axolotl2 / unsloth /README.md
Alignment-Lab-AI's picture
Upload folder using huggingface_hub
1bad0bb verified
<div align="center">
<a href="https://unsloth.ai"><picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20logo%20white%20text.png">
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20logo%20black%20text.png">
<img alt="unsloth logo" src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20logo%20black%20text.png" height="110" style="max-width: 100%;">
</picture></a>
<a href="https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing"><img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/start free finetune button.png" height="48"></a>
<a href="https://discord.gg/u54VK8m8tk"><img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord button.png" height="48"></a>
<a href="https://ko-fi.com/unsloth"><img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/buy me a coffee button.png" height="48"></a>
### Finetune Llama 3, Mistral & Gemma 2-5x faster with 80% less memory!
![](https://i.ibb.co/sJ7RhGG/image-41.png)
</div>
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------|---------|--------|----------|
| **Llama 3 (8B)** | [▶️ Start for free](https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing) | 2x faster | 60% less |
| **Mistral (7B)** | [▶️ Start for free](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 73% less |
| **Gemma (7B)** | [▶️ Start for free](https://colab.research.google.com/drive/10NbwlsRChbma1v55m8LAPYG15uQv6HLo?usp=sharing) | 2.4x faster | 71% less |
| **ORPO** | [▶️ Start for free](https://colab.research.google.com/drive/11t4njE3c4Lxl-07OD8lJSMKkfyJml3Tn?usp=sharing) | 1.9x faster | 43% less |
| **DPO Zephyr** | [▶️ Start for free](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 43% less |
| **Phi-3 (3.8B)** | [▶️ Start for free](https://colab.research.google.com/drive/1NvkBmkHfucGO3Ve9s1NKZvMNlw5p83ym?usp=sharing) | 2x faster | 50% less |
| **TinyLlama** | [▶️ Start for free](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
- Benchmarking compared to FA2 + Hugging Face combined.
- **Kaggle Notebooks** for [Llama-3 8b](https://www.kaggle.com/code/danielhanchen/kaggle-llama-3-8b-unsloth-notebook), [Gemma 7b](https://www.kaggle.com/code/danielhanchen/kaggle-gemma-7b-unsloth-notebook/), [Mistral 7b](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)
- This [conversational notebook](https://colab.research.google.com/drive/1XamvWYinY6FOSX9GLvnqSjjsNflxdhNc?usp=sharing) is useful for Llama-3. And ChatML for [Mistral 7b](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing).
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for continued pretraining / raw text.
## 🦥 Unsloth.ai News
- 📣 NEW! Qwen1.5-7B, Qwen1.5-14B, Qwen1.5-32B, Qwen1.5-72B now work, courtesy of Firefly's PR [#428](https://github.com/unslothai/unsloth/pull/428)
- 📣 NEW! [Llama-3 8b](https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing) now works! Llama-3 70b also works (change the model name in the notebook).
- 📣 NEW! [ORPO support](https://colab.research.google.com/drive/11t4njE3c4Lxl-07OD8lJSMKkfyJml3Tn?usp=sharing) is here!
- 📣 NEW! [Phi-3 3.8b support](https://colab.research.google.com/drive/1NvkBmkHfucGO3Ve9s1NKZvMNlw5p83ym?usp=sharing) is here!
- 📣 NEW! We cut memory usage by a [further 30%](https://unsloth.ai/blog/long-context) and now support fine-tuning of LLMs with [4x longer context windows](https://unsloth.ai/blog/long-context)! No change required if you're using our notebooks. To enable, simply change 1 line:
```python
model = FastLanguageModel.get_peft_model(
model,
use_gradient_checkpointing = "unsloth", # <<<<<<<
)
```
- 📣 [CodeGemma](https://colab.research.google.com/drive/19lwcRk_ZQ_ZtX-qzFP3qZBBHZNcMD1hh?usp=sharing) now works along with [Gemma 7b](https://colab.research.google.com/drive/10NbwlsRChbma1v55m8LAPYG15uQv6HLo?usp=sharing) and [Gemma 2b](https://colab.research.google.com/drive/15gGm7x_jTm017_Ic8e317tdIpDG53Mtu?usp=sharing)
- 📣 [2x faster inference](https://colab.research.google.com/drive/1aqlNQi7MMJbynFDyOQteD2t0yVfjb9Zh?usp=sharing) added for all our models
## 🔗 Links and Resources
| Type | Links |
| ------------------------------- | --------------------------------------- |
| 📚 **Wiki & FAQ** | [Read Our Wiki](https://github.com/unslothai/unsloth/wiki) |
| <img height="14" src="https://upload.wikimedia.org/wikipedia/commons/6/6f/Logo_of_Twitter.svg" />&nbsp; **Twitter (aka X)** | [Follow us on X](https://twitter.com/unslothai)|
| 📜 **Documentation** | [Read The Doc](https://github.com/unslothai/unsloth/tree/main#-documentation) |
| 💾 **Installation** | [unsloth/README.md](https://github.com/unslothai/unsloth/tree/main#installation-instructions)|
| 🥇 **Benchmarking** | [Performance Tables](https://github.com/unslothai/unsloth/tree/main#-performance-benchmarking)
| 🌐 **Released Models** | [Unsloth Releases](https://huggingface.co/unsloth)|
| ✍️ **Blog** | [Read our Blogs](https://unsloth.ai/blog)|
## ⭐ Key Features
- All kernels written in [OpenAI's Triton](https://openai.com/research/triton) language. **Manual backprop engine**.
