prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: <|fim_middle|> return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " <|fim_middle|> else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
quote_start = '"'
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: <|fim_middle|> if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
quote_start = ""
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: <|fim_middle|> else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
quote_end = '"'
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: <|fim_middle|> if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
quote_end = " "
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: <|fim_middle|> else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
speech_act = seq_map[i]['speech_act'] + ","
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: <|fim_middle|> tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
speech_act = seq_map[i]['speech_act']
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def <|fim_middle|>(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
__init__
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def <|fim_middle|>(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
make_transition_probs
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def <|fim_middle|>(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
after
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def <|fim_middle|>(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
speaker_sequence
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def <|fim_middle|>(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
speech_sequence
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def <|fim_middle|>(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
seq_to_names
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def <|fim_middle|>(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
make_speech_bits
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def <|fim_middle|>(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
simplify
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def <|fim_middle|>(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
report_seq
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def <|fim_middle|>(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def dev(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
make_dialogue
<|file_name|>dialogue.py<|end_file_name|><|fim▁begin|>import numpy as np from numpy import cumsum, sum, searchsorted from numpy.random import rand import math import utils import core.sentence as sentence import core.markovchain as mc import logging logger = logging.getLogger(__name__) # Dialogue making class. Need to review where to return a string, where to return a list of tokens, etc. # setters: list of speakers, pronouns, priors etc. # random transitions # Internal: build list of structures: # e.g.{:speaker_name "Alice", :speaker_pronoun "she", :speaker_str "she", :speech_verb "said", :position "end"} # Then end with fn that maps that out to a suitable string # e.g. "<SPEECH>, she said." # External bit then replaces <SPEECH> with a markov-chain-generated sentence (or several). class dialogue_maker(object): """Class to handle creating dialogue based on a list of speakers and a sentence generator.""" def __init__(self, names, pronouns, mc): self.speakers = [{"name": n, "pronoun": p} for n, p in list(zip(names, pronouns))] self._transitions = self.make_transition_probs() self._speech_acts = ["said", "whispered", "shouted", "cried"] self._acts_transitions = [25, 2, 2, 2] self.mc = mc # self.seeds = seeds self.target_len = np.random.randint(5, 50, size=len(names)) # rough words per sentence def make_transition_probs(self): """Make transition matrix between speakers, with random symmetric biases added in""" n = len(self.speakers) # TODO why this line ??? transitions = np.random.randint(5, size=(n, n)) + 1 transitions += transitions.transpose() for i in range(0, math.floor(n / 2)): s1 = np.random.randint(n) s2 = np.random.randint(n) transitions[s1][s2] += 10 transitions[s2][s1] += 8 return(transitions) def after(self, speaker_id): """Pick next person to speak""" row = self._transitions[speaker_id] sucessor = searchsorted(cumsum(row), rand() * sum(row)) return sucessor def speaker_sequence(self, speaker_id, n): """Random walk through transitions matrix to produce a sequence of speaker ids""" seq = [] for i in range(n): seq.append(speaker_id) speaker_id = self.after(speaker_id) return seq def speech_sequence(self, n): speech_acts_seq = [] next_speech_id = 0 for i in range(n): next_speech_id = searchsorted(cumsum(self._acts_transitions), rand() * sum(self._acts_transitions)) speech_acts_seq.append(self._speech_acts[next_speech_id]) return speech_acts_seq def seq_to_names(self, sequence): return([self.speakers[id] for id in sequence]) def make_speech_bits(self, seeds): n = len(seeds) speaker_id = self.speaker_sequence(0, n) speech_acts_seq = self.speech_sequence(n) bits = [] ss = sentence.SentenceMaker(self.mc) for i in range(n): sent_toks = ss.generate_sentence_tokens([seeds[i]], self.target_len[speaker_id[i]]) sent_toks = ss.polish_sentence(sent_toks) bits.append({'speaker_name': self.speakers[speaker_id[i]]["name"], 'speech_act': speech_acts_seq[speaker_id[i]], 'seq_id': speaker_id[i], 'speech': sent_toks, 'paragraph': True}) return(bits) def simplify(self, seq_map): "Take a sequence of speech parts and make more natural by removing name reptition etc." for i in range(0, len(seq_map)): seq_map[i]['speaker_str'] = seq_map[i]['speaker_name'] # default # Same speaker contiues: if i > 0 and seq_map[i]['seq_id'] == seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = False else: if i > 1 and seq_map[i]['seq_id'] == seq_map[i - 2]['seq_id'] \ and seq_map[i]['seq_id'] != seq_map[i - 1]['seq_id']: seq_map[i]['speaker_str'] = "" seq_map[i]['speech_act'] = "" seq_map[i]['paragraph'] = True return seq_map def report_seq(self, seq_map): """Convert sequence of speeches to a tokens.""" sents = [] for i in range(0, len(seq_map)): if seq_map[i]['paragraph']: # text += "\n " quote_start = '"' else: quote_start = "" if i > len(seq_map) - 2 or seq_map[i + 1]['paragraph']: quote_end = '"' else: quote_end = " " if len(seq_map[i]['speech_act']) > 0: speech_act = seq_map[i]['speech_act'] + "," else: speech_act = seq_map[i]['speech_act'] tokens = [utils.START_TOKEN] tokens.append(seq_map[i]['speaker_str']) tokens.append(speech_act) tokens.append(quote_start) tokens.extend(seq_map[i]['speech'][1:-1]) tokens.append(quote_end) tokens.append(utils.END_TOKEN) sents.append(tokens) return sents def make_dialogue(self, seeds): """Returns a list of sentences, each being a list of tokens.""" acts = self.make_speech_bits(seeds) seq_map = self.simplify(acts) sents = self.report_seq(seq_map) return(sents) def <|fim_middle|>(): import knowledge.names as names mcW = mc.MarkovChain() nm = names.NameMaker() speakers = [nm.random_person() for i in range(1, 4)] dm = dialogue_maker([n['name'] for n in speakers], [n['pronoun'] for n in speakers], mcW) dlg = dm.make_dialogue(["dog", "run", "spot"]) print(dlg) <|fim▁end|>
dev
<|file_name|>rst2xml.py<|end_file_name|><|fim▁begin|>#!/Users/Varun/Documents/GitHub/LockScreen/venv/bin/python # $Id: rst2xml.py 4564 2006-05-21 20:44:42Z wiemann $ # Author: David Goodger <[email protected]> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing Docutils XML. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description description = ('Generates Docutils-native XML from standalone '<|fim▁hole|><|fim▁end|>
'reStructuredText sources. ' + default_description) publish_cmdline(writer_name='xml', description=description)
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): filenames = ["%d" % i for i in range (5)] def setUp (self): utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass def tearDown (self): utils.rmtemp () def test_glob (self):<|fim▁hole|> def test_listdir (self): import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version)) # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": unittest.main () if sys.stdout.isatty (): raw_input ("Press enter...")<|fim▁end|>
import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern))
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): <|fim_middle|> # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": unittest.main () if sys.stdout.isatty (): raw_input ("Press enter...") <|fim▁end|>
