co2_eq_emissions: emissions: number (in grams of CO2) source: "source of the information, either directly from AutoTrain, code carbon or from a scientific article documenting the model" training_type: "pre-training or fine-tuning" geographical_location: "as granular as possible, for instance Quebec, Canada or Brooklyn, NY, USA. To check your compute's electricity grid, you can check out https://app.electricitymap.org." hardware_used: "how much compute and what kind, e.g. 8 v100 GPUs"

widget:

  • text: "What's my name?" context: "My name is Clara and I live in Berkeley." example_title: "Name"
  • text: "Where do I live?" context: "My name is Sarah and I live in London" example_title: "Location"

模型名称:情感分析模型 (Sentiment Analysis Model) 模型概述: 用途:用于分析英文社交媒体文本的情感(正面、负面、中性)。 开发者:某某研究团队。 版本:v1.0。 训练数据: 数据集:Twitter 数据集,包含 100,000 条标注的推文。 数据分布: 正面:40% 负面:40% 中性:20% 数据偏差:训练数据集中缺少非英语国家的推文。 性能: 准确率:85%。 性能差异:对短文本表现较好,但对长文本表现较差。 适用场景: 社交媒体情感分析。 用户反馈的情感分类。 不适用场景: 非英文文本。 专业领域(如医学、法律)中的情感分析。 伦理考量: 偏差:可能对某些方言或俚语表现不佳。 风险:误分类可能导致错误决策。 技术细节: 架构:BERT。 训练框架:PyTorch。 优化器:Adam。

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for xiaoyuboi/test-model

Finetuned
(312)
this model

Dataset used to train xiaoyuboi/test-model