|
# Algorithmic Trading System |
|
|
|
A comprehensive algorithmic trading system with synthetic data generation, comprehensive logging, extensive testing capabilities, and FinRL reinforcement learning integration. |
|
|
|
## Features |
|
|
|
### Core Trading System |
|
- **Agent-based Architecture**: Modular design with separate strategy and execution agents |
|
- **Technical Analysis**: Built-in technical indicators (SMA, RSI, Bollinger Bands, MACD) |
|
- **Risk Management**: Position sizing and drawdown limits |
|
- **Order Execution**: Simulated broker integration with realistic execution delays |
|
|
|
### FinRL Reinforcement Learning |
|
- **Multiple RL Algorithms**: Support for PPO, A2C, DDPG, and TD3 |
|
- **Custom Trading Environment**: Gymnasium-compatible environment for RL training |
|
- **Technical Indicators Integration**: Automatic calculation and inclusion of technical indicators |
|
- **Portfolio Management**: Realistic portfolio simulation with transaction costs |
|
- **Model Persistence**: Save and load trained models for inference |
|
- **TensorBoard Integration**: Training progress visualization and monitoring |
|
- **Comprehensive Evaluation**: Performance metrics including Sharpe ratio and total returns |
|
|
|
### Synthetic Data Generation |
|
- **Realistic Market Data**: Generate OHLCV data using geometric Brownian motion |
|
- **Multiple Frequencies**: Support for 1min, 5min, 1H, and 1D data |
|
- **Market Scenarios**: Normal, volatile, trending, and crash market conditions |
|
- **Tick Data**: High-frequency tick data generation for testing |
|
- **Configurable Parameters**: Volatility, trend, noise levels, and base prices |
|
|
|
### Comprehensive Logging |
|
- **Multi-level Logging**: Console and file-based logging |
|
- **Rotating Log Files**: Automatic log rotation with size limits |
|
- **Specialized Loggers**: Separate loggers for trading, performance, and errors |
|
- **Structured Logging**: Detailed log messages with timestamps and context |
|
|
|
### Testing Framework |
|
- **Unit Tests**: Comprehensive tests for all components |
|
- **Integration Tests**: End-to-end workflow testing |
|
- **Test Coverage**: Code coverage reporting with HTML and XML outputs |
|
- **Mock Testing**: Isolated testing with mocked dependencies |
|
|
|
## Installation |
|
|
|
1. Clone the repository: |
|
```bash |
|
git clone <repository-url> |
|
cd algorithmic_trading |
|
``` |
|
|
|
2. Install dependencies: |
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
## Configuration |
|
|
|
The system is configured via `config.yaml`: |
|
|
|
```yaml |
|
# Data source configuration |
|
data_source: |
|
type: 'synthetic' # or 'csv' |
|
path: 'data/market_data.csv' |
|
|
|
# Trading parameters |
|
trading: |
|
symbol: 'AAPL' |
|
timeframe: '1min' |
|
capital: 100000 |
|
|
|
# Risk management |
|
risk: |
|
max_position: 100 |
|
max_drawdown: 0.05 |
|
|
|
# Order execution |
|
execution: |
|
broker_api: 'paper' |
|
order_size: 10 |
|
delay_ms: 100 |
|
success_rate: 0.95 |
|
|
|
# Synthetic data generation |
|
synthetic_data: |
|
base_price: 150.0 |
|
volatility: 0.02 |
|
trend: 0.001 |
|
noise_level: 0.005 |
|
generate_data: true |
|
data_path: 'data/synthetic_market_data.csv' |
|
|
|
# Logging configuration |
|
logging: |
|
log_level: 'INFO' |
|
log_dir: 'logs' |
|
enable_console: true |
|
enable_file: true |
|
max_file_size_mb: 10 |
|
backup_count: 5 |
|
``` |
|
|
|
## Usage |
|
|
|
### Standard Trading Mode |
|
```bash |
|
python -m agentic_ai_system.main |
|
``` |
|
|
|
### Backtest Mode |
|
```bash |
|
python -m agentic_ai_system.main --mode backtest --start-date 2024-01-01 --end-date 2024-12-31 |
|
``` |
|
|
|
### Live Trading Mode |
|
```bash |
|
python -m agentic_ai_system.main --mode live --duration 60 |
|
``` |
|
|
|
### Custom Configuration |
|
```bash |
|
python -m agentic_ai_system.main --config custom_config.yaml |
|
``` |
|
|
|
## Running Tests |
|
|
|
### All Tests |
|
```bash |
|
pytest |
|
``` |
|
|
|
### Unit Tests Only |
|
```bash |
|
pytest -m unit |
|
``` |
|
|
|
### Integration Tests Only |
|
```bash |
|
pytest -m integration |
|
``` |
|
|
|
### With Coverage Report |
|
```bash |
|
pytest --cov=agentic_ai_system --cov-report=html |
|
``` |
|
|
|
### Specific Test File |
|
```bash |
|
pytest tests/test_synthetic_data_generator.py |
|
``` |
|
|
|
## System Architecture |
|
