prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): <|fim_middle|> class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
return get_mock_api_enrollment_gender_data(course_id)
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): <|fim_middle|> <|fim▁end|>
viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id)
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): <|fim_middle|> <|fim▁end|>
return get_mock_api_course_activity(course_id)
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def <|fim_middle|>(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
assertIsValidCSV
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def <|fim_middle|>(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
assertResponseContentType
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def <|fim_middle|>(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
assertResponseFilename
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def <|fim_middle|>(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
_test_csv
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def <|fim_middle|>(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
test_response_no_data
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def <|fim_middle|>(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
test_response
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def <|fim_middle|>(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
test_404
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def <|fim_middle|>(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
get_mock_data
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def <|fim_middle|>(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
get_mock_data
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def <|fim_middle|>(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
setUpClass
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def <|fim_middle|>(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
get_mock_data
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def <|fim_middle|>(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
get_mock_data
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def <|fim_middle|>(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
get_mock_data
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def <|fim_middle|>(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def get_mock_data(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
get_mock_data
<|file_name|>test_csv.py<|end_file_name|><|fim▁begin|>from ddt import ddt, data from django.core.urlresolvers import reverse from django.test import TestCase import mock from analyticsclient.exceptions import NotFoundError from courses.tests import SwitchMixin from courses.tests.test_views import ViewTestMixin, DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID from courses.tests.utils import convert_list_of_dicts_to_csv, get_mock_api_enrollment_geography_data, \ get_mock_api_enrollment_data, get_mock_api_course_activity, get_mock_api_enrollment_age_data, \ get_mock_api_enrollment_education_data, get_mock_api_enrollment_gender_data @ddt # pylint: disable=abstract-method class CourseCSVTestMixin(ViewTestMixin): client = None column_headings = None base_file_name = None def assertIsValidCSV(self, course_id, csv_data): response = self.client.get(self.path(course_id=course_id)) # Check content type self.assertResponseContentType(response, 'text/csv') # Check filename csv_prefix = u'edX-DemoX-Demo_2014' if course_id == DEMO_COURSE_ID else u'edX-DemoX-Demo_Course' filename = '{0}--{1}.csv'.format(csv_prefix, self.base_file_name) self.assertResponseFilename(response, filename) # Check data self.assertEqual(response.content, csv_data) def assertResponseContentType(self, response, content_type): self.assertEqual(response['Content-Type'], content_type) def assertResponseFilename(self, response, filename): self.assertEqual(response['Content-Disposition'], 'attachment; filename="{0}"'.format(filename)) def _test_csv(self, course_id, csv_data): with mock.patch(self.api_method, return_value=csv_data): self.assertIsValidCSV(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response_no_data(self, course_id): # Create an "empty" CSV that only has headers csv_data = convert_list_of_dicts_to_csv([], self.column_headings) self._test_csv(course_id, csv_data) @data(DEMO_COURSE_ID, DEPRECATED_DEMO_COURSE_ID) def test_response(self, course_id): csv_data = self.get_mock_data(course_id) csv_data = convert_list_of_dicts_to_csv(csv_data) self._test_csv(course_id, csv_data) def test_404(self): course_id = 'fakeOrg/soFake/Fake_Course' self.grant_permission(self.user, course_id) path = reverse(self.viewname, kwargs={'course_id': course_id}) with mock.patch(self.api_method, side_effect=NotFoundError): response = self.client.get(path, follow=True) self.assertEqual(response.status_code, 404) class CourseEnrollmentByCountryCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_geography' column_headings = ['count', 'country', 'course_id', 'date'] base_file_name = 'enrollment-location' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_geography_data(course_id) class CourseEnrollmentCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentModeCSVViewTests(SwitchMixin, CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment' column_headings = ['count', 'course_id', 'date', 'audit', 'honor', 'professional', 'verified'] base_file_name = 'enrollment' api_method = 'analyticsclient.course.Course.enrollment' @classmethod def setUpClass(cls): cls.toggle_switch('display_verified_enrollment', True) def get_mock_data(self, course_id): return get_mock_api_enrollment_data(course_id) class CourseEnrollmentDemographicsByAgeCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_age' column_headings = ['birth_year', 'count', 'course_id', 'created', 'date'] base_file_name = 'enrollment-by-birth-year' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_age_data(course_id) class CourseEnrollmentDemographicsByEducationCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_education' column_headings = ['count', 'course_id', 'created', 'date', 'education_level.name', 'education_level.short_name'] base_file_name = 'enrollment-by-education' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_education_data(course_id) class CourseEnrollmentByDemographicsGenderCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:enrollment_demographics_gender' column_headings = ['count', 'course_id', 'created', 'date', 'gender'] base_file_name = 'enrollment-by-gender' api_method = 'analyticsclient.course.Course.enrollment' def get_mock_data(self, course_id): return get_mock_api_enrollment_gender_data(course_id) class CourseEngagementActivityTrendCSVViewTests(CourseCSVTestMixin, TestCase): viewname = 'courses:csv:engagement_activity_trend' column_headings = ['any', 'attempted_problem', 'course_id', 'interval_end', 'interval_start', 'played_video', 'posted_forum'] base_file_name = 'engagement-activity' api_method = 'analyticsclient.course.Course.activity' def <|fim_middle|>(self, course_id): return get_mock_api_course_activity(course_id) <|fim▁end|>
get_mock_data
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script")<|fim▁hole|> @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {})<|fim▁end|>
self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {})
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): <|fim_middle|> class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
"""Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): <|fim_middle|> <|fim▁end|>
test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {})
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): <|fim_middle|> def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {})
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): <|fim_middle|> @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {})
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): <|fim_middle|> def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"})
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): <|fim_middle|> @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"})
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): <|fim_middle|> def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"})
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): <|fim_middle|> <|fim▁end|>
links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {})
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): <|fim_middle|> else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
return True
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: <|fim_middle|> class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
return False
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def <|fim_middle|>(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
unsupported_versions_1979
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def <|fim_middle|>(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
test_itertags_single_text
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def <|fim_middle|>(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
test_itertags_attrs_text
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def <|fim_middle|>(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
test_itertags_multi_attrs
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def <|fim_middle|>(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
test_multi_line_a
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def <|fim_middle|>(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def test_tag_inner_tag(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
test_no_end_tag