- **0% loss in accuracy** - no approximation methods - all exact.
- No change of hardware. Supports NVIDIA GPUs since 2018+. Minimum CUDA Capability 7.0 (V100, T4, Titan V, RTX 20, 30, 40x, A100, H100, L40 etc) [Check your GPU!](https://developer.nvidia.com/cuda-gpus) GTX 1070, 1080 works, but is slow.
- Works on **Linux** and **Windows** via WSL.
- Supports 4bit and 16bit QLoRA / LoRA finetuning via [bitsandbytes](https://github.com/TimDettmers/bitsandbytes).
- Open source trains 5x faster - see [Unsloth Pro](https://unsloth.ai/) for up to **30x faster training**!
- If you trained a model with 🦥Unsloth, you can use this cool sticker! &nbsp; <img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made with unsloth.png" height="50" align="center" />
## 🥇 Performance Benchmarking
- For the full list of **reproducable** benchmarking tables, [go to our website](https://unsloth.ai/blog/mistral-benchmark#Benchmark%20tables)
| 1 A100 40GB | 🤗Hugging Face | Flash Attention | 🦥Unsloth Open Source | 🦥[Unsloth Pro](https://unsloth.ai/pricing) |
|--------------|--------------|-----------------|---------------------|-----------------|
| Alpaca | 1x | 1.04x | 1.98x | **15.64x** |
| LAION Chip2 | 1x | 0.92x | 1.61x | **20.73x** |
| OASST | 1x | 1.19x | 2.17x | **14.83x** |
| Slim Orca | 1x | 1.18x | 2.22x | **14.82x** |
- Benchmarking table below was conducted by [🤗Hugging Face](https://huggingface.co/blog/unsloth-trl).
| Free Colab T4 | Dataset | 🤗Hugging Face | Pytorch 2.1.1 | 🦥Unsloth | 🦥 VRAM reduction |
| --- | --- | --- | --- | --- | --- |
| Llama-2 7b | OASST | 1x | 1.19x | 1.95x | -43.3% |
| Mistral 7b | Alpaca | 1x | 1.07x | 1.56x | -13.7% |
| Tiny Llama 1.1b | Alpaca | 1x | 2.06x | 3.87x | -73.8% |
| DPO with Zephyr | Ultra Chat | 1x | 1.09x | 1.55x | -18.6% |
![](https://i.ibb.co/sJ7RhGG/image-41.png)
## 💾 Installation Instructions
### Conda Installation
Select either `pytorch-cuda=11.8` for CUDA 11.8 or `pytorch-cuda=12.1` for CUDA 12.1. If you have `mamba`, use `mamba` instead of `conda` for faster solving. See this [Github issue](https://github.com/unslothai/unsloth/issues/73) for help on debugging Conda installs.
```bash
conda create --name unsloth_env python=3.10
conda activate unsloth_env
conda install pytorch-cuda=<12.1/11.8> pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --no-deps trl peft accelerate bitsandbytes
```
### Pip Installation
Do **NOT** use this if you have Anaconda. You must use the Conda install method, or else stuff will BREAK.
1. Find your CUDA version via
```python
import torch; torch.version.cuda
```
2. For Pytorch 2.1.0: You can update Pytorch via Pip (interchange `cu121` / `cu118`). Go to https://pytorch.org/ to learn more. Select either `cu118` for CUDA 11.8 or `cu121` for CUDA 12.1. If you have a RTX 3060 or higher (A100, H100 etc), use the `"ampere"` path. For Pytorch 2.1.1: go to step 3. For Pytorch 2.2.0: go to step 4.
