Token Classification
Transformers
Safetensors
English
bert
ner
named-entity-recognition
text-classification
sequence-labeling
transformer
nlp
pretrained-model
dataset-finetuning
deep-learning
huggingface
conll2025
real-time-inference
efficient-nlp
high-accuracy
gpu-optimized
chatbot
information-extraction
search-enhancement
knowledge-graph
legal-nlp
medical-nlp
financial-nlp
File size: 24,382 Bytes
a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 66a984f a1b3fd2 ceaa928 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 ceaa928 a1b3fd2 5738331 a1b3fd2 5738331 7d47c04 5738331 7d47c04 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 5738331 a1b3fd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
---
license: apache-2.0
datasets:
- boltuix/conll2025-ner
language:
- en
metrics:
- precision
- recall
- f1
- accuracy
pipeline_tag: token-classification
library_name: transformers
new_version: v1.1
tags:
- token-classification
- ner
- named-entity-recognition
- text-classification
- sequence-labeling
- transformer
- bert
- nlp
- pretrained-model
- dataset-finetuning
- deep-learning
- huggingface
- conll2025
- real-time-inference
- efficient-nlp
- high-accuracy
- gpu-optimized
- chatbot
- information-extraction
- search-enhancement
- knowledge-graph
- legal-nlp
- medical-nlp
- financial-nlp
base_model:
- boltuix/bert-mini
---
.jpg)
# π EntityBERT Model π
## π Model Details
### π Description
The `boltuix/EntityBERT` model is a lightweight, fine-tuned transformer for **Named Entity Recognition (NER)**, built on the `boltuix/bert-mini` base model. Optimized for efficiency, it identifies 36 entity types (e.g., people, organizations, locations, dates) in English text, making it perfect for applications like information extraction, chatbots, and search enhancement.
- **Dataset**: [boltuix/conll2025-ner](https://huggingface.co/datasets/boltuix/conll2025-ner) (143,709 entries, 6.38 MB)
- **Entity Types**: 36 NER tags (18 entity categories with B-/I- tags + O)
- **Training Examples**: ~115,812 | **Validation**: ~15,680 | **Test**: ~12,217
- **Domains**: News, user-generated content, research corpora
- **Tasks**: Sentence-level and document-level NER
- **Version**: v1.0
### π§ Info
- **Developer**: Boltuix
- **License**: Apache-2.0
- **Language**: English
- **Type**: Transformer-based Token Classification
- **Trained**: Before June 11, 2025
- **Base Model**: `boltuix/bert-mini`
- **Parameters**: ~4.4M
- **Size**: ~15 MB
### π Links
- **Model Repository**: [boltuix/EntityBERT](https://huggingface.co/boltuix/EntityBERT) (placeholder, update with correct URL)
- **Dataset**: [boltuix/conll2025-ner](#download-instructions) (placeholder, update with correct URL)
- **Hugging Face Docs**: [Transformers](https://huggingface.co/docs/transformers)
- **Demo**: Coming Soon
---
## π― Use Cases for NER
### π Direct Applications
- **Information Extraction**: Identify names (π€ PERSON), locations (π GPE), and dates (ποΈ DATE) from articles, blogs, or reports.
- **Chatbots & Virtual Assistants**: Improve user query understanding by recognizing entities.
- **Search Enhancement**: Enable entity-based semantic search (e.g., βnews about Paris in 2025β).
- **Knowledge Graphs**: Construct structured graphs connecting entities like π’ ORG and π€ PERSON.
### π± Downstream Tasks
- **Domain Adaptation**: Fine-tune for specialized fields like medical π©Ί, legal π, or financial πΈ NER.
- **Multilingual Extensions**: Retrain for non-English languages.
- **Custom Entities**: Adapt for niche domains (e.g., product IDs, stock tickers).
### β Limitations
- **English-Only**: Limited to English text out-of-the-box.
- **Domain Bias**: Trained on `boltuix/conll2025-ner`, which may favor news and formal text, potentially weaker on informal or social media content.
- **Generalization**: May struggle with rare or highly contextual entities not in the dataset.
