|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:172826 |
|
- loss:CosineSimilarityLoss |
|
base_model: sentence-transformers/LaBSE |
|
widget: |
|
- source_sentence: How do you make Yahoo your homepage? |
|
sentences: |
|
- چگونه ویکی پدیا بدون تبلیغ در وب سایت خود درآمد کسب می کند؟ |
|
- چگونه می توانم برای امتحان INS 21 آماده شوم؟ |
|
- How can I make Yahoo my homepage on my browser? |
|
- source_sentence: کدام VPN رایگان در چین کار می کند؟ |
|
sentences: |
|
- VPN های رایگان که در چین کار می کنند چیست؟ |
|
- How can I stop masturbations? |
|
- آیا مدرسه خلاقیت را می کشد؟ |
|
- source_sentence: چند روش خوب برای کاهش وزن چیست؟ |
|
sentences: |
|
- چگونه می توانم یک کتاب خوب بنویسم؟ |
|
- من اضافه وزن دارمچگونه می توانم وزن کم کنم؟ |
|
- آیا می توانید ببینید چه کسی داستانهای اینستاگرام شما را مشاهده می کند؟ |
|
- source_sentence: چگونه می توان یک Dell Inspiron 1525 را به تنظیمات کارخانه بازگرداند؟ |
|
sentences: |
|
- چگونه می توان یک Dell Inspiron B130 را به تنظیمات کارخانه بازگرداند؟ |
|
- مبدل چیست؟ |
|
- چگونه زندگی شما بعد از تشخیص HIV مثبت تغییر کرد؟ |
|
- source_sentence: داشتن هزاران دنبال کننده در Quora چگونه است؟ |
|
sentences: |
|
- چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟ |
|
- چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟ |
|
- اگر هند واردات همه محصولات چینی را ممنوع کند ، چه می شود؟ |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/LaBSE |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 836121a0533e5664b21c7aacc5d22951f2b8b25b --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
(3): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("codersan/validadted_faLabse_withCosSimb") |
|
# Run inference |
|
sentences = [ |
|
'داشتن هزاران دنبال کننده در Quora چگونه است؟', |
|
'چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟', |
|
'چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 172,826 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 15.2 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.47 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 0.76</li><li>mean: 0.95</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-------------------------------------------------------------------|:---------------------------------------------------------------|:--------------------------------| |
|
| <code>تفاوت بین تحلیلگر تحقیقات بازار و تحلیلگر تجارت چیست؟</code> | <code>تفاوت بین تحقیقات بازاریابی و تحلیلگر تجارت چیست؟</code> | <code>0.982593297958374</code> | |
|
| <code>خوردن چه چیزی باعث دل درد میشود؟</code> | <code>چه چیزی باعث رفع دل درد میشود؟</code> | <code>0.9582258462905884</code> | |
|
| <code>بهترین نرم افزار ویرایش ویدیویی کدام است؟</code> | <code>بهترین نرم افزار برای ویرایش ویدیو چیست؟</code> | <code>0.9890836477279663</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 12 |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.01 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
- `push_to_hub`: True |
|
- `hub_model_id`: codersan/validadted_faLabse_withCosSimb |
|
- `eval_on_start`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 12 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.01 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: True |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: codersan/validadted_faLabse_withCosSimb |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: True |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | |
|
|:------:|:-----:|:-------------:| |
|
| 0 | 0 | - | |
|
| 0.0069 | 100 | 0.0313 | |
|
| 0.0139 | 200 | 0.0264 | |
|
| 0.0208 | 300 | 0.0163 | |
|
| 0.0278 | 400 | 0.0092 | |
|
| 0.0347 | 500 | 0.0044 | |
|
| 0.0417 | 600 | 0.0018 | |
|
| 0.0486 | 700 | 0.0011 | |
|
| 0.0555 | 800 | 0.0007 | |
|
| 0.0625 | 900 | 0.0006 | |
|
| 0.0694 | 1000 | 0.0006 | |
|
| 0.0764 | 1100 | 0.0006 | |
|
| 0.0833 | 1200 | 0.0005 | |
|
| 0.0903 | 1300 | 0.0005 | |
|
| 0.0972 | 1400 | 0.0005 | |
|
| 0.1041 | 1500 | 0.0005 | |
|
| 0.1111 | 1600 | 0.0005 | |
|
| 0.1180 | 1700 | 0.0004 | |
|
| 0.1250 | 1800 | 0.0004 | |
|
| 0.1319 | 1900 | 0.0004 | |
|
| 0.1389 | 2000 | 0.0004 | |
|
| 0.1458 | 2100 | 0.0004 | |
|
| 0.1527 | 2200 | 0.0004 | |
|
| 0.1597 | 2300 | 0.0004 | |
|
| 0.1666 | 2400 | 0.0004 | |
|
| 0.1736 | 2500 | 0.0003 | |
|
| 0.1805 | 2600 | 0.0004 | |
|
| 0.1875 | 2700 | 0.0003 | |
|
| 0.1944 | 2800 | 0.0003 | |
|
| 0.2013 | 2900 | 0.0003 | |
|
| 0.2083 | 3000 | 0.0003 | |
|
| 0.2152 | 3100 | 0.0003 | |
|
| 0.2222 | 3200 | 0.0003 | |
|
| 0.2291 | 3300 | 0.0003 | |
|
| 0.2361 | 3400 | 0.0003 | |
|
| 0.2430 | 3500 | 0.0003 | |
|
| 0.2499 | 3600 | 0.0003 | |
|
| 0.2569 | 3700 | 0.0003 | |
|
| 0.2638 | 3800 | 0.0003 | |
|
| 0.2708 | 3900 | 0.0003 | |
|
| 0.2777 | 4000 | 0.0003 | |
|
| 0.2847 | 4100 | 0.0003 | |
|
| 0.2916 | 4200 | 0.0003 | |
|
| 0.2985 | 4300 | 0.0003 | |
|
| 0.3055 | 4400 | 0.0003 | |
|
| 0.3124 | 4500 | 0.0002 | |
|
| 0.3194 | 4600 | 0.0002 | |
|
| 0.3263 | 4700 | 0.0002 | |
|
| 0.3333 | 4800 | 0.0003 | |
|
| 0.3402 | 4900 | 0.0002 | |
|
| 0.3471 | 5000 | 0.0002 | |
|
| 0.3541 | 5100 | 0.0002 | |
|
| 0.3610 | 5200 | 0.0002 | |
|
| 0.3680 | 5300 | 0.0002 | |
|
| 0.3749 | 5400 | 0.0002 | |
|
| 0.3819 | 5500 | 0.0002 | |
|
| 0.3888 | 5600 | 0.0002 | |
|
| 0.3958 | 5700 | 0.0002 | |
|
| 0.4027 | 5800 | 0.0002 | |
|
| 0.4096 | 5900 | 0.0002 | |
|
| 0.4166 | 6000 | 0.0002 | |
|
| 0.4235 | 6100 | 0.0002 | |
|
| 0.4305 | 6200 | 0.0002 | |
|
| 0.4374 | 6300 | 0.0002 | |
|
| 0.4444 | 6400 | 0.0002 | |
|
| 0.4513 | 6500 | 0.0002 | |
|
| 0.4582 | 6600 | 0.0002 | |
|
| 0.4652 | 6700 | 0.0002 | |
|
| 0.4721 | 6800 | 0.0002 | |
|
| 0.4791 | 6900 | 0.0002 | |
|
| 0.4860 | 7000 | 0.0002 | |
|
| 0.4930 | 7100 | 0.0002 | |
|
| 0.4999 | 7200 | 0.0002 | |
|
| 0.5068 | 7300 | 0.0002 | |
|
| 0.5138 | 7400 | 0.0002 | |
|
| 0.5207 | 7500 | 0.0002 | |
|
| 0.5277 | 7600 | 0.0002 | |
|
| 0.5346 | 7700 | 0.0002 | |
|
| 0.5416 | 7800 | 0.0002 | |
|
| 0.5485 | 7900 | 0.0002 | |
|
| 0.5554 | 8000 | 0.0002 | |
|
| 0.5624 | 8100 | 0.0002 | |
|
| 0.5693 | 8200 | 0.0002 | |
|
| 0.5763 | 8300 | 0.0002 | |
|
| 0.5832 | 8400 | 0.0002 | |
|
| 0.5902 | 8500 | 0.0002 | |
|
| 0.5971 | 8600 | 0.0002 | |
|
| 0.6040 | 8700 | 0.0002 | |
|
| 0.6110 | 8800 | 0.0002 | |
|
| 0.6179 | 8900 | 0.0002 | |
|
| 0.6249 | 9000 | 0.0002 | |
|
| 0.6318 | 9100 | 0.0002 | |
|
| 0.6388 | 9200 | 0.0002 | |
|
| 0.6457 | 9300 | 0.0002 | |
|
| 0.6526 | 9400 | 0.0002 | |
|
| 0.6596 | 9500 | 0.0002 | |
|
| 0.6665 | 9600 | 0.0002 | |
|
| 0.6735 | 9700 | 0.0002 | |
|
| 0.6804 | 9800 | 0.0002 | |
|
| 0.6874 | 9900 | 0.0002 | |
|
| 0.6943 | 10000 | 0.0002 | |
|
| 0.7012 | 10100 | 0.0002 | |
|
