ARC-stuff / loda-rust /rust_project /loda-rust-cli /src /arc /generate_dataset_gameoflife.rs
Alignment-Lab-AI's picture
Upload folder using huggingface_hub
d5bfab8 verified
//! Cellular automaton - dataset for curriculum learning with increasing complexity.
//!
//! This dataset is available here:
//! https://huggingface.co/datasets/neoneye/gameoflife-v1
//!
//! Future experiments:
//! Use different symbols than only . and *.
//! Use different separator characters. Currently no separator is used.
//! Detect of what symbols are being used, so it writes that: dead=., alive=*, separator=none.
//! Do more prediction steps. Currently only 1 or 2 steps are being used.
//!
//! Game of life: check for oscillators
//! Game of life: recognize shapes.
use super::{CellularAutomaton, cellular_automaton::rule};
use super::{Image, ImageSize, RandomImage, ImageMaskCount, ImageHistogram};
use super::HtmlLog;
use bloomfilter::*;
use rand::rngs::StdRng;
use rand::SeedableRng;
use rand::seq::SliceRandom;
use serde::Serialize;
use std::io::Write;
#[allow(dead_code)]
#[derive(Debug, Clone, Copy, Serialize)]
enum Curriculum {
// Easy
StepOneSizeSmall,
StepOneSizeSmallMedium,
StepOneSizeSmallMediumBig,
// Hard
StepTwoSizeSmall,
StepOneTwoSizeSmall,
StepTwoSizeSmallMedium,
StepOneTwoSizeSmallMedium,
StepTwoSizeSmallMediumBig,
StepOneTwoSizeSmallMediumBig,
}
#[allow(dead_code)]
#[derive(Debug, Serialize)]
struct DatasetItem {
curriculum: Curriculum,
text: String,
}
#[allow(dead_code)]
#[derive(Debug, Clone, Copy)]
enum Strategy {
DoNothing,
ServiettesOneStep,
ServiettesTwoSteps,
HighLifeOneStep,
HighLifeTwoSteps,
}
struct GenerateDataset {
// bloom is for preventing duplicates
bloom: Bloom<Image>,
dataset_items: Vec<DatasetItem>,
}
impl GenerateDataset {
#[allow(dead_code)]
fn new() -> Self {
let bloom_items_count = 100000;
let false_positive_rate = 0.01;
Self {
bloom: Bloom::<Image>::new_for_fp_rate(bloom_items_count, false_positive_rate),
dataset_items: vec!(),
}
}
#[allow(dead_code)]
fn populate(&mut self, curriculum: Curriculum, number_of_items: u32, print_to_htmllog: bool) -> anyhow::Result<()> {
// Prevent too many DatasetItem's with both outputs are all empty
let max_items_where_both_outputs_all_empty: usize = ((number_of_items as usize) * 5) / 100;
let step_counts: Vec<u8> = match curriculum {
Curriculum::StepOneSizeSmall => vec![1],
Curriculum::StepOneSizeSmallMedium => vec![1],
Curriculum::StepOneSizeSmallMediumBig => vec![1],
Curriculum::StepTwoSizeSmall => vec![2],
Curriculum::StepOneTwoSizeSmall => vec![1, 2],
Curriculum::StepTwoSizeSmallMedium => vec![2],
Curriculum::StepOneTwoSizeSmallMedium => vec![1, 2],
Curriculum::StepTwoSizeSmallMediumBig => vec![2],
Curriculum::StepOneTwoSizeSmallMediumBig => vec![1, 2],
};
let random_seed: u64 = match curriculum {
Curriculum::StepOneSizeSmall => 0,
Curriculum::StepOneSizeSmallMedium => 1000000,
Curriculum::StepOneSizeSmallMediumBig => 2000000,
Curriculum::StepTwoSizeSmall => 3000000,
Curriculum::StepOneTwoSizeSmall => 4000000,
Curriculum::StepTwoSizeSmallMedium => 5000000,
Curriculum::StepOneTwoSizeSmallMedium => 6000000,
Curriculum::StepTwoSizeSmallMediumBig => 7000000,
Curriculum::StepOneTwoSizeSmallMediumBig => 8000000,
};
let sizes: Vec<u8> = match curriculum {
Curriculum::StepOneSizeSmall => vec![3, 4, 5, 6],
Curriculum::StepOneSizeSmallMedium => vec![3, 4, 5, 6, 7, 8, 9, 10],
Curriculum::StepOneSizeSmallMediumBig => vec![3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
Curriculum::StepTwoSizeSmall => vec![3, 4, 5, 6],
