prompt
large_stringlengths 72
9.34k
| completion
large_stringlengths 0
7.61k
|
---|---|
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
<|fim_middle|>
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | """Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n" |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
<|fim_middle|>
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | """Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n" |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
<|fim_middle|>
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | self.transport.write(self.getUsers())
self.transport.loseConnection() |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
<|fim_middle|>
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | """Return active users. Override in subclasses."""
return "root\r\n" |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
<|fim_middle|>
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | """Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection() |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
<|fim_middle|>
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection() |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
<|fim_middle|>
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | """Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection() |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
<|fim_middle|>
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection() |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
<|fim_middle|>
<|fim▁end|> | __all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__ |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
<|fim_middle|>
del name, __all3__
<|fim▁end|> | __all__.remove(name)
del globals()[name] |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def <|fim_middle|>(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | dataReceived |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def <|fim_middle|>(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | dataReceived |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def <|fim_middle|>(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | connectionMade |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def <|fim_middle|>(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | resumeProducing |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def <|fim_middle|>(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | pauseProducing |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def <|fim_middle|>(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | stopProducing |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def <|fim_middle|>(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | connectionMade |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def <|fim_middle|>(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | getQuote |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def <|fim_middle|>(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | connectionMade |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def <|fim_middle|>(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | getUsers |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def <|fim_middle|>(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def connectionMade(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | connectionMade |
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""Implement standard (and unused) TCP protocols.
These protocols are either provided by inetd, or are not provided at all.
"""
from __future__ import absolute_import, division
import time
import struct
from zope.interface import implementer
from twisted.internet import protocol, interfaces
from twisted.python.compat import _PY3
class Echo(protocol.Protocol):
"""As soon as any data is received, write it back (RFC 862)"""
def dataReceived(self, data):
self.transport.write(data)
class Discard(protocol.Protocol):
"""Discard any received data (RFC 863)"""
def dataReceived(self, data):
# I'm ignoring you, nyah-nyah
pass
@implementer(interfaces.IProducer)
class Chargen(protocol.Protocol):
"""Generate repeating noise (RFC 864)"""
noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?'
def connectionMade(self):
self.transport.registerProducer(self, 0)
def resumeProducing(self):
self.transport.write(self.noise)
def pauseProducing(self):
pass
def stopProducing(self):
pass
class QOTD(protocol.Protocol):
"""Return a quote of the day (RFC 865)"""
def connectionMade(self):
self.transport.write(self.getQuote())
self.transport.loseConnection()
def getQuote(self):
"""Return a quote. May be overrriden in subclasses."""
return "An apple a day keeps the doctor away.\r\n"
class Who(protocol.Protocol):
"""Return list of active users (RFC 866)"""
def connectionMade(self):
self.transport.write(self.getUsers())
self.transport.loseConnection()
def getUsers(self):
"""Return active users. Override in subclasses."""
return "root\r\n"
class Daytime(protocol.Protocol):
"""Send back the daytime in ASCII form (RFC 867)"""
def connectionMade(self):
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n')
self.transport.loseConnection()
class Time(protocol.Protocol):
"""Send back the time in machine readable form (RFC 868)"""
def <|fim_middle|>(self):
# is this correct only for 32-bit machines?
result = struct.pack("!i", int(time.time()))
self.transport.write(result)
self.transport.loseConnection()
__all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"]
if _PY3:
__all3__ = ["Echo"]
for name in __all__[:]:
if name not in __all3__:
__all__.remove(name)
del globals()[name]
del name, __all3__