---
.jpg)
## π οΈ Getting Started
### π§ͺ Inference Code
Run NER with the following Python code:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("boltuix/EntityBERT")
model = AutoModelForTokenClassification.from_pretrained("boltuix/EntityBERT")
# Input text
text = "Elon Musk launched Tesla in California on March 2025."
inputs = tokenizer(text, return_tensors="pt")
# Run inference
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits.argmax(dim=-1)
# Map predictions to labels
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
label_map = model.config.id2label
labels = [label_map[p.item()] for p in predictions[0]]
# Print results
for token, label in zip(tokens, labels):
if token not in tokenizer.all_special_tokens:
print(f"{token:15} β {label}")
```
### β¨ Example Output
```
Elon β B-PERSON
Musk β I-PERSON
launched β O
Tesla β B-ORG
in β O
California β B-GPE
on β O
March β B-DATE
2025 β I-DATE
. β O
```
### π οΈ Requirements
```bash
pip install transformers torch pandas pyarrow
```
- **Python**: 3.8+
- **Storage**: ~15 MB for model weights
- **Optional**: `seqeval` for evaluation, `cuda` for GPU acceleration
---
## π§ Entity Labels
The model supports 36 NER tags from the `boltuix/conll2025-ner` dataset, using the **BIO tagging scheme**:
- **B-**: Beginning of an entity
- **I-**: Inside of an entity
- **O**: Outside of any entity
| Tag Name | Purpose | Emoji |
|------------------|--------------------------------------------------------------------------|--------|
| O | Outside of any named entity (e.g., "the", "is") | π« |
| B-CARDINAL | Beginning of a cardinal number (e.g., "1000") | π’ |
| B-DATE | Beginning of a date (e.g., "January") | ποΈ |
| B-EVENT | Beginning of an event (e.g., "Olympics") | π |
| B-FAC | Beginning of a facility (e.g., "Eiffel Tower") | ποΈ |
| B-GPE | Beginning of a geopolitical entity (e.g., "Tokyo") | π |
| B-LANGUAGE | Beginning of a language (e.g., "Spanish") | π£οΈ |
| B-LAW | Beginning of a law or legal document (e.g., "Constitution") | π |
| B-LOC | Beginning of a non-GPE location (e.g., "Pacific Ocean") | πΊοΈ |
| B-MONEY | Beginning of a monetary value (e.g., "$100") | πΈ |
| B-NORP | Beginning of a nationality/religious/political group (e.g., "Democrat") | π³οΈ |
| B-ORDINAL | Beginning of an ordinal number (e.g., "first") | π₯ |
| B-ORG | Beginning of an organization (e.g., "Microsoft") | π’ |
| B-PERCENT | Beginning of a percentage (e.g., "50%") | π |
| B-PERSON | Beginning of a personβs name (e.g., "Elon Musk") | π€ |
| B-PRODUCT | Beginning of a product (e.g., "iPhone") | π± |
| B-QUANTITY | Beginning of a quantity (e.g., "two liters") | βοΈ |
| B-TIME | Beginning of a time (e.g., "noon") | β° |
| B-WORK_OF_ART | Beginning of a work of art (e.g., "Mona Lisa") | π¨ |
| I-CARDINAL | Inside of a cardinal number | π’ |
| I-DATE | Inside of a date (e.g., "2025" in "January 2025") | ποΈ |
| I-EVENT | Inside of an event name | π |
| I-FAC | Inside of a facility name | ποΈ |
| I-GPE | Inside of a geopolitical entity | π |
| I-LANGUAGE | Inside of a language name | π£οΈ |
| I-LAW | Inside of a legal document title | π |
| I-LOC | Inside of a location | πΊοΈ |
| I-MONEY | Inside of a monetary value | πΈ |
| I-NORP | Inside of a NORP entity | π³οΈ |
| I-ORDINAL | Inside of an ordinal number | π₯ |
| I-ORG | Inside of an organization name | π’ |
| I-PERCENT | Inside of a percentage | π |
| I-PERSON | Inside of a personβs name | π€ |
| I-PRODUCT | Inside of a product name | π± |
| I-QUANTITY | Inside of a quantity | βοΈ |
| I-TIME | Inside of a time phrase | β° |
| I-WORK_OF_ART | Inside of a work of art title | π¨ |
**Example**:
Text: `"Tesla opened in Shanghai on April 2025"`
Tags: `[B-ORG, O, O, B-GPE, O, B-DATE, I-DATE]`
---
## π Performance
Evaluated on the `boltuix/conll2025-ner` test split (~12,217 examples) using `seqeval`:
| Metric | Score |
|------------|-------|
| π― Precision | 0.84 |
| πΈοΈ Recall | 0.86 |
| πΆ F1 Score | 0.85 |
| β
Accuracy | 0.91 |
*Note*: Performance may vary on different domains or text types.