| 0.7082 | 10200 | 0.0002 | |
|
| 0.7151 | 10300 | 0.0002 | |
|
| 0.7221 | 10400 | 0.0002 | |
|
| 0.7290 | 10500 | 0.0002 | |
|
| 0.7360 | 10600 | 0.0002 | |
|
| 0.7429 | 10700 | 0.0002 | |
|
| 0.7498 | 10800 | 0.0002 | |
|
| 0.7568 | 10900 | 0.0002 | |
|
| 0.7637 | 11000 | 0.0002 | |
|
| 0.7707 | 11100 | 0.0002 | |
|
| 0.7776 | 11200 | 0.0002 | |
|
| 0.7846 | 11300 | 0.0002 | |
|
| 0.7915 | 11400 | 0.0002 | |
|
| 0.7984 | 11500 | 0.0002 | |
|
| 0.8054 | 11600 | 0.0002 | |
|
| 0.8123 | 11700 | 0.0002 | |
|
| 0.8193 | 11800 | 0.0002 | |
|
| 0.8262 | 11900 | 0.0002 | |
|
| 0.8332 | 12000 | 0.0002 | |
|
| 0.8401 | 12100 | 0.0002 | |
|
| 0.8470 | 12200 | 0.0002 | |
|
| 0.8540 | 12300 | 0.0002 | |
|
| 0.8609 | 12400 | 0.0002 | |
|
| 0.8679 | 12500 | 0.0002 | |
|
| 0.8748 | 12600 | 0.0002 | |
|
| 0.8818 | 12700 | 0.0001 | |
|
| 0.8887 | 12800 | 0.0002 | |
|
| 0.8956 | 12900 | 0.0002 | |
|
| 0.9026 | 13000 | 0.0002 | |
|
| 0.9095 | 13100 | 0.0001 | |
|
| 0.9165 | 13200 | 0.0002 | |
|
| 0.9234 | 13300 | 0.0002 | |
|
| 0.9304 | 13400 | 0.0002 | |
|
| 0.9373 | 13500 | 0.0001 | |
|
| 0.9442 | 13600 | 0.0002 | |
|
| 0.9512 | 13700 | 0.0002 | |
|
| 0.9581 | 13800 | 0.0001 | |
|
| 0.9651 | 13900 | 0.0001 | |
|
| 0.9720 | 14000 | 0.0002 | |
|
| 0.9790 | 14100 | 0.0002 | |
|
| 0.9859 | 14200 | 0.0001 | |
|
| 0.9928 | 14300 | 0.0001 | |
|
| 0.9998 | 14400 | 0.0001 | |
|
| 1.0067 | 14500 | 0.0001 | |
|
| 1.0137 | 14600 | 0.0001 | |
|
| 1.0206 | 14700 | 0.0001 | |
|
| 1.0276 | 14800 | 0.0002 | |
|
| 1.0345 | 14900 | 0.0001 | |
|
| 1.0414 | 15000 | 0.0002 | |
|
| 1.0484 | 15100 | 0.0002 | |
|
| 1.0553 | 15200 | 0.0001 | |
|
| 1.0623 | 15300 | 0.0002 | |
|
| 1.0692 | 15400 | 0.0001 | |
|
| 1.0762 | 15500 | 0.0001 | |
|
| 1.0831 | 15600 | 0.0001 | |
|
| 1.0901 | 15700 | 0.0001 | |
|
| 1.0970 | 15800 | 0.0001 | |
|
| 1.1039 | 15900 | 0.0001 | |
|
| 1.1109 | 16000 | 0.0001 | |
|
| 1.1178 | 16100 | 0.0002 | |
|
| 1.1248 | 16200 | 0.0001 | |
|
| 1.1317 | 16300 | 0.0002 | |
|
| 1.1387 | 16400 | 0.0001 | |
|
| 1.1456 | 16500 | 0.0001 | |
|
| 1.1525 | 16600 | 0.0001 | |
|
| 1.1595 | 16700 | 0.0001 | |
|
| 1.1664 | 16800 | 0.0001 | |
|
| 1.1734 | 16900 | 0.0001 | |
|
| 1.1803 | 17000 | 0.0002 | |
|
| 1.1873 | 17100 | 0.0001 | |
|
| 1.1942 | 17200 | 0.0001 | |
|
| 1.2011 | 17300 | 0.0001 | |
|
| 1.2081 | 17400 | 0.0001 | |
|
| 1.2150 | 17500 | 0.0001 | |
|
| 1.2220 | 17600 | 0.0001 | |
|
| 1.2289 | 17700 | 0.0001 | |
|
| 1.2359 | 17800 | 0.0001 | |
|
| 1.2428 | 17900 | 0.0001 | |
|
| 1.2497 | 18000 | 0.0001 | |
|
| 1.2567 | 18100 | 0.0001 | |
|
| 1.2636 | 18200 | 0.0001 | |
|
| 1.2706 | 18300 | 0.0001 | |
|
| 1.2775 | 18400 | 0.0001 | |
|
| 1.2845 | 18500 | 0.0001 | |
|
| 1.2914 | 18600 | 0.0001 | |
|
| 1.2983 | 18700 | 0.0001 | |
|
| 1.3053 | 18800 | 0.0001 | |
|
| 1.3122 | 18900 | 0.0001 | |
|
| 1.3192 | 19000 | 0.0001 | |
|
| 1.3261 | 19100 | 0.0001 | |
|
| 1.3331 | 19200 | 0.0001 | |
|
| 1.3400 | 19300 | 0.0001 | |
|
| 1.3469 | 19400 | 0.0001 | |
|
| 1.3539 | 19500 | 0.0001 | |
|
| 1.3608 | 19600 | 0.0001 | |
|
| 1.3678 | 19700 | 0.0001 | |
|
| 1.3747 | 19800 | 0.0001 | |
|
| 1.3817 | 19900 | 0.0001 | |
|
| 1.3886 | 20000 | 0.0001 | |
|
| 1.3955 | 20100 | 0.0001 | |
|
| 1.4025 | 20200 | 0.0001 | |
|
| 1.4094 | 20300 | 0.0001 | |
|
| 1.4164 | 20400 | 0.0001 | |
|