<|fim▁end|> | connectionMade |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio<|fim▁hole|> lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits<|fim▁end|> | def get_freq(arr): |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
<|fim_middle|>
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
<|fim_middle|>
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
<|fim_middle|>
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1) |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
<|fim_middle|>
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | hi.append(b[j]) |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
<|fim_middle|>
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | lo.append(b[j]) |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
<|fim_middle|>
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | mid.append(b[j]) |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
<|fim_middle|>
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | first += 1 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
<|fim_middle|>
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | second += 1 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
<|fim_middle|>
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | third += 1 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
<|fim_middle|>
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | return True |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
<|fim_middle|>
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | return False |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
<|fim_middle|>
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | lo_count+=1 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
<|fim_middle|>
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | hi_count+=1 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
<|fim_middle|>
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | mid_count+=1 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
<|fim_middle|>
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | return 2 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
<|fim_middle|>
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | return 0 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
<|fim_middle|>
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | return 1 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
<|fim_middle|>
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | hi_amp.append(b[j]) |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
<|fim_middle|>
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | lo_amp.append(b[j]) |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
<|fim_middle|>
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | mid_amp.append(b[j]) |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
<|fim_middle|>
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | freq_list.append("lo") |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
<|fim_middle|>
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | freq_list.append("mid") |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
<|fim_middle|>
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | freq_list.append("hi") |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
<|fim_middle|>
print bits
<|fim▁end|> | if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
<|fim_middle|>
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
<|fim_middle|>
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
<|fim_middle|>
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | bits.append(bit) |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
<|fim_middle|>
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | print "Stop Signal Detected"
break |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
<|fim_middle|>
print bits
<|fim▁end|> | if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
<|fim_middle|>
print bits
<|fim▁end|> | print "signal found"
start = True
offset = len(freq_list)%5 |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def <|fim_middle|>(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def get_freq(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | signal_found |
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math
from test import goertzel
import wave
import pyaudio
import Queue
import numpy as np
if len(sys.argv) < 2:
print "Usage: %s <filename> " % sys.argv[0]
sys.exit(1)
filename = sys.argv[1]
w = wave.open(filename)
fs = w.getframerate()
width = w.getsampwidth()
chunkDuration = .2 #.2 second chunks
chunk = int(chunkDuration*fs)
window = np.blackman(chunk)
p = pyaudio.PyAudio()
stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True)
#read .2 second chunk
data = w.readframes(chunk)
chunk_data = []
#find the frequencies of each chunk
print "Running calculations on wav file"
num = 0
while data != '':
print "Calculating Chunk " + str(num)
stream.write(data)
indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\
data))
freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104))
chunk_data.append((freqs,results))
data = w.readframes(chunk)
num+=.2
stream.close()
p.terminate()
#finished getting data from chunks, now to parse the data
hi = []
lo = []
mid = []
#average first second of audio to get frequency baselines
for i in range (5):
a = chunk_data[i][0]
b = chunk_data[i][1]
for j in range(len(a)):
if a[j] > 1700:
hi.append(b[j])
elif a[j] < 1300:
lo.append(b[j])
else:
mid.append(b[j])
hi_average = sum(hi)/float(len(hi))
lo_average = sum(lo)/float(len(lo))
mid_average = sum(mid)/float(len(mid))
"""
Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency
of that second of data by the median frequency of its 5 chunks
