prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): <|fim_middle|> class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
"""Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n"
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): <|fim_middle|> class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
"""Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n"
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): <|fim_middle|> def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
self.transport.write(self.getUsers()) self.transport.loseConnection()
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): <|fim_middle|> class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
"""Return active users. Override in subclasses.""" return "root\r\n"
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): <|fim_middle|> class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
"""Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection()
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): <|fim_middle|> class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection()
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): <|fim_middle|> __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
"""Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection()
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? <|fim_middle|> __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection()
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: <|fim_middle|> <|fim▁end|>
__all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: <|fim_middle|> del name, __all3__ <|fim▁end|>
__all__.remove(name) del globals()[name]
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def <|fim_middle|>(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
dataReceived
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def <|fim_middle|>(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
dataReceived
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def <|fim_middle|>(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
connectionMade
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def <|fim_middle|>(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
resumeProducing
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def <|fim_middle|>(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
pauseProducing
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def <|fim_middle|>(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
stopProducing
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def <|fim_middle|>(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
connectionMade
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def <|fim_middle|>(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
getQuote
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def <|fim_middle|>(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
connectionMade
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def <|fim_middle|>(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
getUsers
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def <|fim_middle|>(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def connectionMade(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
connectionMade
<|file_name|>wire.py<|end_file_name|><|fim▁begin|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """Implement standard (and unused) TCP protocols. These protocols are either provided by inetd, or are not provided at all. """ from __future__ import absolute_import, division import time import struct from zope.interface import implementer from twisted.internet import protocol, interfaces from twisted.python.compat import _PY3 class Echo(protocol.Protocol): """As soon as any data is received, write it back (RFC 862)""" def dataReceived(self, data): self.transport.write(data) class Discard(protocol.Protocol): """Discard any received data (RFC 863)""" def dataReceived(self, data): # I'm ignoring you, nyah-nyah pass @implementer(interfaces.IProducer) class Chargen(protocol.Protocol): """Generate repeating noise (RFC 864)""" noise = r'@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&?' def connectionMade(self): self.transport.registerProducer(self, 0) def resumeProducing(self): self.transport.write(self.noise) def pauseProducing(self): pass def stopProducing(self): pass class QOTD(protocol.Protocol): """Return a quote of the day (RFC 865)""" def connectionMade(self): self.transport.write(self.getQuote()) self.transport.loseConnection() def getQuote(self): """Return a quote. May be overrriden in subclasses.""" return "An apple a day keeps the doctor away.\r\n" class Who(protocol.Protocol): """Return list of active users (RFC 866)""" def connectionMade(self): self.transport.write(self.getUsers()) self.transport.loseConnection() def getUsers(self): """Return active users. Override in subclasses.""" return "root\r\n" class Daytime(protocol.Protocol): """Send back the daytime in ASCII form (RFC 867)""" def connectionMade(self): self.transport.write(time.asctime(time.gmtime(time.time())) + '\r\n') self.transport.loseConnection() class Time(protocol.Protocol): """Send back the time in machine readable form (RFC 868)""" def <|fim_middle|>(self): # is this correct only for 32-bit machines? result = struct.pack("!i", int(time.time())) self.transport.write(result) self.transport.loseConnection() __all__ = ["Echo", "Discard", "Chargen", "QOTD", "Who", "Daytime", "Time"] if _PY3: __all3__ = ["Echo"] for name in __all__[:]: if name not in __all3__: __all__.remove(name) del globals()[name] del name, __all3__ <|fim▁end|>
connectionMade
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio<|fim▁hole|> lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits<|fim▁end|>
def get_freq(arr):