filenames = ["%d" % i for i in range (5)] def setUp (self): utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass def tearDown (self): utils.rmtemp () def test_glob (self): import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern)) def test_listdir (self): import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version))
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): filenames = ["%d" % i for i in range (5)] def setUp (self): <|fim_middle|> def tearDown (self): utils.rmtemp () def test_glob (self): import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern)) def test_listdir (self): import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version)) # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": unittest.main () if sys.stdout.isatty (): raw_input ("Press enter...") <|fim▁end|>
utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): filenames = ["%d" % i for i in range (5)] def setUp (self): utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass def tearDown (self): <|fim_middle|> def test_glob (self): import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern)) def test_listdir (self): import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version)) # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": unittest.main () if sys.stdout.isatty (): raw_input ("Press enter...") <|fim▁end|>
utils.rmtemp ()
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): filenames = ["%d" % i for i in range (5)] def setUp (self): utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass def tearDown (self): utils.rmtemp () def test_glob (self): <|fim_middle|> def test_listdir (self): import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version)) # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": unittest.main () if sys.stdout.isatty (): raw_input ("Press enter...") <|fim▁end|>
import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern))
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): filenames = ["%d" % i for i in range (5)] def setUp (self): utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass def tearDown (self): utils.rmtemp () def test_glob (self): import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern)) def test_listdir (self): <|fim_middle|> # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": unittest.main () if sys.stdout.isatty (): raw_input ("Press enter...") <|fim▁end|>
import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version))
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): filenames = ["%d" % i for i in range (5)] def setUp (self): utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass def tearDown (self): utils.rmtemp () def test_glob (self): import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern)) def test_listdir (self): import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version)) # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": <|fim_middle|> <|fim▁end|>
unittest.main () if sys.stdout.isatty (): raw_input ("Press enter...")
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): filenames = ["%d" % i for i in range (5)] def setUp (self): utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass def tearDown (self): utils.rmtemp () def test_glob (self): import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern)) def test_listdir (self): import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version)) # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": unittest.main () if sys.stdout.isatty (): <|fim_middle|> <|fim▁end|>
raw_input ("Press enter...")
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): filenames = ["%d" % i for i in range (5)] def <|fim_middle|> (self): utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass def tearDown (self): utils.rmtemp () def test_glob (self): import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern)) def test_listdir (self): import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version)) # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": unittest.main () if sys.stdout.isatty (): raw_input ("Press enter...") <|fim▁end|>
setUp
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): filenames = ["%d" % i for i in range (5)] def setUp (self): utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass def <|fim_middle|> (self): utils.rmtemp () def test_glob (self): import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern)) def test_listdir (self): import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version)) # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": unittest.main () if sys.stdout.isatty (): raw_input ("Press enter...") <|fim▁end|>
tearDown
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): filenames = ["%d" % i for i in range (5)] def setUp (self): utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass def tearDown (self): utils.rmtemp () def <|fim_middle|> (self): import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern)) def test_listdir (self): import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version)) # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": unittest.main () if sys.stdout.isatty (): raw_input ("Press enter...") <|fim▁end|>
test_glob
<|file_name|>test_fs.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys import tempfile from winsys._compat import unittest import uuid import win32file from winsys.tests.test_fs import utils from winsys import fs class TestFS (unittest.TestCase): filenames = ["%d" % i for i in range (5)] def setUp (self): utils.mktemp () for filename in self.filenames: with open (os.path.join (utils.TEST_ROOT, filename), "w"): pass def tearDown (self): utils.rmtemp () def test_glob (self): import glob pattern = os.path.join (utils.TEST_ROOT, "*") self.assertEquals (list (fs.glob (pattern)), glob.glob (pattern)) def <|fim_middle|> (self): import os fs_version = list (fs.listdir (utils.TEST_ROOT)) os_version = os.listdir (utils.TEST_ROOT) self.assertEquals (fs_version, os_version, "%s differs from %s" % (fs_version, os_version)) # # All the other module-level functions are hand-offs # to the corresponding Entry methods. # if __name__ == "__main__": unittest.main () if sys.stdout.isatty (): raw_input ("Press enter...") <|fim▁end|>
test_listdir
<|file_name|>run_evaluation.py<|end_file_name|><|fim▁begin|>import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sys.path.append(os.path.dirname(BASE_DIR)) from global_variables import * from evaluation_helper import * cls_names = g_shape_names img_name_file_list = [os.path.join(g_real_images_voc12val_det_bbox_folder, name+'.txt') for name in cls_names] det_bbox_mat_file_list = [os.path.join(g_detection_results_folder, x.rstrip()) for x in open(g_rcnn_detection_bbox_mat_filelist)] result_folder = os.path.join(BASE_DIR, 'avp_test_results') test_avp_nv(cls_names, img_name_file_list, det_bbox_mat_file_list, result_folder) img_name_file_list = [os.path.join(g_real_images_voc12val_easy_gt_bbox_folder, name+'.txt') for name in cls_names] view_label_folder = g_real_images_voc12val_easy_gt_bbox_folder result_folder = os.path.join(BASE_DIR, 'vp_test_results')<|fim▁hole|><|fim▁end|>
test_vp_acc(cls_names, img_name_file_list, result_folder, view_label_folder)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) <|fim▁hole|> d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc<|fim▁end|>
from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): <|fim_middle|> def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
""" eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): <|fim_middle|> def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
""" returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): <|fim_middle|> def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
return _Ntrapz(y, x, axis=axis)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): <|fim_middle|> def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
return _Nptp(x, axis)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): <|fim_middle|> def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
return _Ncumprod(x, axis)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): <|fim_middle|> def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
return _Nmax(x, axis)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): <|fim_middle|> def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
return _Nmin(x, axis)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): <|fim_middle|> def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
return _Nprod(x, axis)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): <|fim_middle|> def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.))
