Datasets:
BAAI
/

Modalities:
Image
ArXiv:
File size: 14,075 Bytes
7f5ed6d
 
 
 
 
 
41bf660
7f5ed6d
3c76ac1
7f5ed6d
4151d4c
4df8738
 
7f5ed6d
4df8738
7f5ed6d
4df8738
7f5ed6d
 
 
 
4df8738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5ed6d
 
4df8738
7f5ed6d
4df8738
 
 
 
 
7f5ed6d
4df8738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5ed6d
4df8738
7f5ed6d
4df8738
 
 
 
7f5ed6d
4df8738
 
 
7f5ed6d
4df8738
 
 
 
 
7f5ed6d
4df8738
 
 
 
 
7f5ed6d
 
4df8738
 
 
 
 
 
 
7f5ed6d
4df8738
 
 
7f5ed6d
4df8738
 
 
 
7f5ed6d
4df8738
 
 
 
7f5ed6d
4df8738
 
 
7f5ed6d
 
 
4df8738
7f5ed6d
 
 
 
 
4df8738
7f5ed6d
4df8738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
---
# For reference on dataset card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/datasets-cards
{}
---

# ShareRobot Dataset

**ShareRobot**, a high-quality heterogeneous dataset that labels multi-dimensional information, including task planning, object affordance, and end-effector trajectory, effectively enhancing various robotic capabilities.

## Overview of ShareRobot Dataset
![ee709e8b-6f05-428d-abff-2578914aeb0d](./images/ee709e8b-6f05-428d-abff-2578914aeb0d.png)
For **planning**, we have 51,403 episodes and each with 30 frames. In the process of data generation, we design 5 different templates for each of the 10 question types in RoboVQA [1]. In the process of data generation, we randomly select 2 templates of each question type to generate question-answer pairs for every instance. This process transforms 51,403 instances into 1,027,990 question-answer pairs, with annotators monitoring data generation to maintain the dataset’s integrity.

For **Affordance**, we have 6,522 images and each with affordance areas aligned with an instruction. 

For **Trajectory**, we have 6,870 images and each with at least 3 {x, y} coordinates aligned with an instruction.




## Dataset Sources

![a608d080-665a-4ab1-bd8f-d5bd121454da](./images/a608d080-665a-4ab1-bd8f-d5bd121454da.png)

**ShareRobot** dataset contains 23 original datasets from Open X-Embodiment dataset [2], 12 embodiments and 107 types of atomic tasks. 



### Raw Dataset for Planning

| Raw Dataset                                                   | Number of Raws |
|:-------------------------------------------------------------:| --------------:|
| nyu_door_opening_surprising_effectiveness                     | 421            |
| bridge                                                        | 15738          |
| dlr_edan_shared_control_converted_externally_to_rlds          | 63             |
| utokyo_xarm_pick_and_place_converted_externally_to_rlds       | 92             |
| cmu_stretch                                                   | 10             |
| asu_table_top_converted_externally_to_rlds                    | 109            |
| dlr_sara_pour_converted_externally_to_rlds                    | 51             |
| utokyo_xarm_bimanual_converted_externally_to_rlds             | 27             |
| robo_set                                                      | 18164          |
| dobbe                                                         | 5200           |
| berkeley_autolab_ur5                                          | 882            |
| qut_dexterous_manpulation                                     | 192            |
| aloha_mobile                                                  | 264            |
| dlr_sara_grid_clamp_converted_externally_to_rlds              | 40             |
| ucsd_pick_and_place_dataset_converted_externally_to_rlds      | 569            |
| ucsd_kitchen_dataset_converted_externally_to_rlds             | 39             |
| jaco_play                                                     | 956            |
| utokyo_pr2_opening_fridge_converted_externally_to_rlds        | 64             |
| conq_hose_manipulation                                        | 56             |
| fmb                                                           | 7836           |
| plex_robosuite                                                | 398            |
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 189            |
| viola                                                         | 44             |



