prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): <|fim_middle|> def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message)
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): <|fim_middle|> def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
""" List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys()
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): <|fim_middle|> @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
""" Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close()
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): <|fim_middle|> if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
""" Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper))
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): <|fim_middle|> level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
raise ValueError("logger {0} is not available".format(logger_name))
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: <|fim_middle|> yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
return
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": <|fim_middle|> <|fim▁end|>
service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down")
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def <|fim_middle|>(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
__init__
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def <|fim_middle|>(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
emit
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def <|fim_middle|>(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
close
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def <|fim_middle|>(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
emitted
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def <|fim_middle|>(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
__init__
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def <|fim_middle|>(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
test
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def <|fim_middle|>(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
available_loggers
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def <|fim_middle|>(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def log_stream(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
close_log_streams
<|file_name|>logstream_test.py<|end_file_name|><|fim▁begin|>import zerorpc import gevent.queue import logging import sys logging.basicConfig() # root logger logger = logging.getLogger() # set the mimimum level for root logger so it will be possible for a client # to subscribe and receive logs for any log level logger.setLevel(0) class QueueingLogHandler(logging.Handler): """ A simple logging handler which puts all emitted logs into a gevent queue. """ def __init__(self, queue, level, formatter): super(QueueingLogHandler, self).__init__() self._queue = queue self.setLevel(level) self.setFormatter(formatter) def emit(self, record): msg = self.format(record) self._queue.put_nowait(msg) def close(self): super(QueueingLogHandler, self).close() self._queue.put_nowait(None) @property def emitted(self): return self._queue class TestService(object): _HANDLER_CLASS = QueueingLogHandler _DEFAULT_FORMAT = '%(name)s - %(levelname)s - %(asctime)s - %(message)s' logger = logging.getLogger("service") def __init__(self): self._logging_handlers = set() def test(self, logger_name, logger_level, message): logger = logging.getLogger(logger_name) getattr(logger, logger_level.lower())(message) def available_loggers(self): """ List of initalized loggers """ return logging.getLogger().manager.loggerDict.keys() def close_log_streams(self): """ Closes all log_stream streams. """ while self._logging_handlers: self._logging_handlers.pop().close() @zerorpc.stream def <|fim_middle|>(self, logger_name, level_name, format_str): """ Attaches a log handler to the specified logger and sends emitted logs back as stream. """ if logger_name != "" and logger_name not in self.available_loggers(): raise ValueError("logger {0} is not available".format(logger_name)) level_name_upper = level_name.upper() if level_name else "NOTSET" try: level = getattr(logging, level_name_upper) except