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): <|fim_middle|> # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
return _Nmean(x, axis)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): <|fim_middle|> from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): <|fim_middle|> from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d))
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: <|fim_middle|> m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
M = N
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: <|fim_middle|> def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
return m.astype(dtype)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: <|fim_middle|> m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
M = N
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: <|fim_middle|> def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
return m.astype(dtype)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: <|fim_middle|> else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
y = m
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: <|fim_middle|> if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
y = y
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: <|fim_middle|> if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
m = transpose(m) y = transpose(y)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): <|fim_middle|> if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
m = transpose(m)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): <|fim_middle|> N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
y = transpose(y)
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): <|fim_middle|> m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
raise ValueError("x and y must have the same number of observations")
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: <|fim_middle|> else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
fact = N*1.0
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: <|fim_middle|> return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
fact = N-1.0
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def <|fim_middle|>(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
eye
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def <|fim_middle|>(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
tri
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def <|fim_middle|>(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
trapz
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def <|fim_middle|>(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
ptp
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def <|fim_middle|>(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
cumprod
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def <|fim_middle|>(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
max
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def <|fim_middle|>(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
min
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def <|fim_middle|>(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
prod
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def <|fim_middle|>(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
std
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def <|fim_middle|>(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
mean
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def <|fim_middle|>(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def corrcoef(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
cov
<|file_name|>mlab.py<|end_file_name|><|fim▁begin|># This module is for compatibility only. All functions are defined elsewhere. __all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, \ squeeze, sinc, median, fliplr, mean as _Nmean, transpose from numpy.linalg import eig, svd from numpy.random import rand, randn import numpy as np from typeconv import convtypecode def eye(N, M=None, k=0, typecode=None, dtype=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None, dtype=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = convtypecode(typecode, dtype) if M is None: M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): N = asarray(x).shape[axis] return _Nstd(x, axis)*sqrt(N/(N-1.)) def mean(x, axis=0): return _Nmean(x, axis) # This is exactly the same cov function as in MLab def cov(m, y=None, rowvar=0, bias=0): if y is None: y = m else: y = y if rowvar: m = transpose(m) y = transpose(y) if (m.shape[0] == 1): m = transpose(m) if (y.shape[0] == 1): y = transpose(y) N = m.shape[0] if (y.shape[0] != N): raise ValueError("x and y must have the same number of observations") m = m - _Nmean(m,axis=0) y = y - _Nmean(y,axis=0) if bias: fact = N*1.0 else: fact = N-1.0 return squeeze(dot(transpose(m), conjugate(y)) / fact) from numpy import sqrt, multiply def <|fim_middle|>(x, y=None): c = cov(x, y) d = diag(c) return c/sqrt(multiply.outer(d,d)) from compat import * from functions import * from precision import * from ufuncs import * from misc import * import compat import precision import functions import misc import ufuncs import numpy __version__ = numpy.__version__ del numpy __all__ += ['__version__'] __all__ += compat.__all__ __all__ += precision.__all__ __all__ += functions.__all__ __all__ += ufuncs.__all__ __all__ += misc.__all__ del compat del functions del precision del ufuncs del misc <|fim▁end|>
corrcoef
<|file_name|>checkout.py<|end_file_name|><|fim▁begin|># Copyright 2006 John Duda # This file is part of Infoshopkeeper. # Infoshopkeeper is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or any later version. # Infoshopkeeper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with Infoshopkeeper; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 # USA from wxPython.wx import * import os import datetime from objects.emprunt import Emprunt from popups.members import AddMemberPanel, ShowMembersPanel<|fim▁hole|> self.parent=parent wxDialog.__init__(self, parent,-1,"Check out items") self.mastersizer = wxBoxSizer(wxVERTICAL) self.static1 = wxStaticText(self, -1, "Check out to :") self.mastersizer.Add(self.static1) self.notebook = wxNotebook(self, -1, style=wxNB_TOP) self.new_member_panel = AddMemberPanel(parent=self.notebook, main_window=parent, on_successful_add=self.Borrow, cancel=self.Close) self.notebook.AddPage(self.new_member_panel, "New member") self.show_member_panel = ShowMembersPanel(parent=self.notebook, main_window=parent, motherDialog=self, on_select=self.Borrow) self.notebook.AddPage(self.show_member_panel, "Existing member") self.mastersizer.Add(self.notebook) self.SetSizer(self.mastersizer) for i in self.parent.orderbox.items: print i.database_id, "... ", i.id #self.b = wxButton(self, -1, "Checkout", (15, 80)) #EVT_BUTTON(self, self.b.GetId(), self.Checkout) #self.b.SetDefault() self.mastersizer.SetSizeHints(self) def Borrow(self, id): borrower = self.parent.membersList.get(id) print borrower for i in self.parent.orderbox.items: # Check if this work on sqlobject 0.7... I got # lots of problem on 0.6.1, and itemID __isn't__ # defined in emprunt, which is plain weirdness e = Emprunt(borrower = id, itemID=i.database_id) print i.database_id self.parent.orderbox.setBorrowed() self.parent.orderbox.void() self.Close() def OnCancel(self,event): self.EndModal(1) def Checkout(self,event): borrower=self.borrower.GetValue() if len(borrower)>0: today="%s" % datetime.date.today() self.parent.orderbox.change_status(today+"-"+borrower) self.parent.orderbox.void() self.Close()<|fim▁end|>
