metadata
license: other
license_name: apple
license_link: https://github.com/apple/ml-fastvlm/blob/main/LICENSE
language:
- en
pipeline_tag: image-text-to-text
tags:
- multimodal
library_name: transformers
FastVLM-0.5B-Stage2
Introduction
This is FastVLM-0.5B-Stage2, a multimodal language model that can understand things visually, being agentic, understand long videos and capture events, and generate structured outputs.
This model is exported from Github apple/ml-fastvlm.
Model's weight: llava-fastvithd_0.5b_stage2.zip.
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = 'FastVLM-0.5B-Stage2'
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype='auto', trust_remote_code=True)
Export to MNN
git clone https://github.com/alibaba/MNN
cd MNN/transformers/llm/export
python llmexport.py --path /path/to/FastVLM-0.5B-Stage2 --export mnn
Citation
If you find our work helpful, feel free to give us a cite.
@InProceedings{fastvlm2025,
author = {Pavan Kumar Anasosalu Vasu, Fartash Faghri, Chun-Liang Li, Cem Koc, Nate True, Albert Antony, Gokul Santhanam, James Gabriel, Peter Grasch, Oncel Tuzel, Hadi Pouransari},
title = {FastVLM: Efficient Vision Encoding for Vision Language Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2025},
}{2023}