| 1.4233 | 20500 | 0.0001 | |
|
| 1.4303 | 20600 | 0.0001 | |
|
| 1.4372 | 20700 | 0.0001 | |
|
| 1.4441 | 20800 | 0.0001 | |
|
| 1.4511 | 20900 | 0.0001 | |
|
| 1.4580 | 21000 | 0.0001 | |
|
| 1.4650 | 21100 | 0.0001 | |
|
| 1.4719 | 21200 | 0.0001 | |
|
| 1.4789 | 21300 | 0.0001 | |
|
| 1.4858 | 21400 | 0.0001 | |
|
| 1.4927 | 21500 | 0.0001 | |
|
| 1.4997 | 21600 | 0.0001 | |
|
| 1.5066 | 21700 | 0.0001 | |
|
| 1.5136 | 21800 | 0.0001 | |
|
| 1.5205 | 21900 | 0.0001 | |
|
| 1.5275 | 22000 | 0.0001 | |
|
| 1.5344 | 22100 | 0.0001 | |
|
| 1.5413 | 22200 | 0.0001 | |
|
| 1.5483 | 22300 | 0.0001 | |
|
| 1.5552 | 22400 | 0.0001 | |
|
| 1.5622 | 22500 | 0.0001 | |
|
| 1.5691 | 22600 | 0.0001 | |
|
| 1.5761 | 22700 | 0.0001 | |
|
| 1.5830 | 22800 | 0.0001 | |
|
| 1.5899 | 22900 | 0.0001 | |
|
| 1.5969 | 23000 | 0.0001 | |
|
| 1.6038 | 23100 | 0.0001 | |
|
| 1.6108 | 23200 | 0.0001 | |
|
| 1.6177 | 23300 | 0.0001 | |
|
| 1.6247 | 23400 | 0.0001 | |
|
| 1.6316 | 23500 | 0.0001 | |
|
| 1.6385 | 23600 | 0.0001 | |
|
| 1.6455 | 23700 | 0.0001 | |
|
| 1.6524 | 23800 | 0.0001 | |
|
| 1.6594 | 23900 | 0.0001 | |
|
| 1.6663 | 24000 | 0.0001 | |
|
| 1.6733 | 24100 | 0.0001 | |
|
| 1.6802 | 24200 | 0.0001 | |
|
| 1.6871 | 24300 | 0.0001 | |
|
| 1.6941 | 24400 | 0.0001 | |
|
| 1.7010 | 24500 | 0.0001 | |
|
| 1.7080 | 24600 | 0.0001 | |
|
| 1.7149 | 24700 | 0.0001 | |
|
| 1.7219 | 24800 | 0.0001 | |
|
| 1.7288 | 24900 | 0.0001 | |
|
| 1.7357 | 25000 | 0.0001 | |
|
| 1.7427 | 25100 | 0.0001 | |
|
| 1.7496 | 25200 | 0.0001 | |
|
| 1.7566 | 25300 | 0.0001 | |
|
| 1.7635 | 25400 | 0.0001 | |
|
| 1.7705 | 25500 | 0.0001 | |
|
| 1.7774 | 25600 | 0.0001 | |
|
| 1.7844 | 25700 | 0.0001 | |
|
| 1.7913 | 25800 | 0.0001 | |
|
| 1.7982 | 25900 | 0.0001 | |
|
| 1.8052 | 26000 | 0.0001 | |
|
| 1.8121 | 26100 | 0.0001 | |
|
| 1.8191 | 26200 | 0.0001 | |
|
| 1.8260 | 26300 | 0.0001 | |
|
| 1.8330 | 26400 | 0.0001 | |
|
| 1.8399 | 26500 | 0.0001 | |
|
| 1.8468 | 26600 | 0.0001 | |
|
| 1.8538 | 26700 | 0.0001 | |
|
| 1.8607 | 26800 | 0.0001 | |
|
| 1.8677 | 26900 | 0.0001 | |
|
| 1.8746 | 27000 | 0.0001 | |
|
| 1.8816 | 27100 | 0.0001 | |
|
| 1.8885 | 27200 | 0.0001 | |
|
| 1.8954 | 27300 | 0.0001 | |
|
| 1.9024 | 27400 | 0.0001 | |
|
| 1.9093 | 27500 | 0.0001 | |
|
| 1.9163 | 27600 | 0.0001 | |
|
| 1.9232 | 27700 | 0.0001 | |
|
| 1.9302 | 27800 | 0.0001 | |
|
| 1.9371 | 27900 | 0.0001 | |
|
| 1.9440 | 28000 | 0.0001 | |
|
| 1.9510 | 28100 | 0.0001 | |
|
| 1.9579 | 28200 | 0.0001 | |
|
| 1.9649 | 28300 | 0.0001 | |
|
| 1.9718 | 28400 | 0.0001 | |
|
| 1.9788 | 28500 | 0.0001 | |
|
| 1.9857 | 28600 | 0.0001 | |
|
| 1.9926 | 28700 | 0.0001 | |
|
| 1.9996 | 28800 | 0.0001 | |
|
| 2.0065 | 28900 | 0.0001 | |
|
| 2.0135 | 29000 | 0.0001 | |
|
| 2.0204 | 29100 | 0.0001 | |
|
| 2.0274 | 29200 | 0.0001 | |
|
| 2.0343 | 29300 | 0.0001 | |
|
| 2.0412 | 29400 | 0.0001 | |
|
| 2.0482 | 29500 | 0.0001 | |
|
| 2.0551 | 29600 | 0.0001 | |
|
| 2.0621 | 29700 | 0.0001 | |
|
| 2.0690 | 29800 | 0.0001 | |
|
| 2.0760 | 29900 | 0.0001 | |
|
| 2.0829 | 30000 | 0.0001 | |
|
| 2.0898 | 30100 | 0.0001 | |
|
| 2.0968 | 30200 | 0.0001 | |
|
| 2.1037 | 30300 | 0.0001 | |
|
| 2.1107 | 30400 | 0.0001 | |
|
| 2.1176 | 30500 | 0.0001 | |
|
| 2.1246 | 30600 | 0.0001 | |
|
| 2.1315 | 30700 | 0.0001 | |
|
| 2.1384 | 30800 | 0.0001 | |