class CheckoutPopup(wxDialog): def __init__(self, parent):
<|file_name|>checkout.py<|end_file_name|><|fim▁begin|># Copyright 2006 John Duda # This file is part of Infoshopkeeper. # Infoshopkeeper is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or any later version. # Infoshopkeeper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with Infoshopkeeper; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 # USA from wxPython.wx import * import os import datetime from objects.emprunt import Emprunt from popups.members import AddMemberPanel, ShowMembersPanel class CheckoutPopup(wxDialog): <|fim_middle|> <|fim▁end|>
def __init__(self, parent): self.parent=parent wxDialog.__init__(self, parent,-1,"Check out items") self.mastersizer = wxBoxSizer(wxVERTICAL) self.static1 = wxStaticText(self, -1, "Check out to :") self.mastersizer.Add(self.static1) self.notebook = wxNotebook(self, -1, style=wxNB_TOP) self.new_member_panel = AddMemberPanel(parent=self.notebook, main_window=parent, on_successful_add=self.Borrow, cancel=self.Close) self.notebook.AddPage(self.new_member_panel, "New member") self.show_member_panel = ShowMembersPanel(parent=self.notebook, main_window=parent, motherDialog=self, on_select=self.Borrow) self.notebook.AddPage(self.show_member_panel, "Existing member") self.mastersizer.Add(self.notebook) self.SetSizer(self.mastersizer) for i in self.parent.orderbox.items: print i.database_id, "... ", i.id #self.b = wxButton(self, -1, "Checkout", (15, 80)) #EVT_BUTTON(self, self.b.GetId(), self.Checkout) #self.b.SetDefault() self.mastersizer.SetSizeHints(self) def Borrow(self, id): borrower = self.parent.membersList.get(id) print borrower for i in self.parent.orderbox.items: # Check if this work on sqlobject 0.7... I got # lots of problem on 0.6.1, and itemID __isn't__ # defined in emprunt, which is plain weirdness e = Emprunt(borrower = id, itemID=i.database_id) print i.database_id self.parent.orderbox.setBorrowed() self.parent.orderbox.void() self.Close() def OnCancel(self,event): self.EndModal(1) def Checkout(self,event): borrower=self.borrower.GetValue() if len(borrower)>0: today="%s" % datetime.date.today() self.parent.orderbox.change_status(today+"-"+borrower) self.parent.orderbox.void() self.Close()
<|file_name|>checkout.py<|end_file_name|><|fim▁begin|># Copyright 2006 John Duda # This file is part of Infoshopkeeper. # Infoshopkeeper is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or any later version. # Infoshopkeeper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with Infoshopkeeper; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 # USA from wxPython.wx import * import os import datetime from objects.emprunt import Emprunt from popups.members import AddMemberPanel, ShowMembersPanel class CheckoutPopup(wxDialog): def __init__(self, parent): <|fim_middle|> def Borrow(self, id): borrower = self.parent.membersList.get(id) print borrower for i in self.parent.orderbox.items: # Check if this work on sqlobject 0.7... I got # lots of problem on 0.6.1, and itemID __isn't__ # defined in emprunt, which is plain weirdness e = Emprunt(borrower = id, itemID=i.database_id) print i.database_id self.parent.orderbox.setBorrowed() self.parent.orderbox.void() self.Close() def OnCancel(self,event): self.EndModal(1) def Checkout(self,event): borrower=self.borrower.GetValue() if len(borrower)>0: today="%s" % datetime.date.today() self.parent.orderbox.change_status(today+"-"+borrower) self.parent.orderbox.void() self.Close() <|fim▁end|>
self.parent=parent wxDialog.__init__(self, parent,-1,"Check out items") self.mastersizer = wxBoxSizer(wxVERTICAL) self.static1 = wxStaticText(self, -1, "Check out to :") self.mastersizer.Add(self.static1) self.notebook = wxNotebook(self, -1, style=wxNB_TOP) self.new_member_panel = AddMemberPanel(parent=self.notebook, main_window=parent, on_successful_add=self.Borrow, cancel=self.Close) self.notebook.AddPage(self.new_member_panel, "New member") self.show_member_panel = ShowMembersPanel(parent=self.notebook, main_window=parent, motherDialog=self, on_select=self.Borrow) self.notebook.AddPage(self.show_member_panel, "Existing member") self.mastersizer.Add(self.notebook) self.SetSizer(self.mastersizer) for i in self.parent.orderbox.items: print i.database_id, "... ", i.id #self.b = wxButton(self, -1, "Checkout", (15, 80)) #EVT_BUTTON(self, self.b.GetId(), self.Checkout) #self.b.SetDefault() self.mastersizer.SetSizeHints(self)
<|file_name|>checkout.py<|end_file_name|><|fim▁begin|># Copyright 2006 John Duda # This file is part of Infoshopkeeper. # Infoshopkeeper is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or any later version. # Infoshopkeeper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with Infoshopkeeper; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 # USA from wxPython.wx import * import os import datetime from objects.emprunt import Emprunt from popups.members import AddMemberPanel, ShowMembersPanel class CheckoutPopup(wxDialog): def __init__(self, parent): self.parent=parent wxDialog.__init__(self, parent,-1,"Check out items") self.mastersizer = wxBoxSizer(wxVERTICAL) self.static1 = wxStaticText(self, -1, "Check out to :") self.mastersizer.Add(self.static1) self.notebook = wxNotebook(self, -1, style=wxNB_TOP) self.new_member_panel = AddMemberPanel(parent=self.notebook, main_window=parent, on_successful_add=self.Borrow, cancel=self.Close) self.notebook.AddPage(self.new_member_panel, "New member") self.show_member_panel = ShowMembersPanel(parent=self.notebook, main_window=parent, motherDialog=self, on_select=self.Borrow) self.notebook.AddPage(self.show_member_panel, "Existing member") self.mastersizer.Add(self.notebook) self.SetSizer(self.mastersizer) for i in self.parent.orderbox.items: print i.database_id, "... ", i.id #self.b = wxButton(self, -1, "Checkout", (15, 80)) #EVT_BUTTON(self, self.b.GetId(), self.Checkout) #self.b.SetDefault() self.mastersizer.SetSizeHints(self) def Borrow(self, id): <|fim_middle|> def OnCancel(self,event): self.EndModal(1) def Checkout(self,event): borrower=self.borrower.GetValue() if len(borrower)>0: today="%s" % datetime.date.today() self.parent.orderbox.change_status(today+"-"+borrower) self.parent.orderbox.void() self.Close() <|fim▁end|>
