StupidGame's picture
Upload 1941 files
baa8e90
import torch
class ReferenceOnlySimple:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"reference": ("LATENT",),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})
}}
RETURN_TYPES = ("MODEL", "LATENT")
FUNCTION = "reference_only"
CATEGORY = "custom_node_experiments"
def reference_only(self, model, reference, batch_size):
model_reference = model.clone()
size_latent = list(reference["samples"].shape)
size_latent[0] = batch_size
latent = {}
latent["samples"] = torch.zeros(size_latent)
batch = latent["samples"].shape[0] + reference["samples"].shape[0]
def reference_apply(q, k, v, extra_options):
k = k.clone().repeat(1, 2, 1)
offset = 0
if q.shape[0] > batch:
offset = batch
for o in range(0, q.shape[0], batch):
for x in range(1, batch):
k[x + o, q.shape[1]:] = q[o,:]
return q, k, k
model_reference.set_model_attn1_patch(reference_apply)
out_latent = torch.cat((reference["samples"], latent["samples"]))
if "noise_mask" in latent:
mask = latent["noise_mask"]
else:
mask = torch.ones((64,64), dtype=torch.float32, device="cpu")
if len(mask.shape) < 3:
mask = mask.unsqueeze(0)
if mask.shape[0] < latent["samples"].shape[0]:
print(latent["samples"].shape, mask.shape)
mask = mask.repeat(latent["samples"].shape[0], 1, 1)
out_mask = torch.zeros((1,mask.shape[1],mask.shape[2]), dtype=torch.float32, device="cpu")
return (model_reference, {"samples": out_latent, "noise_mask": torch.cat((out_mask, mask))})
NODE_CLASS_MAPPINGS = {
"ReferenceOnlySimple": ReferenceOnlySimple,
}