|
| 2.1454 | 30900 | 0.0001 | |
|
| 2.1523 | 31000 | 0.0001 | |
|
| 2.1593 | 31100 | 0.0001 | |
|
| 2.1662 | 31200 | 0.0001 | |
|
| 2.1732 | 31300 | 0.0001 | |
|
| 2.1801 | 31400 | 0.0001 | |
|
| 2.1870 | 31500 | 0.0001 | |
|
| 2.1940 | 31600 | 0.0001 | |
|
| 2.2009 | 31700 | 0.0001 | |
|
| 2.2079 | 31800 | 0.0001 | |
|
| 2.2148 | 31900 | 0.0001 | |
|
| 2.2218 | 32000 | 0.0001 | |
|
| 2.2287 | 32100 | 0.0001 | |
|
| 2.2356 | 32200 | 0.0001 | |
|
| 2.2426 | 32300 | 0.0001 | |
|
| 2.2495 | 32400 | 0.0001 | |
|
| 2.2565 | 32500 | 0.0001 | |
|
| 2.2634 | 32600 | 0.0001 | |
|
| 2.2704 | 32700 | 0.0001 | |
|
| 2.2773 | 32800 | 0.0001 | |
|
| 2.2842 | 32900 | 0.0001 | |
|
| 2.2912 | 33000 | 0.0001 | |
|
| 2.2981 | 33100 | 0.0001 | |
|
| 2.3051 | 33200 | 0.0001 | |
|
| 2.3120 | 33300 | 0.0001 | |
|
| 2.3190 | 33400 | 0.0001 | |
|
| 2.3259 | 33500 | 0.0001 | |
|
| 2.3328 | 33600 | 0.0001 | |
|
| 2.3398 | 33700 | 0.0001 | |
|
| 2.3467 | 33800 | 0.0001 | |
|
| 2.3537 | 33900 | 0.0001 | |
|
| 2.3606 | 34000 | 0.0001 | |
|
| 2.3676 | 34100 | 0.0001 | |
|
| 2.3745 | 34200 | 0.0001 | |
|
| 2.3814 | 34300 | 0.0001 | |
|
| 2.3884 | 34400 | 0.0001 | |
|
| 2.3953 | 34500 | 0.0001 | |
|
| 2.4023 | 34600 | 0.0001 | |
|
| 2.4092 | 34700 | 0.0001 | |
|
| 2.4162 | 34800 | 0.0001 | |
|
| 2.4231 | 34900 | 0.0001 | |
|
| 2.4300 | 35000 | 0.0001 | |
|
| 2.4370 | 35100 | 0.0001 | |
|
| 2.4439 | 35200 | 0.0001 | |
|
| 2.4509 | 35300 | 0.0001 | |
|
| 2.4578 | 35400 | 0.0001 | |
|
| 2.4648 | 35500 | 0.0001 | |
|
| 2.4717 | 35600 | 0.0001 | |
|
| 2.4787 | 35700 | 0.0001 | |
|
| 2.4856 | 35800 | 0.0001 | |
|
| 2.4925 | 35900 | 0.0001 | |
|
| 2.4995 | 36000 | 0.0001 | |
|
| 2.5064 | 36100 | 0.0001 | |
|
| 2.5134 | 36200 | 0.0001 | |
|
| 2.5203 | 36300 | 0.0001 | |
|
| 2.5273 | 36400 | 0.0001 | |
|
| 2.5342 | 36500 | 0.0001 | |
|
| 2.5411 | 36600 | 0.0001 | |
|
| 2.5481 | 36700 | 0.0001 | |
|
| 2.5550 | 36800 | 0.0001 | |
|
| 2.5620 | 36900 | 0.0001 | |
|
| 2.5689 | 37000 | 0.0001 | |
|
| 2.5759 | 37100 | 0.0001 | |
|
| 2.5828 | 37200 | 0.0001 | |
|
| 2.5897 | 37300 | 0.0001 | |
|
| 2.5967 | 37400 | 0.0001 | |
|
| 2.6036 | 37500 | 0.0001 | |
|
| 2.6106 | 37600 | 0.0001 | |
|
| 2.6175 | 37700 | 0.0001 | |
|
| 2.6245 | 37800 | 0.0001 | |
|
| 2.6314 | 37900 | 0.0001 | |
|
| 2.6383 | 38000 | 0.0001 | |
|
| 2.6453 | 38100 | 0.0001 | |
|
| 2.6522 | 38200 | 0.0001 | |
|
| 2.6592 | 38300 | 0.0001 | |
|
| 2.6661 | 38400 | 0.0001 | |
|
| 2.6731 | 38500 | 0.0001 | |
|
| 2.6800 | 38600 | 0.0001 | |
|
| 2.6869 | 38700 | 0.0001 | |
|
| 2.6939 | 38800 | 0.0001 | |
|
| 2.7008 | 38900 | 0.0001 | |
|
| 2.7078 | 39000 | 0.0001 | |
|
| 2.7147 | 39100 | 0.0001 | |
|
| 2.7217 | 39200 | 0.0001 | |
|
| 2.7286 | 39300 | 0.0001 | |
|
| 2.7355 | 39400 | 0.0001 | |
|
| 2.7425 | 39500 | 0.0001 | |
|
| 2.7494 | 39600 | 0.0001 | |
|
| 2.7564 | 39700 | 0.0001 | |
|
| 2.7633 | 39800 | 0.0001 | |
|
| 2.7703 | 39900 | 0.0001 | |
|
| 2.7772 | 40000 | 0.0001 | |
|
| 2.7841 | 40100 | 0.0001 | |
|
| 2.7911 | 40200 | 0.0001 | |
|
| 2.7980 | 40300 | 0.0001 | |
|
| 2.8050 | 40400 | 0.0001 | |
|
| 2.8119 | 40500 | 0.0001 | |
|
| 2.8189 | 40600 | 0.0001 | |
|
| 2.8258 | 40700 | 0.0001 | |
|
| 2.8327 | 40800 | 0.0001 | |
|
| 2.8397 | 40900 | 0.0001 | |
|
| 2.8466 | 41000 | 0.0001 | |
|
| 2.8536 | 41100 | 0.0001 | |