### Raw Dataset for Affordance

| Raw Dataset                                                   | Number of Raws |
|:-------------------------------------------------------------:| -------------:|
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 24             |
| utokyo_xarm_pick_and_place_converted_externally_to_rlds       | 23             |
| ucsd_kitchen_dataset_converted_externally_to_rlds             | 10             |
| ucsd_pick_and_place_dataset_converted_externally_to_rlds      | 112            |
| nyu_door_opening_surprising_effectiveness                     | 85             |
| jaco_play                                                     | 171            |
| bridge                                                        | 2610           |
| utokyo_pr2_opening_fridge_converted_externally_to_rlds        | 12             |
| asu_table_top_converted_externally_to_rlds                    | 24             |
| viola                                                         | 1              |
| berkeley_autolab_ur5                                          | 122            |
| aloha_mobile                                                  | 23             |
| conq_hose_manipulation                                        | 1              |
| dobbe                                                         | 717            |
| fmb                                                           | 561            |
| plex_robosuite                                                | 13             |
| qut_dexterous_manpulation                                     | 16             |
| robo_set                                                      | 1979           |
| dlr_edan_shared_control_converted_externally_to_rlds          | 18             |
| **Summary**                                                   | 6522           |



### Raw Dataset for Trajectory

| Raw Dataset                                                   | Number of Raws |
|:-------------------------------------------------------------:| -------------:|
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 35             |
| utokyo_xarm_pick_and_place_converted_externally_to_rlds       | 36             |
| ucsd_kitchen_dataset_converted_externally_to_rlds             | 19             |
| dlr_sara_grid_clamp_converted_externally_to_rlds              | 1              |
| ucsd_pick_and_place_dataset_converted_externally_to_rlds      | 109            |
| nyu_door_opening_surprising_effectiveness                     | 74             |
| jaco_play                                                     | 175            |
| utokyo_xarm_bimanual_converted_externally_to_rlds             | 7              |
| bridge                                                        | 2986           |
| utokyo_pr2_opening_fridge_converted_externally_to_rlds        | 12             |
| asu_table_top_converted_externally_to_rlds                    | 22             |
| berkeley_autolab_ur5                                          | 164            |
| dobbe                                                         | 759            |
| fmb                                                           | 48             |
| qut_dexterous_manpulation                                     | 29             |
| robo_set                                                      | 2374           |
| dlr_sara_pour_converted_externally_to_rlds                    | 3              |
| dlr_edan_shared_control_converted_externally_to_rlds          | 17             |
| **Summary**                                                   | 6870           |



## Data Format

### Planning

![data-demo](./images/data-demo.jpg)

```json
{
 "id"{
        "id": 0,
        "task": "Future_Prediction_Task",
        "selected_step": 3,
        "conversations": [
            {
                "from": "human",
                "value": "<image 0-25> After <move the grasped banana towards the mug>, what's the most probable next event?"
            },
            {
                "from": "gpt",
                "value": "<place the banana into the mug>"
            }
        ],
        "image": [
            "/path/to/image_0-25"
        ]
    }        
}
```

     



### Affordance

<!--![2d94d985-d47e-4899-9760-c1cb8f19cd89](./images/2d94d985-d47e-4899-9760-c1cb8f19cd89.png)![a7817c0b-04b1-4a7c-9535-f9ff7801a689](./images/a7817c0b-04b1-4a7c-9535-f9ff7801a689.png)-->
<div style="display: flex; gap: 10px;">
  <img src="./images/2d94d985-d47e-4899-9760-c1cb8f19cd89.png" style="width: 300px;" />
  <img src="./images/a7817c0b-04b1-4a7c-9535-f9ff7801a689.png" style="width: 300px;" />
</div>

```json
{

        "id": 2486,
        "meta_data": {
            "original_dataset": "bridge",
            "original_width": 640,
            "original_height": 480
        },
        "instruction": "place the red fork to the left of the left burner",
        "affordance": {
            "x": 352.87425387858815,
            "y": 186.47871614766484,
            "width": 19.296008229513156,
            "height": 14.472006172134865
    }
```



#### Visualize Code

```python
import json
import os
import cv2
import numpy as np

img_dir = '/path/to/your/original/images/dir'
affordance_json = '/path/to/your/affordances/json'
output_img_dir = '/path/to/your/visualized/images/dir'

with open(affordance_json, 'r') as f:
    data = json.load(f)
    for item in data:
        filepath = os.path.join(img_dir, item['id'])

        image = cv2.imread(filepath)
        color = (255, 0, 0)
        thickness = 2

        x_min,y_min = item['affordance']['x'], item['affordance']['y']
        x_max,y_max = item['affordance']['x']+item['affordance']['width'], item['affordance']['y']+item['affordance']['height']

        # 定义矩形的四个顶点坐标
        pts = np.array([
            [x_min, y_min],  # 左上角
            [x_max, y_min],  # 右上角
            [x_max, y_max],  # 右下角
            [x_min, y_max]   # 左下角
        ], dtype=np.float32)

        # 绘制矩形框
        cv2.polylines(image, [pts.astype(int)], isClosed=True, color=color, thickness=thickness)

        # 获取相对路径并拼接目标路径
        relative_path = os.path.relpath(filepath, img_dir)  # 获取相对于 img_dir 的相对路径
        output_img_path = os.path.join(output_img_dir, relative_path)  # 拼接目标路径

        # 创建目标文件夹
        output_directory = os.path.dirname(output_img_path)
        if not os.path.exists(output_directory):
            os.makedirs(output_directory)

        # 打印调试信息
        print(f"Input filepath: {filepath}")
        print(f"Output image path: {output_img_path}")
        print(f"Output directory: {output_directory}")

        # 保存图像
        cv2.imwrite(output_img_path, image)

