|
# MiniMax-Text-01 函数调用(Function Call)功能指南 |
|
|
|
## 📖 简介 |
|
|
|
MiniMax-Text-01 模型支持函数调用功能,使模型能够识别何时需要调用外部函数,并以结构化格式输出函数调用参数。本文档详细介绍了如何使用 MiniMax-Text-01 的函数调用功能。 |
|
|
|
## 🛠️ 函数调用的定义 |
|
|
|
### 函数结构体 |
|
|
|
函数调用需要在请求体中定义 `tools` 字段,每个函数由以下部分组成: |
|
|
|
```json |
|
{ |
|
"tools": [ |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "function_name", // 函数名称,必填 |
|
"description": "function_description", // 函数描述,应简明扼要说明函数功能 |
|
"parameters": { // 函数参数定义,符合 JSON Schema 格式 |
|
"type": "object", // 参数整体类型,固定为object |
|
"properties": { // 参数属性对象 |
|
"param_name": { // 参数名称 |
|
"description": "参数描述", // 参数说明 |
|
"type": "string|number|boolean|array|object" // 参数类型 |
|
} |
|
}, |
|
"required": ["param1", "param2"] // 必填参数列表 |
|
} |
|
} |
|
} |
|
] |
|
} |
|
``` |
|
|
|
### 示例 |
|
|
|
以下是一个简单的天气查询函数定义示例: |
|
|
|
```json |
|
"tools": [ |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "get_current_weather", |
|
"description": "Get the latest weather for a location", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"location": { |
|
"type": "string", |
|
"description": "A certain city, such as Beijing, Shanghai" |
|
} |
|
}, |
|
"required": ["location"] |
|
} |
|
} |
|
} |
|
] |
|
``` |
|
|
|
### 完整请求示例 |
|
|
|
下面是一个包含函数定义的完整Python代码示例: |
|
|
|
```python |
|
payload = json.dumps({ |
|
"model": "MiniMax-Text-01", |
|
"messages": [ |
|
{ |
|
"role": "system", |
|
"content": "MM Intelligent Assistant is a large-scale language model developed by MiniMax and has no interfaces to call other products. MiniMax is a China technology company that has been committed to conducting research related to large models." |
|
}, |
|
{ |
|
"role": "user", |
|
"content": "上海今天天气怎么样?" |
|
} |
|
], |
|
"tools": [ |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "get_current_weather", |
|
"description": "Get the latest weather for a location", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"location": { |
|
"type": "string", |
|
"description": "A certain city, such as Beijing, Shanghai" |
|
} |
|
}, |
|
"required": ["location"] |
|
} |
|
} |
|
} |
|
], |
|
"tool_choice": "auto", |
|
"stream": True, |
|
"max_tokens": 10000, |
|
"temperature": 0.9, |
|
"top_p": 1 |
|
}) |
|
``` |
|
|
|
## 🔄 函数调用的输入格式 |
|
|
|
在模型内部处理时,函数定义会被转换为特殊格式并拼接到输入文本中: |
|
|
|
``` |
|
<beginning_of_sentence>system function_setting=functions |
|
{"name": "get_current_weather", "description": "Get the latest weather for a location", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "A certain city, such as Beijing, Shanghai"}}, "required": ["location"]}}<end_of_sentence> |
|
``` |
|
|
|
注意事项: |
|
1. 函数定义位于系统设置之后、对话数据之前 |
|
2. 使用 `function_setting=functions` 标记函数定义区域 |
|
3. 每个函数定义使用JSON字符串表示 |
|
4. 区域以 `<end_of_sentence>` 结束 |
|
|
|
## 📤 模型的函数调用输出 |
|
|
|
当模型决定调用函数时,它会在响应中使用特殊格式输出函数调用信息: |
|
|
|
```` |
|
<function_call>```typescript |
|
functions.get_current_weather({"location": "上海"}) |
|
``` |
|
```` |
|
|
|
"<function_call>" 是 special token, 后面的 "functions.函数名(参数 json 结构体)", 需要字符串匹配出参数, 交外部执行. |
|
|
|
## 📥 函数执行结果的处理 |
|
|
|
当函数调用成功执行后,模型将返回以下格式的输出: |
|
|
|
````typescript |
|
```typescript |
|
functions.get_current_weather({"location": "Shanghai"}) |
|
``` |
|
```` |
|
|
|
您可以使用以下正则表达式方法提取函数名称和参数,便于后续处理: |
|
|
|
````python |
|
def parse_function_calls(content: str): |
|
""" |
|
解析模型返回的函数调用内容,提取函数名和参数 |
|
|
|
参数: |
|
content: 模型返回的原始内容字符串 |
|
|
|
返回: |
|
解析后的函数调用信息字典,包含函数名和参数 |
|
""" |
|
# 匹配 typescript 代码块 |
|
pattern = r"```typescript\n(.+?)?\n```" |
|
matches = re.finditer(pattern, content, re.DOTALL) |
|
|
|
for match in matches: |
|
function_code = match.group(1) |
|
# 提取函数名和参数 |
|
function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code) |
|
|
|
if not function_match: |
|
continue |
|
|
|
function_name = function_match.group(1) |
|
arguments_str = function_match.group(2) |
|
|
|
try: |
|
# 解析参数JSON |
|
arguments = json.loads(arguments_str) |
|
print(f"调用函数: {function_name}, 参数: {arguments}") |
|
|
|
# 示例: 处理天气查询函数 |
|
if function_name == "get_current_weather": |
|
location = arguments.get("location", "未知位置") |
|
# 构建函数执行结果 |
|
return { |
|
"role": "function", |
|
"name": function_name, |
|
"text": json.dumps({ |
|
"location": location, |
|
"temperature": "25", |
|
"unit": "celsius", |
|
"weather": "晴朗" |
|
}, ensure_ascii=False) |
|
} |
|
except json.JSONDecodeError as e: |
|
print(f"参数解析失败: {arguments_str}, 错误: {e}") |
|
|
|
return {} |
|
```` |
|
|
|