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): <|fim_middle|> #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): <|fim_middle|> start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: <|fim_middle|> filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
print "Usage: %s <filename> " % sys.argv[0] sys.exit(1)
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: <|fim_middle|> elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
hi.append(b[j])
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: <|fim_middle|> else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
lo.append(b[j])
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: <|fim_middle|> hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
mid.append(b[j])
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": <|fim_middle|> for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
first += 1
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": <|fim_middle|> for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
second += 1
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": <|fim_middle|> if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
third += 1
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: <|fim_middle|> else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
return True
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: <|fim_middle|> #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
return False
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": <|fim_middle|> if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
lo_count+=1
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": <|fim_middle|> if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
hi_count+=1
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": <|fim_middle|> if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
mid_count+=1
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: <|fim_middle|> if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
return 2
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: <|fim_middle|> else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
return 0
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: <|fim_middle|> start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
return 1
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: <|fim_middle|> elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
hi_amp.append(b[j])
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: <|fim_middle|> else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
lo_amp.append(b[j])
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: <|fim_middle|> hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
mid_amp.append(b[j])
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): <|fim_middle|> if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
freq_list.append("lo")
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): <|fim_middle|> if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
freq_list.append("mid")
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): <|fim_middle|> print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
freq_list.append("hi")
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: <|fim_middle|> print bits <|fim▁end|>
if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: <|fim_middle|> elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: <|fim_middle|> elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: <|fim_middle|> else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
bits.append(bit)
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: <|fim_middle|> elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
print "Stop Signal Detected" break
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: <|fim_middle|> print bits <|fim▁end|>
if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): <|fim_middle|> print bits <|fim▁end|>
print "signal found" start = True offset = len(freq_list)%5
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def <|fim_middle|>(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def get_freq(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
signal_found
<|file_name|>parse.py<|end_file_name|><|fim▁begin|>import sys, math from test import goertzel import wave import pyaudio import Queue import numpy as np if len(sys.argv) < 2: print "Usage: %s <filename> " % sys.argv[0] sys.exit(1) filename = sys.argv[1] w = wave.open(filename) fs = w.getframerate() width = w.getsampwidth() chunkDuration = .2 #.2 second chunks chunk = int(chunkDuration*fs) window = np.blackman(chunk) p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(w.getsampwidth()), channels = w.getnchannels(),rate = fs, output=True) #read .2 second chunk data = w.readframes(chunk) chunk_data = [] #find the frequencies of each chunk print "Running calculations on wav file" num = 0 while data != '': print "Calculating Chunk " + str(num) stream.write(data) indata = np.array(wave.struct.unpack("%dh"%(len(data)/width),\ data)) freqs , results = goertzel(indata,fs, (1036,1058), (1567,1569), (2082,2104)) chunk_data.append((freqs,results)) data = w.readframes(chunk) num+=.2 stream.close() p.terminate() #finished getting data from chunks, now to parse the data hi = [] lo = [] mid = [] #average first second of audio to get frequency baselines for i in range (5): a = chunk_data[i][0] b = chunk_data[i][1] for j in range(len(a)): if a[j] > 1700: hi.append(b[j]) elif a[j] < 1300: lo.append(b[j]) else: mid.append(b[j]) hi_average = sum(hi)/float(len(hi)) lo_average = sum(lo)/float(len(lo)) mid_average = sum(mid)/float(len(mid)) """ Determine the frequency in each .2 second chunk that has the highest amplitude increase from its average, then determine the frequency of that second of data by the median frequency of its 5 chunks """ #looks for start signal in last 3 seconds of audio def signal_found(arr): lst = arr[-15:] first = 0 second = 0 third = 0 for i in range(0,5): if lst[i]=="mid": first += 1 for i in range(5,10): if lst[i]=="mid": second += 1 for i in range(10,15): if lst[i]=="mid": third += 1 if first >= 5 and second >= 5 and third >= 5: return True else: return False #gets freq of 1 second of audio def <|fim_middle|>(arr): lo_count = 0 hi_count = 0 mid_count = 0 for i in arr: if i=="lo": lo_count+=1 if i=="hi": hi_count+=1 if i=="mid": mid_count+=1 if mid_count > hi_count and mid_count > lo_count: return 2 if lo_count>hi_count: return 0 else: return 1 start = False freq_list = [] offset = 0 bits = [] for i in range(5,len(chunk_data)): a = chunk_data[i][0] b = chunk_data[i][1] hi_amp = [] lo_amp = [] mid_amp = [] #get averages for each freq for j in range(len(a)): if a[j] > 1700: hi_amp.append(b[j]) elif a[j] < 1300: lo_amp.append(b[j]) else: mid_amp.append(b[j]) hi_av = sum(hi_amp)/float(len(hi_amp)) lo_av = sum(lo_amp)/float(len(lo_amp)) mid_av = sum(mid_amp)/float(len(mid_amp)) #get freq of this chunk diff = [lo_av-lo_average,mid_av-mid_average,hi_av-hi_average] index = diff.index(max(diff)) if(index==0): freq_list.append("lo") if(index==1): freq_list.append("mid") if(index==2): freq_list.append("hi") print(freq_list[len(freq_list)-1]) if len(freq_list) > 5: if start: if len(freq_list)%5 == offset: bit = get_freq(freq_list[-5:]) if bit != 2: bits.append(bit) else: print "Stop Signal Detected" break elif len(freq_list) >= 15: if signal_found(freq_list): print "signal found" start = True offset = len(freq_list)%5 print bits <|fim▁end|>
get_freq
<|file_name|>auto_restart_configuration.py<|end_file_name|><|fim▁begin|>from bitmovin.utils import Serializable class AutoRestartConfiguration(Serializable): def __init__(self, segments_written_timeout: float = None, bytes_written_timeout: float = None,<|fim▁hole|> super().__init__() self.segmentsWrittenTimeout = segments_written_timeout self.bytesWrittenTimeout = bytes_written_timeout self.framesWrittenTimeout = frames_written_timeout self.hlsManifestsUpdateTimeout = hls_manifests_update_timeout self.dashManifestsUpdateTimeout = dash_manifests_update_timeout self.scheduleExpression = schedule_expression<|fim▁end|>
frames_written_timeout: float = None, hls_manifests_update_timeout: float = None, dash_manifests_update_timeout: float = None, schedule_expression: str = None):
<|file_name|>auto_restart_configuration.py<|end_file_name|><|fim▁begin|>from bitmovin.utils import Serializable class AutoRestartConfiguration(Serializable): <|fim_middle|> <|fim▁end|>
def __init__(self, segments_written_timeout: float = None, bytes_written_timeout: float = None, frames_written_timeout: float = None, hls_manifests_update_timeout: float = None, dash_manifests_update_timeout: float = None, schedule_expression: str = None): super().__init__() self.segmentsWrittenTimeout = segments_written_timeout self.bytesWrittenTimeout = bytes_written_timeout self.framesWrittenTimeout = frames_written_timeout self.hlsManifestsUpdateTimeout = hls_manifests_update_timeout self.dashManifestsUpdateTimeout = dash_manifests_update_timeout self.scheduleExpression = schedule_expression
<|file_name|>auto_restart_configuration.py<|end_file_name|><|fim▁begin|>from bitmovin.utils import Serializable class AutoRestartConfiguration(Serializable): def __init__(self, segments_written_timeout: float = None, bytes_written_timeout: float = None, frames_written_timeout: float = None, hls_manifests_update_timeout: float = None, dash_manifests_update_timeout: float = None, schedule_expression: str = None): <|fim_middle|> <|fim▁end|>
super().__init__() self.segmentsWrittenTimeout = segments_written_timeout self.bytesWrittenTimeout = bytes_written_timeout self.framesWrittenTimeout = frames_written_timeout self.hlsManifestsUpdateTimeout = hls_manifests_update_timeout self.dashManifestsUpdateTimeout = dash_manifests_update_timeout self.scheduleExpression = schedule_expression
<|file_name|>auto_restart_configuration.py<|end_file_name|><|fim▁begin|>from bitmovin.utils import Serializable class AutoRestartConfiguration(Serializable): def <|fim_middle|>(self, segments_written_timeout: float = None, bytes_written_timeout: float = None, frames_written_timeout: float = None, hls_manifests_update_timeout: float = None, dash_manifests_update_timeout: float = None, schedule_expression: str = None): super().__init__() self.segmentsWrittenTimeout = segments_written_timeout self.bytesWrittenTimeout = bytes_written_timeout self.framesWrittenTimeout = frames_written_timeout self.hlsManifestsUpdateTimeout = hls_manifests_update_timeout self.dashManifestsUpdateTimeout = dash_manifests_update_timeout self.scheduleExpression = schedule_expression <|fim▁end|>
__init__
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from datetime import datetime from flask import Blueprint, render_template from flask_cas import login_required from timecard.api import current_period_start from timecard.models import config, admin_required admin_views = Blueprint('admin', __name__, url_prefix='/admin', template_folder='templates')<|fim▁hole|>@admin_views.route('/users', methods=['GET']) @login_required @admin_required def admin_users_page(): return render_template( 'admin_users.html', initial_date=datetime.now().isoformat(), # now, in server's time zone initial_period_start=current_period_start().isoformat(), period_duration=config['period_duration'], lock_date=config['lock_date'], ) @admin_views.route('/settings') @login_required @admin_required def admin_settings_page(): return render_template( 'admin_settings.html' )<|fim▁end|>
@admin_views.route('/')
