wrapbow.ai / README.md
ashishkummar's picture
Update README.md
8cdb8a5 verified
---
license: mit
language:
- en
base_model:
- mistralai/Mistral-7B-Instruct-v0.2
pipeline_tag: text-generation
library_name: transformers
---
# 🎨 wrapbow.ai β€” Creative Copy & Ideation LLM
**Powered by Mistral 7B | Tuned by Ashish Kumar**
`wrapbow.ai` is a domain-adapted LLM built on **Mistral-7B-Instruct-v0.2**, finely tuned to generate high-quality marketing, educational, and digital experience content. Designed for creators, marketers, startups, and educators β€” this model brings your prompts to life with flair and contextual intelligence.
---
## ✨ Primary Use Cases
- πŸͺ„ **Creative Ad Banner & Copy Generation**
Generate punchy headlines, CTAs, and ad taglines for static, HTML5, or video banners.
- πŸ“’ **Promotional Messaging**
Ideal for personalized offers, flash sale announcements, and event-based campaigns.
- πŸ“š **Quiz Question Generation** *(for platforms like [pinkslip.in](https://pinkslip.in))*
Automatically generate skill-based, gamified quiz questions for job-seekers and upskilling portals.
- 🧠 **Prompt-Driven Content Ideation**
Use it to brainstorm campaign themes, landing page hooks, or social content angles.
- πŸ–‹οΈ **Brand Messaging & Positioning Lines**
Write startup one-liners, value propositions, and feature-focused marketing blurbs.
- 🧩 **Use in EdTech, HRTech, and FinTech Landing Pages**
Helps founders auto-generate customized landing copy for high conversion across sectors.
---
## βœ… Base Model
- [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
---
## πŸ’‘ Example Usage (Python)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("ashishkummar/wrapbow.ai", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ashishkummar/wrapbow.ai", trust_remote_code=True)
prompt = "Generate a banner line for 50% discount on women's fashion"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
---
## πŸ”“ License
MIT β€” free to use, remix, and build upon.