algorithmic_trading / README.md
Edwin Salguero
Add FinRL integration with comprehensive RL trading agent
2c67d05
|
raw
history blame
11.8 kB

Algorithmic Trading System

A comprehensive algorithmic trading system with synthetic data generation, comprehensive logging, extensive testing capabilities, and FinRL reinforcement learning integration.

Features

Core Trading System

  • Agent-based Architecture: Modular design with separate strategy and execution agents
  • Technical Analysis: Built-in technical indicators (SMA, RSI, Bollinger Bands, MACD)
  • Risk Management: Position sizing and drawdown limits
  • Order Execution: Simulated broker integration with realistic execution delays

FinRL Reinforcement Learning

  • Multiple RL Algorithms: Support for PPO, A2C, DDPG, and TD3
  • Custom Trading Environment: Gymnasium-compatible environment for RL training
  • Technical Indicators Integration: Automatic calculation and inclusion of technical indicators
  • Portfolio Management: Realistic portfolio simulation with transaction costs
  • Model Persistence: Save and load trained models for inference
  • TensorBoard Integration: Training progress visualization and monitoring
  • Comprehensive Evaluation: Performance metrics including Sharpe ratio and total returns

Synthetic Data Generation

  • Realistic Market Data: Generate OHLCV data using geometric Brownian motion
  • Multiple Frequencies: Support for 1min, 5min, 1H, and 1D data
  • Market Scenarios: Normal, volatile, trending, and crash market conditions
  • Tick Data: High-frequency tick data generation for testing
  • Configurable Parameters: Volatility, trend, noise levels, and base prices

Comprehensive Logging

  • Multi-level Logging: Console and file-based logging
  • Rotating Log Files: Automatic log rotation with size limits
  • Specialized Loggers: Separate loggers for trading, performance, and errors
  • Structured Logging: Detailed log messages with timestamps and context

Testing Framework

  • Unit Tests: Comprehensive tests for all components
  • Integration Tests: End-to-end workflow testing
  • Test Coverage: Code coverage reporting with HTML and XML outputs
  • Mock Testing: Isolated testing with mocked dependencies

Installation

  1. Clone the repository:
git clone <repository-url>
cd algorithmic_trading
  1. Install dependencies:
pip install -r requirements.txt

Configuration

The system is configured via config.yaml:

# Data source configuration
data_source:
  type: 'synthetic'  # or 'csv'
  path: 'data/market_data.csv'

# Trading parameters
trading:
  symbol: 'AAPL'
  timeframe: '1min'
  capital: 100000

# Risk management
risk:
  max_position: 100
  max_drawdown: 0.05

# Order execution
execution:
  broker_api: 'paper'
  order_size: 10
  delay_ms: 100
  success_rate: 0.95

# Synthetic data generation
synthetic_data:
  base_price: 150.0
  volatility: 0.02
  trend: 0.001
  noise_level: 0.005
  generate_data: true
  data_path: 'data/synthetic_market_data.csv'

# Logging configuration
logging:
  log_level: 'INFO'
  log_dir: 'logs'
  enable_console: true
  enable_file: true
  max_file_size_mb: 10
  backup_count: 5

Usage

Standard Trading Mode

python -m agentic_ai_system.main

Backtest Mode

python -m agentic_ai_system.main --mode backtest --start-date 2024-01-01 --end-date 2024-12-31

Live Trading Mode

python -m agentic_ai_system.main --mode live --duration 60

Custom Configuration

python -m agentic_ai_system.main --config custom_config.yaml

Running Tests

All Tests

pytest

Unit Tests Only

pytest -m unit

Integration Tests Only

pytest -m integration

With Coverage Report

pytest --cov=agentic_ai_system --cov-report=html

Specific Test File

pytest tests/test_synthetic_data_generator.py

System Architecture

Components

  1. SyntheticDataGenerator: Generates realistic market data for testing
  2. DataIngestion: Loads and validates market data from various sources
  3. StrategyAgent: Analyzes market data and generates trading signals
  4. ExecutionAgent: Executes trading orders with broker simulation
  5. Orchestrator: Coordinates the entire trading workflow
  6. LoggerConfig: Manages comprehensive logging throughout the system

Data Flow

Synthetic Data Generator β†’ Data Ingestion β†’ Strategy Agent β†’ Execution Agent
                              ↓
                         Logging System

Synthetic Data Generation

Features

  • Geometric Brownian Motion: Realistic price movement simulation
  • OHLCV Data: Complete market data with open, high, low, close, and volume
  • Market Scenarios: Different market conditions for testing
  • Configurable Parameters: Adjustable volatility, trend, and noise levels

Usage Examples

from agentic_ai_system.synthetic_data_generator import SyntheticDataGenerator

# Initialize generator
generator = SyntheticDataGenerator(config)

# Generate OHLCV data
data = generator.generate_ohlcv_data(
    symbol='AAPL',
    start_date='2024-01-01',
    end_date='2024-12-31',
    frequency='1min'
)

# Generate tick data
tick_data = generator.generate_tick_data(
    symbol='AAPL',
    duration_minutes=60,
    tick_interval_ms=1000
)

# Generate market scenarios
crash_data = generator.generate_market_scenarios('crash')
volatile_data = generator.generate_market_scenarios('volatile')

Logging System

Log Files

  • logs/trading_system.log: General system logs
  • logs/trading.log: Trading-specific logs
  • logs/performance.log: Performance metrics
  • logs/errors.log: Error logs

Log Levels

  • DEBUG: Detailed debugging information
  • INFO: General information about system operation
  • WARNING: Warning messages for potential issues
  • ERROR: Error messages for failed operations
  • CRITICAL: Critical system failures

Usage Examples

import logging
from agentic_ai_system.logger_config import setup_logging, get_logger

# Setup logging
setup_logging(config)

# Get logger for specific module
logger = get_logger(__name__)

# Log messages
logger.info("Trading signal generated")
logger.warning("High volatility detected")
logger.error("Order execution failed", exc_info=True)

FinRL Integration

Overview

The system now includes FinRL (Financial Reinforcement Learning) integration, providing state-of-the-art reinforcement learning capabilities for algorithmic trading. The FinRL agent can learn optimal trading strategies through interaction with a simulated market environment.