|
|
### Components |
|
|
|
1. **SyntheticDataGenerator**: Generates realistic market data for testing |
|
2. **DataIngestion**: Loads and validates market data from various sources |
|
3. **StrategyAgent**: Analyzes market data and generates trading signals |
|
4. **ExecutionAgent**: Executes trading orders with broker simulation |
|
5. **Orchestrator**: Coordinates the entire trading workflow |
|
6. **LoggerConfig**: Manages comprehensive logging throughout the system |
|
|
|
### Data Flow |
|
|
|
``` |
|
Synthetic Data Generator β Data Ingestion β Strategy Agent β Execution Agent |
|
β |
|
Logging System |
|
``` |
|
|
|
## Synthetic Data Generation |
|
|
|
### Features |
|
- **Geometric Brownian Motion**: Realistic price movement simulation |
|
- **OHLCV Data**: Complete market data with open, high, low, close, and volume |
|
- **Market Scenarios**: Different market conditions for testing |
|
- **Configurable Parameters**: Adjustable volatility, trend, and noise levels |
|
|
|
### Usage Examples |
|
|
|
```python |
|
from agentic_ai_system.synthetic_data_generator import SyntheticDataGenerator |
|
|
|
# Initialize generator |
|
generator = SyntheticDataGenerator(config) |
|
|
|
# Generate OHLCV data |
|
data = generator.generate_ohlcv_data( |
|
symbol='AAPL', |
|
start_date='2024-01-01', |
|
end_date='2024-12-31', |
|
frequency='1min' |
|
) |
|
|
|
# Generate tick data |
|
tick_data = generator.generate_tick_data( |
|
symbol='AAPL', |
|
duration_minutes=60, |
|
tick_interval_ms=1000 |
|
) |
|
|
|
# Generate market scenarios |
|
crash_data = generator.generate_market_scenarios('crash') |
|
volatile_data = generator.generate_market_scenarios('volatile') |
|
``` |
|
|
|
## Logging System |
|
|
|
### Log Files |
|
- `logs/trading_system.log`: General system logs |
|
- `logs/trading.log`: Trading-specific logs |
|
- `logs/performance.log`: Performance metrics |
|
- `logs/errors.log`: Error logs |
|
|
|
### Log Levels |
|
- **DEBUG**: Detailed debugging information |
|
- **INFO**: General information about system operation |
|
- **WARNING**: Warning messages for potential issues |
|
- **ERROR**: Error messages for failed operations |
|
- **CRITICAL**: Critical system failures |
|
|
|
### Usage Examples |
|
|
|
```python |
|
import logging |
|
from agentic_ai_system.logger_config import setup_logging, get_logger |
|
|
|
# Setup logging |
|
setup_logging(config) |
|
|
|
# Get logger for specific module |
|
logger = get_logger(__name__) |
|
|
|
# Log messages |
|
logger.info("Trading signal generated") |
|
logger.warning("High volatility detected") |
|
logger.error("Order execution failed", exc_info=True) |
|
``` |
|
|
|
## FinRL Integration |
|
|
|
### Overview |
|
The system now includes FinRL (Financial Reinforcement Learning) integration, providing state-of-the-art reinforcement learning capabilities for algorithmic trading. The FinRL agent can learn optimal trading strategies through interaction with a simulated market environment. |
|
|
|
### Supported Algorithms |
|
- **PPO (Proximal Policy Optimization)**: Stable policy gradient method |
|
- **A2C (Advantage Actor-Critic)**: Actor-critic method with advantage estimation |
|
- **DDPG (Deep Deterministic Policy Gradient)**: Continuous action space algorithm |
|
- **TD3 (Twin Delayed DDPG)**: Improved version of DDPG with twin critics |
|
|
|
### Trading Environment |
|
The custom trading environment provides: |
|
- **Action Space**: Discrete actions (0=Buy, 1=Hold, 2=Sell) |
|
- **Observation Space**: OHLCV data + technical indicators + portfolio state |
|
- **Reward Function**: Portfolio return-based rewards |
|
- **Transaction Costs**: Realistic trading fees and slippage |
|
- **Position Limits**: Maximum position constraints |
|
|
|
### Usage Examples |
|
|
|
#### Basic FinRL Training |
|
```python |
|
from agentic_ai_system.finrl_agent import FinRLAgent, FinRLConfig |
|
import pandas as pd |
|
|
|
# Create configuration |
|
config = FinRLConfig( |
|
algorithm="PPO", |
|
learning_rate=0.0003, |
|
batch_size=64, |
|
total_timesteps=100000 |
|
) |
|
|
|
# Initialize agent |
|
agent = FinRLAgent(config) |
|
|
|
# Train the agent |
|
training_result = agent.train( |
|
data=market_data, |
|
total_timesteps=100000, |
|
eval_freq=10000 |
|
) |
|
|
|
# Generate predictions |
|
predictions = agent.predict(test_data) |
|
|
|
# Evaluate performance |
|