|
| 2.8605 | 41200 | 0.0001 | |
|
| 2.8675 | 41300 | 0.0001 | |
|
| 2.8744 | 41400 | 0.0001 | |
|
| 2.8813 | 41500 | 0.0001 | |
|
| 2.8883 | 41600 | 0.0001 | |
|
| 2.8952 | 41700 | 0.0001 | |
|
| 2.9022 | 41800 | 0.0001 | |
|
| 2.9091 | 41900 | 0.0001 | |
|
| 2.9161 | 42000 | 0.0001 | |
|
| 2.9230 | 42100 | 0.0001 | |
|
| 2.9299 | 42200 | 0.0001 | |
|
| 2.9369 | 42300 | 0.0001 | |
|
| 2.9438 | 42400 | 0.0001 | |
|
| 2.9508 | 42500 | 0.0001 | |
|
| 2.9577 | 42600 | 0.0001 | |
|
| 2.9647 | 42700 | 0.0001 | |
|
| 2.9716 | 42800 | 0.0001 | |
|
| 2.9785 | 42900 | 0.0001 | |
|
| 2.9855 | 43000 | 0.0001 | |
|
| 2.9924 | 43100 | 0.0001 | |
|
| 2.9994 | 43200 | 0.0001 | |
|
| 3.0063 | 43300 | 0.0001 | |
|
| 3.0133 | 43400 | 0.0001 | |
|
| 3.0202 | 43500 | 0.0001 | |
|
| 3.0271 | 43600 | 0.0001 | |
|
| 3.0341 | 43700 | 0.0001 | |
|
| 3.0410 | 43800 | 0.0001 | |
|
| 3.0480 | 43900 | 0.0001 | |
|
| 3.0549 | 44000 | 0.0001 | |
|
| 3.0619 | 44100 | 0.0001 | |
|
| 3.0688 | 44200 | 0.0001 | |
|
| 3.0757 | 44300 | 0.0001 | |
|
| 3.0827 | 44400 | 0.0001 | |
|
| 3.0896 | 44500 | 0.0001 | |
|
| 3.0966 | 44600 | 0.0001 | |
|
| 3.1035 | 44700 | 0.0001 | |
|
| 3.1105 | 44800 | 0.0001 | |
|
| 3.1174 | 44900 | 0.0001 | |
|
| 3.1243 | 45000 | 0.0001 | |
|
| 3.1313 | 45100 | 0.0001 | |
|
| 3.1382 | 45200 | 0.0001 | |
|
| 3.1452 | 45300 | 0.0001 | |
|
| 3.1521 | 45400 | 0.0001 | |
|
| 3.1591 | 45500 | 0.0001 | |
|
| 3.1660 | 45600 | 0.0001 | |
|
| 3.1730 | 45700 | 0.0001 | |
|
| 3.1799 | 45800 | 0.0001 | |
|
| 3.1868 | 45900 | 0.0001 | |
|
| 3.1938 | 46000 | 0.0001 | |
|
| 3.2007 | 46100 | 0.0001 | |
|
| 3.2077 | 46200 | 0.0001 | |
|
| 3.2146 | 46300 | 0.0001 | |
|
| 3.2216 | 46400 | 0.0001 | |
|
| 3.2285 | 46500 | 0.0001 | |
|
| 3.2354 | 46600 | 0.0001 | |
|
| 3.2424 | 46700 | 0.0001 | |
|
| 3.2493 | 46800 | 0.0001 | |
|
| 3.2563 | 46900 | 0.0001 | |
|
| 3.2632 | 47000 | 0.0001 | |
|
| 3.2702 | 47100 | 0.0001 | |
|
| 3.2771 | 47200 | 0.0001 | |
|
| 3.2840 | 47300 | 0.0001 | |
|
| 3.2910 | 47400 | 0.0001 | |
|
| 3.2979 | 47500 | 0.0001 | |
|
| 3.3049 | 47600 | 0.0001 | |
|
| 3.3118 | 47700 | 0.0001 | |
|
| 3.3188 | 47800 | 0.0001 | |
|
| 3.3257 | 47900 | 0.0001 | |
|
| 3.3326 | 48000 | 0.0001 | |
|
| 3.3396 | 48100 | 0.0001 | |
|
| 3.3465 | 48200 | 0.0001 | |
|
| 3.3535 | 48300 | 0.0001 | |
|
| 3.3604 | 48400 | 0.0001 | |
|
| 3.3674 | 48500 | 0.0001 | |
|
| 3.3743 | 48600 | 0.0001 | |
|
| 3.3812 | 48700 | 0.0001 | |
|
| 3.3882 | 48800 | 0.0001 | |
|
| 3.3951 | 48900 | 0.0001 | |
|
| 3.4021 | 49000 | 0.0001 | |
|
| 3.4090 | 49100 | 0.0001 | |
|
| 3.4160 | 49200 | 0.0001 | |
|
| 3.4229 | 49300 | 0.0001 | |
|
| 3.4298 | 49400 | 0.0001 | |
|
| 3.4368 | 49500 | 0.0001 | |
|
| 3.4437 | 49600 | 0.0001 | |
|
| 3.4507 | 49700 | 0.0001 | |
|
| 3.4576 | 49800 | 0.0001 | |
|
| 3.4646 | 49900 | 0.0001 | |
|
| 3.4715 | 50000 | 0.0001 | |
|
| 3.4784 | 50100 | 0.0001 | |
|
| 3.4854 | 50200 | 0.0001 | |
|
| 3.4923 | 50300 | 0.0001 | |
|
| 3.4993 | 50400 | 0.0001 | |
|
| 3.5062 | 50500 | 0.0001 | |
|
| 3.5132 | 50600 | 0.0001 | |
|
| 3.5201 | 50700 | 0.0001 | |
|
| 3.5270 | 50800 | 0.0001 | |
|
| 3.5340 | 50900 | 0.0001 | |
|
| 3.5409 | 51000 | 0.0001 | |
|
| 3.5479 | 51100 | 0.0001 | |
|
| 3.5548 | 51200 | 0.0001 | |
|
| 3.5618 | 51300 | 0.0001 | |
|
| 3.5687 | 51400 | 0.0001 | |