AttributeError, e: raise AttributeError("log level {0} is not available".format(level_name_upper)) q = gevent.queue.Queue() fmt = format_str if format_str.strip() else self._DEFAULT_FORMAT logger = logging.getLogger(logger_name) formatter = logging.Formatter(fmt) handler = self._HANDLER_CLASS(q, level, formatter) logger.addHandler(handler) self._logging_handlers.add(handler) self.logger.debug("new subscriber for {0}/{1}".format(logger_name or "root", level_name_upper)) try: for msg in handler.emitted: if msg is None: return yield msg finally: self._logging_handlers.discard(handler) handler.close() self.logger.debug("subscription finished for {0}/{1}".format(logger_name or "root", level_name_upper)) if __name__ == "__main__": service = TestService() server = zerorpc.Server(service) server.bind(sys.argv[1]) logger.warning("starting service") try: server.run() except BaseException, e: logger.error(str(e)) finally: logger.warning("shutting down") <|fim▁end|>
log_stream
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|>import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.')<|fim▁hole|> commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean()<|fim▁end|>
return
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): <|fim_middle|> @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
pass
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): <|fim_middle|> @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1)
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): <|fim_middle|> @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes')
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): <|fim_middle|> @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line)
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): <|fim_middle|> @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid)
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): <|fim_middle|> @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
operations.commit(uid)
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): <|fim_middle|> @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited)
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): <|fim_middle|> @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs))
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): <|fim_middle|> <|fim▁end|>
data.CL().clean() data.CD().clean()
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: <|fim_middle|> @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1)
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: <|fim_middle|> if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
for line in item.details: click.echo(' '*4+line)
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: <|fim_middle|> @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
click.echo('No changes')
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: <|fim_middle|> else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
click.echo('No staged changes for {}'.format(log_action))
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: <|fim_middle|> @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
click.echo(item) for line in item.details: click.echo(' '*4+line)
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: <|fim_middle|> commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
click.echo('No history.') return
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': <|fim_middle|> else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
kwargs['status'] = click.style('OK', fg='green')
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: <|fim_middle|> click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message']
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def <|fim_middle|>(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
changes
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def <|fim_middle|>(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
validate
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def <|fim_middle|>(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
stage
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def <|fim_middle|>(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
staged_item