Supported Algorithms

  • PPO (Proximal Policy Optimization): Stable policy gradient method
  • A2C (Advantage Actor-Critic): Actor-critic method with advantage estimation
  • DDPG (Deep Deterministic Policy Gradient): Continuous action space algorithm
  • TD3 (Twin Delayed DDPG): Improved version of DDPG with twin critics

Trading Environment

The custom trading environment provides:

  • Action Space: Discrete actions (0=Buy, 1=Hold, 2=Sell)
  • Observation Space: OHLCV data + technical indicators + portfolio state
  • Reward Function: Portfolio return-based rewards
  • Transaction Costs: Realistic trading fees and slippage
  • Position Limits: Maximum position constraints

Usage Examples

Basic FinRL Training

from agentic_ai_system.finrl_agent import FinRLAgent, FinRLConfig
import pandas as pd

# Create configuration
config = FinRLConfig(
    algorithm="PPO",
    learning_rate=0.0003,
    batch_size=64,
    total_timesteps=100000
)

# Initialize agent
agent = FinRLAgent(config)

# Train the agent
training_result = agent.train(
    data=market_data,
    total_timesteps=100000,
    eval_freq=10000
)

# Generate predictions
predictions = agent.predict(test_data)

# Evaluate performance
evaluation = agent.evaluate(test_data)
print(f"Total Return: {evaluation['total_return']:.2%}")

Using Configuration File

from agentic_ai_system.finrl_agent import create_finrl_agent_from_config

# Create agent from config file
agent = create_finrl_agent_from_config('config.yaml')

# Train and evaluate
agent.train(market_data)
results = agent.evaluate(test_data)

Running FinRL Demo

# Run the complete FinRL demo
python finrl_demo.py

# This will:
# 1. Generate synthetic training and test data
# 2. Train a FinRL agent
# 3. Evaluate performance
# 4. Generate trading predictions
# 5. Create visualization plots

Configuration

FinRL settings can be configured in config.yaml:

finrl:
  algorithm: 'PPO'  # PPO, A2C, DDPG, TD3
  learning_rate: 0.0003
  batch_size: 64
  buffer_size: 1000000
  gamma: 0.99
  tensorboard_log: 'logs/finrl_tensorboard'
  training:
    total_timesteps: 100000
    eval_freq: 10000
    save_best_model: true
    model_save_path: 'models/finrl_best/'
  inference:
    use_trained_model: false
    model_path: 'models/finrl_best/best_model'

Model Management

# Save trained model
agent.save_model('models/my_finrl_model')

# Load pre-trained model
agent.load_model('models/my_finrl_model')

# Continue training
agent.train(more_data, total_timesteps=50000)

Performance Monitoring

  • TensorBoard Integration: Monitor training progress
  • Evaluation Metrics: Total return, Sharpe ratio, portfolio value
  • Trading Statistics: Buy/sell signal analysis
  • Visualization: Price charts with trading signals

Advanced Features

  • Multi-timeframe Support: Train on different data frequencies
  • Feature Engineering: Automatic technical indicator calculation
  • Risk Management: Built-in position and drawdown limits
  • Backtesting: Comprehensive backtesting capabilities
  • Hyperparameter Tuning: Easy configuration for different algorithms

Testing

Test Structure

tests/
β”œβ”€β”€ __init__.py
β”œβ”€β”€ test_synthetic_data_generator.py
β”œβ”€β”€ test_strategy_agent.py
β”œβ”€β”€ test_execution_agent.py
β”œβ”€β”€ test_data_ingestion.py
└── test_integration.py

Test Categories

  • Unit Tests: Test individual components in isolation
  • Integration Tests: Test complete workflows
  • Performance Tests: Test system performance and scalability
  • Error Handling Tests: Test error conditions and edge cases

Running Specific Tests

# Run tests with specific markers
pytest -m unit
pytest -m integration
pytest -m slow

# Run tests with coverage
pytest --cov=agentic_ai_system --cov-report=html

# Run tests in parallel
pytest -n auto

# Run tests with verbose output
pytest -v

Performance Monitoring

The system includes comprehensive performance monitoring:

  • Execution Time Tracking: Monitor workflow execution times
  • Trade Statistics: Track successful vs failed trades
  • Performance Metrics: Calculate returns and drawdowns
  • Resource Usage: Monitor memory and CPU usage

Error Handling

The system includes robust error handling:

  • Graceful Degradation: System continues operation despite component failures
  • Error Logging: Comprehensive error logging with stack traces
  • Fallback Mechanisms: Automatic fallback to synthetic data when CSV files are missing
  • Validation: Data validation at multiple levels

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Ensure all tests pass
  5. Submit a pull request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Disclaimer

This is a simulation system for educational and testing purposes. It is not intended for real trading and should not be used with real money. Always test thoroughly before using any trading system with real funds.