borrower = self.parent.membersList.get(id) print borrower for i in self.parent.orderbox.items: # Check if this work on sqlobject 0.7... I got # lots of problem on 0.6.1, and itemID __isn't__ # defined in emprunt, which is plain weirdness e = Emprunt(borrower = id, itemID=i.database_id) print i.database_id self.parent.orderbox.setBorrowed() self.parent.orderbox.void() self.Close()
<|file_name|>checkout.py<|end_file_name|><|fim▁begin|># Copyright 2006 John Duda # This file is part of Infoshopkeeper. # Infoshopkeeper is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or any later version. # Infoshopkeeper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with Infoshopkeeper; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 # USA from wxPython.wx import * import os import datetime from objects.emprunt import Emprunt from popups.members import AddMemberPanel, ShowMembersPanel class CheckoutPopup(wxDialog): def __init__(self, parent): self.parent=parent wxDialog.__init__(self, parent,-1,"Check out items") self.mastersizer = wxBoxSizer(wxVERTICAL) self.static1 = wxStaticText(self, -1, "Check out to :") self.mastersizer.Add(self.static1) self.notebook = wxNotebook(self, -1, style=wxNB_TOP) self.new_member_panel = AddMemberPanel(parent=self.notebook, main_window=parent, on_successful_add=self.Borrow, cancel=self.Close) self.notebook.AddPage(self.new_member_panel, "New member") self.show_member_panel = ShowMembersPanel(parent=self.notebook, main_window=parent, motherDialog=self, on_select=self.Borrow) self.notebook.AddPage(self.show_member_panel, "Existing member") self.mastersizer.Add(self.notebook) self.SetSizer(self.mastersizer) for i in self.parent.orderbox.items: print i.database_id, "... ", i.id #self.b = wxButton(self, -1, "Checkout", (15, 80)) #EVT_BUTTON(self, self.b.GetId(), self.Checkout) #self.b.SetDefault() self.mastersizer.SetSizeHints(self) def Borrow(self, id): borrower = self.parent.membersList.get(id) print borrower for i in self.parent.orderbox.items: # Check if this work on sqlobject 0.7... I got # lots of problem on 0.6.1, and itemID __isn't__ # defined in emprunt, which is plain weirdness e = Emprunt(borrower = id, itemID=i.database_id) print i.database_id self.parent.orderbox.setBorrowed() self.parent.orderbox.void() self.Close() def OnCancel(self,event): <|fim_middle|> def Checkout(self,event): borrower=self.borrower.GetValue() if len(borrower)>0: today="%s" % datetime.date.today() self.parent.orderbox.change_status(today+"-"+borrower) self.parent.orderbox.void() self.Close() <|fim▁end|>
self.EndModal(1)
<|file_name|>checkout.py<|end_file_name|><|fim▁begin|># Copyright 2006 John Duda # This file is part of Infoshopkeeper. # Infoshopkeeper is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or any later version. # Infoshopkeeper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with Infoshopkeeper; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 # USA from wxPython.wx import * import os import datetime from objects.emprunt import Emprunt from popups.members import AddMemberPanel, ShowMembersPanel class CheckoutPopup(wxDialog): def __init__(self, parent): self.parent=parent wxDialog.__init__(self, parent,-1,"Check out items") self.mastersizer = wxBoxSizer(wxVERTICAL) self.static1 = wxStaticText(self, -1, "Check out to :") self.mastersizer.Add(self.static1) self.notebook = wxNotebook(self, -1, style=wxNB_TOP) self.new_member_panel = AddMemberPanel(parent=self.notebook, main_window=parent, on_successful_add=self.Borrow, cancel=self.Close) self.notebook.AddPage(self.new_member_panel, "New member") self.show_member_panel = ShowMembersPanel(parent=self.notebook, main_window=parent, motherDialog=self, on_select=self.Borrow) self.notebook.AddPage(self.show_member_panel, "Existing member") self.mastersizer.Add(self.notebook) self.SetSizer(self.mastersizer) for i in self.parent.orderbox.items: print i.database_id, "... ", i.id #self.b = wxButton(self, -1, "Checkout", (15, 80)) #EVT_BUTTON(self, self.b.GetId(), self.Checkout) #self.b.SetDefault() self.mastersizer.SetSizeHints(self) def Borrow(self, id): borrower = self.parent.membersList.get(id) print borrower for i in self.parent.orderbox.items: # Check if this work on sqlobject 0.7... I got # lots of problem on 0.6.1, and itemID __isn't__ # defined in emprunt, which is plain weirdness e = Emprunt(borrower = id, itemID=i.database_id) print i.database_id self.parent.orderbox.setBorrowed() self.parent.orderbox.void() self.Close() def OnCancel(self,event): self.EndModal(1) def Checkout(self,event): <|fim_middle|> <|fim▁end|>
borrower=self.borrower.GetValue() if len(borrower)>0: today="%s" % datetime.date.today() self.parent.orderbox.change_status(today+"-"+borrower) self.parent.orderbox.void() self.Close()
<|file_name|>checkout.py<|end_file_name|><|fim▁begin|># Copyright 2006 John Duda # This file is part of Infoshopkeeper. # Infoshopkeeper is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or any later version. # Infoshopkeeper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with Infoshopkeeper; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 # USA from wxPython.wx import * import os import datetime from objects.emprunt import Emprunt from popups.members import AddMemberPanel, ShowMembersPanel class CheckoutPopup(wxDialog): def __init__(self, parent): self.parent=parent wxDialog.__init__(self, parent,-1,"Check out items") self.mastersizer = wxBoxSizer(wxVERTICAL) self.static1 = wxStaticText(self, -1, "Check out to :") self.mastersizer.Add(self.static1) self.notebook = wxNotebook(self, -1, style=wxNB_TOP) self.new_member_panel = AddMemberPanel(parent=self.notebook, main_window=parent, on_successful_add=self.Borrow, cancel=self.Close) self.notebook.AddPage(self.new_member_panel, "New member") self.show_member_panel = ShowMembersPanel(parent=self.notebook, main_window=parent, motherDialog=self, on_select=self.Borrow) self.notebook.AddPage(self.show_member_panel, "Existing member") self.mastersizer.Add(self.notebook) self.SetSizer(self.mastersizer) for i in self.parent.orderbox.items: print i.database_id, "... ", i.id #self.b = wxButton(self, -1, "Checkout", (15, 80)) #EVT_BUTTON(self, self.b.GetId(), self.Checkout) #self.b.SetDefault() self.mastersizer.SetSizeHints(self) def Borrow(self, id): borrower = self.parent.membersList.get(id) print borrower for i in self.parent.orderbox.items: # Check if this work on sqlobject 0.7... I got # lots of problem on 0.6.1, and itemID __isn't__ # defined in emprunt, which is plain weirdness e = Emprunt(borrower = id, itemID=i.database_id) print i.database_id self.parent.orderbox.setBorrowed() self.parent.orderbox.void() self.Close() def OnCancel(self,event): self.EndModal(1) def Checkout(self,event): borrower=self.borrower.GetValue() if len(borrower)>0: <|fim_middle|> self.Close() <|fim▁end|>