"""
#looks for start signal in last 3 seconds of audio
def signal_found(arr):
lst = arr[-15:]
first = 0
second = 0
third = 0
for i in range(0,5):
if lst[i]=="mid":
first += 1
for i in range(5,10):
if lst[i]=="mid":
second += 1
for i in range(10,15):
if lst[i]=="mid":
third += 1
if first >= 5 and second >= 5 and third >= 5:
return True
else:
return False
#gets freq of 1 second of audio
def <|fim_middle|>(arr):
lo_count = 0
hi_count = 0
mid_count = 0
for i in arr:
if i=="lo":
lo_count+=1
if i=="hi":
hi_count+=1
if i=="mid":
mid_count+=1
if mid_count > hi_count and mid_count > lo_count:
return 2
if lo_count>hi_count:
return 0
else:
return 1
start = False
freq_list = []
offset = 0
bits = []
for i in range(5,len(chunk_data)):
a = chunk_data[i][0]
b = chunk_data[i][1]
hi_amp = []
lo_amp = []
mid_amp = []
#get averages for each freq
for j in range(len(a)):
if a[j] > 1700:
hi_amp.append(b[j])
elif a[j] < 1300:
lo_amp.append(b[j])
else:
mid_amp.append(b[j])
hi_av = sum(hi_amp)/float(len(hi_amp))
lo_av = sum(lo_amp)/float(len(lo_amp))
mid_av = sum(mid_amp)/float(len(mid_amp))
#get freq of this chunk
diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average]
index = diff.index(max(diff))
if(index==0):
freq_list.append("lo")
if(index==1):
freq_list.append("mid")
if(index==2):
freq_list.append("hi")
print(freq_list[len(freq_list)-1])
if len(freq_list) > 5:
if start:
if len(freq_list)%5 == offset:
bit = get_freq(freq_list[-5:])
if bit != 2:
bits.append(bit)
else:
print "Stop Signal Detected"
break
elif len(freq_list) >= 15:
if signal_found(freq_list):
print "signal found"
start = True
offset = len(freq_list)%5
print bits
<|fim▁end|> | get_freq |
<|file_name|>auto_restart_configuration.py<|end_file_name|><|fim▁begin|>from bitmovin.utils import Serializable
class AutoRestartConfiguration(Serializable):
def __init__(self, segments_written_timeout: float = None, bytes_written_timeout: float = None,<|fim▁hole|> super().__init__()
self.segmentsWrittenTimeout = segments_written_timeout
self.bytesWrittenTimeout = bytes_written_timeout
self.framesWrittenTimeout = frames_written_timeout
self.hlsManifestsUpdateTimeout = hls_manifests_update_timeout
self.dashManifestsUpdateTimeout = dash_manifests_update_timeout
self.scheduleExpression = schedule_expression<|fim▁end|> | frames_written_timeout: float = None, hls_manifests_update_timeout: float = None,
dash_manifests_update_timeout: float = None, schedule_expression: str = None): |
<|file_name|>auto_restart_configuration.py<|end_file_name|><|fim▁begin|>from bitmovin.utils import Serializable
class AutoRestartConfiguration(Serializable):
<|fim_middle|>
<|fim▁end|> | def __init__(self, segments_written_timeout: float = None, bytes_written_timeout: float = None,
frames_written_timeout: float = None, hls_manifests_update_timeout: float = None,
dash_manifests_update_timeout: float = None, schedule_expression: str = None):
super().__init__()
self.segmentsWrittenTimeout = segments_written_timeout
self.bytesWrittenTimeout = bytes_written_timeout
self.framesWrittenTimeout = frames_written_timeout
self.hlsManifestsUpdateTimeout = hls_manifests_update_timeout
self.dashManifestsUpdateTimeout = dash_manifests_update_timeout
self.scheduleExpression = schedule_expression |
<|file_name|>auto_restart_configuration.py<|end_file_name|><|fim▁begin|>from bitmovin.utils import Serializable
class AutoRestartConfiguration(Serializable):
def __init__(self, segments_written_timeout: float = None, bytes_written_timeout: float = None,
frames_written_timeout: float = None, hls_manifests_update_timeout: float = None,
dash_manifests_update_timeout: float = None, schedule_expression: str = None):
<|fim_middle|>
<|fim▁end|> | super().__init__()
self.segmentsWrittenTimeout = segments_written_timeout
self.bytesWrittenTimeout = bytes_written_timeout
self.framesWrittenTimeout = frames_written_timeout
self.hlsManifestsUpdateTimeout = hls_manifests_update_timeout
self.dashManifestsUpdateTimeout = dash_manifests_update_timeout
self.scheduleExpression = schedule_expression |
<|file_name|>auto_restart_configuration.py<|end_file_name|><|fim▁begin|>from bitmovin.utils import Serializable
class AutoRestartConfiguration(Serializable):
def <|fim_middle|>(self, segments_written_timeout: float = None, bytes_written_timeout: float = None,
frames_written_timeout: float = None, hls_manifests_update_timeout: float = None,
dash_manifests_update_timeout: float = None, schedule_expression: str = None):
super().__init__()
self.segmentsWrittenTimeout = segments_written_timeout
self.bytesWrittenTimeout = bytes_written_timeout
self.framesWrittenTimeout = frames_written_timeout
self.hlsManifestsUpdateTimeout = hls_manifests_update_timeout
self.dashManifestsUpdateTimeout = dash_manifests_update_timeout
self.scheduleExpression = schedule_expression
<|fim▁end|> | __init__ |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from datetime import datetime
from flask import Blueprint, render_template
from flask_cas import login_required
from timecard.api import current_period_start
from timecard.models import config, admin_required
admin_views = Blueprint('admin', __name__, url_prefix='/admin', template_folder='templates')<|fim▁hole|>@admin_views.route('/users', methods=['GET'])
@login_required
@admin_required
def admin_users_page():
return render_template(
'admin_users.html',
initial_date=datetime.now().isoformat(), # now, in server's time zone
initial_period_start=current_period_start().isoformat(),
period_duration=config['period_duration'],
lock_date=config['lock_date'],
)
@admin_views.route('/settings')
@login_required
@admin_required
def admin_settings_page():
return render_template(
'admin_settings.html'