Curriculum::StepOneTwoSizeSmall => vec![3, 4, 5, 6],
Curriculum::StepTwoSizeSmallMedium => vec![3, 4, 5, 6, 7, 8, 9, 10],
Curriculum::StepOneTwoSizeSmallMedium => vec![3, 4, 5, 6, 7, 8, 9, 10],
Curriculum::StepTwoSizeSmallMediumBig => vec![3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
Curriculum::StepOneTwoSizeSmallMediumBig => vec![3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
};
let temperatures: [u8; 9] = [
10, 20, 30, 40, 50, 60, 70, 80, 90
];
let strategies: [Strategy; 5] = [
Strategy::DoNothing,
Strategy::ServiettesOneStep,
Strategy::ServiettesTwoSteps,
Strategy::HighLifeOneStep,
Strategy::HighLifeTwoSteps,
];
let mut count_input_all_empty: usize = 0;
let mut count_input_all_alive: usize = 0;
let mut count_input_one_cell_empty: usize = 0;
let mut count_input_one_cell_alive: usize = 0;
let mut count_both_outputs_all_empty: usize = 0;
let upper_bound: u64 = (number_of_items * 4) as u64;
let mut number_of_items_created: u32 = 0;
for i in 0..upper_bound {
if number_of_items_created >= number_of_items {
break;
}
let mut rng = StdRng::seed_from_u64(random_seed + i);
let step_count: u8 = *step_counts.choose(&mut rng).unwrap();
let width: u8 = *sizes.choose(&mut rng).unwrap();
let height: u8 = *sizes.choose(&mut rng).unwrap();
let temperature: u8 = *temperatures.choose(&mut rng).unwrap();
let strategy: Strategy = *strategies.choose(&mut rng).unwrap();
let size = ImageSize::new(width, height);
let mut input: Image = RandomImage::two_colors(&mut rng, size, 0, 1, temperature)?;
// Mutate the input image, to get different distributions
match strategy {
Strategy::DoNothing => {},
Strategy::HighLifeOneStep => {
let mut ca: CellularAutomaton<_> = CellularAutomaton::<rule::HighLife>::with_image(&input, None);
ca.step(1);
input = ca.image().clone();
},
Strategy::HighLifeTwoSteps => {
let mut ca: CellularAutomaton<_> = CellularAutomaton::<rule::HighLife>::with_image(&input, None);
ca.step(2);
input = ca.image().clone();
},
Strategy::ServiettesOneStep => {
let mut ca: CellularAutomaton<_> = CellularAutomaton::<rule::Serviettes>::with_image(&input, None);
ca.step(1);
input = ca.image().clone();
},
Strategy::ServiettesTwoSteps => {
let mut ca: CellularAutomaton<_> = CellularAutomaton::<rule::Serviettes>::with_image(&input, None);
ca.step(2);
input = ca.image().clone();
},
}
let (input_count0, input_count1, _count_other) = input.mask_count();
let is_input_all_empty: bool = input_count1 == 0;
let is_input_all_alive: bool = input_count0 == 0;
let is_input_one_cell_empty: bool = input_count0 == 1;
let is_input_one_cell_alive: bool = input_count1 == 1;
if is_input_all_empty {
count_input_all_empty += 1;
if count_input_all_empty > 3 {
debug!("ignoring input with all empty");
continue;
}
}
if is_input_all_alive {
count_input_all_alive += 1;
if count_input_all_alive > 3 {
debug!("ignoring input with all alive");
continue;
}
}
if is_input_one_cell_empty {
count_input_one_cell_empty += 1;
if count_input_one_cell_empty > 3 {
debug!("ignoring input with one cell empty");
continue;
}
}
if is_input_one_cell_alive {
count_input_one_cell_alive += 1;
if count_input_one_cell_alive > 3 {
debug!("ignoring input with one cell alive");
continue;
}
}
if self.bloom.check(&input) {
debug!("skipping duplicate");
continue;
}
self.bloom.set(&input);
let mut ca_nowrap: CellularAutomaton<_> = CellularAutomaton::<rule::GameOfLife>::with_image(&input, Some(0));
ca_nowrap.step(step_count);
let output_without_wrap: Image = ca_nowrap.image().clone();