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def <|fim_middle|>(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
process
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def <|fim_middle|>(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
commit
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def <|fim_middle|>(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
history
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def <|fim_middle|>(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def clean_history(): data.CL().clean() data.CD().clean() <|fim▁end|>
test
<|file_name|>system_log.py<|end_file_name|><|fim▁begin|> import sys import click from solar.core import testing from solar.core import resource from solar.system_log import change from solar.system_log import operations from solar.system_log import data from solar.cli.uids_history import get_uid, remember_uid, SOLARUID @click.group() def changes(): pass @changes.command() def validate(): errors = resource.validate_resources() if errors: for r, error in errors: print 'ERROR: %s: %s' % (r.name, error) sys.exit(1) @changes.command() @click.option('-d', default=False, is_flag=True) def stage(d): log = list(change.stage_changes().reverse()) for item in log: click.echo(item) if d: for line in item.details: click.echo(' '*4+line) if not log: click.echo('No changes') @changes.command(name='staged-item') @click.argument('log_action') def staged_item(log_action): item = data.SL().get(log_action) if not item: click.echo('No staged changes for {}'.format(log_action)) else: click.echo(item) for line in item.details: click.echo(' '*4+line) @changes.command() def process(): uid = change.send_to_orchestration() remember_uid(uid) click.echo(uid) @changes.command() @click.argument('uid', type=SOLARUID) def commit(uid): operations.commit(uid) @changes.command() @click.option('-n', default=5) def history(n): commited = list(data.CL().collection(n)) if not commited: click.echo('No history.') return commited.reverse() click.echo(commited) @changes.command() def test(): results = testing.test_all() for name, result in results.items(): msg = '[{status}] {name} {message}' kwargs = { 'name': name, 'message': '', 'status': 'OK', } if result['status'] == 'ok': kwargs['status'] = click.style('OK', fg='green') else: kwargs['status'] = click.style('ERROR', fg='red') kwargs['message'] = result['message'] click.echo(msg.format(**kwargs)) @changes.command(name='clean-history') def <|fim_middle|>(): data.CL().clean() data.CD().clean() <|fim▁end|>
clean_history
<|file_name|>sample.py<|end_file_name|><|fim▁begin|>import sys sys.path.insert(0,'../') from fast_guided_filter import blur <|fim▁hole|><|fim▁end|>
print("hello")
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def main(): parser = argparse.ArgumentParser()<|fim▁hole|> install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day) def install_autopkgtest_results_formatter(): subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] ) def clone_results_repo(dest_dir): subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] ) def format_results(dest_dir, distros, day): subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] ) def commit_and_push(repo_dir, day): subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] ) if __name__ == "__main__": main()<|fim▁end|>
parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args()
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def main(): <|fim_middle|> def install_autopkgtest_results_formatter(): subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] ) def clone_results_repo(dest_dir): subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] ) def format_results(dest_dir, distros, day): subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] ) def commit_and_push(repo_dir, day): subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] ) if __name__ == "__main__": main() <|fim▁end|>
parser = argparse.ArgumentParser() parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args() install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day)