<|file_name|>test_plugin_utils.py<|end_file_name|><|fim▁begin|>import sys import unittest from streamlink.plugin.api.utils import itertags def unsupported_versions_1979(): """Unsupported python versions for itertags 3.7.0 - 3.7.2 and 3.8.0a1 - https://github.com/streamlink/streamlink/issues/1979 - https://bugs.python.org/issue34294 """ v = sys.version_info if (v.major == 3) and ( # 3.7.0 - 3.7.2 (v.minor == 7 and v.micro <= 2) # 3.8.0a1 or (v.minor == 8 and v.micro == 0 and v.releaselevel == 'alpha' and v.serial <= 1) ): return True else: return False class TestPluginUtil(unittest.TestCase): test_html = """ <!doctype html> <html lang="en" class="no-js"> <title>Title</title> <meta property="og:type" content= "website" /> <meta property="og:url" content="http://test.se/"/> <meta property="og:site_name" content="Test" /> <script src="https://test.se/test.js"></script> <link rel="stylesheet" type="text/css" href="https://test.se/test.css"> <script>Tester.ready(function () { alert("Hello, world!"); });</script> <p> <a href="http://test.se/foo">bar</a> </p> </html> """ # noqa: W291 def test_itertags_single_text(self): title = list(itertags(self.test_html, "title")) self.assertTrue(len(title), 1) self.assertEqual(title[0].tag, "title") self.assertEqual(title[0].text, "Title") self.assertEqual(title[0].attributes, {}) def test_itertags_attrs_text(self): script = list(itertags(self.test_html, "script")) self.assertTrue(len(script), 2) self.assertEqual(script[0].tag, "script") self.assertEqual(script[0].text, "") self.assertEqual(script[0].attributes, {"src": "https://test.se/test.js"}) self.assertEqual(script[1].tag, "script") self.assertEqual(script[1].text.strip(), """Tester.ready(function () {\nalert("Hello, world!"); });""") self.assertEqual(script[1].attributes, {}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_itertags_multi_attrs(self): metas = list(itertags(self.test_html, "meta")) self.assertTrue(len(metas), 3) self.assertTrue(all(meta.tag == "meta" for meta in metas)) self.assertEqual(metas[0].text, None) self.assertEqual(metas[1].text, None) self.assertEqual(metas[2].text, None) self.assertEqual(metas[0].attributes, {"property": "og:type", "content": "website"}) self.assertEqual(metas[1].attributes, {"property": "og:url", "content": "http://test.se/"}) self.assertEqual(metas[2].attributes, {"property": "og:site_name", "content": "Test"}) def test_multi_line_a(self): anchor = list(itertags(self.test_html, "a")) self.assertTrue(len(anchor), 1) self.assertEqual(anchor[0].tag, "a") self.assertEqual(anchor[0].text, "bar") self.assertEqual(anchor[0].attributes, {"href": "http://test.se/foo"}) @unittest.skipIf(unsupported_versions_1979(), "python3.7 issue, see bpo-34294") def test_no_end_tag(self): links = list(itertags(self.test_html, "link")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "link") self.assertEqual(links[0].text, None) self.assertEqual(links[0].attributes, {"rel": "stylesheet", "type": "text/css", "href": "https://test.se/test.css"}) def <|fim_middle|>(self): links = list(itertags(self.test_html, "p")) self.assertTrue(len(links), 1) self.assertEqual(links[0].tag, "p") self.assertEqual(links[0].text.strip(), '<a \nhref="http://test.se/foo">bar</a>') self.assertEqual(links[0].attributes, {}) <|fim▁end|>
test_tag_inner_tag
<|file_name|>_bordercolor.py<|end_file_name|><|fim▁begin|>import _plotly_utils.basevalidators class BordercolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="bordercolor", parent_name="sankey.hoverlabel", **kwargs ): super(BordercolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True),<|fim▁hole|> edit_type=kwargs.pop("edit_type", "calc"), **kwargs )<|fim▁end|>
<|file_name|>_bordercolor.py<|end_file_name|><|fim▁begin|>import _plotly_utils.basevalidators class BordercolorValidator(_plotly_utils.basevalidators.ColorValidator): <|fim_middle|> <|fim▁end|>
def __init__( self, plotly_name="bordercolor", parent_name="sankey.hoverlabel", **kwargs ): super(BordercolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "calc"), **kwargs )
<|file_name|>_bordercolor.py<|end_file_name|><|fim▁begin|>import _plotly_utils.basevalidators class BordercolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="bordercolor", parent_name="sankey.hoverlabel", **kwargs ): <|fim_middle|> <|fim▁end|>
super(BordercolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "calc"), **kwargs )
<|file_name|>_bordercolor.py<|end_file_name|><|fim▁begin|>import _plotly_utils.basevalidators class BordercolorValidator(_plotly_utils.basevalidators.ColorValidator): def <|fim_middle|>( self, plotly_name="bordercolor", parent_name="sankey.hoverlabel", **kwargs ): super(BordercolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "calc"), **kwargs ) <|fim▁end|>
__init__
<|file_name|>urls.py<|end_file_name|><|fim▁begin|># This file is part of authapi. # Copyright (C) 2014-2020 Agora Voting SL <[email protected]> # authapi is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by<|fim▁hole|># but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with authapi. If not, see <http://www.gnu.org/licenses/>. from django.conf.urls import url from .decorators import captcha_required from captcha import views urlpatterns = [ url(r'^new/', views.new_captcha, name='new_captcha'), ]<|fim▁end|>