```bash
pip install --upgrade --force-reinstall --no-cache-dir torch==2.1.0 triton \
--index-url https://download.pytorch.org/whl/cu121
```
```bash
pip install "unsloth[cu118] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu118-ampere] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121-ampere] @ git+https://github.com/unslothai/unsloth.git"
```
3. For Pytorch 2.1.1: Use the `"ampere"` path for newer RTX 30xx GPUs or higher.
```bash
pip install --upgrade --force-reinstall --no-cache-dir torch==2.1.1 triton \
--index-url https://download.pytorch.org/whl/cu121
```
```bash
pip install "unsloth[cu118-torch211] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121-torch211] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu118-ampere-torch211] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121-ampere-torch211] @ git+https://github.com/unslothai/unsloth.git"
```
4. For Pytorch 2.2.0: Use the `"ampere"` path for newer RTX 30xx GPUs or higher.
```bash
pip install --upgrade --force-reinstall --no-cache-dir torch==2.2.0 triton \
--index-url https://download.pytorch.org/whl/cu121
```
```bash
pip install "unsloth[cu118-torch220] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121-torch220] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu118-ampere-torch220] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121-ampere-torch220] @ git+https://github.com/unslothai/unsloth.git"
```
5. If you get errors, try the below first, then go back to step 1:
```bash
pip install --upgrade pip
```
6. For Pytorch 2.2.1:
```bash
# RTX 3090, 4090 Ampere GPUs:
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
# Pre Ampere RTX 2080, T4, GTX 1080 GPUs:
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --no-deps xformers trl peft accelerate bitsandbytes
```
7. For Pytorch 2.3.0: Use the `"ampere"` path for newer RTX 30xx GPUs or higher.
```bash
pip install "unsloth[cu118-torch230] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121-torch230] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu118-ampere-torch230] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121-ampere-torch230] @ git+https://github.com/unslothai/unsloth.git"
```
8. To troubleshoot installs try the below (all must succeed). Xformers should mostly all be available.
```bash
nvcc
python -m xformers.info
python -m bitsandbytes
```
## 📜 Documentation
- Go to our [Wiki page](https://github.com/unslothai/unsloth/wiki) for saving to GGUF, checkpointing, evaluation and more!
- We support Huggingface's TRL, Trainer, Seq2SeqTrainer or even Pytorch code!
- We're in 🤗Hugging Face's official docs! Check out the [SFT docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth) and [DPO docs](https://huggingface.co/docs/trl/main/en/dpo_trainer#accelerate-dpo-fine-tuning-using-unsloth)!
```python
from unsloth import FastLanguageModel
import torch
from trl import SFTTrainer
from transformers import TrainingArguments
from datasets import load_dataset
max_seq_length = 2048 # Supports RoPE Scaling interally, so choose any!
# Get LAION dataset
url = "https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl"
dataset = load_dataset("json", data_files = {"train" : url}, split = "train")
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
"unsloth/mistral-7b-bnb-4bit",
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
"unsloth/llama-2-7b-bnb-4bit",
"unsloth/gemma-7b-bnb-4bit",
"unsloth/gemma-7b-it-bnb-4bit", # Instruct version of Gemma 7b
"unsloth/gemma-2b-bnb-4bit",
"unsloth/gemma-2b-it-bnb-4bit", # Instruct version of Gemma 2b
"unsloth/llama-3-8b-bnb-4bit", # [NEW] 15 Trillion token Llama-3
"unsloth/Phi-3-mini-4k-instruct-bnb-4bit",
] # More models at https://huggingface.co/unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/llama-3-8b-bnb-4bit",
max_seq_length = max_seq_length,
dtype = None,
load_in_4bit = True,
)
# Do model patching and add fast LoRA weights
model = FastLanguageModel.get_peft_model(
model,
r = 16,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
max_seq_length = max_seq_length,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
trainer = SFTTrainer(
model = model,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
tokenizer = tokenizer,
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 10,
max_steps = 60,
fp16 = not torch.cuda.is_bf16_supported(),
bf16 = torch.cuda.is_bf16_supported(),
logging_steps = 1,
output_dir = "outputs",
optim = "adamw_8bit",
seed = 3407,
),
)
trainer.train()
# Go to https://github.com/unslothai/unsloth/wiki for advanced tips like
# (1) Saving to GGUF / merging to 16bit for vLLM
# (2) Continued training from a saved LoRA adapter
# (3) Adding an evaluation loop / OOMs
# (4) Cutomized chat templates
```
<a name="DPO"></a>
## DPO Support
DPO (Direct Preference Optimization), PPO, Reward Modelling all seem to work as per 3rd party independent testing from [Llama-Factory](https://github.com/hiyouga/LLaMA-Factory). We have a preliminary Google Colab notebook for reproducing Zephyr on Tesla T4 here: [notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing).