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def main(): parser = argparse.ArgumentParser() parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args() install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day) def install_autopkgtest_results_formatter(): <|fim_middle|> def clone_results_repo(dest_dir): subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] ) def format_results(dest_dir, distros, day): subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] ) def commit_and_push(repo_dir, day): subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] ) if __name__ == "__main__": main() <|fim▁end|>
subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] )
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def main(): parser = argparse.ArgumentParser() parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args() install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day) def install_autopkgtest_results_formatter(): subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] ) def clone_results_repo(dest_dir): <|fim_middle|> def format_results(dest_dir, distros, day): subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] ) def commit_and_push(repo_dir, day): subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] ) if __name__ == "__main__": main() <|fim▁end|>
subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] )
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def main(): parser = argparse.ArgumentParser() parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args() install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day) def install_autopkgtest_results_formatter(): subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] ) def clone_results_repo(dest_dir): subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] ) def format_results(dest_dir, distros, day): <|fim_middle|> def commit_and_push(repo_dir, day): subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] ) if __name__ == "__main__": main() <|fim▁end|>
subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] )
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def main(): parser = argparse.ArgumentParser() parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args() install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day) def install_autopkgtest_results_formatter(): subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] ) def clone_results_repo(dest_dir): subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] ) def format_results(dest_dir, distros, day): subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] ) def commit_and_push(repo_dir, day): <|fim_middle|> if __name__ == "__main__": main() <|fim▁end|>
subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] )
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def main(): parser = argparse.ArgumentParser() parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args() install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day) def install_autopkgtest_results_formatter(): subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] ) def clone_results_repo(dest_dir): subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] ) def format_results(dest_dir, distros, day): subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] ) def commit_and_push(repo_dir, day): subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] ) if __name__ == "__main__": <|fim_middle|> <|fim▁end|>
main()
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def <|fim_middle|>(): parser = argparse.ArgumentParser() parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args() install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day) def install_autopkgtest_results_formatter(): subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] ) def clone_results_repo(dest_dir): subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] ) def format_results(dest_dir, distros, day): subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] ) def commit_and_push(repo_dir, day): subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] ) if __name__ == "__main__": main() <|fim▁end|>
main