)<|fim▁end|> |
@admin_views.route('/') |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from datetime import datetime
from flask import Blueprint, render_template
from flask_cas import login_required
from timecard.api import current_period_start
from timecard.models import config, admin_required
admin_views = Blueprint('admin', __name__, url_prefix='/admin', template_folder='templates')
@admin_views.route('/')
@admin_views.route('/users', methods=['GET'])
@login_required
@admin_required
def admin_users_page():
<|fim_middle|>
@admin_views.route('/settings')
@login_required
@admin_required
def admin_settings_page():
return render_template(
'admin_settings.html'
)<|fim▁end|> | return render_template(
'admin_users.html',
initial_date=datetime.now().isoformat(), # now, in server's time zone
initial_period_start=current_period_start().isoformat(),
period_duration=config['period_duration'],
lock_date=config['lock_date'],
) |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from datetime import datetime
from flask import Blueprint, render_template
from flask_cas import login_required
from timecard.api import current_period_start
from timecard.models import config, admin_required
admin_views = Blueprint('admin', __name__, url_prefix='/admin', template_folder='templates')
@admin_views.route('/')
@admin_views.route('/users', methods=['GET'])
@login_required
@admin_required
def admin_users_page():
return render_template(
'admin_users.html',
initial_date=datetime.now().isoformat(), # now, in server's time zone
initial_period_start=current_period_start().isoformat(),
period_duration=config['period_duration'],
lock_date=config['lock_date'],
)
@admin_views.route('/settings')
@login_required
@admin_required
def admin_settings_page():
<|fim_middle|>
<|fim▁end|> | return render_template(
'admin_settings.html'
) |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from datetime import datetime
from flask import Blueprint, render_template
from flask_cas import login_required
from timecard.api import current_period_start
from timecard.models import config, admin_required
admin_views = Blueprint('admin', __name__, url_prefix='/admin', template_folder='templates')
@admin_views.route('/')
@admin_views.route('/users', methods=['GET'])
@login_required
@admin_required
def <|fim_middle|>():
return render_template(
'admin_users.html',
initial_date=datetime.now().isoformat(), # now, in server's time zone
initial_period_start=current_period_start().isoformat(),
period_duration=config['period_duration'],
lock_date=config['lock_date'],
)
@admin_views.route('/settings')
@login_required
@admin_required
def admin_settings_page():
return render_template(
'admin_settings.html'
)<|fim▁end|> | admin_users_page |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from datetime import datetime
from flask import Blueprint, render_template
from flask_cas import login_required
from timecard.api import current_period_start
from timecard.models import config, admin_required
admin_views = Blueprint('admin', __name__, url_prefix='/admin', template_folder='templates')
@admin_views.route('/')
@admin_views.route('/users', methods=['GET'])
@login_required
@admin_required
def admin_users_page():
return render_template(
'admin_users.html',
initial_date=datetime.now().isoformat(), # now, in server's time zone
initial_period_start=current_period_start().isoformat(),
period_duration=config['period_duration'],
lock_date=config['lock_date'],
)
@admin_views.route('/settings')
@login_required
@admin_required
def <|fim_middle|>():
return render_template(
'admin_settings.html'
)<|fim▁end|> | admin_settings_page |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
<|fim▁hole|> appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting<|fim▁end|> | lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
<|fim_middle|>
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | @property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
<|fim_middle|>
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | return 'Simultaneous-FA' |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
<|fim_middle|>
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
<|fim_middle|>
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | @property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
<|fim_middle|>
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | return 'Simultaneous-FC' |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
<|fim_middle|>
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices) |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
<|fim_middle|>
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
<|fim_middle|>
<|fim▁end|> | @property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
<|fim_middle|>
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | return 'Simultaneous-IA' |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
<|fim_middle|>
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices) |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
<|fim_middle|>
<|fim▁end|> | error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
<|fim_middle|>
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights) |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
<|fim_middle|>
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | weights = np.zeros(self.appearance_model.n_active_components) |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
<|fim_middle|>
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights) |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
<|fim_middle|>
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | weights = np.zeros(self.appearance_model.n_active_components) |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