today="%s" % datetime.date.today() self.parent.orderbox.change_status(today+"-"+borrower) self.parent.orderbox.void()
<|file_name|>checkout.py<|end_file_name|><|fim▁begin|># Copyright 2006 John Duda # This file is part of Infoshopkeeper. # Infoshopkeeper is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or any later version. # Infoshopkeeper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with Infoshopkeeper; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 # USA from wxPython.wx import * import os import datetime from objects.emprunt import Emprunt from popups.members import AddMemberPanel, ShowMembersPanel class CheckoutPopup(wxDialog): def <|fim_middle|>(self, parent): self.parent=parent wxDialog.__init__(self, parent,-1,"Check out items") self.mastersizer = wxBoxSizer(wxVERTICAL) self.static1 = wxStaticText(self, -1, "Check out to :") self.mastersizer.Add(self.static1) self.notebook = wxNotebook(self, -1, style=wxNB_TOP) self.new_member_panel = AddMemberPanel(parent=self.notebook, main_window=parent, on_successful_add=self.Borrow, cancel=self.Close) self.notebook.AddPage(self.new_member_panel, "New member") self.show_member_panel = ShowMembersPanel(parent=self.notebook, main_window=parent, motherDialog=self, on_select=self.Borrow) self.notebook.AddPage(self.show_member_panel, "Existing member") self.mastersizer.Add(self.notebook) self.SetSizer(self.mastersizer) for i in self.parent.orderbox.items: print i.database_id, "... ", i.id #self.b = wxButton(self, -1, "Checkout", (15, 80)) #EVT_BUTTON(self, self.b.GetId(), self.Checkout) #self.b.SetDefault() self.mastersizer.SetSizeHints(self) def Borrow(self, id): borrower = self.parent.membersList.get(id) print borrower for i in self.parent.orderbox.items: # Check if this work on sqlobject 0.7... I got # lots of problem on 0.6.1, and itemID __isn't__ # defined in emprunt, which is plain weirdness e = Emprunt(borrower = id, itemID=i.database_id) print i.database_id self.parent.orderbox.setBorrowed() self.parent.orderbox.void() self.Close() def OnCancel(self,event): self.EndModal(1) def Checkout(self,event): borrower=self.borrower.GetValue() if len(borrower)>0: today="%s" % datetime.date.today() self.parent.orderbox.change_status(today+"-"+borrower) self.parent.orderbox.void() self.Close() <|fim▁end|>
__init__
<|file_name|>checkout.py<|end_file_name|><|fim▁begin|># Copyright 2006 John Duda # This file is part of Infoshopkeeper. # Infoshopkeeper is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or any later version. # Infoshopkeeper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with Infoshopkeeper; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 # USA from wxPython.wx import * import os import datetime from objects.emprunt import Emprunt from popups.members import AddMemberPanel, ShowMembersPanel class CheckoutPopup(wxDialog): def __init__(self, parent): self.parent=parent wxDialog.__init__(self, parent,-1,"Check out items") self.mastersizer = wxBoxSizer(wxVERTICAL) self.static1 = wxStaticText(self, -1, "Check out to :") self.mastersizer.Add(self.static1) self.notebook = wxNotebook(self, -1, style=wxNB_TOP) self.new_member_panel = AddMemberPanel(parent=self.notebook, main_window=parent, on_successful_add=self.Borrow, cancel=self.Close) self.notebook.AddPage(self.new_member_panel, "New member") self.show_member_panel = ShowMembersPanel(parent=self.notebook, main_window=parent, motherDialog=self, on_select=self.Borrow) self.notebook.AddPage(self.show_member_panel, "Existing member") self.mastersizer.Add(self.notebook) self.SetSizer(self.mastersizer) for i in self.parent.orderbox.items: print i.database_id, "... ", i.id #self.b = wxButton(self, -1, "Checkout", (15, 80)) #EVT_BUTTON(self, self.b.GetId(), self.Checkout) #self.b.SetDefault() self.mastersizer.SetSizeHints(self) def <|fim_middle|>(self, id): borrower = self.parent.membersList.get(id) print borrower for i in self.parent.orderbox.items: # Check if this work on sqlobject 0.7... I got # lots of problem on 0.6.1, and itemID __isn't__ # defined in emprunt, which is plain weirdness e = Emprunt(borrower = id, itemID=i.database_id) print i.database_id self.parent.orderbox.setBorrowed() self.parent.orderbox.void() self.Close() def OnCancel(self,event): self.EndModal(1) def Checkout(self,event): borrower=self.borrower.GetValue() if len(borrower)>0: today="%s" % datetime.date.today() self.parent.orderbox.change_status(today+"-"+borrower) self.parent.orderbox.void() self.Close() <|fim▁end|>
Borrow
<|file_name|>checkout.py<|end_file_name|><|fim▁begin|># Copyright 2006 John Duda # This file is part of Infoshopkeeper. # Infoshopkeeper is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or any later version. # Infoshopkeeper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with Infoshopkeeper; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 # USA from wxPython.wx import * import os import datetime from objects.emprunt import Emprunt from popups.members import AddMemberPanel, ShowMembersPanel class CheckoutPopup(wxDialog): def __init__(self, parent): self.parent=parent wxDialog.__init__(self, parent,-1,"Check out items") self.mastersizer = wxBoxSizer(wxVERTICAL) self.static1 = wxStaticText(self, -1, "Check out to :") self.mastersizer.Add(self.static1) self.notebook = wxNotebook(self, -1, style=wxNB_TOP) self.new_member_panel = AddMemberPanel(parent=self.notebook, main_window=parent, on_successful_add=self.Borrow, cancel=self.Close) self.notebook.AddPage(self.new_member_panel, "New member") self.show_member_panel = ShowMembersPanel(parent=self.notebook, main_window=parent, motherDialog=self, on_select=self.Borrow) self.notebook.AddPage(self.show_member_panel, "Existing member") self.mastersizer.Add(self.notebook) self.SetSizer(self.mastersizer) for i in self.parent.orderbox.items: print i.database_id, "... ", i.id #self.b = wxButton(self, -1, "Checkout", (15, 80)) #EVT_BUTTON(self, self.b.GetId(), self.Checkout) #self.b.SetDefault() self.mastersizer.SetSizeHints(self) def Borrow(self, id): borrower = self.parent.membersList.get(id) print borrower for i in self.parent.orderbox.items: # Check if this work on sqlobject 0.7... I got # lots of problem on 0.6.1, and itemID __isn't__ # defined in emprunt, which is plain weirdness e = Emprunt(borrower = id, itemID=i.database_id) print i.database_id self.parent.orderbox.setBorrowed() self.parent.orderbox.void() self.Close() def <|fim_middle|>(self,event): self.EndModal(1) def Checkout(self,event): borrower=self.borrower.GetValue() if len(borrower)>0: today="%s" % datetime.date.today() self.parent.orderbox.change_status(today+"-"+borrower) self.parent.orderbox.void() self.Close() <|fim▁end|>