```





### Trajectory

<!-- ![5b923b31-dbbf-470f-af09-5125f5b91ab0](./images/5b923b31-dbbf-470f-af09-5125f5b91ab0.png)![1af4535a-acc3-4417-ae33-675f4301f560](./images/1af4535a-acc3-4417-ae33-675f4301f560.png)-->
<div style="display: flex; gap: 10px;">
  <img src="./images/5b923b31-dbbf-470f-af09-5125f5b91ab0.png" style="width: 300px;" />
  <img src="./images/1af4535a-acc3-4417-ae33-675f4301f560.png" style="width: 300px;" />
</div>

```json
{
        "id": 456,
        "meta_data": {
            "original_dataset": "bridge",
            "original_width": 640,
            "original_height": 480
        },
        "instruction": "reach for the carrot",
        "points": [
            [
                265.45454545454544,
                120.0
            ],
            [
                275.1515151515152,
                162.42424242424244
            ],
            [
                280.0,
                213.33333333333331
            ],
            [
                280.0,
                259.3939393939394
            ]
        ]
    },
```

#### Visualize Code

```python
import json
import os
from PIL import Image, ImageDraw

trajectory_final = '/path/to/your/trajectory_json'
img_dir = '/path/to/your/original/images/dir'
output_img_dir = '/path/to/your/visualzed/images/dir'

with open(trajectory_final, 'r') as f:
    data = json.load(f)
    for item in data:
        filepath = os.path.join(img_dir, item['id'])
        points = item['points']

        image = Image.open(filepath).convert("RGB")  # 确保图像是 RGB 模式
        draw = ImageDraw.Draw(image)  # 创建绘图对象
        # 定义颜色和线宽
        color = (255, 0, 0)  # 红色 (RGB 格式)
        thickness = 2


        scaled_points = [
                (point[0], point[1])
                for point in points
            ]
        # 按照顺序连接相邻的点
        for i in range(len(scaled_points) - 1):
            draw.line([scaled_points[i], scaled_points[i + 1]], fill=color, width=thickness)

        # 获取相对路径并拼接目标路径
        relative_path = os.path.relpath(filepath, img_dir)
        output_img_path = os.path.join(output_img_dir, relative_path)

        # 创建目标文件夹
        output_directory = os.path.dirname(output_img_path)
        if not os.path.exists(output_directory):
            os.makedirs(output_directory)

        # 打印调试信息
        print(f"Input filepath: {filepath}")
        print(f"Output image path: {output_img_path}")
        print(f"Output directory: {output_directory}")

        # 保存图像
        image.save(output_img_path)
```



## Evaluation





## Reference

[1] Pierre Sermanet, Tianli Ding, Jeffrey Zhao, Fei Xia, Debidatta Dwibedi, Keerthana Gopalakrishnan, Christine Chan,Gabriel Dulac-Arnold, Sharath Maddineni, Nikhil J Joshi,et al. Robovqa: Multimodal long-horizon reasoning forrobotics. In ICRA, pages 645–652, 2024.

[2] Abby O’Neill, Abdul Rehman, Abhinav Gupta, AbhiramMaddukuri, Abhishek Gupta, Abhishek Padalkar, AbrahamLee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, et al.Open x-embodiment: Robotic learning datasets and rt-xmodels. arXiv preprint arXiv:2310.08864, 2023.



## Citation
```
@article{ji2025robobrain,
  title={RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete},
  author={Ji, Yuheng and Tan, Huajie and Shi, Jiayu and Hao, Xiaoshuai and Zhang, Yuan and Zhang, Hengyuan and Wang, Pengwei and Zhao, Mengdi and Mu, Yao and An, Pengju and others},
  journal={arXiv preprint arXiv:2502.21257},
  year={2025}
}
```