<|fim_middle|>
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights) |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
<|fim_middle|>
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | weights = np.zeros(self.appearance_model.n_active_components) |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def <|fim_middle|>(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | algorithm |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def <|fim_middle|>(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | _fit |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def <|fim_middle|>(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | algorithm |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def <|fim_middle|>(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | _set_up |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def <|fim_middle|>(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | _fit |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def <|fim_middle|>(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | algorithm |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def <|fim_middle|>(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | _set_up |
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np
from scipy.linalg import norm
from .base import AppearanceLucasKanade
class SimultaneousForwardAdditive(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FA'
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute warp Jacobian
dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(
image, dW_dp, forward=(self.template, self.transform,
self.interpolator))
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
parameters = self.transform.as_vector() + delta_p[:n_params]
self.transform.from_vector_inplace(parameters)
lk_fitting.parameters.append(parameters)
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousForwardCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-FC'
def _set_up(self):
# Compute warp Jacobian
self._dW_dp = self.transform.jacobian(
self.template.mask.true_indices)
def _fit(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = self.appearance_model._jacobian.T
# Forward Additive Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VI_dW_dp
J = self.residual.steepest_descent_images(IWxp, self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, self.template, IWxp)
# Compute gradient descent parameter updates
delta_p = np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
class SimultaneousInverseCompositional(AppearanceLucasKanade):
@property
def algorithm(self):
return 'Simultaneous-IA'
def _set_up(self):
# Compute the Jacobian of the warp
self._dW_dp = self.transform.jacobian(
self.appearance_model.mean.mask.true_indices)
def <|fim_middle|>(self, lk_fitting, max_iters=20, project=True):
# Initial error > eps
error = self.eps + 1
image = lk_fitting.image
lk_fitting.weights = []
n_iters = 0
# Number of shape weights
n_params = self.transform.n_parameters
# Initial appearance weights
if project:
# Obtained weights by projection
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
weights = self.appearance_model.project(IWxp)
# Reset template
self.template = self.appearance_model.instance(weights)
else:
# Set all weights to 0 (yielding the mean)
weights = np.zeros(self.appearance_model.n_active_components)
lk_fitting.weights.append(weights)
# Compute appearance model Jacobian wrt weights
appearance_jacobian = -self.appearance_model._jacobian.T
# Baker-Matthews, Inverse Compositional Algorithm
while n_iters < max_iters and error > self.eps:
# Compute warped image with current weights
IWxp = image.warp_to(self.template.mask, self.transform,
interpolator=self.interpolator)
# Compute steepest descent images, VT_dW_dp
J = self.residual.steepest_descent_images(self.template,
self._dW_dp)
# Concatenate VI_dW_dp with appearance model Jacobian
self._J = np.hstack((J, appearance_jacobian))
# Compute Hessian and inverse
self._H = self.residual.calculate_hessian(self._J)
# Compute steepest descent parameter updates
sd_delta_p = self.residual.steepest_descent_update(
self._J, IWxp, self.template)
# Compute gradient descent parameter updates
delta_p = -np.real(self._calculate_delta_p(sd_delta_p))
# Update warp weights
self.transform.compose_after_from_vector_inplace(delta_p[:n_params])
lk_fitting.parameters.append(self.transform.as_vector())
# Update appearance weights
weights -= delta_p[n_params:]
self.template = self.appearance_model.instance(weights)
lk_fitting.weights.append(weights)
# Test convergence
error = np.abs(norm(delta_p))
n_iters += 1
lk_fitting.fitted = True
return lk_fitting
<|fim▁end|> | _fit |
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth'
from juliabox.cloud import JBPluginCloud
from juliabox.jbox_util import JBoxCfg, retry_on_errors
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials
import threading
class JBoxGCD(JBPluginCloud):
provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD]
threadlocal = threading.local()
INSTALLID = None
REGION = None
DOMAIN = None
@staticmethod
def configure():
cloud_host = JBoxCfg.get('cloud_host')
JBoxGCD.INSTALLID = cloud_host['install_id']
JBoxGCD.REGION = cloud_host['region']
JBoxGCD.DOMAIN = cloud_host['domain']
@staticmethod
def domain():
if JBoxGCD.DOMAIN is None:
JBoxGCD.configure()
return JBoxGCD.DOMAIN
@staticmethod
def connect():
c = getattr(JBoxGCD.threadlocal, 'conn', None)
if c is None:
JBoxGCD.configure()
creds = GoogleCredentials.get_application_default()
JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds)
return c
@staticmethod
