metadata
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: newsdiscourse-model
results: []
newsdiscourse-model
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6987
- F1: 0.5504
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 0.14 | 100 | 1.3361 | 0.3723 |
No log | 0.28 | 200 | 1.1836 | 0.4345 |
No log | 0.43 | 300 | 1.1636 | 0.3997 |
No log | 0.57 | 400 | 1.3535 | 0.5028 |
1.2064 | 0.71 | 500 | 1.2941 | 0.4707 |
1.2064 | 0.85 | 600 | 1.2891 | 0.4937 |
1.2064 | 1.0 | 700 | 1.2047 | 0.4774 |
1.2064 | 1.14 | 800 | 1.2191 | 0.4944 |
1.2064 | 1.28 | 900 | 1.1750 | 0.4778 |
0.9207 | 1.42 | 1000 | 1.3087 | 0.4909 |
0.9207 | 1.57 | 1100 | 1.2436 | 0.4976 |
0.9207 | 1.71 | 1200 | 1.1465 | 0.5033 |
0.9207 | 1.85 | 1300 | 1.1134 | 0.5142 |
0.9207 | 1.99 | 1400 | 1.1940 | 0.5383 |
0.8149 | 2.14 | 1500 | 1.2552 | 0.5291 |
0.8149 | 2.28 | 1600 | 1.3747 | 0.5260 |
0.8149 | 2.42 | 1700 | 1.3680 | 0.5329 |
0.8149 | 2.56 | 1800 | 1.2787 | 0.5190 |
0.8149 | 2.71 | 1900 | 1.3889 | 0.5409 |
0.6152 | 2.85 | 2000 | 1.3602 | 0.5435 |
0.6152 | 2.99 | 2100 | 1.3175 | 0.5468 |
0.6152 | 3.13 | 2200 | 1.5887 | 0.5365 |
0.6152 | 3.28 | 2300 | 1.5172 | 0.5563 |
0.6152 | 3.42 | 2400 | 1.5470 | 0.5661 |
0.4719 | 3.56 | 2500 | 1.4928 | 0.5212 |
0.4719 | 3.7 | 2600 | 1.6498 | 0.5356 |
0.4719 | 3.85 | 2700 | 1.4977 | 0.5597 |
0.4719 | 3.99 | 2800 | 1.4720 | 0.5470 |
0.4719 | 4.13 | 2900 | 1.5797 | 0.5493 |
0.372 | 4.27 | 3000 | 1.6874 | 0.5445 |
0.372 | 4.42 | 3100 | 1.6702 | 0.5545 |
0.372 | 4.56 | 3200 | 1.7672 | 0.5469 |
0.372 | 4.7 | 3300 | 1.7351 | 0.5485 |
0.372 | 4.84 | 3400 | 1.7283 | 0.5498 |
0.2944 | 4.99 | 3500 | 1.6987 | 0.5504 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3