dataset_info:
- config_name: edit
features:
- name: input
dtype: string
- name: target
dtype: string
- name: problem_id
dtype: string
splits:
- name: train
num_bytes: 56166875
num_examples: 48386
- name: val
num_bytes: 3336062
num_examples: 3338
- name: test
num_bytes: 857857
num_examples: 794
download_size: 365069
dataset_size: 60360794
- config_name: generate
features:
- name: problem_id
dtype: string
- name: problem_description
dtype: string
splits:
- name: train
num_bytes: 1793963
num_examples: 1262
- name: val
num_bytes: 96855
num_examples: 69
- name: test
num_bytes: 60776
num_examples: 49
download_size: 37588
dataset_size: 1951594
- config_name: generate_eval
features:
- name: problem_id
dtype: string
- name: runtimes
sequence: float64
- name: memories
sequence: float64
- name: num_sol
dtype: int64
splits:
- name: test
num_bytes: 770704
num_examples: 48
download_size: 147211
dataset_size: 770704
configs:
- config_name: edit
data_files:
- split: train
path: edit/train-*
- split: val
path: edit/val-*
- split: test
path: edit/test-*
- config_name: generate
data_files:
- split: train
path: generate/train-*
- split: val
path: generate/val-*
- split: test
path: generate/test-*
- config_name: generate_eval
data_files:
- split: test
path: generate_eval/test-*
ECCO
Dataset from the paper "ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness?"
The dataset consists of 2 subsets edit
and generate
each with 3 splits (train
, val
and test
).
Code repository: https://github.com/CodeEff/ECCO
Loading the dataset / benchmark
dataset = load_dataset('CodeEff/ECCO', 'edit') # For history-based editing setting
dataset = load_dataset('CodeEff/ECCO', 'generate') # For nl-instructed generation setting
These are used to generate code by each model across the 2 paradigms. We use the test
split for the evaluation/results and the train
and val
splits for finetuning and few-shot prompting.
Download the test cases
mkdir data && cd data
wget https://huggingface.co/datasets/CodeEff/ECCO/resolve/main/test_cases.zip
unzip test_cases.zip
Evaluation dataset
The dataset also consists of an additional 3rd subset generate_eval
which consists of the runtime and memory of a spectrum of user solutions for each problem in the test
split.
This is used for the percentile evaluation of the NL-instructed generation paradigm.
Data Sources
Dataset is sourced from IBM CodeNet which consists of primarily competetive programming solutions. This is further filtered for efficiency and correctness as described in our paper.
Citation
@article{waghjale2024ecco,
title={ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness?},
author={Waghjale, Siddhant and Veerendranath, Vishruth and Wang, Zora Zhiruo and Fried, Daniel},
journal={arXiv preprint arXiv:2407.14044},
year={2024}
}