We're in 🤗Hugging Face's official docs! We're on the [SFT docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth) and the [DPO docs](https://huggingface.co/docs/trl/main/en/dpo_trainer#accelerate-dpo-fine-tuning-using-unsloth)!
```python
from unsloth import FastLanguageModel, PatchDPOTrainer
PatchDPOTrainer()
import torch
from transformers import TrainingArguments
from trl import DPOTrainer
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/zephyr-sft-bnb-4bit",
max_seq_length = max_seq_length,
dtype = None,
load_in_4bit = True,
)
# Do model patching and add fast LoRA weights
model = FastLanguageModel.get_peft_model(
model,
r = 64,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 64,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
max_seq_length = max_seq_length,
)
dpo_trainer = DPOTrainer(
model = model,
ref_model = None,
args = TrainingArguments(
per_device_train_batch_size = 4,
gradient_accumulation_steps = 8,
warmup_ratio = 0.1,
num_train_epochs = 3,
fp16 = not torch.cuda.is_bf16_supported(),
bf16 = torch.cuda.is_bf16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
seed = 42,
output_dir = "outputs",
),
beta = 0.1,
train_dataset = YOUR_DATASET_HERE,
# eval_dataset = YOUR_DATASET_HERE,
tokenizer = tokenizer,
max_length = 1024,
max_prompt_length = 512,
)
dpo_trainer.train()
```
## 🥇 Detailed Benchmarking Tables
- Click "Code" for fully reproducible examples
- "Unsloth Equal" is a preview of our PRO version, with code stripped out. All settings and the loss curve remains identical.
- For the full list of benchmarking tables, [go to our website](https://unsloth.ai/blog/mistral-benchmark#Benchmark%20tables)
| 1 A100 40GB | 🤗Hugging Face | Flash Attention 2 | 🦥Unsloth Open | Unsloth Equal | Unsloth Pro | Unsloth Max |
|--------------|-------------|-------------|-----------------|--------------|---------------|-------------|
| Alpaca | 1x | 1.04x | 1.98x | 2.48x | 5.32x | **15.64x** |
| code | [Code](https://colab.research.google.com/drive/1u4dBeM-0vGNVmmO6X7cScAut-Hyt4KDF?usp=sharing) | [Code](https://colab.research.google.com/drive/1fgTOxpMbVjloQBvZyz4lF4BacKSZOB2A?usp=sharing) | [Code](https://colab.research.google.com/drive/1YIPY_18xm-K0iJDgvNkRoJsgkPMPAO3G?usp=sharing) | [Code](https://colab.research.google.com/drive/1ANW8EFL3LVyTD7Gq4TkheC1Z7Rxw-rHp?usp=sharing) | | |
| seconds| 1040 | 1001 | 525 | 419 | 196 | 67 |
| memory MB| 18235 | 15365 | 9631 | 8525 | | |
| % saved| | 15.74 | 47.18 | 53.25 | | | |
### Llama-Factory 3rd party benchmarking
- [Link to performance table.](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-Comparison) TGS: tokens per GPU per second. Model: LLaMA2-7B. GPU: NVIDIA A100 * 1. Batch size: 4. Gradient accumulation: 2. LoRA rank: 8. Max length: 1024.