# the Free Software Foundation, either version 3 of the License. # authapi is distributed in the hope that it will be useful,
<|file_name|>setup.py<|end_file_name|><|fim▁begin|>import re from setuptools import setup def find_version(filename):<|fim▁hole|> for line in open(filename): version_match = _version_re.match(line) if version_match: return version_match.group(1) __version__ = find_version('librdflib/__init__.py') with open('README.md', 'rt') as f: long_description = f.read() tests_require = ['pytest'] setup( name='librdflib', version=__version__, description='librdf parser for rdflib', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/tgbugs/pyontutils/tree/master/librdflib', author='Tom Gillespie', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', ], keywords='rdflib librdf rdf parser parsing ttl rdfxml', packages=['librdflib'], python_requires='>=3', tests_require=tests_require, install_requires=[ 'rdflib', # really 5.0.0 if my changes go in but dev < 5 ], extras_require={'dev': ['pytest-cov', 'wheel'], 'test': tests_require, }, entry_points={ 'rdf.plugins.parser': [ 'librdfxml = librdflib:libRdfxmlParser', 'libttl = librdflib:libTurtleParser', ], }, )<|fim▁end|>
_version_re = re.compile(r"__version__ = '(.*)'")
<|file_name|>setup.py<|end_file_name|><|fim▁begin|>import re from setuptools import setup def find_version(filename): <|fim_middle|> __version__ = find_version('librdflib/__init__.py') with open('README.md', 'rt') as f: long_description = f.read() tests_require = ['pytest'] setup( name='librdflib', version=__version__, description='librdf parser for rdflib', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/tgbugs/pyontutils/tree/master/librdflib', author='Tom Gillespie', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', ], keywords='rdflib librdf rdf parser parsing ttl rdfxml', packages=['librdflib'], python_requires='>=3', tests_require=tests_require, install_requires=[ 'rdflib', # really 5.0.0 if my changes go in but dev < 5 ], extras_require={'dev': ['pytest-cov', 'wheel'], 'test': tests_require, }, entry_points={ 'rdf.plugins.parser': [ 'librdfxml = librdflib:libRdfxmlParser', 'libttl = librdflib:libTurtleParser', ], }, ) <|fim▁end|>
_version_re = re.compile(r"__version__ = '(.*)'") for line in open(filename): version_match = _version_re.match(line) if version_match: return version_match.group(1)
<|file_name|>setup.py<|end_file_name|><|fim▁begin|>import re from setuptools import setup def find_version(filename): _version_re = re.compile(r"__version__ = '(.*)'") for line in open(filename): version_match = _version_re.match(line) if version_match: <|fim_middle|> __version__ = find_version('librdflib/__init__.py') with open('README.md', 'rt') as f: long_description = f.read() tests_require = ['pytest'] setup( name='librdflib', version=__version__, description='librdf parser for rdflib', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/tgbugs/pyontutils/tree/master/librdflib', author='Tom Gillespie', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', ], keywords='rdflib librdf rdf parser parsing ttl rdfxml', packages=['librdflib'], python_requires='>=3', tests_require=tests_require, install_requires=[ 'rdflib', # really 5.0.0 if my changes go in but dev < 5 ], extras_require={'dev': ['pytest-cov', 'wheel'], 'test': tests_require, }, entry_points={ 'rdf.plugins.parser': [ 'librdfxml = librdflib:libRdfxmlParser', 'libttl = librdflib:libTurtleParser', ], }, ) <|fim▁end|>
return version_match.group(1)
<|file_name|>setup.py<|end_file_name|><|fim▁begin|>import re from setuptools import setup def <|fim_middle|>(filename): _version_re = re.compile(r"__version__ = '(.*)'") for line in open(filename): version_match = _version_re.match(line) if version_match: return version_match.group(1) __version__ = find_version('librdflib/__init__.py') with open('README.md', 'rt') as f: long_description = f.read() tests_require = ['pytest'] setup( name='librdflib', version=__version__, description='librdf parser for rdflib', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/tgbugs/pyontutils/tree/master/librdflib', author='Tom Gillespie', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', ], keywords='rdflib librdf rdf parser parsing ttl rdfxml', packages=['librdflib'], python_requires='>=3', tests_require=tests_require, install_requires=[ 'rdflib', # really 5.0.0 if my changes go in but dev < 5 ], extras_require={'dev': ['pytest-cov', 'wheel'], 'test': tests_require, }, entry_points={ 'rdf.plugins.parser': [ 'librdfxml = librdflib:libRdfxmlParser', 'libttl = librdflib:libTurtleParser', ], }, ) <|fim▁end|>
find_version
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod<|fim▁hole|> @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return ""<|fim▁end|>
def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete."""