OnCancel
<|file_name|>checkout.py<|end_file_name|><|fim▁begin|># Copyright 2006 John Duda # This file is part of Infoshopkeeper. # Infoshopkeeper is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or any later version. # Infoshopkeeper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with Infoshopkeeper; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 # USA from wxPython.wx import * import os import datetime from objects.emprunt import Emprunt from popups.members import AddMemberPanel, ShowMembersPanel class CheckoutPopup(wxDialog): def __init__(self, parent): self.parent=parent wxDialog.__init__(self, parent,-1,"Check out items") self.mastersizer = wxBoxSizer(wxVERTICAL) self.static1 = wxStaticText(self, -1, "Check out to :") self.mastersizer.Add(self.static1) self.notebook = wxNotebook(self, -1, style=wxNB_TOP) self.new_member_panel = AddMemberPanel(parent=self.notebook, main_window=parent, on_successful_add=self.Borrow, cancel=self.Close) self.notebook.AddPage(self.new_member_panel, "New member") self.show_member_panel = ShowMembersPanel(parent=self.notebook, main_window=parent, motherDialog=self, on_select=self.Borrow) self.notebook.AddPage(self.show_member_panel, "Existing member") self.mastersizer.Add(self.notebook) self.SetSizer(self.mastersizer) for i in self.parent.orderbox.items: print i.database_id, "... ", i.id #self.b = wxButton(self, -1, "Checkout", (15, 80)) #EVT_BUTTON(self, self.b.GetId(), self.Checkout) #self.b.SetDefault() self.mastersizer.SetSizeHints(self) def Borrow(self, id): borrower = self.parent.membersList.get(id) print borrower for i in self.parent.orderbox.items: # Check if this work on sqlobject 0.7... I got # lots of problem on 0.6.1, and itemID __isn't__ # defined in emprunt, which is plain weirdness e = Emprunt(borrower = id, itemID=i.database_id) print i.database_id self.parent.orderbox.setBorrowed() self.parent.orderbox.void() self.Close() def OnCancel(self,event): self.EndModal(1) def <|fim_middle|>(self,event): borrower=self.borrower.GetValue() if len(borrower)>0: today="%s" % datetime.date.today() self.parent.orderbox.change_status(today+"-"+borrower) self.parent.orderbox.void() self.Close() <|fim▁end|>
Checkout
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test"<|fim▁hole|> self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly")<|fim▁end|>
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): <|fim_middle|> <|fim▁end|>
def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly")
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): <|fim_middle|> def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {}
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): <|fim_middle|> def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
import shutil shutil.rmtree(self.repo_path)
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): <|fim_middle|> def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg)
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): <|fim_middle|> def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
""" Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary")
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): <|fim_middle|> def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
""" Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly")
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): <|fim_middle|> <|fim▁end|>
""" Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly")
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: <|fim_middle|> for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
return
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def <|fim_middle|>(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
setUp
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def <|fim_middle|>(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
tearDown
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def <|fim_middle|>(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
commit_vars
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def <|fim_middle|>(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
test_blob_to_dict
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def <|fim_middle|>(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def test_compare_dict_blobs_default(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
test_compare_dict_blobs
<|file_name|>buildhistory.py<|end_file_name|><|fim▁begin|>import os import unittest import tempfile from git import Repo from oeqa.utils.commands import get_bb_var from oe.buildhistory_analysis import blob_to_dict, compare_dict_blobs class TestBlobParsing(unittest.TestCase): def setUp(self): import time self.repo_path = tempfile.mkdtemp(prefix='selftest-buildhistory', dir=get_bb_var('TOPDIR')) self.repo = Repo.init(self.repo_path) self.test_file = "test" self.var_map = {} def tearDown(self): import shutil shutil.rmtree(self.repo_path) def commit_vars(self, to_add={}, to_remove = [], msg="A commit message"): if len(to_add) == 0 and len(to_remove) == 0: return for k in to_remove: self.var_map.pop(x,None) for k in to_add: self.var_map[k] = to_add[k] with open(os.path.join(self.repo_path, self.test_file), 'w') as repo_file: for k in self.var_map: repo_file.write("%s = %s\n" % (k, self.var_map[k])) self.repo.git.add("--all") self.repo.git.commit(message=msg) def test_blob_to_dict(self): """ Test convertion of git blobs to dictionary """ valuesmap = { "foo" : "1", "bar" : "2" } self.commit_vars(to_add = valuesmap) blob = self.repo.head.commit.tree.blobs[0] self.assertEqual(valuesmap, blob_to_dict(blob), "commit was not translated correctly to dictionary") def test_compare_dict_blobs(self): """ Test comparisson of dictionaries extracted from git blobs """ changesmap = { "foo-2" : ("2", "8"), "bar" : ("","4"), "bar-2" : ("","5")} self.commit_vars(to_add = { "foo" : "1", "foo-2" : "2", "foo-3" : "3" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "foo-2" : "8", "bar" : "4", "bar-2" : "5" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = { x.fieldname : (x.oldvalue, x.newvalue) for x in change_records} self.assertEqual(changesmap, var_changes, "Changes not reported correctly") def <|fim_middle|>(self): """ Test default values for comparisson of git blob dictionaries """ defaultmap = { x : ("default", "1") for x in ["PKG", "PKGE", "PKGV", "PKGR"]} self.commit_vars(to_add = { "foo" : "1" }) blob1 = self.repo.heads.master.commit.tree.blobs[0] self.commit_vars(to_add = { "PKG" : "1", "PKGE" : "1", "PKGV" : "1", "PKGR" : "1" }) blob2 = self.repo.heads.master.commit.tree.blobs[0] change_records = compare_dict_blobs(os.path.join(self.repo_path, self.test_file), blob1, blob2, False, False) var_changes = {} for x in change_records: oldvalue = "default" if ("default" in x.oldvalue) else x.oldvalue var_changes[x.fieldname] = (oldvalue, x.newvalue) self.assertEqual(defaultmap, var_changes, "Defaults not set properly") <|fim▁end|>