@retry_on_errors(retries=2)<|fim▁hole|> JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'additions': [
{'rrdatas': [value],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': 300} ] }).execute()
@staticmethod
@retry_on_errors(retries=2)
def delete_cname(name):
resp = JBoxGCD.connect().resourceRecordSets().list(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
name=name, type='A').execute()
if len(resp['rrsets']) == 0:
JBoxGCD.log_debug('No prior dns registration found for %s', name)
else:
cname = resp['rrsets'][0]['rrdatas'][0]
ttl = resp['rrsets'][0]['ttl']
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'deletions': [
{'rrdatas': [str(cname)],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': ttl} ] }).execute()
JBoxGCD.log_warn('Prior dns registration was found for %s', name)<|fim▁end|> | def add_cname(name, value): |
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth'
from juliabox.cloud import JBPluginCloud
from juliabox.jbox_util import JBoxCfg, retry_on_errors
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials
import threading
class JBoxGCD(JBPluginCloud):
<|fim_middle|>
<|fim▁end|> | provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD]
threadlocal = threading.local()
INSTALLID = None
REGION = None
DOMAIN = None
@staticmethod
def configure():
cloud_host = JBoxCfg.get('cloud_host')
JBoxGCD.INSTALLID = cloud_host['install_id']
JBoxGCD.REGION = cloud_host['region']
JBoxGCD.DOMAIN = cloud_host['domain']
@staticmethod
def domain():
if JBoxGCD.DOMAIN is None:
JBoxGCD.configure()
return JBoxGCD.DOMAIN
@staticmethod
def connect():
c = getattr(JBoxGCD.threadlocal, 'conn', None)
if c is None:
JBoxGCD.configure()
creds = GoogleCredentials.get_application_default()
JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds)
return c
@staticmethod
@retry_on_errors(retries=2)
def add_cname(name, value):
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'additions': [
{'rrdatas': [value],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': 300} ] }).execute()
@staticmethod
@retry_on_errors(retries=2)
def delete_cname(name):
resp = JBoxGCD.connect().resourceRecordSets().list(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
name=name, type='A').execute()
if len(resp['rrsets']) == 0:
JBoxGCD.log_debug('No prior dns registration found for %s', name)
else:
cname = resp['rrsets'][0]['rrdatas'][0]
ttl = resp['rrsets'][0]['ttl']
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'deletions': [
{'rrdatas': [str(cname)],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': ttl} ] }).execute()
JBoxGCD.log_warn('Prior dns registration was found for %s', name) |
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth'
from juliabox.cloud import JBPluginCloud
from juliabox.jbox_util import JBoxCfg, retry_on_errors
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials
import threading
class JBoxGCD(JBPluginCloud):
provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD]
threadlocal = threading.local()
INSTALLID = None
REGION = None
DOMAIN = None
@staticmethod
def configure():
<|fim_middle|>
@staticmethod
def domain():
if JBoxGCD.DOMAIN is None:
JBoxGCD.configure()
return JBoxGCD.DOMAIN
@staticmethod
def connect():
c = getattr(JBoxGCD.threadlocal, 'conn', None)
if c is None:
JBoxGCD.configure()
creds = GoogleCredentials.get_application_default()
JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds)
return c
@staticmethod
@retry_on_errors(retries=2)
def add_cname(name, value):
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'additions': [
{'rrdatas': [value],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': 300} ] }).execute()
@staticmethod
@retry_on_errors(retries=2)
def delete_cname(name):
resp = JBoxGCD.connect().resourceRecordSets().list(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
name=name, type='A').execute()
if len(resp['rrsets']) == 0:
JBoxGCD.log_debug('No prior dns registration found for %s', name)
else:
cname = resp['rrsets'][0]['rrdatas'][0]
ttl = resp['rrsets'][0]['ttl']
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'deletions': [
{'rrdatas': [str(cname)],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': ttl} ] }).execute()
JBoxGCD.log_warn('Prior dns registration was found for %s', name)
<|fim▁end|> | cloud_host = JBoxCfg.get('cloud_host')
JBoxGCD.INSTALLID = cloud_host['install_id']
JBoxGCD.REGION = cloud_host['region']
JBoxGCD.DOMAIN = cloud_host['domain'] |
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth'
from juliabox.cloud import JBPluginCloud
from juliabox.jbox_util import JBoxCfg, retry_on_errors
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials
import threading
class JBoxGCD(JBPluginCloud):
provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD]
threadlocal = threading.local()
INSTALLID = None
REGION = None
DOMAIN = None
@staticmethod
def configure():
cloud_host = JBoxCfg.get('cloud_host')
JBoxGCD.INSTALLID = cloud_host['install_id']
JBoxGCD.REGION = cloud_host['region']
JBoxGCD.DOMAIN = cloud_host['domain']
@staticmethod
def domain():
<|fim_middle|>
@staticmethod
def connect():
c = getattr(JBoxGCD.threadlocal, 'conn', None)
if c is None:
JBoxGCD.configure()
creds = GoogleCredentials.get_application_default()
JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds)
return c
@staticmethod
@retry_on_errors(retries=2)
def add_cname(name, value):
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'additions': [
{'rrdatas': [value],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': 300} ] }).execute()
@staticmethod
@retry_on_errors(retries=2)
def delete_cname(name):
resp = JBoxGCD.connect().resourceRecordSets().list(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
name=name, type='A').execute()