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from datetime import datetime from flask import Blueprint, render_template from flask_cas import login_required from timecard.api import current_period_start from timecard.models import config, admin_required admin_views = Blueprint('admin', __name__, url_prefix='/admin', template_folder='templates') @admin_views.route('/') @admin_views.route('/users', methods=['GET']) @login_required @admin_required def admin_users_page(): <|fim_middle|> @admin_views.route('/settings') @login_required @admin_required def admin_settings_page(): return render_template( 'admin_settings.html' )<|fim▁end|>
return render_template( 'admin_users.html', initial_date=datetime.now().isoformat(), # now, in server's time zone initial_period_start=current_period_start().isoformat(), period_duration=config['period_duration'], lock_date=config['lock_date'], )
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from datetime import datetime from flask import Blueprint, render_template from flask_cas import login_required from timecard.api import current_period_start from timecard.models import config, admin_required admin_views = Blueprint('admin', __name__, url_prefix='/admin', template_folder='templates') @admin_views.route('/') @admin_views.route('/users', methods=['GET']) @login_required @admin_required def admin_users_page(): return render_template( 'admin_users.html', initial_date=datetime.now().isoformat(), # now, in server's time zone initial_period_start=current_period_start().isoformat(), period_duration=config['period_duration'], lock_date=config['lock_date'], ) @admin_views.route('/settings') @login_required @admin_required def admin_settings_page(): <|fim_middle|> <|fim▁end|>
return render_template( 'admin_settings.html' )
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from datetime import datetime from flask import Blueprint, render_template from flask_cas import login_required from timecard.api import current_period_start from timecard.models import config, admin_required admin_views = Blueprint('admin', __name__, url_prefix='/admin', template_folder='templates') @admin_views.route('/') @admin_views.route('/users', methods=['GET']) @login_required @admin_required def <|fim_middle|>(): return render_template( 'admin_users.html', initial_date=datetime.now().isoformat(), # now, in server's time zone initial_period_start=current_period_start().isoformat(), period_duration=config['period_duration'], lock_date=config['lock_date'], ) @admin_views.route('/settings') @login_required @admin_required def admin_settings_page(): return render_template( 'admin_settings.html' )<|fim▁end|>
admin_users_page
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from datetime import datetime from flask import Blueprint, render_template from flask_cas import login_required from timecard.api import current_period_start from timecard.models import config, admin_required admin_views = Blueprint('admin', __name__, url_prefix='/admin', template_folder='templates') @admin_views.route('/') @admin_views.route('/users', methods=['GET']) @login_required @admin_required def admin_users_page(): return render_template( 'admin_users.html', initial_date=datetime.now().isoformat(), # now, in server's time zone initial_period_start=current_period_start().isoformat(), period_duration=config['period_duration'], lock_date=config['lock_date'], ) @admin_views.route('/settings') @login_required @admin_required def <|fim_middle|>(): return render_template( 'admin_settings.html' )<|fim▁end|>
admin_settings_page
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) <|fim▁hole|> appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting<|fim▁end|>
lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): <|fim_middle|> class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
@property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): <|fim_middle|> def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
return 'Simultaneous-FA'
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps <|fim_middle|> class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): <|fim_middle|> class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
@property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): <|fim_middle|> def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
return 'Simultaneous-FC'
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian <|fim_middle|> def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
self._dW_dp = self.transform.jacobian( self.template.mask.true_indices)
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps <|fim_middle|> class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): <|fim_middle|> <|fim▁end|>
@property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): <|fim_middle|> def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
return 'Simultaneous-IA'
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp <|fim_middle|> def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices)
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps <|fim_middle|> <|fim▁end|>
error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection <|fim_middle|> else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights)
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) <|fim_middle|> lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
weights = np.zeros(self.appearance_model.n_active_components)
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection <|fim_middle|> else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights)
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) <|fim_middle|> lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
weights = np.zeros(self.appearance_model.n_active_components)
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection <|fim_middle|> else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights)
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) <|fim_middle|> lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
weights = np.zeros(self.appearance_model.n_active_components)