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def main(): parser = argparse.ArgumentParser() parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args() install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day) def <|fim_middle|>(): subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] ) def clone_results_repo(dest_dir): subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] ) def format_results(dest_dir, distros, day): subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] ) def commit_and_push(repo_dir, day): subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] ) if __name__ == "__main__": main() <|fim▁end|>
install_autopkgtest_results_formatter
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def main(): parser = argparse.ArgumentParser() parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args() install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day) def install_autopkgtest_results_formatter(): subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] ) def <|fim_middle|>(dest_dir): subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] ) def format_results(dest_dir, distros, day): subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] ) def commit_and_push(repo_dir, day): subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] ) if __name__ == "__main__": main() <|fim▁end|>
clone_results_repo
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def main(): parser = argparse.ArgumentParser() parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args() install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day) def install_autopkgtest_results_formatter(): subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] ) def clone_results_repo(dest_dir): subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] ) def <|fim_middle|>(dest_dir, distros, day): subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] ) def commit_and_push(repo_dir, day): subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] ) if __name__ == "__main__": main() <|fim▁end|>
format_results
<|file_name|>collect_ppa_autopkgtests_results.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python3 # -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2017 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import os import subprocess import tempfile ACTIVE_DISTROS = ("xenial", "artful", "bionic") def main(): parser = argparse.ArgumentParser() parser.add_argument("day", help="The day of the results, with format yyyymmdd") args = parser.parse_args() install_autopkgtest_results_formatter() with tempfile.TemporaryDirectory(dir=os.environ.get("HOME")) as temp_dir: clone_results_repo(temp_dir) format_results(temp_dir, ACTIVE_DISTROS, args.day) commit_and_push(temp_dir, args.day) def install_autopkgtest_results_formatter(): subprocess.check_call( ["sudo", "snap", "install", "autopkgtest-results-formatter", "--edge"] ) def clone_results_repo(dest_dir): subprocess.check_call( ["git", "clone", "https://github.com/elopio/autopkgtest-results.git", dest_dir] ) def format_results(dest_dir, distros, day): subprocess.check_call( [ "/snap/bin/autopkgtest-results-formatter", "--destination", dest_dir, "--distros", *distros, "--day", day, ] ) def <|fim_middle|>(repo_dir, day): subprocess.check_call( ["git", "config", "--global", "user.email", "[email protected]"] ) subprocess.check_call(["git", "config", "--global", "user.name", "snappy-m-o"]) subprocess.check_call(["git", "-C", repo_dir, "add", "--all"]) subprocess.check_call( [ "git", "-C", repo_dir, "commit", "--message", "Add the results for {}".format(day), ] ) subprocess.check_call( [ "git", "-C", repo_dir, "push", "https://{GH_TOKEN}@github.com/elopio/autopkgtest-results.git".format( GH_TOKEN=os.environ.get("GH_TOKEN_PPA_AUTOPKGTEST_RESULTS") ), ] ) if __name__ == "__main__": main() <|fim▁end|>
commit_and_push
