 160  | 0.0757          | 0.4970   | 0.4981        | 0.9939           | [0.9938520901192224, 0.00014614399080267152] | [0.9957890932572371, 0.00046175157765122367] |
| 0.0564        | 2.1951 | 180  | 0.0590          | 0.4982   | 0.4993        | 0.9959           | [0.9959318937190048, 0.00037537537537537537] | [0.9978723226736982, 0.0007849776820070802]  |
| 0.0506        | 2.4390 | 200  | 0.0426          | 0.4989   | 0.4999        | 0.9974           | [0.9974019346864065, 0.00034575755480257246] | [0.9993458564193857, 0.00046175157765122367] |
| 0.0497        | 2.6829 | 220  | 0.0463          | 0.4983   | 0.4994        | 0.9964           | [0.9964040866211079, 0.0002498355249460772]  | [0.998346063562852, 0.00046175157765122367]  |
| 0.0397        | 2.9268 | 240  | 0.0500          | 0.4984   | 0.4995        | 0.9966           | [0.9966042672899276, 0.00026455959645842886] | [0.9985466343808574, 0.00046175157765122367] |
| 0.0382        | 3.1707 | 260  | 0.0461          | 0.4983   | 0.4994        | 0.9964           | [0.9963626606350271, 0.00024699082840723847] | [0.9983045568381324, 0.00046175157765122367] |
| 0.0369        | 3.4146 | 280  | 0.0407          | 0.4987   | 0.4998        | 0.9972           | [0.9971528096493613, 0.0003155138142465004]  | [0.9990962458412993, 0.00046175157765122367] |
| 0.0291        | 3.6585 | 300  | 0.0350          | 0.4987   | 0.4997        | 0.9971           | [0.9970553103111885, 0.00030507026785169515] | [0.9989985564783473, 0.00046175157765122367] |
| 0.0438        | 3.9024 | 320  | 0.0440          | 0.4987   | 0.4998        | 0.9971           | [0.9971233951024839, 0.000312288554624473]   | [0.9990667739659018, 0.00046175157765122367] |
| 0.0277        | 4.1463 | 340  | 0.0346          | 0.4988   | 0.4999        | 0.9974           | [0.9973527207347574, 0.00033933196846474905] | [0.9992965465504671, 0.00046175157765122367] |
| 0.0277        | 4.3902 | 360  | 0.0302          | 0.4989   | 0.5000        | 0.9975           | [0.9975251642646684, 0.0003629676232880027]  | [0.999469326170287, 0.00046175157765122367]  |
| 0.0255        | 4.6341 | 380  | 0.0330          | 0.4989   | 0.4999        | 0.9975           | [0.9974865539276777, 0.00035739388379933527] | [0.9994306405823162, 0.00046175157765122367] |
| 0.0239        | 4.8780 | 400  | 0.0280          | 0.4990   | 0.5000        | 0.9977           | [0.9976912875609835, 0.0003890747801727492]  | [0.9996357732384688, 0.00046175157765122367] |
| 0.0286        | 5.1220 | 420  | 0.0282          | 0.4989   | 0.4999        | 0.9975           | [0.9974798442958035, 0.0003564427018356799]  | [0.999423917873468, 0.00046175157765122367]  |
| 0.0267        | 5.3659 | 440  | 0.0238          | 0.4991   | 0.5001        | 0.9977           | [0.9977252550723469, 0.00039488232506713]    | [0.9996698069520132, 0.00046175157765122367] |
| 0.0186        | 5.6098 | 460  | 0.0299          | 0.4990   | 0.5000        | 0.9976           | [0.9976214654542921, 0.00037765776653196875] | [0.999565815049516, 0.00046175157765122367]  |
| 0.0308        | 5.8537 | 480  | 0.0233          | 0.4991   | 0.5001        | 0.9977           | [0.9977203426632961, 0.00039403173268887255] | [0.9996648849687493, 0.00046175157765122367] |