|
| 3.5756 | 51500 | 0.0001 | |
|
| 3.5826 | 51600 | 0.0001 | |
|
| 3.5895 | 51700 | 0.0001 | |
|
| 3.5965 | 51800 | 0.0001 | |
|
| 3.6034 | 51900 | 0.0001 | |
|
| 3.6104 | 52000 | 0.0001 | |
|
| 3.6173 | 52100 | 0.0001 | |
|
| 3.6242 | 52200 | 0.0001 | |
|
| 3.6312 | 52300 | 0.0001 | |
|
| 3.6381 | 52400 | 0.0001 | |
|
| 3.6451 | 52500 | 0.0001 | |
|
| 3.6520 | 52600 | 0.0001 | |
|
| 3.6590 | 52700 | 0.0001 | |
|
| 3.6659 | 52800 | 0.0001 | |
|
| 3.6728 | 52900 | 0.0001 | |
|
| 3.6798 | 53000 | 0.0001 | |
|
| 3.6867 | 53100 | 0.0001 | |
|
| 3.6937 | 53200 | 0.0001 | |
|
| 3.7006 | 53300 | 0.0001 | |
|
| 3.7076 | 53400 | 0.0001 | |
|
| 3.7145 | 53500 | 0.0001 | |
|
| 3.7214 | 53600 | 0.0001 | |
|
| 3.7284 | 53700 | 0.0001 | |
|
| 3.7353 | 53800 | 0.0001 | |
|
| 3.7423 | 53900 | 0.0001 | |
|
| 3.7492 | 54000 | 0.0001 | |
|
| 3.7562 | 54100 | 0.0001 | |
|
| 3.7631 | 54200 | 0.0001 | |
|
| 3.7700 | 54300 | 0.0001 | |
|
| 3.7770 | 54400 | 0.0001 | |
|
| 3.7839 | 54500 | 0.0001 | |
|
| 3.7909 | 54600 | 0.0001 | |
|
| 3.7978 | 54700 | 0.0001 | |
|
| 3.8048 | 54800 | 0.0001 | |
|
| 3.8117 | 54900 | 0.0001 | |
|
| 3.8186 | 55000 | 0.0001 | |
|
| 3.8256 | 55100 | 0.0001 | |
|
| 3.8325 | 55200 | 0.0001 | |
|
| 3.8395 | 55300 | 0.0001 | |
|
| 3.8464 | 55400 | 0.0001 | |
|
| 3.8534 | 55500 | 0.0001 | |
|
| 3.8603 | 55600 | 0.0001 | |
|
| 3.8672 | 55700 | 0.0001 | |
|
| 3.8742 | 55800 | 0.0001 | |
|
| 3.8811 | 55900 | 0.0001 | |
|
| 3.8881 | 56000 | 0.0001 | |
|
| 3.8950 | 56100 | 0.0001 | |
|
| 3.9020 | 56200 | 0.0001 | |
|
| 3.9089 | 56300 | 0.0001 | |
|
| 3.9159 | 56400 | 0.0001 | |
|
| 3.9228 | 56500 | 0.0001 | |
|
| 3.9297 | 56600 | 0.0001 | |
|
| 3.9367 | 56700 | 0.0001 | |
|
| 3.9436 | 56800 | 0.0001 | |
|
| 3.9506 | 56900 | 0.0001 | |
|
| 3.9575 | 57000 | 0.0001 | |
|
| 3.9645 | 57100 | 0.0001 | |
|
| 3.9714 | 57200 | 0.0001 | |
|
| 3.9783 | 57300 | 0.0001 | |
|
| 3.9853 | 57400 | 0.0001 | |
|
| 3.9922 | 57500 | 0.0001 | |
|
| 3.9992 | 57600 | 0.0001 | |
|
| 4.0061 | 57700 | 0.0001 | |
|
| 4.0131 | 57800 | 0.0001 | |
|
| 4.0200 | 57900 | 0.0001 | |
|
| 4.0269 | 58000 | 0.0001 | |
|
| 4.0339 | 58100 | 0.0001 | |
|
| 4.0408 | 58200 | 0.0001 | |
|
| 4.0478 | 58300 | 0.0001 | |
|
| 4.0547 | 58400 | 0.0001 | |
|
| 4.0617 | 58500 | 0.0001 | |
|
| 4.0686 | 58600 | 0.0001 | |
|
| 4.0755 | 58700 | 0.0001 | |
|
| 4.0825 | 58800 | 0.0001 | |
|
| 4.0894 | 58900 | 0.0001 | |
|
| 4.0964 | 59000 | 0.0001 | |
|
| 4.1033 | 59100 | 0.0001 | |
|
| 4.1103 | 59200 | 0.0001 | |
|
| 4.1172 | 59300 | 0.0001 | |
|
| 4.1241 | 59400 | 0.0001 | |
|
| 4.1311 | 59500 | 0.0001 | |
|
| 4.1380 | 59600 | 0.0001 | |
|
| 4.1450 | 59700 | 0.0001 | |
|
| 4.1519 | 59800 | 0.0001 | |
|
| 4.1589 | 59900 | 0.0001 | |
|
| 4.1658 | 60000 | 0.0001 | |
|
| 4.1727 | 60100 | 0.0001 | |
|
| 4.1797 | 60200 | 0.0001 | |
|
| 4.1866 | 60300 | 0.0001 | |
|
| 4.1936 | 60400 | 0.0001 | |
|
| 4.2005 | 60500 | 0.0001 | |
|
| 4.2075 | 60600 | 0.0001 | |
|
| 4.2144 | 60700 | 0.0001 | |
|
| 4.2213 | 60800 | 0.0001 | |
|
| 4.2283 | 60900 | 0.0001 | |
|
| 4.2352 | 61000 | 0.0001 | |
|
| 4.2422 | 61100 | 0.0001 | |
|
| 4.2491 | 61200 | 0.0001 | |
|
| 4.2561 | 61300 | 0.0001 | |
|
| 4.2630 | 61400 | 0.0001 | |
|
| 4.2699 | 61500 | 0.0001 | |
|
| 4.2769 | 61600 | 0.0001 | |
|
| 4.2838 | 61700 | 0.0001 | |
|