---
## βοΈ Training Setup
- **Hardware**: NVIDIA GPU
- **Training Time**: ~1.5 hours
- **Parameters**: ~4.4M
- **Optimizer**: AdamW
- **Precision**: FP32
- **Batch Size**: 16
- **Learning Rate**: 2e-5
---
## π§ Training the Model
Fine-tune `boltuix/bert-mini` on the `boltuix/conll2025-ner` dataset to replicate or extend `EntityBERT`. Below is a simplified training script:
```python
# π οΈ Step 1: Install required libraries quietly
!pip install evaluate transformers datasets tokenizers seqeval pandas pyarrow -q
# π« Step 2: Disable Weights & Biases (WandB)
import os
os.environ["WANDB_MODE"] = "disabled"
# π Step 2: Import necessary libraries
import pandas as pd
import datasets
import numpy as np
from transformers import BertTokenizerFast
from transformers import DataCollatorForTokenClassification
from transformers import AutoModelForTokenClassification
from transformers import TrainingArguments, Trainer
import evaluate
from transformers import pipeline
from collections import defaultdict
import json
# π₯ Step 3: Load the CoNLL-2025 NER dataset from Parquet
# Download : https://huggingface.co/datasets/boltuix/conll2025-ner/blob/main/conll2025_ner.parquet
parquet_file = "conll2025_ner.parquet"
df = pd.read_parquet(parquet_file)
# π Step 4: Convert pandas DataFrame to Hugging Face Dataset
conll2025 = datasets.Dataset.from_pandas(df)
# π Step 5: Inspect the dataset structure
print("Dataset structure:", conll2025)
print("Dataset features:", conll2025.features)
print("First example:", conll2025[0])
# π·οΈ Step 6: Extract unique tags and create mappings
# Since ner_tags are strings, collect all unique tags
all_tags = set()
for example in conll2025:
all_tags.update(example["ner_tags"])
unique_tags = sorted(list(all_tags)) # Sort for consistency
num_tags = len(unique_tags)
tag2id = {tag: i for i, tag in enumerate(unique_tags)}
id2tag = {i: tag for i, tag in enumerate(unique_tags)}
print("Number of unique tags:", num_tags)
print("Unique tags:", unique_tags)
# π§ Step 7: Convert string ner_tags to indices
def convert_tags_to_ids(example):
example["ner_tags"] = [tag2id[tag] for tag in example["ner_tags"]]
return example
conll2025 = conll2025.map(convert_tags_to_ids)
# π Step 8: Split dataset based on 'split' column
dataset_dict = {
"train": conll2025.filter(lambda x: x["split"] == "train"),
"validation": conll2025.filter(lambda x: x["split"] == "validation"),
"test": conll2025.filter(lambda x: x["split"] == "test")
}
conll2025 = datasets.DatasetDict(dataset_dict)
print("Split dataset structure:", conll2025)
# πͺ Step 9: Initialize the tokenizer
tokenizer = BertTokenizerFast.from_pretrained("boltuix/bert-mini")
# π Step 10: Tokenize an example text and inspect
example_text = conll2025["train"][0]
tokenized_input = tokenizer(example_text["tokens"], is_split_into_words=True)
tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"])
word_ids = tokenized_input.word_ids()
print("Word IDs:", word_ids)
print("Tokenized input:", tokenized_input)
print("Length of ner_tags vs input IDs:", len(example_text["ner_tags"]), len(tokenized_input["input_ids"]))
# π Step 11: Define function to tokenize and align labels
def tokenize_and_align_labels(examples, label_all_tokens=True):
"""
Tokenize inputs and align labels for NER tasks.
Args:
examples (dict): Dictionary with tokens and ner_tags.
label_all_tokens (bool): Whether to label all subword tokens.
Returns:
dict: Tokenized inputs with aligned labels.