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): <|fim_middle|> class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
"""Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass."""
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: <|fim_middle|> @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
"""Defines how to start recording an action."""
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: <|fim_middle|> @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
"""Defines how to record the duration once an action is complete."""
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: <|fim_middle|> @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
"""Create profiler summary in text format."""
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: <|fim_middle|> @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
"""Execute arbitrary pre-profiling set-up steps as defined by subclass."""
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: <|fim_middle|> class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
"""Execute arbitrary post-profiling tear-down steps as defined by subclass."""
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): <|fim_middle|> class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
""" If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: <|fim_middle|> @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: <|fim_middle|> def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
""" Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: <|fim_middle|> def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: <|fim_middle|> def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
if self._local_rank in (None, 0): log.info(*args, **kwargs)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: <|fim_middle|> def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: <|fim_middle|> def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: <|fim_middle|> def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
"""Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: <|fim_middle|> def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: <|fim_middle|> def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
"""Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: <|fim_middle|> def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
""" Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: <|fim_middle|> def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
self.teardown(stage=self._stage)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: <|fim_middle|> def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
raise NotImplementedError
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: <|fim_middle|> def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
raise NotImplementedError
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: <|fim_middle|> @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
raise NotImplementedError
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: <|fim_middle|> class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
return 0 if self._local_rank is None else self._local_rank
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): <|fim_middle|> <|fim▁end|>
""" This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return ""
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: <|fim_middle|> def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
pass
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: <|fim_middle|> def summary(self) -> str: return "" <|fim▁end|>
pass
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: <|fim_middle|> <|fim▁end|>
return ""
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): <|fim_middle|> def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
log.info(*args, **kwargs)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: <|fim_middle|> if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
args.append(self._stage)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: <|fim_middle|> if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
args.append(self.filename)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: <|fim_middle|> if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
args.append(str(self._local_rank))
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: <|fim_middle|> filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
args.append(action_name)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: <|fim_middle|> if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
return
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: <|fim_middle|> else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: <|fim_middle|> def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
self._write_stream = self._rank_zero_info
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: <|fim_middle|> if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
self._write_stream(summary)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: <|fim_middle|> self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
self._output_file.flush()
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: <|fim_middle|> output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
header += f" rank: {self._local_rank}"
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: <|fim_middle|> def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
self._output_file.close() self._output_file = None # can't pickle TextIOWrapper
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def <|fim_middle|>(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
start
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def <|fim_middle|>(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
stop
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def <|fim_middle|>(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
summary
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def <|fim_middle|>(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
setup
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def <|fim_middle|>(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
teardown
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def <|fim_middle|>( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
__init__
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def <|fim_middle|>(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
profile
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def <|fim_middle|>(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
profile_iterable
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def <|fim_middle|>(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
_rank_zero_info
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def <|fim_middle|>( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
_prepare_filename
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def <|fim_middle|>(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
_prepare_streams
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def <|fim_middle|>(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
describe
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def <|fim_middle|>(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
_stats_to_str
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def <|fim_middle|>( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
setup
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def <|fim_middle|>(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
teardown
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def <|fim_middle|>(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return "" <|fim▁end|>
__del__