| 4.2908 | 61800 | 0.0001 | |
|
| 4.2977 | 61900 | 0.0001 | |
|
| 4.3047 | 62000 | 0.0001 | |
|
| 4.3116 | 62100 | 0.0001 | |
|
| 4.3185 | 62200 | 0.0001 | |
|
| 4.3255 | 62300 | 0.0001 | |
|
| 4.3324 | 62400 | 0.0001 | |
|
| 4.3394 | 62500 | 0.0001 | |
|
| 4.3463 | 62600 | 0.0001 | |
|
| 4.3533 | 62700 | 0.0001 | |
|
| 4.3602 | 62800 | 0.0001 | |
|
| 4.3671 | 62900 | 0.0001 | |
|
| 4.3741 | 63000 | 0.0001 | |
|
| 4.3810 | 63100 | 0.0001 | |
|
| 4.3880 | 63200 | 0.0001 | |
|
| 4.3949 | 63300 | 0.0001 | |
|
| 4.4019 | 63400 | 0.0 | |
|
| 4.4088 | 63500 | 0.0001 | |
|
| 4.4157 | 63600 | 0.0001 | |
|
| 4.4227 | 63700 | 0.0001 | |
|
| 4.4296 | 63800 | 0.0001 | |
|
| 4.4366 | 63900 | 0.0001 | |
|
| 4.4435 | 64000 | 0.0001 | |
|
| 4.4505 | 64100 | 0.0001 | |
|
| 4.4574 | 64200 | 0.0001 | |
|
| 4.4643 | 64300 | 0.0 | |
|
| 4.4713 | 64400 | 0.0001 | |
|
| 4.4782 | 64500 | 0.0001 | |
|
| 4.4852 | 64600 | 0.0001 | |
|
| 4.4921 | 64700 | 0.0001 | |
|
| 4.4991 | 64800 | 0.0001 | |
|
| 4.5060 | 64900 | 0.0001 | |
|
| 4.5129 | 65000 | 0.0 | |
|
| 4.5199 | 65100 | 0.0 | |
|
| 4.5268 | 65200 | 0.0 | |
|
| 4.5338 | 65300 | 0.0 | |
|
| 4.5407 | 65400 | 0.0 | |
|
| 4.5477 | 65500 | 0.0 | |
|
| 4.5546 | 65600 | 0.0 | |
|
| 4.5615 | 65700 | 0.0001 | |
|
| 4.5685 | 65800 | 0.0 | |
|
| 4.5754 | 65900 | 0.0001 | |
|
| 4.5824 | 66000 | 0.0001 | |
|
| 4.5893 | 66100 | 0.0 | |
|
| 4.5963 | 66200 | 0.0001 | |
|
| 4.6032 | 66300 | 0.0001 | |
|
| 4.6102 | 66400 | 0.0 | |
|
| 4.6171 | 66500 | 0.0001 | |
|
| 4.6240 | 66600 | 0.0 | |
|
| 4.6310 | 66700 | 0.0 | |
|
| 4.6379 | 66800 | 0.0001 | |
|
| 4.6449 | 66900 | 0.0 | |
|
| 4.6518 | 67000 | 0.0 | |
|
| 4.6588 | 67100 | 0.0 | |
|
| 4.6657 | 67200 | 0.0001 | |
|
| 4.6726 | 67300 | 0.0001 | |
|
| 4.6796 | 67400 | 0.0001 | |
|
| 4.6865 | 67500 | 0.0 | |
|
| 4.6935 | 67600 | 0.0001 | |
|
| 4.7004 | 67700 | 0.0001 | |
|
| 4.7074 | 67800 | 0.0001 | |
|
| 4.7143 | 67900 | 0.0001 | |
|
| 4.7212 | 68000 | 0.0 | |
|
| 4.7282 | 68100 | 0.0001 | |
|
| 4.7351 | 68200 | 0.0 | |
|
| 4.7421 | 68300 | 0.0 | |
|
| 4.7490 | 68400 | 0.0 | |
|
| 4.7560 | 68500 | 0.0001 | |
|
| 4.7629 | 68600 | 0.0001 | |
|
| 4.7698 | 68700 | 0.0 | |
|
| 4.7768 | 68800 | 0.0 | |
|
| 4.7837 | 68900 | 0.0001 | |
|
| 4.7907 | 69000 | 0.0001 | |
|
| 4.7976 | 69100 | 0.0 | |
|
| 4.8046 | 69200 | 0.0 | |
|
| 4.8115 | 69300 | 0.0001 | |
|
| 4.8184 | 69400 | 0.0001 | |
|
| 4.8254 | 69500 | 0.0001 | |
|
| 4.8323 | 69600 | 0.0001 | |
|
| 4.8393 | 69700 | 0.0 | |
|
| 4.8462 | 69800 | 0.0001 | |
|
| 4.8532 | 69900 | 0.0 | |
|
| 4.8601 | 70000 | 0.0 | |
|
| 4.8670 | 70100 | 0.0 | |
|
| 4.8740 | 70200 | 0.0 | |
|
| 4.8809 | 70300 | 0.0001 | |
|
| 4.8879 | 70400 | 0.0 | |
|
| 4.8948 | 70500 | 0.0 | |
|
| 4.9018 | 70600 | 0.0001 | |
|
| 4.9087 | 70700 | 0.0001 | |
|
| 4.9156 | 70800 | 0.0001 | |
|
| 4.9226 | 70900 | 0.0 | |
|
| 4.9295 | 71000 | 0.0001 | |
|
| 4.9365 | 71100 | 0.0001 | |
|
| 4.9434 | 71200 | 0.0 | |
|
| 4.9504 | 71300 | 0.0001 | |
|
| 4.9573 | 71400 | 0.0 | |
|
| 4.9642 | 71500 | 0.0 | |
|
| 4.9712 | 71600 | 0.0 | |
|
| 4.9781 | 71700 | 0.0001 | |
|
| 4.9851 | 71800 | 0.0 | |
|
| 4.9920 | 71900 | 0.0001 | |
|
| 4.9990 | 72000 | 0.0 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.0 |
|
- PyTorch: 2.5.1+cu121 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |