|
--- |
|
license: gpl-3.0 |
|
datasets: |
|
- karpathy/tiny_shakespeare |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
## Usage |
|
|
|
```seq_length = 32 |
|
batch_size = 16 |
|
embed_dim = 256 |
|
num_heads = 4 |
|
ff_dim = 512 |
|
num_layers = 2 |
|
noise_prob = 0.3 |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model, max_len=5000): |
|
super().__init__() |
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer('pe', pe.unsqueeze(0)) |
|
|
|
def forward(self, x): |
|
return x + self.pe[:, :x.size(1)] |
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, embed_dim, num_heads, ff_dim): |
|
super().__init__() |
|
self.attention = nn.MultiheadAttention(embed_dim, num_heads) |
|
self.norm1 = nn.LayerNorm(embed_dim) |
|
self.ff = nn.Sequential( |
|
nn.Linear(embed_dim, ff_dim), |
|
nn.ReLU(), |
|
nn.Linear(ff_dim, embed_dim) |
|
) |
|
self.norm2 = nn.LayerNorm(embed_dim) |
|
|
|
def forward(self, x): |
|
attn_output, _ = self.attention(x, x, x) |
|
x = self.norm1(x + attn_output) |
|
ff_output = self.ff(x) |
|
return self.norm2(x + ff_output) |
|
|
|
class DenoisingTransformer(nn.Module): |
|
def __init__(self, vocab_size, embed_dim, num_heads, ff_dim, num_layers): |
|
super().__init__() |
|
self.embedding = nn.Embedding(vocab_size, embed_dim) |
|
self.positional_encoding = PositionalEncoding(embed_dim) |
|
self.transformer_blocks = nn.ModuleList([ |
|
TransformerBlock(embed_dim, num_heads, ff_dim) for _ in range(num_layers) |
|
]) |
|
self.fc = nn.Linear(embed_dim, vocab_size) |
|
|
|
def forward(self, x): |
|
x = self.embedding(x) |
|
x = self.positional_encoding(x) |
|
for block in self.transformer_blocks: |
|
x = block(x) |
|
return self.fc(x) |
|
|
|
def load_model(path, device='cpu'): |
|
checkpoint = torch.load(path, map_location=device) |
|
hp = checkpoint['hyperparameters'] |
|
|
|
model = DenoisingTransformer( |
|
hp['vocab_size'], |
|
hp['embed_dim'], |
|
hp['num_heads'], |
|
hp['ff_dim'], |
|
hp['num_layers'] |
|
).to(device) |
|
|
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
return model, checkpoint['word2idx'], checkpoint['idx2word'] |
|
|
|
loaded_model, word2idx, idx2word = load_model('denoising_transformer.pth', device=device) |
|
|
|
print("Model loaded successfully!") |
|
print(f"Model device: {next(loaded_model.parameters()).device}")``` |