<|file_name|>prefs.py<|end_file_name|><|fim▁begin|>import os, socket, sys, urllib from wx.lib.embeddedimage import PyEmbeddedImage ldc_name = "Live Debian Creator" ldc_cli_version = "1.4.0" ldc_gui_version = "1.11.0" if (sys.platform == "win32"): slash = "\\" if os.path.isfile(sys.path[0]): #fix for compiled binaries homepath = os.path.dirname(sys.path[0]) + slash else: homepath = sys.path[0] + slash else: slash = "/" #socket.setdefaulttimeout(10) def defineBrowserAgent(uiname, uiversion): class AppURLopener(urllib.FancyURLopener): version = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" #version = uiname + " " + uiversion + " / " + sys.platform urllib._urlopener = AppURLopener() bookico = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAYAAABzenr0AAAABHNCSVQICAgIfAhkiAAABPZJ" "REFUWIWtl09sFFUcxz/iYN+YTZyNxewiTWiV6FZQtqhkN3pgGw6UW6unJVxEDtaThJMc9WLg" "oj1hwJhANURqQkw9NGwTla0c6JqArELSMVCzi63uKJX5UR7Bw8x0Z2d3yxJ5yctM3vu93/f7" "+ztv4CGPqamp9A/nL2Q6lTceBqht26pw7kL+7K+10S/tJ9OpBBPASCdnH/k/wFNTU+nzc/+M" "2v925a2N21Sq1yKJg/wxV7XWyIHBnYPjD53A9PS0mrv+e/6yw6gT60+72iK7AVJJSBoCBihD" "AVC6WK7O3bx3+thFyY30ycSH7+w5FNXXcQgymUzaei49+vHMX/kq/SqpYGiDRbYHlBFoigMu" "gklxHsZ1NlG4yygvKiruWauV3vsS2L59e+qZVwfHqsnB3G8LkI2ZHHzdImGBaZi+BgVaqIhi" "sqo4uQBlrQDPI2jx5gMQUFu39A3veW3ru9leMmO19aQ2JDm8C5SCuDJBgUJRM6DkKE5WFYUF" "cLSAxgOnNeiqBHZt6z2wO2UdSvXGrfimFNYrIzhHbca/LlOcTzL0coJsj8IRKC4pJhfAXvKB" "dKBFQu+AdjsnsG/AOpzc+RZWKkc8FgcFGDYApas1SgtAUjxXJOK+a1XUgRHrzc4JlMslqB5C" "ZYbg+Sws2rAYByPlSQcntNQtNSLaNGCoxv07HRJAQ63ioM6MI2fGPdt6DngKDbVK1kS9IKBV" "PQmN6P4qBNAgGlw/jqJp9vKKBtVILrA4nA+GegAPBCT8Z0P6RF0dvAfgwdRRIu2rYfU+sLKr" "mtcCq3UIPGyABmupzIBRoOIkuXzF7oyACq2KDne5FmQC2fC+UyWtZxmIlchtseg1sti2yzf2" "z8n8559kdmzbYW/evLnalgAGmLr+Lp00aw3WYomUUaDfKpNJphmIDWEZXvd1N9m80HNj+Fs5" "Pvx0TY0AE6sQUGB45SOA0m0kwyWnHfLdh8nGd5NJDGMqEwyXoi5QXJrAltmVsNxabq2mrWVi" "qHoitkpCBJwKp6uTVDbaVGKziK5wWWaQoAOGu2IbO5pGkLfuKocD5WrJwVRQXirjXC+DAdY6" "1ZSYCng8cnxNk8K1fukF/eA+FqAFpIaiMT0VXgIr5fcohUfosca23EzgTh3cDep5taFdcCN1" "bviAMTB98OZqakfAH65vx4rqKBlNm2+8grUeWGCrGW5S9yWwti7ofW5Ucx9rIBK6bIRB2lVN" "Y29tQcBonG4Ta6k/NSBeDkSH2Sp0GoiUYYsQ+AB+0rTt4hov/lpQ0lrKDT/F66y3IjLN9rmh" "VQVo1b4StHgkWhAIEjioKBFfx91GFzR5wJ5HRINpem3YQfzyklAihgCjxDT1SvLvLLLkR0rA" "jdzOmjxwotbVf656+/20YmS9wrIfvSdO8p53A0UAM0RihVqIjNSB/WXRIFpwXVhebgxCkwdu" "/33b/kXY94VD/KWPjvY9lduVvaWxCVzYYipxW1eKFhwRajcdat9RemP+vd2jbx6cCIt19Gf0" "6fETw28fKR6jf9Ci24LuuFeuMWC2IIlLXxVl70+5ZDckuxWuFuIxqIjgTDOjzvV9UC7OTbbS"<|fim▁hole|> "/MAEOhmnTp1KXF28mlsXWzezf+/+1legyPgPTicVRBS2XfsAAAAASUVORK5CYII=") getbookicoIcon = bookico.GetIcon<|fim▁end|>
"3fGvmW3bauyzE/nCFXe4dIMsy45tVX889oT+83RXV5d5bf21MXIyZD3re2WGgnyfOFK9VG0J"
<|file_name|>prefs.py<|end_file_name|><|fim▁begin|>import os, socket, sys, urllib from wx.lib.embeddedimage import PyEmbeddedImage ldc_name = "Live Debian Creator" ldc_cli_version = "1.4.0" ldc_gui_version = "1.11.0" if (sys.platform == "win32"): slash = "\\" if os.path.isfile(sys.path[0]): #fix for compiled binaries homepath = os.path.dirname(sys.path[0]) + slash else: homepath = sys.path[0] + slash else: slash = "/" #socket.setdefaulttimeout(10) def defineBrowserAgent(uiname, uiversion): <|fim_middle|> bookico = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAYAAABzenr0AAAABHNCSVQICAgIfAhkiAAABPZJ" "REFUWIWtl09sFFUcxz/iYN+YTZyNxewiTWiV6FZQtqhkN3pgGw6UW6unJVxEDtaThJMc9WLg" "oj1hwJhANURqQkw9NGwTla0c6JqArELSMVCzi63uKJX5UR7Bw8x0Z2d3yxJ5yctM3vu93/f7" "+ztv4CGPqamp9A/nL2Q6lTceBqht26pw7kL+7K+10S/tJ9OpBBPASCdnH/k/wFNTU+nzc/+M" "2v925a2N21Sq1yKJg/wxV7XWyIHBnYPjD53A9PS0mrv+e/6yw6gT60+72iK7AVJJSBoCBihD" "AVC6WK7O3bx3+thFyY30ycSH7+w5FNXXcQgymUzaei49+vHMX/kq/SqpYGiDRbYHlBFoigMu" "gklxHsZ1NlG4yygvKiruWauV3vsS2L59e+qZVwfHqsnB3G8LkI2ZHHzdImGBaZi+BgVaqIhi" "sqo4uQBlrQDPI2jx5gMQUFu39A3veW3ru9leMmO19aQ2JDm8C5SCuDJBgUJRM6DkKE5WFYUF" "cLSAxgOnNeiqBHZt6z2wO2UdSvXGrfimFNYrIzhHbca/LlOcTzL0coJsj8IRKC4pJhfAXvKB" "dKBFQu+AdjsnsG/AOpzc+RZWKkc8FgcFGDYApas1SgtAUjxXJOK+a1XUgRHrzc4JlMslqB5C" "ZYbg+Sws2rAYByPlSQcntNQtNSLaNGCoxv07HRJAQ63ioM6MI2fGPdt6DngKDbVK1kS9IKBV" "PQmN6P4qBNAgGlw/jqJp9vKKBtVILrA4nA+GegAPBCT8Z0P6RF0dvAfgwdRRIu2rYfU+sLKr" "mtcCq3UIPGyABmupzIBRoOIkuXzF7oyACq2KDne5FmQC2fC+UyWtZxmIlchtseg1sti2yzf2" "z8n8559kdmzbYW/evLnalgAGmLr+Lp00aw3WYomUUaDfKpNJphmIDWEZXvd1N9m80HNj+Fs5" "Pvx0TY0AE6sQUGB45SOA0m0kwyWnHfLdh8nGd5NJDGMqEwyXoi5QXJrAltmVsNxabq2mrWVi" "qHoitkpCBJwKp6uTVDbaVGKziK5wWWaQoAOGu2IbO5pGkLfuKocD5WrJwVRQXirjXC+DAdY6" "1ZSYCng8cnxNk8K1fukF/eA+FqAFpIaiMT0VXgIr5fcohUfosca23EzgTh3cDep5taFdcCN1" "bviAMTB98OZqakfAH65vx4rqKBlNm2+8grUeWGCrGW5S9yWwti7ofW5Ucx9rIBK6bIRB2lVN" "Y29tQcBonG4Ta6k/NSBeDkSH2Sp0GoiUYYsQ+AB+0rTt4hov/lpQ0lrKDT/F66y3IjLN9rmh" "VQVo1b4StHgkWhAIEjioKBFfx91GFzR5wJ5HRINpem3YQfzyklAihgCjxDT1SvLvLLLkR0rA" "jdzOmjxwotbVf656+/20YmS9wrIfvSdO8p53A0UAM0RihVqIjNSB/WXRIFpwXVhebgxCkwdu" "/33b/kXY94VD/KWPjvY9lduVvaWxCVzYYipxW1eKFhwRajcdat9RemP+vd2jbx6cCIt19Gf0" "6fETw28fKR6jf9Ci24LuuFeuMWC2IIlLXxVl70+5ZDckuxWuFuIxqIjgTDOjzvV9UC7OTbbS" "3fGvmW3bauyzE/nCFXe4dIMsy45tVX889oT+83RXV5d5bf21MXIyZD3re2WGgnyfOFK9VG0J" "/MAEOhmnTp1KXF28mlsXWzezf+/+1legyPgPTicVRBS2XfsAAAAASUVORK5CYII=") getbookicoIcon = bookico.GetIcon<|fim▁end|>