let mut ca_wrap: CellularAutomaton<_> = CellularAutomaton::<rule::GameOfLife>::with_image(&input, None);
ca_wrap.step(step_count);
let output_with_wrap: Image = ca_wrap.image().clone();
let same_output_for_wrap_and_nowrap: bool = output_without_wrap == output_with_wrap;
if same_output_for_wrap_and_nowrap {
if output_without_wrap.mask_count_nonzero() == 0 {
count_both_outputs_all_empty += 1;
if count_both_outputs_all_empty > max_items_where_both_outputs_all_empty {
debug!("ignoring dataset item where both outputs are all empty");
continue;
}
}
}
let mut markdown = String::new();
markdown.push_str("# Conway's Game of Life\n\n");
if step_count == 1 {
markdown.push_str("Perform 1 step.\n\n");
} else {
markdown.push_str(&format!("Perform {} steps.\n\n", step_count));
}
markdown.push_str("## Input\n\n");
markdown.push_str(&Self::image_to_markdown_fenced_code_block(&input));
markdown.push_str("\n\n");
Self::caption_for_input_output_image(&mut markdown, &input);
markdown.push_str("\n");
markdown.push_str("## Output without wrap\n\n");
markdown.push_str(&Self::image_to_markdown_fenced_code_block(&output_without_wrap));
markdown.push_str("\n\n");
Self::caption_for_input_output_image(&mut markdown, &output_without_wrap);
Self::caption_for_output_compared_to_input(&mut markdown, &output_without_wrap, &input, step_count);
markdown.push_str("\n");
markdown.push_str("## Output with wrap\n\n");
markdown.push_str(&Self::image_to_markdown_fenced_code_block(&output_with_wrap));
markdown.push_str("\n\n");
Self::caption_for_input_output_image(&mut markdown, &output_with_wrap);
Self::caption_for_output_compared_to_input(&mut markdown, &output_with_wrap, &input, step_count);
markdown.push_str("\n");
markdown.push_str("## Status\n\n");
if same_output_for_wrap_and_nowrap {
markdown.push_str("The outputs are identical.");
} else {
markdown.push_str("The outputs are different.");
}
if print_to_htmllog {
let compare_images: Vec<Image> = vec![
input.clone(),
output_without_wrap.clone(),
output_with_wrap.clone(),
];
// if same_output_for_wrap_and_nowrap {
// HtmlLog::text("wrap is identical to nowrap");
// } else {
// HtmlLog::text("wrap is different than nowrap");
// }
HtmlLog::text(markdown.clone());
HtmlLog::compare_images(compare_images);
}
let dataset_item = DatasetItem {
curriculum,
text: markdown,
};
self.dataset_items.push(dataset_item);
number_of_items_created += 1;
}
debug!("count_both_outputs_all_empty: {}", count_both_outputs_all_empty);
Ok(())
}
fn caption_for_input_output_image(markdown: &mut String, image: &Image) {
let (count_empty, count_alive, _count_other) = image.mask_count();
if count_alive == 0 {
markdown.push_str("All cells are empty.\n");
}
if count_empty == 0 {
markdown.push_str("All cells are alive.\n");
}
if count_alive == 1 {
markdown.push_str("Only one cell is alive.\n");
}
if count_empty == 1 {
markdown.push_str("Only one cell is empty.\n");
}
if count_alive > 0 && count_empty > 0 {
if image.is_repeated_row().unwrap_or(false) {
markdown.push_str("The rows are identical.\n");
}
if image.is_repeated_column().unwrap_or(false) {
markdown.push_str("The columns are identical.\n");
}
}
}
fn caption_for_output_compared_to_input(markdown: &mut String, output: &Image, input: &Image, step_count: u8) {
if output == input {
markdown.push_str("This output is identical to the input.\n");
let (count0, count1, _count_other) = input.mask_count();
if count0 > 0 && count1 > 0 && step_count == 1 {
markdown.push_str("Still life.\n");
}
} else {