成功解析函数调用后,您应将函数执行结果添加到对话历史中,以便模型在后续交互中能够访问和利用这些信息。 |
|
|
|
## 💻 使用 Transformers 库的函数调用示例 |
|
|
|
MiniMax-Text-01 官方仓库提供了使用 Transformers 库进行函数调用的完整示例。您可以在 [MiniMaxAI/MiniMax-Text-01 huggingface 仓库](https://huggingface.co/MiniMaxAI/MiniMax-Text-01/blob/main/main.py) 中查看源代码。 |
|
|
|
以下是使用 Transformers 库实现函数调用的关键部分: |
|
|
|
```python |
|
def get_default_tools(): |
|
return [ |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "get_current_weather", |
|
"description": "Get the latest weather for a location", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"location": { |
|
"type": "string", |
|
"description": "A certain city, such as Beijing, Shanghai" |
|
} |
|
}, |
|
"required": ["location"] |
|
} |
|
} |
|
} |
|
] |
|
|
|
# 加载模型和分词器 |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
prompt = "What's the weather like in Shanghai today?" |
|
messages = [ |
|
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]}, |
|
{"role": "user", "content": [{"type": "text", "text": prompt}]}, |
|
] |
|
|
|
# 启用函数调用工具 |
|
tools = get_default_tools() |
|
|
|
# 应用聊天模板,并加入工具定义 |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
tools=tools |
|
) |
|
|
|
# 生成回复 |
|
model_inputs = tokenizer(text, return_tensors="pt").to("cuda") |
|
quantized_model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype="bfloat16", |
|
device_map=device_map, |
|
quantization_config=quantization_config, |
|
trust_remote_code=True, |
|
offload_buffers=True, |
|
) |
|
generation_config = GenerationConfig( |
|
max_new_tokens=20, |
|
eos_token_id=200020, |
|
use_cache=True, |
|
) |
|
|
|
# 执行生成 |
|
generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config) |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
### 运行方式 |
|
|
|
您可以通过以下命令运行示例代码: |
|
|
|
```bash |
|
export SAFETENSORS_FAST_GPU=1 |
|
python main.py --quant_type int8 --world_size 8 --model_id <model_path> --enable_tools |
|
``` |
|
|
|
参数说明: |
|
- `--quant_type`: 量化类型,可选 "default" 或 "int8" |
|
- `--world_size`: GPU 数量,int8 量化至少需要 8 个 GPU |
|
- `--model_id`: 模型路径 |
|
- `--enable_tools`: 启用函数调用功能 |
|
|
|
### 结果处理 |
|
符合预期的情况下,你将得到以下输出 |
|
|
|
````base |
|
```typescript |
|
functions.get_current_weather({"location": "Shanghai"}) |
|
``` |
|
```` |
|
|
|
你可以使用正则表达式提取出需要调用的 function 和 对应的参数 |
|
|
|
````python |
|
def try_parse_tool_calls(content: str): |
|
pattern = r"```typescript\n(.+?)?\n```" |
|
matches = re.finditer(pattern, content, re.DOTALL) |
|
|
|
for match in matches: |
|
function_code = match.group(1) |
|
function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code) |
|
|
|
if not function_match: |
|
continue |
|
|
|
function_name = function_match.group(1) |
|
arguments_str = function_match.group(2) |
|
|
|
try: |
|
arguments = json.loads(arguments_str) |
|
print(f"tool_calls: [{{'type': 'function', 'function': {{'name': '{function_name}', 'arguments': {arguments}}}}}]") |
|
|
|
if function_name == "get_current_weather": |
|
location = arguments.get("location", "Unknown") |
|
return {"role": "function", "name": function_name, "text": f'{{"location": "{location}", "temperature": "25", "unit": "celsius", "weather": "Sun"}}'} |
|
except json.JSONDecodeError as e: |
|
print(f"Failed parse tools: {arguments_str}, Error: {e}") |
|
|
|
return {} |
|
```` |
|
|
|
### 聊天模板 |
|
|
|
MiniMax-Text-01 使用特定的聊天模板格式处理函数调用。聊天模板定义在 `tokenizer_config.json` 中: |
|
|
|
```json |
|
"{% for message in messages %}{% if message['role'] == 'system' %}{{ '<beginning_of_sentence>system ai_setting=assistant\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'user' %}{{ '<beginning_of_sentence>user name=user\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'assistant' %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{{ '<end_of_sentence>\\n' }}{% elif message['role'] == 'function' %}{{ '<beginning_of_sentence>system function_response=functions\\n' + '{\"name\": \"' + message['name'] + '\", \"response\": ' + message['content'][0]['text'] + '}' + '<end_of_sentence>\\n'}}{% endif %}{% endfor %}{% if tools %}{% for function in tools %}{{ '<beginning_of_sentence>system function_setting=functions\\n' + function | tojson + '<end_of_sentence>\\n'}}{% endfor %}{% endif %}{% if add_generation_prompt %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% endif %}" |
|
|
|
``` |
|
|
|
## 📝 注意事项 |
|
|
|
1. 函数名称应当遵循编程语言的命名规范,避免使用特殊字符 |
|
2. 参数描述应当简洁明了,帮助模型理解参数的用途和约束 |
|
3. 模型并不保证每次都会调用函数,这取决于用户的输入和模型的判断 |
|
4. 函数调用结果应当以结构化方式返回,便于模型理解和处理 |