|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- multi_news |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: CS685-text-summarizer |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: multi_news |
|
type: multi_news |
|
config: default |
|
split: train[:20%] |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 9.8777 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CS685-text-summarizer |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the multi_news dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.4960 |
|
- Rouge1: 9.8777 |
|
- Rouge2: 3.6509 |
|
- Rougel: 7.597 |
|
- Rougelsum: 9.0495 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 6 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.8402 | 1.0 | 1349 | 2.5256 | 9.7548 | 3.5429 | 7.5078 | 8.9174 | |
|
| 2.5581 | 2.0 | 2698 | 2.5011 | 9.7256 | 3.6262 | 7.5644 | 8.8904 | |
|
| 2.3908 | 3.0 | 4047 | 2.4948 | 9.7569 | 3.5976 | 7.5209 | 8.8919 | |
|
| 2.2744 | 4.0 | 5396 | 2.4875 | 9.9116 | 3.7758 | 7.6823 | 9.0881 | |
|
| 2.1908 | 5.0 | 6745 | 2.4960 | 9.8777 | 3.6509 | 7.597 | 9.0495 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|