MiniMax-Text-01 函数调用(Function Call)功能指南
📖 简介
MiniMax-Text-01 模型支持函数调用功能,使模型能够识别何时需要调用外部函数,并以结构化格式输出函数调用参数。本文档详细介绍了如何使用 MiniMax-Text-01 的函数调用功能。
🛠️ 函数调用的定义
函数结构体
函数调用需要在请求体中定义 tools
字段,每个函数由以下部分组成:
{
"tools": [
{
"type": "function",
"function": {
"name": "function_name", // 函数名称,必填
"description": "function_description", // 函数描述,应简明扼要说明函数功能
"parameters": { // 函数参数定义,符合 JSON Schema 格式
"type": "object", // 参数整体类型,固定为object
"properties": { // 参数属性对象
"param_name": { // 参数名称
"description": "参数描述", // 参数说明
"type": "string|number|boolean|array|object" // 参数类型
}
},
"required": ["param1", "param2"] // 必填参数列表
}
}
}
]
}
示例
以下是一个简单的天气查询函数定义示例:
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the latest weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "A certain city, such as Beijing, Shanghai"
}
},
"required": ["location"]
}
}
}
]
完整请求示例
下面是一个包含函数定义的完整Python代码示例:
payload = json.dumps({
"model": "MiniMax-Text-01",
"messages": [
{
"role": "system",
"content": "MM Intelligent Assistant is a large-scale language model developed by MiniMax and has no interfaces to call other products. MiniMax is a China technology company that has been committed to conducting research related to large models."
},
{
"role": "user",
"content": "上海今天天气怎么样?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the latest weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "A certain city, such as Beijing, Shanghai"
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto",
"stream": True,
"max_tokens": 10000,
"temperature": 0.9,
"top_p": 1
})
🔄 函数调用的输入格式
在模型内部处理时,函数定义会被转换为特殊格式并拼接到输入文本中:
<beginning_of_sentence>system function_setting=functions
{"name": "get_current_weather", "description": "Get the latest weather for a location", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "A certain city, such as Beijing, Shanghai"}}, "required": ["location"]}}<end_of_sentence>
注意事项:
- 函数定义位于系统设置之后、对话数据之前
- 使用
function_setting=functions
标记函数定义区域 - 每个函数定义使用JSON字符串表示
- 区域以
<end_of_sentence>
结束
📤 模型的函数调用输出
当模型决定调用函数时,它会在响应中使用特殊格式输出函数调用信息:
<function_call>```typescript
functions.get_current_weather({"location": "上海"})
```
"" 是 special token, 后面的 "functions.函数名(参数 json 结构体)", 需要字符串匹配出参数, 交外部执行.
📥 函数执行结果的处理
当函数调用成功执行后,模型将返回以下格式的输出:
```typescript
functions.get_current_weather({"location": "Shanghai"})
```
您可以使用以下正则表达式方法提取函数名称和参数,便于后续处理:
def parse_function_calls(content: str):
"""
解析模型返回的函数调用内容,提取函数名和参数
参数:
content: 模型返回的原始内容字符串
返回:
解析后的函数调用信息字典,包含函数名和参数
"""
# 匹配 typescript 代码块
pattern = r"```typescript\n(.+?)?\n```"
matches = re.finditer(pattern, content, re.DOTALL)
for match in matches:
function_code = match.group(1)
# 提取函数名和参数
function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code)
if not function_match:
continue
function_name = function_match.group(1)
arguments_str = function_match.group(2)
try:
# 解析参数JSON
arguments = json.loads(arguments_str)
print(f"调用函数: {function_name}, 参数: {arguments}")
# 示例: 处理天气查询函数
if function_name == "get_current_weather":
location = arguments.get("location", "未知位置")
# 构建函数执行结果
return {
"role": "function",
"name": function_name,
"text": json.dumps({
"location": location,
"temperature": "25",
"unit": "celsius",
"weather": "晴朗"
}, ensure_ascii=False)
}
except json.JSONDecodeError as e:
print(f"参数解析失败: {arguments_str}, 错误: {e}")
return {}
成功解析函数调用后,您应将函数执行结果添加到对话历史中,以便模型在后续交互中能够访问和利用这些信息。
💻 使用 Transformers 库的函数调用示例
MiniMax-Text-01 官方仓库提供了使用 Transformers 库进行函数调用的完整示例。您可以在 MiniMaxAI/MiniMax-Text-01 huggingface 仓库 中查看源代码。
以下是使用 Transformers 库实现函数调用的关键部分:
def get_default_tools():
return [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the latest weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "A certain city, such as Beijing, Shanghai"
}
},
"required": ["location"]
}
}
}
]
# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "What's the weather like in Shanghai today?"
