Image-Text-to-Text
Transformers
Safetensors
English
internvl_chat
feature-extraction
mathematics
reasoning
multi-modal-qa
math-qa
figure-qa
geometry-qa
math-word-problem
textbook-qa
vqa
geometry-diagram
synthetic-scene
chart
plot
scientific-figure
table
function-plot
abstract-scene
puzzle-test
document-image
science
conversational
custom_code
metadata
license: apache-2.0
language:
- en
metrics:
- accuracy
pipeline_tag: image-text-to-text
tags:
- mathematics
- reasoning
- multi-modal-qa
- math-qa
- figure-qa
- geometry-qa
- math-word-problem
- textbook-qa
- vqa
- geometry-diagram
- synthetic-scene
- chart
- plot
- scientific-figure
- table
- function-plot
- abstract-scene
- puzzle-test
- document-image
- science
library_name: transformers
base_model:
- OpenGVLab/InternVL2-8B
datasets:
- MathLLMs/MM-MathInstruct
MathCoder-VL: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning
Repo: https://github.com/mathllm/MathCoder
Paper: https://huggingface.co/papers/2505.10557
Introduction
We introduce MathCoder-VL, a series of open-source large multimodal models (LMMs) specifically tailored for general math problem-solving. We also introduce FigCodifier-8B, an image-to-code model.
Base Model | Ours |
---|---|
Mini-InternVL-Chat-2B-V1-5 | MathCoder-VL-2B |
InternVL2-8B | MathCoder-VL-8B |
InternVL2-8B | FigCodifier-8B |
Usage
For training and inference code, please refer to InternVL.
from datasets import load_dataset
from PIL import Image
from io import BytesIO
mm_mathinstruct = load_dataset("MathLLMs/MM-MathInstruct")
print(mm_mathinstruct)
# show the last image
img = Image.open(BytesIO(mm_mathinstruct['train'][-1]['image']))
img.show()
It should print:
DatasetDict({
train: Dataset({
features: ['id', 'image', 'question', 'solution', 'image_path'],
num_rows: 2871988
})
})
Motivation

Construction of FigCodifier

Construction of MathCoder-VL

Performance

Citation
Please cite the paper if you use our data, model or code.
@inproceedings{
wang2025mathcodervl,
title={MathCoder-{VL}: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning},
author={Ke Wang and Junting Pan and Linda Wei and Aojun Zhou and Weikang Shi and Zimu Lu and Han Xiao and Yunqiao Yang and Houxing Ren and Mingjie Zhan and Hongsheng Li},
booktitle={The 63rd Annual Meeting of the Association for Computational Linguistics},
year={2025},
url={https://openreview.net/forum?id=nuvtX1imAb}
}
@inproceedings{
lu2025mathcoder2,
title={MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code},
author={Zimu Lu and Aojun Zhou and Ke Wang and Houxing Ren and Weikang Shi and Junting Pan and Mingjie Zhan and Hongsheng Li},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=1Iuw1jcIrf}
}
@inproceedings{
wang2024mathcoder,
title={MathCoder: Seamless Code Integration in {LLM}s for Enhanced Mathematical Reasoning},
author={Ke Wang and Houxing Ren and Aojun Zhou and Zimu Lu and Sichun Luo and Weikang Shi and Renrui Zhang and Linqi Song and Mingjie Zhan and Hongsheng Li},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=z8TW0ttBPp}
}