| Method | Bits | TGS | GRAM | Speed |
| --- | --- | --- | --- | --- |
| HF | 16 | 2392 | 18GB | 100% |
| HF+FA2 | 16 | 2954 | 17GB | 123% |
| Unsloth+FA2 | 16 | 4007 | 16GB | **168%** |
| HF | 4 | 2415 | 9GB | 101% |
| Unsloth+FA2 | 4 | 3726 | 7GB | **160%** |
### Performance comparisons between popular models
<details>
<summary>Click for specific model benchmarking tables (Mistral 7b, CodeLlama 34b etc.)</summary>
### Mistral 7b
| 1 A100 40GB | Hugging Face | Flash Attention 2 | Unsloth Open | Unsloth Equal | Unsloth Pro | Unsloth Max |
|--------------|-------------|-------------|-----------------|--------------|---------------|-------------|
| Mistral 7B Slim Orca | 1x | 1.15x | 2.15x | 2.53x | 4.61x | **13.69x** |
| code | [Code](https://colab.research.google.com/drive/1mePk3KzwTD81hr5mcNcs_AX3Kbg_Ha0x?usp=sharing) | [Code](https://colab.research.google.com/drive/1dgHxjvTmX6hb0bPcLp26RXSE6_n9DKj7?usp=sharing) | [Code](https://colab.research.google.com/drive/1SKrKGV-BZoU4kv5q3g0jtE_OhRgPtrrQ?usp=sharing) | [Code](https://colab.research.google.com/drive/18yOiyX0T81mTwZqOALFSCX_tSAqju6aD?usp=sharing) | |
| seconds | 1813 | 1571 | 842 | 718 | 393 | 132 |
| memory MB | 32853 | 19385 | 12465 | 10271 | | |
| % saved| | 40.99 | 62.06 | 68.74 | | |
### CodeLlama 34b
| 1 A100 40GB | Hugging Face | Flash Attention 2 | Unsloth Open | Unsloth Equal | Unsloth Pro | Unsloth Max |
|--------------|-------------|-------------|-----------------|--------------|---------------|-------------|
| Code Llama 34B | OOM ❌ | 0.99x | 1.87x | 2.61x | 4.27x | 12.82x |
| code | [▶️ Code](https://colab.research.google.com/drive/1ykfz3BqrtC_AUFegCzUQjjfUNlxp6Otc?usp=sharing) | [Code](https://colab.research.google.com/drive/12ZypxQh7OC6kBXvWZI-5d05I4m-B_hoR?usp=sharing) | [Code](https://colab.research.google.com/drive/1gdHyAx8XJsz2yNV-DHvbHjR1iCef5Qmh?usp=sharing) | [Code](https://colab.research.google.com/drive/1fm7wqx9MJ0kRrwKOfmLkK1Rmw-pySahB?usp=sharing) | |
| seconds | 1953 | 1982 | 1043 | 748 | 458 | 152 |
| memory MB | 40000 | 33217 | 27413 | 22161 | | |
| % saved| | 16.96| 31.47 | 44.60 | | | |
### 1 Tesla T4
| 1 T4 16GB | Hugging Face | Flash Attention | Unsloth Open | Unsloth Pro Equal | Unsloth Pro | Unsloth Max |
|--------------|-------------|-----------------|-----------------|---------------|---------------|-------------|
| Alpaca | 1x | 1.09x | 1.69x | 1.79x | 2.93x | **8.3x** |
| code | [▶️ Code](https://colab.research.google.com/drive/1XpLIV4s8Bj5uryB-X2gqM88oRGHEGdaB?usp=sharing) | [Code](https://colab.research.google.com/drive/1LyXu6CjuymQg6ddHX8g1dpUvrMa1nn4L?usp=sharing) | [Code](https://colab.research.google.com/drive/1gsv4LpY7C32otl1rgRo5wXTk4HIitXoM?usp=sharing) | [Code](https://colab.research.google.com/drive/1VtULwRQwhEnVdNryjm27zXfdSM1tNfFK?usp=sharing) | | |
| seconds | 1599 | 1468 | 942 | 894 | 545 | 193 |
| memory MB | 7199 | 7059 | 6459 | 5443 | | |
| % saved | | 1.94 | 10.28 | 24.39 | | |
### 2 Tesla T4s via DDP
| 2 T4 DDP | Hugging Face | Flash Attention | Unsloth Open | Unsloth Equal | Unsloth Pro | Unsloth Max |
|--------------|----------|-------------|-----------------|--------------|---------------|-------------|
| Alpaca | 1x | 0.99x | 4.95x | 4.44x | 7.28x | **20.61x** |