if len(resp['rrsets']) == 0:
JBoxGCD.log_debug('No prior dns registration found for %s', name)
else:
cname = resp['rrsets'][0]['rrdatas'][0]
ttl = resp['rrsets'][0]['ttl']
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'deletions': [
{'rrdatas': [str(cname)],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': ttl} ] }).execute()
JBoxGCD.log_warn('Prior dns registration was found for %s', name)
<|fim▁end|> | if JBoxGCD.DOMAIN is None:
JBoxGCD.configure()
return JBoxGCD.DOMAIN |
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth'
from juliabox.cloud import JBPluginCloud
from juliabox.jbox_util import JBoxCfg, retry_on_errors
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials
import threading
class JBoxGCD(JBPluginCloud):
provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD]
threadlocal = threading.local()
INSTALLID = None
REGION = None
DOMAIN = None
@staticmethod
def configure():
cloud_host = JBoxCfg.get('cloud_host')
JBoxGCD.INSTALLID = cloud_host['install_id']
JBoxGCD.REGION = cloud_host['region']
JBoxGCD.DOMAIN = cloud_host['domain']
@staticmethod
def domain():
if JBoxGCD.DOMAIN is None:
JBoxGCD.configure()
return JBoxGCD.DOMAIN
@staticmethod
def connect():
<|fim_middle|>
@staticmethod
@retry_on_errors(retries=2)
def add_cname(name, value):
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'additions': [
{'rrdatas': [value],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': 300} ] }).execute()
@staticmethod
@retry_on_errors(retries=2)
def delete_cname(name):
resp = JBoxGCD.connect().resourceRecordSets().list(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
name=name, type='A').execute()
if len(resp['rrsets']) == 0:
JBoxGCD.log_debug('No prior dns registration found for %s', name)
else:
cname = resp['rrsets'][0]['rrdatas'][0]
ttl = resp['rrsets'][0]['ttl']
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'deletions': [
{'rrdatas': [str(cname)],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': ttl} ] }).execute()
JBoxGCD.log_warn('Prior dns registration was found for %s', name)
<|fim▁end|> | c = getattr(JBoxGCD.threadlocal, 'conn', None)
if c is None:
JBoxGCD.configure()
creds = GoogleCredentials.get_application_default()
JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds)
return c |
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth'
from juliabox.cloud import JBPluginCloud
from juliabox.jbox_util import JBoxCfg, retry_on_errors
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials
import threading
class JBoxGCD(JBPluginCloud):
provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD]
threadlocal = threading.local()
INSTALLID = None
REGION = None
DOMAIN = None
@staticmethod
def configure():
cloud_host = JBoxCfg.get('cloud_host')
JBoxGCD.INSTALLID = cloud_host['install_id']
JBoxGCD.REGION = cloud_host['region']
JBoxGCD.DOMAIN = cloud_host['domain']
@staticmethod
def domain():
if JBoxGCD.DOMAIN is None:
JBoxGCD.configure()
return JBoxGCD.DOMAIN
@staticmethod
def connect():
c = getattr(JBoxGCD.threadlocal, 'conn', None)
if c is None:
JBoxGCD.configure()
creds = GoogleCredentials.get_application_default()
JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds)
return c
@staticmethod
@retry_on_errors(retries=2)
def add_cname(name, value):
<|fim_middle|>
@staticmethod
@retry_on_errors(retries=2)
def delete_cname(name):
resp = JBoxGCD.connect().resourceRecordSets().list(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
name=name, type='A').execute()
if len(resp['rrsets']) == 0:
JBoxGCD.log_debug('No prior dns registration found for %s', name)
else:
cname = resp['rrsets'][0]['rrdatas'][0]
ttl = resp['rrsets'][0]['ttl']
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'deletions': [
{'rrdatas': [str(cname)],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': ttl} ] }).execute()
JBoxGCD.log_warn('Prior dns registration was found for %s', name)
<|fim▁end|> | JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'additions': [
{'rrdatas': [value],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': 300} ] }).execute() |
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth'
from juliabox.cloud import JBPluginCloud
from juliabox.jbox_util import JBoxCfg, retry_on_errors
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials
import threading
class JBoxGCD(JBPluginCloud):
provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD]
threadlocal = threading.local()
INSTALLID = None
REGION = None
DOMAIN = None
@staticmethod
def configure():
cloud_host = JBoxCfg.get('cloud_host')
JBoxGCD.INSTALLID = cloud_host['install_id']
JBoxGCD.REGION = cloud_host['region']
JBoxGCD.DOMAIN = cloud_host['domain']
@staticmethod
def domain():
if JBoxGCD.DOMAIN is None:
JBoxGCD.configure()
return JBoxGCD.DOMAIN
@staticmethod
def connect():
c = getattr(JBoxGCD.threadlocal, 'conn', None)
if c is None:
JBoxGCD.configure()
creds = GoogleCredentials.get_application_default()
JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds)
return c
@staticmethod
@retry_on_errors(retries=2)
def add_cname(name, value):
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'additions': [
{'rrdatas': [value],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': 300} ] }).execute()
@staticmethod
@retry_on_errors(retries=2)
def delete_cname(name):
<|fim_middle|>
<|fim▁end|> | resp = JBoxGCD.connect().resourceRecordSets().list(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
name=name, type='A').execute()
if len(resp['rrsets']) == 0:
JBoxGCD.log_debug('No prior dns registration found for %s', name)
else:
cname = resp['rrsets'][0]['rrdatas'][0]
ttl = resp['rrsets'][0]['ttl']
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'deletions': [
