File size: 14,075 Bytes
7f5ed6d 41bf660 7f5ed6d 3c76ac1 7f5ed6d 4151d4c 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 7f5ed6d 4df8738 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
---
# For reference on dataset card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/datasets-cards
{}
---
# ShareRobot Dataset
**ShareRobot**, a high-quality heterogeneous dataset that labels multi-dimensional information, including task planning, object affordance, and end-effector trajectory, effectively enhancing various robotic capabilities.
## Overview of ShareRobot Dataset

For **planning**, we have 51,403 episodes and each with 30 frames. In the process of data generation, we design 5 different templates for each of the 10 question types in RoboVQA [1]. In the process of data generation, we randomly select 2 templates of each question type to generate question-answer pairs for every instance. This process transforms 51,403 instances into 1,027,990 question-answer pairs, with annotators monitoring data generation to maintain the dataset’s integrity.
For **Affordance**, we have 6,522 images and each with affordance areas aligned with an instruction.
For **Trajectory**, we have 6,870 images and each with at least 3 {x, y} coordinates aligned with an instruction.
## Dataset Sources

**ShareRobot** dataset contains 23 original datasets from Open X-Embodiment dataset [2], 12 embodiments and 107 types of atomic tasks.
### Raw Dataset for Planning
| Raw Dataset | Number of Raws |
|:-------------------------------------------------------------:| --------------:|
| nyu_door_opening_surprising_effectiveness | 421 |
| bridge | 15738 |
| dlr_edan_shared_control_converted_externally_to_rlds | 63 |
| utokyo_xarm_pick_and_place_converted_externally_to_rlds | 92 |
| cmu_stretch | 10 |
| asu_table_top_converted_externally_to_rlds | 109 |
| dlr_sara_pour_converted_externally_to_rlds | 51 |
| utokyo_xarm_bimanual_converted_externally_to_rlds | 27 |
| robo_set | 18164 |
| dobbe | 5200 |
| berkeley_autolab_ur5 | 882 |
| qut_dexterous_manpulation | 192 |
| aloha_mobile | 264 |
| dlr_sara_grid_clamp_converted_externally_to_rlds | 40 |
| ucsd_pick_and_place_dataset_converted_externally_to_rlds | 569 |
| ucsd_kitchen_dataset_converted_externally_to_rlds | 39 |
| jaco_play | 956 |
| utokyo_pr2_opening_fridge_converted_externally_to_rlds | 64 |
| conq_hose_manipulation | 56 |
| fmb | 7836 |
| plex_robosuite | 398 |
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 189 |
| viola | 44 |
### Raw Dataset for Affordance
| Raw Dataset | Number of Raws |
|:-------------------------------------------------------------:| -------------:|
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 24 |
| utokyo_xarm_pick_and_place_converted_externally_to_rlds | 23 |
| ucsd_kitchen_dataset_converted_externally_to_rlds | 10 |
| ucsd_pick_and_place_dataset_converted_externally_to_rlds | 112 |
| nyu_door_opening_surprising_effectiveness | 85 |
| jaco_play | 171 |
| bridge | 2610 |
| utokyo_pr2_opening_fridge_converted_externally_to_rlds | 12 |
| asu_table_top_converted_externally_to_rlds | 24 |
| viola | 1 |
| berkeley_autolab_ur5 | 122 |
| aloha_mobile | 23 |
| conq_hose_manipulation | 1 |
| dobbe | 717 |
| fmb | 561 |
| plex_robosuite | 13 |
| qut_dexterous_manpulation | 16 |
| robo_set | 1979 |
| dlr_edan_shared_control_converted_externally_to_rlds | 18 |
| **Summary** | 6522 |
### Raw Dataset for Trajectory
| Raw Dataset | Number of Raws |
|:-------------------------------------------------------------:| -------------:|
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 35 |
| utokyo_xarm_pick_and_place_converted_externally_to_rlds | 36 |
| ucsd_kitchen_dataset_converted_externally_to_rlds | 19 |
| dlr_sara_grid_clamp_converted_externally_to_rlds | 1 |
| ucsd_pick_and_place_dataset_converted_externally_to_rlds | 109 |
| nyu_door_opening_surprising_effectiveness | 74 |
| jaco_play | 175 |
| utokyo_xarm_bimanual_converted_externally_to_rlds | 7 |
| bridge | 2986 |
| utokyo_pr2_opening_fridge_converted_externally_to_rlds | 12 |
| asu_table_top_converted_externally_to_rlds | 22 |
| berkeley_autolab_ur5 | 164 |
| dobbe | 759 |
| fmb | 48 |
| qut_dexterous_manpulation | 29 |
| robo_set | 2374 |
| dlr_sara_pour_converted_externally_to_rlds | 3 |
| dlr_edan_shared_control_converted_externally_to_rlds | 17 |
| **Summary** | 6870 |
## Data Format
### Planning

```json
{
"id"{
"id": 0,
"task": "Future_Prediction_Task",
"selected_step": 3,
"conversations": [
{
"from": "human",
"value": "<image 0-25> After <move the grasped banana towards the mug>, what's the most probable next event?"