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def <|fim_middle|>(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
algorithm
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def <|fim_middle|>(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
_fit
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def <|fim_middle|>(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
algorithm
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def <|fim_middle|>(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
_set_up
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def <|fim_middle|>(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
_fit
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def <|fim_middle|>(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
algorithm
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def <|fim_middle|>(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
_set_up
<|file_name|>simultaneous.py<|end_file_name|><|fim▁begin|>import numpy as np from scipy.linalg import norm from .base import AppearanceLucasKanade class SimultaneousForwardAdditive(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FA' def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute warp Jacobian dW_dp = self.transform.jacobian( self.template.mask.true_indices) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images( image, dW_dp, forward=(self.template, self.transform, self.interpolator)) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights parameters = self.transform.as_vector() + delta_p[:n_params] self.transform.from_vector_inplace(parameters) lk_fitting.parameters.append(parameters) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousForwardCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-FC' def _set_up(self): # Compute warp Jacobian self._dW_dp = self.transform.jacobian( self.template.mask.true_indices) def _fit(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = self.appearance_model._jacobian.T # Forward Additive Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VI_dW_dp J = self.residual.steepest_descent_images(IWxp, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, self.template, IWxp) # Compute gradient descent parameter updates delta_p = np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting class SimultaneousInverseCompositional(AppearanceLucasKanade): @property def algorithm(self): return 'Simultaneous-IA' def _set_up(self): # Compute the Jacobian of the warp self._dW_dp = self.transform.jacobian( self.appearance_model.mean.mask.true_indices) def <|fim_middle|>(self, lk_fitting, max_iters=20, project=True): # Initial error > eps error = self.eps + 1 image = lk_fitting.image lk_fitting.weights = [] n_iters = 0 # Number of shape weights n_params = self.transform.n_parameters # Initial appearance weights if project: # Obtained weights by projection IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) weights = self.appearance_model.project(IWxp) # Reset template self.template = self.appearance_model.instance(weights) else: # Set all weights to 0 (yielding the mean) weights = np.zeros(self.appearance_model.n_active_components) lk_fitting.weights.append(weights) # Compute appearance model Jacobian wrt weights appearance_jacobian = -self.appearance_model._jacobian.T # Baker-Matthews, Inverse Compositional Algorithm while n_iters < max_iters and error > self.eps: # Compute warped image with current weights IWxp = image.warp_to(self.template.mask, self.transform, interpolator=self.interpolator) # Compute steepest descent images, VT_dW_dp J = self.residual.steepest_descent_images(self.template, self._dW_dp) # Concatenate VI_dW_dp with appearance model Jacobian self._J = np.hstack((J, appearance_jacobian)) # Compute Hessian and inverse self._H = self.residual.calculate_hessian(self._J) # Compute steepest descent parameter updates sd_delta_p = self.residual.steepest_descent_update( self._J, IWxp, self.template) # Compute gradient descent parameter updates delta_p = -np.real(self._calculate_delta_p(sd_delta_p)) # Update warp weights self.transform.compose_after_from_vector_inplace(delta_p[:n_params]) lk_fitting.parameters.append(self.transform.as_vector()) # Update appearance weights weights -= delta_p[n_params:] self.template = self.appearance_model.instance(weights) lk_fitting.weights.append(weights) # Test convergence error = np.abs(norm(delta_p)) n_iters += 1 lk_fitting.fitted = True return lk_fitting <|fim▁end|>
_fit
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2)<|fim▁hole|> JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name)<|fim▁end|>
def add_cname(name, value):
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): <|fim_middle|> <|fim▁end|>
provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name)
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): <|fim_middle|> @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain']
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): <|fim_middle|> @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): <|fim_middle|> @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): <|fim_middle|> @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute()
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): <|fim_middle|> <|fim▁end|>
resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name)
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: <|fim_middle|> return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
JBoxGCD.configure()
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: <|fim_middle|> return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds)
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: <|fim_middle|> else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
JBoxGCD.log_debug('No prior dns registration found for %s', name)