"""
tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)
labels = []
for i, label in enumerate(examples["ner_tags"]):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
if word_idx is None:
label_ids.append(-100) # Special tokens get -100
elif word_idx != previous_word_idx:
label_ids.append(label[word_idx]) # First token of word gets label
else:
label_ids.append(label[word_idx] if label_all_tokens else -100) # Subwords get label or -100
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
# π§ͺ Step 12: Test the tokenization and label alignment
q = tokenize_and_align_labels(conll2025["train"][0:1])
print("Tokenized and aligned example:", q)
# π Step 13: Print tokens and their corresponding labels
for token, label in zip(tokenizer.convert_ids_to_tokens(q["input_ids"][0]), q["labels"][0]):
print(f"{token:_<40} {label}")
# π§ Step 14: Apply tokenization to the entire dataset
tokenized_datasets = conll2025.map(tokenize_and_align_labels, batched=True)
# π€ Step 15: Initialize the model with the correct number of labels
model = AutoModelForTokenClassification.from_pretrained("boltuix/bert-mini", num_labels=num_tags)
# βοΈ Step 16: Set up training arguments
args = TrainingArguments(
"boltuix/bert-ner",
eval_strategy="epoch", # Changed evaluation_strategy to eval_strategy
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=1,
weight_decay=0.01,
report_to="none"
)
# π Step 17: Initialize data collator for dynamic padding
data_collator = DataCollatorForTokenClassification(tokenizer)
# π Step 18: Load evaluation metric
metric = evaluate.load("seqeval")
# π·οΈ Step 19: Set label list and test metric computation
label_list = unique_tags
print("Label list:", label_list)
example = conll2025["train"][0]
labels = [label_list[i] for i in example["ner_tags"]]
print("Metric test:", metric.compute(predictions=[labels], references=[labels]))
# π Step 20: Define function to compute evaluation metrics
def compute_metrics(eval_preds):
"""
Compute precision, recall, F1, and accuracy for NER.
Args:
eval_preds (tuple): Predicted logits and true labels.
Returns:
dict: Evaluation metrics.
"""
pred_logits, labels = eval_preds
pred_logits = np.argmax(pred_logits, axis=2)
predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(pred_logits, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(pred_logits, labels)
]
results = metric.compute(predictions=predictions, references=true_labels)
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
# π Step 21: Initialize and train the trainer
trainer = Trainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
# πΎ Step 22: Save the fine-tuned model
model.save_pretrained("boltuix/bert-ner")
tokenizer.save_pretrained("tokenizer")
# π Step 23: Update model configuration with label mappings
id2label = {str(i): label for i, label in enumerate(label_list)}
label2id = {label: str(i) for i, label in enumerate(label_list)}
config = json.load(open("boltuix/bert-ner/config.json"))
config["id2label"] = id2label
config["label2id"] = label2id
json.dump(config, open("boltuix/bert-ner/config.json", "w"))
# π Step 24: Load the fine-tuned model
model_fine_tuned = AutoModelForTokenClassification.from_pretrained("boltuix/bert-ner")
# π οΈ Step 25: Create a pipeline for NER inference
nlp = pipeline("token-classification", model=model_fine_tuned, tokenizer=tokenizer)
# π Step 26: Perform NER on an example sentence
example = "On July 4th, 2023, President Joe Biden visited the United Nations headquarters in New York to deliver a speech about international law and donated $5 million to relief efforts."
ner_results = nlp(example)
print("NER results for first example:", ner_results)
# π Step 27: Perform NER on a property address and format output
example = "This page contains information about the property located at 1275 Kinnear Rd, Columbus, OH, 43212."
ner_results = nlp(example)
# π§Ή Step 28: Process NER results into structured entities
entities = defaultdict(list)
current_entity = ""
current_type = ""
for item in ner_results:
entity = item["entity"]
word = item["word"]
if word.startswith("##"):
current_entity += word[2:] # Handle subword tokens
elif entity.startswith("B-"):
if current_entity and current_type:
entities[current_type].append(current_entity.strip())
current_type = entity[2:].lower()
current_entity = word
elif entity.startswith("I-") and entity[2:].lower() == current_type:
current_entity += " " + word # Continue same entity
else:
if current_entity and current_type:
entities[current_type].append(current_entity.strip())
current_entity = ""
current_type = ""
# Append final entity if exists
if current_entity and current_type:
entities[current_type].append(current_entity.strip())
# π€ Step 29: Output the final JSON
final_json = dict(entities)
print("Structured NER output:")
print(json.dumps(final_json, indent=2))
```
### π οΈ Tips
- **Hyperparameters**: Experiment with `learning_rate` (1e-5 to 5e-5) or `num_train_epochs` (2-5).
- **GPU**: Use `fp16=True` for faster training.
- **Custom Data**: Modify the script for custom NER datasets.
### β±οΈ Expected Training Time
- ~1.5 hours on an NVIDIA GPU (e.g., T4) for ~115,812 examples, 3 epochs, batch size 16.
### π Carbon Impact
- Emissions: ~40g COβeq (estimated via ML Impact tool for 1.5 hours on GPU).