},
{
"from": "gpt",
"value": "<place the banana into the mug>"
}
],
"image": [
"/path/to/image_0-25"
]
}
}
```
### Affordance
<!---->
<div style="display: flex; gap: 10px;">
<img src="./images/2d94d985-d47e-4899-9760-c1cb8f19cd89.png" style="width: 300px;" />
<img src="./images/a7817c0b-04b1-4a7c-9535-f9ff7801a689.png" style="width: 300px;" />
</div>
```json
{
"id": 2486,
"meta_data": {
"original_dataset": "bridge",
"original_width": 640,
"original_height": 480
},
"instruction": "place the red fork to the left of the left burner",
"affordance": {
"x": 352.87425387858815,
"y": 186.47871614766484,
"width": 19.296008229513156,
"height": 14.472006172134865
}
```
#### Visualize Code
```python
import json
import os
import cv2
import numpy as np
img_dir = '/path/to/your/original/images/dir'
affordance_json = '/path/to/your/affordances/json'
output_img_dir = '/path/to/your/visualized/images/dir'
with open(affordance_json, 'r') as f:
data = json.load(f)
for item in data:
filepath = os.path.join(img_dir, item['id'])
image = cv2.imread(filepath)
color = (255, 0, 0)
thickness = 2
x_min,y_min = item['affordance']['x'], item['affordance']['y']
x_max,y_max = item['affordance']['x']+item['affordance']['width'], item['affordance']['y']+item['affordance']['height']
# 定义矩形的四个顶点坐标
pts = np.array([
[x_min, y_min], # 左上角
[x_max, y_min], # 右上角
[x_max, y_max], # 右下角
[x_min, y_max] # 左下角
], dtype=np.float32)
# 绘制矩形框
cv2.polylines(image, [pts.astype(int)], isClosed=True, color=color, thickness=thickness)
# 获取相对路径并拼接目标路径
relative_path = os.path.relpath(filepath, img_dir) # 获取相对于 img_dir 的相对路径
output_img_path = os.path.join(output_img_dir, relative_path) # 拼接目标路径
# 创建目标文件夹
output_directory = os.path.dirname(output_img_path)
if not os.path.exists(output_directory):
os.makedirs(output_directory)
# 打印调试信息
print(f"Input filepath: {filepath}")
print(f"Output image path: {output_img_path}")
print(f"Output directory: {output_directory}")
# 保存图像
cv2.imwrite(output_img_path, image)
```
### Trajectory
<!-- -->
<div style="display: flex; gap: 10px;">
<img src="./images/5b923b31-dbbf-470f-af09-5125f5b91ab0.png" style="width: 300px;" />
<img src="./images/1af4535a-acc3-4417-ae33-675f4301f560.png" style="width: 300px;" />
</div>
```json
{
"id": 456,
"meta_data": {
"original_dataset": "bridge",
"original_width": 640,
"original_height": 480
},
"instruction": "reach for the carrot",
"points": [
[
265.45454545454544,
120.0
],
[
275.1515151515152,
162.42424242424244
],
[
280.0,
213.33333333333331
],
[
280.0,
259.3939393939394
]
]
},
```
#### Visualize Code
```python
import json
import os
from PIL import Image, ImageDraw
trajectory_final = '/path/to/your/trajectory_json'
img_dir = '/path/to/your/original/images/dir'
output_img_dir = '/path/to/your/visualzed/images/dir'
with open(trajectory_final, 'r') as f:
data = json.load(f)
for item in data:
filepath = os.path.join(img_dir, item['id'])
points = item['points']
image = Image.open(filepath).convert("RGB") # 确保图像是 RGB 模式
draw = ImageDraw.Draw(image) # 创建绘图对象
# 定义颜色和线宽
color = (255, 0, 0) # 红色 (RGB 格式)
thickness = 2
scaled_points = [
(point[0], point[1])
for point in points
]
# 按照顺序连接相邻的点
for i in range(len(scaled_points) - 1):
draw.line([scaled_points[i], scaled_points[i + 1]], fill=color, width=thickness)
# 获取相对路径并拼接目标路径
relative_path = os.path.relpath(filepath, img_dir)
output_img_path = os.path.join(output_img_dir, relative_path)
# 创建目标文件夹
output_directory = os.path.dirname(output_img_path)
if not os.path.exists(output_directory):
os.makedirs(output_directory)
# 打印调试信息
print(f"Input filepath: {filepath}")
print(f"Output image path: {output_img_path}")
print(f"Output directory: {output_directory}")
# 保存图像
image.save(output_img_path)
```
## Evaluation
## Reference
[1] Pierre Sermanet, Tianli Ding, Jeffrey Zhao, Fei Xia, Debidatta Dwibedi, Keerthana Gopalakrishnan, Christine Chan,Gabriel Dulac-Arnold, Sharath Maddineni, Nikhil J Joshi,et al. Robovqa: Multimodal long-horizon reasoning forrobotics. In ICRA, pages 645–652, 2024.
[2] Abby O’Neill, Abdul Rehman, Abhinav Gupta, AbhiramMaddukuri, Abhishek Gupta, Abhishek Padalkar, AbrahamLee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, et al.Open x-embodiment: Robotic learning datasets and rt-xmodels. arXiv preprint arXiv:2310.08864, 2023.
## Citation
```
@article{ji2025robobrain,
title={RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete},
author={Ji, Yuheng and Tan, Huajie and Shi, Jiayu and Hao, Xiaoshuai and Zhang, Yuan and Zhang, Hengyuan and Wang, Pengwei and Zhao, Mengdi and Mu, Yao and An, Pengju and others},
journal={arXiv preprint arXiv:2502.21257},
year={2025}
}
``` |