test_compare_dict_blobs_default
<|file_name|>wsgi.py<|end_file_name|><|fim▁begin|>""" WSGI config for mongobacked project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "mongobacked.settings") <|fim▁hole|>application = get_wsgi_application()<|fim▁end|>
from django.core.wsgi import get_wsgi_application
<|file_name|>282 Expression Add Operators.py<|end_file_name|><|fim▁begin|>""" Given a string that contains only digits 0-9 and a target value, return all possibilities to add binary operators (not unary) +, -, or * between the digits so they evaluate to the target value. Examples: "123", 6 -> ["1+2+3", "1*2*3"]<|fim▁hole|>"232", 8 -> ["2*3+2", "2+3*2"] "105", 5 -> ["1*0+5","10-5"] "00", 0 -> ["0+0", "0-0", "0*0"] "3456237490", 9191 -> [] """ __author__ = 'Daniel' class Solution(object): def addOperators(self, num, target): """ Adapted from https://leetcode.com/discuss/58614/java-standard-backtrace-ac-solutoin-short-and-clear Algorithm: 1. DFS 2. Special handling for multiplication 3. Detect invalid number with leading 0's :type num: str :type target: int :rtype: List[str] """ ret = [] self.dfs(num, target, 0, "", 0, 0, ret) return ret def dfs(self, num, target, pos, cur_str, cur_val, mul, ret): if pos >= len(num): if cur_val == target: ret.append(cur_str) else: for i in xrange(pos, len(num)): if i != pos and num[pos] == "0": continue nxt_val = int(num[pos:i+1]) if not cur_str: self.dfs(num, target, i+1, "%d"%nxt_val, nxt_val, nxt_val, ret) else: self.dfs(num, target, i+1, cur_str+"+%d"%nxt_val, cur_val+nxt_val, nxt_val, ret) self.dfs(num, target, i+1, cur_str+"-%d"%nxt_val, cur_val-nxt_val, -nxt_val, ret) self.dfs(num, target, i+1, cur_str+"*%d"%nxt_val, cur_val-mul+mul*nxt_val, mul*nxt_val, ret) if __name__ == "__main__": assert Solution().addOperators("232", 8) == ["2+3*2", "2*3+2"]<|fim▁end|>
<|file_name|>282 Expression Add Operators.py<|end_file_name|><|fim▁begin|>""" Given a string that contains only digits 0-9 and a target value, return all possibilities to add binary operators (not unary) +, -, or * between the digits so they evaluate to the target value. Examples: "123", 6 -> ["1+2+3", "1*2*3"] "232", 8 -> ["2*3+2", "2+3*2"] "105", 5 -> ["1*0+5","10-5"] "00", 0 -> ["0+0", "0-0", "0*0"] "3456237490", 9191 -> [] """ __author__ = 'Daniel' class Solution(object): <|fim_middle|> if __name__ == "__main__": assert Solution().addOperators("232", 8) == ["2+3*2", "2*3+2"] <|fim▁end|>
def addOperators(self, num, target): """ Adapted from https://leetcode.com/discuss/58614/java-standard-backtrace-ac-solutoin-short-and-clear Algorithm: 1. DFS 2. Special handling for multiplication 3. Detect invalid number with leading 0's :type num: str :type target: int :rtype: List[str] """ ret = [] self.dfs(num, target, 0, "", 0, 0, ret) return ret def dfs(self, num, target, pos, cur_str, cur_val, mul, ret): if pos >= len(num): if cur_val == target: ret.append(cur_str) else: for i in xrange(pos, len(num)): if i != pos and num[pos] == "0": continue nxt_val = int(num[pos:i+1]) if not cur_str: self.dfs(num, target, i+1, "%d"%nxt_val, nxt_val, nxt_val, ret) else: self.dfs(num, target, i+1, cur_str+"+%d"%nxt_val, cur_val+nxt_val, nxt_val, ret) self.dfs(num, target, i+1, cur_str+"-%d"%nxt_val, cur_val-nxt_val, -nxt_val, ret) self.dfs(num, target, i+1, cur_str+"*%d"%nxt_val, cur_val-mul+mul*nxt_val, mul*nxt_val, ret)
<|file_name|>282 Expression Add Operators.py<|end_file_name|><|fim▁begin|>""" Given a string that contains only digits 0-9 and a target value, return all possibilities to add binary operators (not unary) +, -, or * between the digits so they evaluate to the target value. Examples: "123", 6 -> ["1+2+3", "1*2*3"] "232", 8 -> ["2*3+2", "2+3*2"] "105", 5 -> ["1*0+5","10-5"] "00", 0 -> ["0+0", "0-0", "0*0"] "3456237490", 9191 -> [] """ __author__ = 'Daniel' class Solution(object): def addOperators(self, num, target): <|fim_middle|> def dfs(self, num, target, pos, cur_str, cur_val, mul, ret): if pos >= len(num): if cur_val == target: ret.append(cur_str) else: for i in xrange(pos, len(num)): if i != pos and num[pos] == "0": continue nxt_val = int(num[pos:i+1]) if not cur_str: self.dfs(num, target, i+1, "%d"%nxt_val, nxt_val, nxt_val, ret) else: self.dfs(num, target, i+1, cur_str+"+%d"%nxt_val, cur_val+nxt_val, nxt_val, ret) self.dfs(num, target, i+1, cur_str+"-%d"%nxt_val, cur_val-nxt_val, -nxt_val, ret) self.dfs(num, target, i+1, cur_str+"*%d"%nxt_val, cur_val-mul+mul*nxt_val, mul*nxt_val, ret) if __name__ == "__main__": assert Solution().addOperators("232", 8) == ["2+3*2", "2*3+2"] <|fim▁end|>
""" Adapted from https://leetcode.com/discuss/58614/java-standard-backtrace-ac-solutoin-short-and-clear Algorithm: 1. DFS 2. Special handling for multiplication 3. Detect invalid number with leading 0's :type num: str :type target: int :rtype: List[str] """ ret = [] self.dfs(num, target, 0, "", 0, 0, ret) return ret
<|file_name|>282 Expression Add Operators.py<|end_file_name|><|fim▁begin|>""" Given a string that contains only digits 0-9 and a target value, return all possibilities to add binary operators (not unary) +, -, or * between the digits so they evaluate to the target value. Examples: "123", 6 -> ["1+2+3", "1*2*3"] "232", 8 -> ["2*3+2", "2+3*2"] "105", 5 -> ["1*0+5","10-5"] "00", 0 -> ["0+0", "0-0", "0*0"] "3456237490", 9191 -> [] """ __author__ = 'Daniel' class Solution(object): def addOperators(self, num, target): """ Adapted from https://leetcode.com/discuss/58614/java-standard-backtrace-ac-solutoin-short-and-clear Algorithm: 1. DFS 2. Special handling for multiplication 3. Detect invalid number with leading 0's :type num: str :type target: int :rtype: List[str] """ ret = [] self.dfs(num, target, 0, "", 0, 0, ret) return ret def dfs(self, num, target, pos, cur_str, cur_val, mul, ret): <|fim_middle|> if __name__ == "__main__": assert Solution().addOperators("232", 8) == ["2+3*2", "2*3+2"] <|fim▁end|>
if pos >= len(num): if cur_val == target: ret.append(cur_str) else: for i in xrange(pos, len(num)): if i != pos and num[pos] == "0": continue nxt_val = int(num[pos:i+1]) if not cur_str: self.dfs(num, target, i+1, "%d"%nxt_val, nxt_val, nxt_val, ret) else: self.dfs(num, target, i+1, cur_str+"+%d"%nxt_val, cur_val+nxt_val, nxt_val, ret) self.dfs(num, target, i+1, cur_str+"-%d"%nxt_val, cur_val-nxt_val, -nxt_val, ret) self.dfs(num, target, i+1, cur_str+"*%d"%nxt_val, cur_val-mul+mul*nxt_val, mul*nxt_val, ret)