File size: 4,137 Bytes
9347af1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
library_name: transformers
license: mit
base_model: ByteDance-Seed/Seed-Coder-8B-Base
tags:
- generated_from_trainer
datasets:
- axolotl-ai-internal/gpumode-py2triton-reasoning-v2
model-index:
- name: outputs/out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.10.0.dev0`
```yaml
base_model: ByteDance-Seed/Seed-Coder-8B-Base

plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true

chat_template: llama3
datasets:
  - path: axolotl-ai-internal/gpumode-py2triton-reasoning-v2
    type: chat_template
    split: train

dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./outputs/out

sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true

wandb_project: seed-coder-8b-grpo-triton
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch_fused
max_grad_norm: 0.1
neftune_noise_alpha: 10
lr_scheduler: cosine
learning_rate: 1e-6
lr_groups:
  - name: embeddings
    modules:
      - embed_tokens
      - lm_head
    lr: 0.00003  # scalu up LR for embeddings as these are unused tokens

bf16: true
tf32: true

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
logging_steps: 1
flash_attention: true

warmup_steps: 100
evals_per_epoch: 5
saves_per_epoch: 1
weight_decay: 0.01
deepspeed: deepspeed_configs/zero1.json
special_tokens:
  eos_token: <|eot_id|>
added_tokens_overrides:
  7: <|start_header_id|>
  8: <|end_header_id|>
  9: <|eot_id|>
  10: <think>
  11: </think>
fix_untrained_tokens: [7, 8, 9, 10, 11]

```

</details><br>

# outputs/out

This model is a fine-tuned version of [ByteDance-Seed/Seed-Coder-8B-Base](https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base) on the axolotl-ai-internal/gpumode-py2triton-reasoning-v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2177

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 10
- total_train_batch_size: 20
- total_eval_batch_size: 20
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5293        | 0.0046 | 1    | 5.7151          |
| 0.4449        | 0.2018 | 44   | 0.4878          |
| 0.425         | 0.4037 | 88   | 0.4319          |
| 0.3437        | 0.6055 | 132  | 0.3322          |
| 0.2903        | 0.8073 | 176  | 0.2893          |
| 0.2528        | 1.0092 | 220  | 0.2677          |
| 0.2578        | 1.2110 | 264  | 0.2531          |
| 0.2522        | 1.4128 | 308  | 0.2414          |
| 0.2403        | 1.6147 | 352  | 0.2352          |
| 0.232         | 1.8165 | 396  | 0.2252          |
| 0.2093        | 2.0183 | 440  | 0.2360          |
| 0.2406        | 2.2202 | 484  | 0.2311          |
| 0.2523        | 2.4220 | 528  | 0.2260          |
| 0.2139        | 2.6239 | 572  | 0.2259          |
| 0.2296        | 2.8257 | 616  | 0.2177          |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1