{'rrdatas': [str(cname)],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': ttl} ] }).execute()
JBoxGCD.log_warn('Prior dns registration was found for %s', name) |
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth'
from juliabox.cloud import JBPluginCloud
from juliabox.jbox_util import JBoxCfg, retry_on_errors
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials
import threading
class JBoxGCD(JBPluginCloud):
provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD]
threadlocal = threading.local()
INSTALLID = None
REGION = None
DOMAIN = None
@staticmethod
def configure():
cloud_host = JBoxCfg.get('cloud_host')
JBoxGCD.INSTALLID = cloud_host['install_id']
JBoxGCD.REGION = cloud_host['region']
JBoxGCD.DOMAIN = cloud_host['domain']
@staticmethod
def domain():
if JBoxGCD.DOMAIN is None:
<|fim_middle|>
return JBoxGCD.DOMAIN
@staticmethod
def connect():
c = getattr(JBoxGCD.threadlocal, 'conn', None)
if c is None:
JBoxGCD.configure()
creds = GoogleCredentials.get_application_default()
JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds)
return c
@staticmethod
@retry_on_errors(retries=2)
def add_cname(name, value):
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'additions': [
{'rrdatas': [value],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': 300} ] }).execute()
@staticmethod
@retry_on_errors(retries=2)
def delete_cname(name):
resp = JBoxGCD.connect().resourceRecordSets().list(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
name=name, type='A').execute()
if len(resp['rrsets']) == 0:
JBoxGCD.log_debug('No prior dns registration found for %s', name)
else:
cname = resp['rrsets'][0]['rrdatas'][0]
ttl = resp['rrsets'][0]['ttl']
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'deletions': [
{'rrdatas': [str(cname)],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': ttl} ] }).execute()
JBoxGCD.log_warn('Prior dns registration was found for %s', name)
<|fim▁end|> | JBoxGCD.configure() |
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth'
from juliabox.cloud import JBPluginCloud
from juliabox.jbox_util import JBoxCfg, retry_on_errors
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials
import threading
class JBoxGCD(JBPluginCloud):
provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD]
threadlocal = threading.local()
INSTALLID = None
REGION = None
DOMAIN = None
@staticmethod
def configure():
cloud_host = JBoxCfg.get('cloud_host')
JBoxGCD.INSTALLID = cloud_host['install_id']
JBoxGCD.REGION = cloud_host['region']
JBoxGCD.DOMAIN = cloud_host['domain']
@staticmethod
def domain():
if JBoxGCD.DOMAIN is None:
JBoxGCD.configure()
return JBoxGCD.DOMAIN
@staticmethod
def connect():
c = getattr(JBoxGCD.threadlocal, 'conn', None)
if c is None:
<|fim_middle|>
return c
@staticmethod
@retry_on_errors(retries=2)
def add_cname(name, value):
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'additions': [
{'rrdatas': [value],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': 300} ] }).execute()
@staticmethod
@retry_on_errors(retries=2)
def delete_cname(name):
resp = JBoxGCD.connect().resourceRecordSets().list(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
name=name, type='A').execute()
if len(resp['rrsets']) == 0:
JBoxGCD.log_debug('No prior dns registration found for %s', name)
else:
cname = resp['rrsets'][0]['rrdatas'][0]
ttl = resp['rrsets'][0]['ttl']
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'deletions': [
{'rrdatas': [str(cname)],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': ttl} ] }).execute()
JBoxGCD.log_warn('Prior dns registration was found for %s', name)
<|fim▁end|> | JBoxGCD.configure()
creds = GoogleCredentials.get_application_default()
JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) |
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth'
from juliabox.cloud import JBPluginCloud
from juliabox.jbox_util import JBoxCfg, retry_on_errors
from googleapiclient.discovery import build
from oauth2client.client import GoogleCredentials
import threading
class JBoxGCD(JBPluginCloud):
provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD]
threadlocal = threading.local()
INSTALLID = None
REGION = None
DOMAIN = None
@staticmethod
def configure():
cloud_host = JBoxCfg.get('cloud_host')
JBoxGCD.INSTALLID = cloud_host['install_id']
JBoxGCD.REGION = cloud_host['region']
JBoxGCD.DOMAIN = cloud_host['domain']
@staticmethod
def domain():
if JBoxGCD.DOMAIN is None:
JBoxGCD.configure()
return JBoxGCD.DOMAIN
@staticmethod
def connect():
c = getattr(JBoxGCD.threadlocal, 'conn', None)
if c is None:
JBoxGCD.configure()
creds = GoogleCredentials.get_application_default()
JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds)
return c
@staticmethod
@retry_on_errors(retries=2)
def add_cname(name, value):
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'additions': [
{'rrdatas': [value],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': 300} ] }).execute()
@staticmethod
@retry_on_errors(retries=2)
def delete_cname(name):
resp = JBoxGCD.connect().resourceRecordSets().list(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
name=name, type='A').execute()
if len(resp['rrsets']) == 0:
<|fim_middle|>
else:
cname = resp['rrsets'][0]['rrdatas'][0]
ttl = resp['rrsets'][0]['ttl']
JBoxGCD.connect().changes().create(
project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION,
body={'kind': 'dns#change',
'deletions': [
{'rrdatas': [str(cname)],
'kind': 'dns#resourceRecordSet',
'type': 'A',
'name': name,
'ttl': ttl} ] }).execute()
JBoxGCD.log_warn('Prior dns registration was found for %s', name)
<|fim▁end|> | JBoxGCD.log_debug('No prior dns registration found for %s', name) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.