| 0.0303        | 6.0976 | 500  | 0.0238          | 0.4990   | 0.5000        | 0.9976           | [0.9976369515242876, 0.0003801317790167258]  | [0.9995813313016347, 0.00046175157765122367] |
| 0.028         | 6.3415 | 520  | 0.0241          | 0.4991   | 0.5001        | 0.9978           | [0.997765872308157, 0.0004020585397233837]   | [0.9997105033502199, 0.00046175157765122367] |
| 0.0168        | 6.5854 | 540  | 0.0262          | 0.4990   | 0.5000        | 0.9976           | [0.9976165230915276, 0.0003768749528906309]  | [0.999560863054159, 0.00046175157765122367]  |
| 0.0186        | 6.8293 | 560  | 0.0268          | 0.4990   | 0.5000        | 0.9976           | [0.9976118503121866, 0.0003761378168961107]  | [0.9995561811676397, 0.00046175157765122367] |
| 0.026         | 7.0732 | 580  | 0.0283          | 0.4990   | 0.5000        | 0.9976           | [0.9975737491883292, 0.00037023324694557573] | [0.9995180057852511, 0.00046175157765122367] |
| 0.0208        | 7.3171 | 600  | 0.0267          | 0.4990   | 0.5000        | 0.9975           | [0.9975480489019538, 0.0003663540445486518]  | [0.9994922554093947, 0.00046175157765122367] |
| 0.0216        | 7.5610 | 620  | 0.0242          | 0.4990   | 0.5001        | 0.9977           | [0.9977005133048106, 0.0003906351727909581]  | [0.9996450169631351, 0.00046175157765122367] |
| 0.0246        | 7.8049 | 640  | 0.0243          | 0.4990   | 0.5000        | 0.9976           | [0.9975747676145958, 0.00037038866116845276] | [0.9995190261964156, 0.00046175157765122367] |
| 0.0199        | 8.0488 | 660  | 0.0243          | 0.4991   | 0.5001        | 0.9977           | [0.9977276813231586, 0.0003953037909633553]  | [0.9996722379315521, 0.00046175157765122367] |
| 0.0204        | 8.2927 | 680  | 0.0225          | 0.4990   | 0.5000        | 0.9977           | [0.9976660066266002, 0.0003848620910840282]  | [0.9996104430319153, 0.00046175157765122367] |
| 0.021         | 8.5366 | 700  | 0.0242          | 0.4990   | 0.5000        | 0.9976           | [0.997612030034469, 0.00037616611495636473]  | [0.9995563612401981, 0.00046175157765122367] |
| 0.0156        | 8.7805 | 720  | 0.0223          | 0.4990   | 0.5000        | 0.9977           | [0.9976639398203532, 0.00038452171906843205] | [0.9996083721974932, 0.00046175157765122367] |
| 0.0226        | 9.0244 | 740  | 0.0218          | 0.4990   | 0.5001        | 0.9977           | [0.997695900432897, 0.0003898534151159164]   | [0.9996403951008019, 0.00046175157765122367] |
| 0.0204        | 9.2683 | 760  | 0.0228          | 0.4990   | 0.5000        | 0.9977           | [0.9976748729258625, 0.0003863291008834059]  | [0.9996193266114648, 0.00046175157765122367] |
| 0.022         | 9.5122 | 780  | 0.0222          | 0.4990   | 0.5001        | 0.9977           | [0.9976952114974814, 0.0003897369275738876]  | [0.9996397048226613, 0.00046175157765122367] |
| 0.0221        | 9.7561 | 800  | 0.0221          | 0.4990   | 0.5000        | 0.9977           | [0.9976826608914309, 0.00038762694782541285] | [0.9996271297556637, 0.00046175157765122367] |
| 0.0203        | 10.0   | 820  | 0.0228          | 0.4990   | 0.5000        | 0.9977           | [0.9976658568580316, 0.00038483740619588223] | [0.9996102929714499, 0.00046175157765122367] |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.0
- Datasets 2.4.0
- Tokenizers 0.20.3