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]},
{"role": "user", "content": [{"type": "text", "text": prompt}]},
]
# 启用函数调用工具
tools = get_default_tools()
# 应用聊天模板,并加入工具定义
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
tools=tools
)
# 生成回复
model_inputs = tokenizer(text, return_tensors="pt").to("cuda")
quantized_model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="bfloat16",
device_map=device_map,
quantization_config=quantization_config,
trust_remote_code=True,
offload_buffers=True,
)
generation_config = GenerationConfig(
max_new_tokens=20,
eos_token_id=200020,
use_cache=True,
)
# 执行生成
generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
运行方式
您可以通过以下命令运行示例代码:
export SAFETENSORS_FAST_GPU=1
python main.py --quant_type int8 --world_size 8 --model_id <model_path> --enable_tools
参数说明:
--quant_type
: 量化类型,可选 "default" 或 "int8"--world_size
: GPU 数量,int8 量化至少需要 8 个 GPU--model_id
: 模型路径--enable_tools
: 启用函数调用功能
结果处理
符合预期的情况下,你将得到以下输出
```typescript
functions.get_current_weather({"location": "Shanghai"})
```
你可以使用正则表达式提取出需要调用的 function 和 对应的参数
def try_parse_tool_calls(content: str):
pattern = r"```typescript\n(.+?)?\n```"
matches = re.finditer(pattern, content, re.DOTALL)
for match in matches:
function_code = match.group(1)
function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code)
if not function_match:
continue
function_name = function_match.group(1)
arguments_str = function_match.group(2)
try:
arguments = json.loads(arguments_str)
print(f"tool_calls: [{{'type': 'function', 'function': {{'name': '{function_name}', 'arguments': {arguments}}}}}]")
if function_name == "get_current_weather":
location = arguments.get("location", "Unknown")
return {"role": "function", "name": function_name, "text": f'{{"location": "{location}", "temperature": "25", "unit": "celsius", "weather": "Sun"}}'}
except json.JSONDecodeError as e:
print(f"Failed parse tools: {arguments_str}, Error: {e}")
return {}
聊天模板
MiniMax-Text-01 使用特定的聊天模板格式处理函数调用。聊天模板定义在 tokenizer_config.json
中:
"{% for message in messages %}{% if message['role'] == 'system' %}{{ '<beginning_of_sentence>system ai_setting=assistant\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'user' %}{{ '<beginning_of_sentence>user name=user\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'assistant' %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{{ '<end_of_sentence>\\n' }}{% elif message['role'] == 'function' %}{{ '<beginning_of_sentence>system function_response=functions\\n' + '{\"name\": \"' + message['name'] + '\", \"response\": ' + message['content'][0]['text'] + '}' + '<end_of_sentence>\\n'}}{% endif %}{% endfor %}{% if tools %}{% for function in tools %}{{ '<beginning_of_sentence>system function_setting=functions\\n' + function | tojson + '<end_of_sentence>\\n'}}{% endfor %}{% endif %}{% if add_generation_prompt %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% endif %}"
📝 注意事项
- 函数名称应当遵循编程语言的命名规范,避免使用特殊字符
- 参数描述应当简洁明了,帮助模型理解参数的用途和约束
- 模型并不保证每次都会调用函数,这取决于用户的输入和模型的判断
- 函数调用结果应当以结构化方式返回,便于模型理解和处理