File size: 4,137 Bytes
9347af1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
library_name: transformers
license: mit
base_model: ByteDance-Seed/Seed-Coder-8B-Base
tags:
- generated_from_trainer
datasets:
- axolotl-ai-internal/gpumode-py2triton-reasoning-v2
model-index:
- name: outputs/out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.10.0.dev0`
```yaml
base_model: ByteDance-Seed/Seed-Coder-8B-Base
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
chat_template: llama3
datasets:
- path: axolotl-ai-internal/gpumode-py2triton-reasoning-v2
type: chat_template
split: train
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./outputs/out
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
wandb_project: seed-coder-8b-grpo-triton
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch_fused
max_grad_norm: 0.1
neftune_noise_alpha: 10
lr_scheduler: cosine
learning_rate: 1e-6
lr_groups:
- name: embeddings
modules:
- embed_tokens
- lm_head
lr: 0.00003 # scalu up LR for embeddings as these are unused tokens
bf16: true
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
flash_attention: true
warmup_steps: 100
evals_per_epoch: 5
saves_per_epoch: 1
weight_decay: 0.01
deepspeed: deepspeed_configs/zero1.json
special_tokens:
eos_token: <|eot_id|>
added_tokens_overrides:
7: <|start_header_id|>
8: <|end_header_id|>
9: <|eot_id|>
10: <think>
11: </think>
fix_untrained_tokens: [7, 8, 9, 10, 11]
```
</details><br>
# outputs/out
This model is a fine-tuned version of [ByteDance-Seed/Seed-Coder-8B-Base](https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base) on the axolotl-ai-internal/gpumode-py2triton-reasoning-v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2177
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 10
- total_train_batch_size: 20
- total_eval_batch_size: 20
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5293 | 0.0046 | 1 | 5.7151 |
| 0.4449 | 0.2018 | 44 | 0.4878 |
| 0.425 | 0.4037 | 88 | 0.4319 |
| 0.3437 | 0.6055 | 132 | 0.3322 |
| 0.2903 | 0.8073 | 176 | 0.2893 |
| 0.2528 | 1.0092 | 220 | 0.2677 |
| 0.2578 | 1.2110 | 264 | 0.2531 |
| 0.2522 | 1.4128 | 308 | 0.2414 |
| 0.2403 | 1.6147 | 352 | 0.2352 |
| 0.232 | 1.8165 | 396 | 0.2252 |
| 0.2093 | 2.0183 | 440 | 0.2360 |
| 0.2406 | 2.2202 | 484 | 0.2311 |
| 0.2523 | 2.4220 | 528 | 0.2260 |
| 0.2139 | 2.6239 | 572 | 0.2259 |
| 0.2296 | 2.8257 | 616 | 0.2177 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
|