evaluation = agent.evaluate(test_data) |
|
print(f"Total Return: {evaluation['total_return']:.2%}") |
|
``` |
|
|
|
#### Using Configuration File |
|
```python |
|
from agentic_ai_system.finrl_agent import create_finrl_agent_from_config |
|
|
|
# Create agent from config file |
|
agent = create_finrl_agent_from_config('config.yaml') |
|
|
|
# Train and evaluate |
|
agent.train(market_data) |
|
results = agent.evaluate(test_data) |
|
``` |
|
|
|
#### Running FinRL Demo |
|
```bash |
|
# Run the complete FinRL demo |
|
python finrl_demo.py |
|
|
|
# This will: |
|
# 1. Generate synthetic training and test data |
|
# 2. Train a FinRL agent |
|
# 3. Evaluate performance |
|
# 4. Generate trading predictions |
|
# 5. Create visualization plots |
|
``` |
|
|
|
### Configuration |
|
FinRL settings can be configured in `config.yaml`: |
|
|
|
```yaml |
|
finrl: |
|
algorithm: 'PPO' # PPO, A2C, DDPG, TD3 |
|
learning_rate: 0.0003 |
|
batch_size: 64 |
|
buffer_size: 1000000 |
|
gamma: 0.99 |
|
tensorboard_log: 'logs/finrl_tensorboard' |
|
training: |
|
total_timesteps: 100000 |
|
eval_freq: 10000 |
|
save_best_model: true |
|
model_save_path: 'models/finrl_best/' |
|
inference: |
|
use_trained_model: false |
|
model_path: 'models/finrl_best/best_model' |
|
``` |
|
|
|
### Model Management |
|
```python |
|
# Save trained model |
|
agent.save_model('models/my_finrl_model') |
|
|
|
# Load pre-trained model |
|
agent.load_model('models/my_finrl_model') |
|
|
|
# Continue training |
|
agent.train(more_data, total_timesteps=50000) |
|
``` |
|
|
|
### Performance Monitoring |
|
- **TensorBoard Integration**: Monitor training progress |
|
- **Evaluation Metrics**: Total return, Sharpe ratio, portfolio value |
|
- **Trading Statistics**: Buy/sell signal analysis |
|
- **Visualization**: Price charts with trading signals |
|
|
|
### Advanced Features |
|
- **Multi-timeframe Support**: Train on different data frequencies |
|
- **Feature Engineering**: Automatic technical indicator calculation |
|
- **Risk Management**: Built-in position and drawdown limits |
|
- **Backtesting**: Comprehensive backtesting capabilities |
|
- **Hyperparameter Tuning**: Easy configuration for different algorithms |
|
|
|
## Testing |
|
|
|
### Test Structure |
|
``` |
|
tests/ |
|
βββ __init__.py |
|
βββ test_synthetic_data_generator.py |
|
βββ test_strategy_agent.py |
|
βββ test_execution_agent.py |
|
βββ test_data_ingestion.py |
|
βββ test_integration.py |
|
``` |
|
|
|
### Test Categories |
|
- **Unit Tests**: Test individual components in isolation |
|
- **Integration Tests**: Test complete workflows |
|
- **Performance Tests**: Test system performance and scalability |
|
- **Error Handling Tests**: Test error conditions and edge cases |
|
|
|
### Running Specific Tests |
|
|
|
```bash |
|
# Run tests with specific markers |
|
pytest -m unit |
|
pytest -m integration |
|
pytest -m slow |
|
|
|
# Run tests with coverage |
|
pytest --cov=agentic_ai_system --cov-report=html |
|
|
|
# Run tests in parallel |
|
pytest -n auto |
|
|
|
# Run tests with verbose output |
|
pytest -v |
|
``` |
|
|
|
## Performance Monitoring |
|
|
|
The system includes comprehensive performance monitoring: |
|
|
|
- **Execution Time Tracking**: Monitor workflow execution times |
|
- **Trade Statistics**: Track successful vs failed trades |
|
- **Performance Metrics**: Calculate returns and drawdowns |
|
- **Resource Usage**: Monitor memory and CPU usage |
|
|
|
## Error Handling |
|
|
|
The system includes robust error handling: |
|
|
|
- **Graceful Degradation**: System continues operation despite component failures |
|
- **Error Logging**: Comprehensive error logging with stack traces |
|
- **Fallback Mechanisms**: Automatic fallback to synthetic data when CSV files are missing |
|
- **Validation**: Data validation at multiple levels |
|
|
|
## Contributing |
|
|
|
1. Fork the repository |
|
2. Create a feature branch |
|
3. Add tests for new functionality |
|
4. Ensure all tests pass |
|
5. Submit a pull request |
|
|
|
## License |
|
|
|
This project is licensed under the MIT License - see the LICENSE file for details. |
|
|
|
## Disclaimer |
|
|
|
This is a simulation system for educational and testing purposes. It is not intended for real trading and should not be used with real money. Always test thoroughly before using any trading system with real funds. |