| code | [▶️ Code](https://www.kaggle.com/danielhanchen/hf-original-alpaca-t4-ddp) | [Code](https://www.kaggle.com/danielhanchen/hf-sdpa-alpaca-t4-ddp) | [Code](https://www.kaggle.com/danielhanchen/unsloth-alpaca-t4-ddp) | | |
| seconds | 9882 | 9946 | 1996 | 2227 | 1357 | 480 |
| memory MB| 9176 | 9128 | 6904 | 6782 | | |
| % saved | | 0.52 | 24.76 | 26.09 | | | |
</details>
### Performance comparisons on 1 Tesla T4 GPU:
<details>
<summary>Click for Time taken for 1 epoch</summary>
One Tesla T4 on Google Colab
`bsz = 2, ga = 4, max_grad_norm = 0.3, num_train_epochs = 1, seed = 3047, lr = 2e-4, wd = 0.01, optim = "adamw_8bit", schedule = "linear", schedule_steps = 10`
| System | GPU | Alpaca (52K) | LAION OIG (210K) | Open Assistant (10K) | SlimOrca (518K) |
| --- | --- | --- | --- | --- | --- |
| Huggingface | 1 T4 | 23h 15m | 56h 28m | 8h 38m | 391h 41m |
| Unsloth Open | 1 T4 | 13h 7m (1.8x) | 31h 47m (1.8x) | 4h 27m (1.9x) | 240h 4m (1.6x) |
| Unsloth Pro | 1 T4 | 3h 6m (7.5x) | 5h 17m (10.7x) | 1h 7m (7.7x) | 59h 53m (6.5x) |
| Unsloth Max | 1 T4 | 2h 39m (8.8x) | 4h 31m (12.5x) | 0h 58m (8.9x) | 51h 30m (7.6x) |
**Peak Memory Usage**
| System | GPU | Alpaca (52K) | LAION OIG (210K) | Open Assistant (10K) | SlimOrca (518K) |
| --- | --- | --- | --- | --- | --- |
| Huggingface | 1 T4 | 7.3GB | 5.9GB | 14.0GB | 13.3GB |
| Unsloth Open | 1 T4 | 6.8GB | 5.7GB | 7.8GB | 7.7GB |
| Unsloth Pro | 1 T4 | 6.4GB | 6.4GB | 6.4GB | 6.4GB |
| Unsloth Max | 1 T4 | 11.4GB | 12.4GB | 11.9GB | 14.4GB |
</details>
<details>
<summary>Click for Performance Comparisons on 2 Tesla T4 GPUs via DDP:</summary>
**Time taken for 1 epoch**
Two Tesla T4s on Kaggle
`bsz = 2, ga = 4, max_grad_norm = 0.3, num_train_epochs = 1, seed = 3047, lr = 2e-4, wd = 0.01, optim = "adamw_8bit", schedule = "linear", schedule_steps = 10`
| System | GPU | Alpaca (52K) | LAION OIG (210K) | Open Assistant (10K) | SlimOrca (518K) * |
| --- | --- | --- | --- | --- | --- |
| Huggingface | 2 T4 | 84h 47m | 163h 48m | 30h 51m | 1301h 24m * |
| Unsloth Pro | 2 T4 | 3h 20m (25.4x) | 5h 43m (28.7x) | 1h 12m (25.7x) | 71h 40m (18.1x) * |
| Unsloth Max | 2 T4 | 3h 4m (27.6x) | 5h 14m (31.3x) | 1h 6m (28.1x) | 54h 20m (23.9x) * |
**Peak Memory Usage on a Multi GPU System (2 GPUs)**
| System | GPU | Alpaca (52K) | LAION OIG (210K) | Open Assistant (10K) | SlimOrca (518K) * |
| --- | --- | --- | --- | --- | --- |
| Huggingface | 2 T4 | 8.4GB \| 6GB | 7.2GB \| 5.3GB | 14.3GB \| 6.6GB | 10.9GB \| 5.9GB * |
| Unsloth Pro | 2 T4 | 7.7GB \| 4.9GB | 7.5GB \| 4.9GB | 8.5GB \| 4.9GB | 6.2GB \| 4.7GB * |
| Unsloth Max | 2 T4 | 10.5GB \| 5GB | 10.6GB \| 5GB | 10.6GB \| 5GB | 10.5GB \| 5GB * |
* Slim Orca `bsz=1` for all benchmarks since `bsz=2` OOMs. We can handle `bsz=2`, but we benchmark it with `bsz=1` for consistency.
</details>
![](https://i.ibb.co/sJ7RhGG/image-41.png)
<br>
### Thank You to
- [HuyNguyen-hust](https://github.com/HuyNguyen-hust) for making [RoPE Embeddings 28% faster](https://github.com/unslothai/unsloth/pull/238)
- [RandomInternetPreson](https://github.com/RandomInternetPreson) for confirming WSL support
- [152334H](https://github.com/152334H) for experimental DPO support
- [atgctg](https://github.com/atgctg) for syntax highlighting