markdown.push_str("This output is different than the input.\n");
}
}
fn image_to_markdown_fenced_code_block(image: &Image) -> String {
format!("```\n{}\n```", GenerateDataset::image_to_string(image))
}
fn image_to_string(image: &Image) -> String {
let mut result = String::new();
for y in 0..image.height() {
if y > 0 {
result.push('\n');
}
for x in 0..image.width() {
let value: u8 = image.get(x as i32, y as i32).unwrap_or(0);
let character: char = match value {
0 => '.',
1 => '*',
_ => '?',
};
result.push(character);
}
}
result
}
fn dataset_to_jsonl(dataset_items: &Vec<DatasetItem>) -> anyhow::Result<String> {
let mut jsonl_rows = Vec::<String>::new();
for dataset_item in dataset_items {
let jsonl_row: String = serde_json::to_string(dataset_item)?;
jsonl_rows.push(jsonl_row);
}
let jsonl_data: String = jsonl_rows.join("\n");
Ok(jsonl_data)
}
#[allow(dead_code)]
fn shuffle(&mut self) {
let mut rng = StdRng::seed_from_u64(0);
self.dataset_items.shuffle(&mut rng);
}
#[allow(dead_code)]
fn save(&self, path: &std::path::Path) -> anyhow::Result<()> {
let s: String = Self::dataset_to_jsonl(&self.dataset_items)?;
println!("dataset number of rows: {}", self.dataset_items.len());
println!("dataset jsonl bytes: {}", s.len());
let mut file = std::fs::File::create(path)?;
file.write_all(s.as_bytes())?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::arc::ImageTryCreate;
use std::path::PathBuf;
#[test]
fn test_10000_image_to_string() {
// Arrange
let pixels: Vec<u8> = vec![
1, 0, 0,
0, 1, 1,
1, 1, 255,
];
let input: Image = Image::try_create(3, 3, pixels).expect("image");
// Act
let actual: String = GenerateDataset::image_to_string(&input);
// Assert
assert_eq!(actual, "*..\n.**\n**?");
}
#[allow(dead_code)]
// #[test]
fn test_20000_generate_and_save() {
let path: PathBuf = PathBuf::from("/Users/neoneye/Downloads/gameoflife.jsonl");
let mut generator = GenerateDataset::new();
let number_of_items: u32 = 4700;
generator.populate(Curriculum::StepOneSizeSmall, number_of_items, false).expect("ok");
generator.populate(Curriculum::StepOneSizeSmallMedium, number_of_items, false).expect("ok");
generator.populate(Curriculum::StepOneSizeSmallMediumBig, number_of_items, false).expect("ok");
generator.populate(Curriculum::StepTwoSizeSmall, number_of_items, false).expect("ok");
generator.populate(Curriculum::StepOneTwoSizeSmall, number_of_items, false).expect("ok");
generator.populate(Curriculum::StepTwoSizeSmallMedium, number_of_items, false).expect("ok");
generator.populate(Curriculum::StepOneTwoSizeSmallMedium, number_of_items, false).expect("ok");
generator.populate(Curriculum::StepTwoSizeSmallMediumBig, number_of_items, false).expect("ok");
generator.populate(Curriculum::StepOneTwoSizeSmallMediumBig, number_of_items, false).expect("ok");
generator.shuffle();
generator.save(&path).expect("ok");
}
#[allow(dead_code)]
// #[test]
fn test_20001_do_something() {
for i in 0..20u64 {
let size = ImageSize::new(10, 8);
let step0: Image = RandomImage::two_colors(&mut StdRng::seed_from_u64(i), size, 0, 1, 35).expect("ok");
let step1: Image = RandomImage::draw_dots(&mut StdRng::seed_from_u64(i+5), &step0, 2, 5).expect("ok");
let step2: Image = RandomImage::draw_dots(&mut StdRng::seed_from_u64(i+8), &step1, 3, 5).expect("ok");
let mut images = Vec::<Image>::new();
images.push(step2.clone());
let mut ca: CellularAutomaton<_> = CellularAutomaton::<rule::GameOfLifeExtra>::with_image(&step0, None);
for _ in 0..4 {
ca.step_once();
images.push(ca.image().clone());
}
HtmlLog::compare_images(images);
}
}
}