Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

base_model: ByteDance-Seed/Seed-Coder-8B-Base

plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true

chat_template: llama3
datasets:
  - path: axolotl-ai-internal/gpumode-py2triton-reasoning-v2
    type: chat_template
    split: train

dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./outputs/out

sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true

wandb_project: seed-coder-8b-grpo-triton
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch_fused
max_grad_norm: 0.1
neftune_noise_alpha: 10
lr_scheduler: cosine
learning_rate: 1e-6
lr_groups:
  - name: embeddings
    modules:
      - embed_tokens
      - lm_head
    lr: 0.00003  # scalu up LR for embeddings as these are unused tokens

bf16: true
tf32: true

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
logging_steps: 1
flash_attention: true

warmup_steps: 100
evals_per_epoch: 5
saves_per_epoch: 1
weight_decay: 0.01
deepspeed: deepspeed_configs/zero1.json
special_tokens:
  eos_token: <|eot_id|>
added_tokens_overrides:
  7: <|start_header_id|>
  8: <|end_header_id|>
  9: <|eot_id|>
  10: <think>
  11: </think>
fix_untrained_tokens: [7, 8, 9, 10, 11]

outputs/out

This model is a fine-tuned version of ByteDance-Seed/Seed-Coder-8B-Base on the axolotl-ai-internal/gpumode-py2triton-reasoning-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2177

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 10
  • total_train_batch_size: 20
  • total_eval_batch_size: 20
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
0.5293 0.0046 1 5.7151
0.4449 0.2018 44 0.4878
0.425 0.4037 88 0.4319
0.3437 0.6055 132 0.3322
0.2903 0.8073 176 0.2893
0.2528 1.0092 220 0.2677
0.2578 1.2110 264 0.2531
0.2522 1.4128 308 0.2414
0.2403 1.6147 352 0.2352
0.232 1.8165 396 0.2252
0.2093 2.0183 440 0.2360
0.2406 2.2202 484 0.2311
0.2523 2.4220 528 0.2260
0.2139 2.6239 572 0.2259
0.2296 2.8257 616 0.2177

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
0
Safetensors
Model size
8.25B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for winglian/seed-coder-triton-8b-v1

Finetuned
(7)
this model