See axolotl config
axolotl version: 0.10.0.dev0
base_model: ByteDance-Seed/Seed-Coder-8B-Base
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
chat_template: llama3
datasets:
- path: axolotl-ai-internal/gpumode-py2triton-reasoning-v2
type: chat_template
split: train
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./outputs/out
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
wandb_project: seed-coder-8b-grpo-triton
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch_fused
max_grad_norm: 0.1
neftune_noise_alpha: 10
lr_scheduler: cosine
learning_rate: 1e-6
lr_groups:
- name: embeddings
modules:
- embed_tokens
- lm_head
lr: 0.00003 # scalu up LR for embeddings as these are unused tokens
bf16: true
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
flash_attention: true
warmup_steps: 100
evals_per_epoch: 5
saves_per_epoch: 1
weight_decay: 0.01
deepspeed: deepspeed_configs/zero1.json
special_tokens:
eos_token: <|eot_id|>
added_tokens_overrides:
7: <|start_header_id|>
8: <|end_header_id|>
9: <|eot_id|>
10: <think>
11: </think>
fix_untrained_tokens: [7, 8, 9, 10, 11]
outputs/out
This model is a fine-tuned version of ByteDance-Seed/Seed-Coder-8B-Base on the axolotl-ai-internal/gpumode-py2triton-reasoning-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2177
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 10
- total_train_batch_size: 20
- total_eval_batch_size: 20
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5293 | 0.0046 | 1 | 5.7151 |
0.4449 | 0.2018 | 44 | 0.4878 |
0.425 | 0.4037 | 88 | 0.4319 |
0.3437 | 0.6055 | 132 | 0.3322 |
0.2903 | 0.8073 | 176 | 0.2893 |
0.2528 | 1.0092 | 220 | 0.2677 |
0.2578 | 1.2110 | 264 | 0.2531 |
0.2522 | 1.4128 | 308 | 0.2414 |
0.2403 | 1.6147 | 352 | 0.2352 |
0.232 | 1.8165 | 396 | 0.2252 |
0.2093 | 2.0183 | 440 | 0.2360 |
0.2406 | 2.2202 | 484 | 0.2311 |
0.2523 | 2.4220 | 528 | 0.2260 |
0.2139 | 2.6239 | 572 | 0.2259 |
0.2296 | 2.8257 | 616 | 0.2177 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for winglian/seed-coder-triton-8b-v1
Base model
ByteDance-Seed/Seed-Coder-8B-Base