---
## π οΈ Installation
```bash
pip install transformers torch pandas pyarrow seqeval
```
- **Python**: 3.8+
- **Storage**: ~15 MB for model, ~6.38 MB for dataset
- **Optional**: NVIDIA CUDA for GPU acceleration
### Download Instructions π₯
- **Model**: [boltuix/EntityBERT](https://huggingface.co/boltuix/EntityBERT) (placeholder, update with correct URL).
- **Dataset**: [boltuix/conll2025-ner](https://huggingface.co/datasets/boltuix/conll2025-ner) (placeholder, update with correct URL).
---
## π§ͺ Evaluation Code
Evaluate on custom data:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from seqeval.metrics import classification_report
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("boltuix/EntityBERT")
model = AutoModelForTokenClassification.from_pretrained("boltuix/EntityBERT")
# Test data
texts = ["Elon Musk launched Tesla in California on March 2025."]
true_labels = [["B-PERSON", "I-PERSON", "O", "B-ORG", "O", "B-GPE", "O", "B-DATE", "I-DATE", "O"]]
pred_labels = []
for text in texts:
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits.argmax(dim=-1)[0].cpu().numpy()
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
word_ids = inputs.word_ids(batch_index=0)
word_preds = []
previous_word_idx = None
for idx, word_idx in enumerate(word_ids):
if word_idx is None or word_idx == previous_word_idx:
continue
label = model.config.id2label[predictions[idx]]
word_preds.append(label)
previous_word_idx = word_idx
pred_labels.append(word_preds)
# Evaluate
print("Predicted:", pred_labels)
print("True :", true_labels)
print("\nπ Evaluation Report:\n")
print(classification_report(true_labels, pred_labels))
```
---
## π± Dataset Details
- **Entries**: 143,709
- **Size**: 6.38 MB (Parquet)
- **Columns**: `split`, `tokens`, `ner_tags`
- **Splits**: Train (~115,812), Validation (~15,680), Test (~12,217)
- **NER Tags**: 36 (18 entity types with B-/I- + O)
- **Source**: News, user-generated content, research corpora
---
## π Visualizing NER Tags
Compute tag distribution with:
```python
import pandas as pd
from collections import Counter
import matplotlib.pyplot as plt
# Load dataset
df = pd.read_parquet("conll2025_ner.parquet")
all_tags = [tag for tags in df["ner_tags"] for tag in tags]
tag_counts = Counter(all_tags)
# Plot
plt.figure(figsize=(12, 7))
plt.bar(tag_counts.keys(), tag_counts.values(), color="#36A2EB")
plt.title("CoNLL 2025 NER: Tag Distribution", fontsize=16)
plt.xlabel("NER Tag", fontsize=12)
plt.ylabel("Count", fontsize=12)
plt.xticks(rotation=45, ha="right", fontsize=10)
plt.grid(axis="y", linestyle="--", alpha=0.7)
plt.tight_layout()
plt.savefig("ner_tag_distribution.png")
plt.show()
```
---
## βοΈ Comparison to Other Models
| Model | Dataset | Parameters | F1 Score | Size |
|----------------------|--------------------|------------|----------|--------|
| **EntityBERT** | conll2025-ner | ~4.4M | 0.85 | ~15 MB |
| NeuroBERT-NER | conll2025-ner | ~11M | 0.86 | ~50 MB |
| BERT-base-NER | CoNLL-2003 | ~110M | ~0.89 | ~400 MB|
| DistilBERT-NER | CoNLL-2003 | ~66M | ~0.85 | ~200 MB|
**Advantages**:
- Ultra-lightweight (~4.4M parameters, ~15 MB)
- Competitive F1 score (0.85)
- Ideal for resource-constrained environments
---
## π Community and Support
- π Model page: [boltuix/EntityBERT](https://huggingface.co/boltuix/EntityBERT) (placeholder)
- π οΈ Issues/Contributions: Model repository (URL TBD)
- π¬ Hugging Face forums: [https://huggingface.co/discussions](https://huggingface.co/discussions)
- π Docs: [Hugging Face Transformers](https://huggingface.co/docs/transformers)
- π§ Contact: [[email protected]](mailto:[email protected])
---
## βοΈ Contact
- **Author**: Boltuix
- **Email**: [[email protected]](mailto:[email protected])
- **Hugging Face**: [boltuix](https://huggingface.co/boltuix)
---
## π
Last Updated
**June 11, 2025** β Released v1.0 with fine-tuning on `boltuix/conll2025-ner`.
**[Get Started Now](#getting-started)** π |