class AppURLopener(urllib.FancyURLopener): version = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" #version = uiname + " " + uiversion + " / " + sys.platform urllib._urlopener = AppURLopener()
<|file_name|>prefs.py<|end_file_name|><|fim▁begin|>import os, socket, sys, urllib from wx.lib.embeddedimage import PyEmbeddedImage ldc_name = "Live Debian Creator" ldc_cli_version = "1.4.0" ldc_gui_version = "1.11.0" if (sys.platform == "win32"): slash = "\\" if os.path.isfile(sys.path[0]): #fix for compiled binaries homepath = os.path.dirname(sys.path[0]) + slash else: homepath = sys.path[0] + slash else: slash = "/" #socket.setdefaulttimeout(10) def defineBrowserAgent(uiname, uiversion): class AppURLopener(urllib.FancyURLopener): <|fim_middle|> urllib._urlopener = AppURLopener() bookico = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAYAAABzenr0AAAABHNCSVQICAgIfAhkiAAABPZJ" "REFUWIWtl09sFFUcxz/iYN+YTZyNxewiTWiV6FZQtqhkN3pgGw6UW6unJVxEDtaThJMc9WLg" "oj1hwJhANURqQkw9NGwTla0c6JqArELSMVCzi63uKJX5UR7Bw8x0Z2d3yxJ5yctM3vu93/f7" "+ztv4CGPqamp9A/nL2Q6lTceBqht26pw7kL+7K+10S/tJ9OpBBPASCdnH/k/wFNTU+nzc/+M" "2v925a2N21Sq1yKJg/wxV7XWyIHBnYPjD53A9PS0mrv+e/6yw6gT60+72iK7AVJJSBoCBihD" "AVC6WK7O3bx3+thFyY30ycSH7+w5FNXXcQgymUzaei49+vHMX/kq/SqpYGiDRbYHlBFoigMu" "gklxHsZ1NlG4yygvKiruWauV3vsS2L59e+qZVwfHqsnB3G8LkI2ZHHzdImGBaZi+BgVaqIhi" "sqo4uQBlrQDPI2jx5gMQUFu39A3veW3ru9leMmO19aQ2JDm8C5SCuDJBgUJRM6DkKE5WFYUF" "cLSAxgOnNeiqBHZt6z2wO2UdSvXGrfimFNYrIzhHbca/LlOcTzL0coJsj8IRKC4pJhfAXvKB" "dKBFQu+AdjsnsG/AOpzc+RZWKkc8FgcFGDYApas1SgtAUjxXJOK+a1XUgRHrzc4JlMslqB5C" "ZYbg+Sws2rAYByPlSQcntNQtNSLaNGCoxv07HRJAQ63ioM6MI2fGPdt6DngKDbVK1kS9IKBV" "PQmN6P4qBNAgGlw/jqJp9vKKBtVILrA4nA+GegAPBCT8Z0P6RF0dvAfgwdRRIu2rYfU+sLKr" "mtcCq3UIPGyABmupzIBRoOIkuXzF7oyACq2KDne5FmQC2fC+UyWtZxmIlchtseg1sti2yzf2" "z8n8559kdmzbYW/evLnalgAGmLr+Lp00aw3WYomUUaDfKpNJphmIDWEZXvd1N9m80HNj+Fs5" "Pvx0TY0AE6sQUGB45SOA0m0kwyWnHfLdh8nGd5NJDGMqEwyXoi5QXJrAltmVsNxabq2mrWVi" "qHoitkpCBJwKp6uTVDbaVGKziK5wWWaQoAOGu2IbO5pGkLfuKocD5WrJwVRQXirjXC+DAdY6" "1ZSYCng8cnxNk8K1fukF/eA+FqAFpIaiMT0VXgIr5fcohUfosca23EzgTh3cDep5taFdcCN1" "bviAMTB98OZqakfAH65vx4rqKBlNm2+8grUeWGCrGW5S9yWwti7ofW5Ucx9rIBK6bIRB2lVN" "Y29tQcBonG4Ta6k/NSBeDkSH2Sp0GoiUYYsQ+AB+0rTt4hov/lpQ0lrKDT/F66y3IjLN9rmh" "VQVo1b4StHgkWhAIEjioKBFfx91GFzR5wJ5HRINpem3YQfzyklAihgCjxDT1SvLvLLLkR0rA" "jdzOmjxwotbVf656+/20YmS9wrIfvSdO8p53A0UAM0RihVqIjNSB/WXRIFpwXVhebgxCkwdu" "/33b/kXY94VD/KWPjvY9lduVvaWxCVzYYipxW1eKFhwRajcdat9RemP+vd2jbx6cCIt19Gf0" "6fETw28fKR6jf9Ci24LuuFeuMWC2IIlLXxVl70+5ZDckuxWuFuIxqIjgTDOjzvV9UC7OTbbS" "3fGvmW3bauyzE/nCFXe4dIMsy45tVX889oT+83RXV5d5bf21MXIyZD3re2WGgnyfOFK9VG0J" "/MAEOhmnTp1KXF28mlsXWzezf+/+1legyPgPTicVRBS2XfsAAAAASUVORK5CYII=") getbookicoIcon = bookico.GetIcon<|fim▁end|>
version = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" #version = uiname + " " + uiversion + " / " + sys.platform
<|file_name|>prefs.py<|end_file_name|><|fim▁begin|>import os, socket, sys, urllib from wx.lib.embeddedimage import PyEmbeddedImage ldc_name = "Live Debian Creator" ldc_cli_version = "1.4.0" ldc_gui_version = "1.11.0" if (sys.platform == "win32"): <|fim_middle|> else: slash = "/" #socket.setdefaulttimeout(10) def defineBrowserAgent(uiname, uiversion): class AppURLopener(urllib.FancyURLopener): version = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" #version = uiname + " " + uiversion + " / " + sys.platform urllib._urlopener = AppURLopener() bookico = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAYAAABzenr0AAAABHNCSVQICAgIfAhkiAAABPZJ" "REFUWIWtl09sFFUcxz/iYN+YTZyNxewiTWiV6FZQtqhkN3pgGw6UW6unJVxEDtaThJMc9WLg" "oj1hwJhANURqQkw9NGwTla0c6JqArELSMVCzi63uKJX5UR7Bw8x0Z2d3yxJ5yctM3vu93/f7" "+ztv4CGPqamp9A/nL2Q6lTceBqht26pw7kL+7K+10S/tJ9OpBBPASCdnH/k/wFNTU+nzc/+M" "2v925a2N21Sq1yKJg/wxV7XWyIHBnYPjD53A9PS0mrv+e/6yw6gT60+72iK7AVJJSBoCBihD" "AVC6WK7O3bx3+thFyY30ycSH7+w5FNXXcQgymUzaei49+vHMX/kq/SqpYGiDRbYHlBFoigMu" "gklxHsZ1NlG4yygvKiruWauV3vsS2L59e+qZVwfHqsnB3G8LkI2ZHHzdImGBaZi+BgVaqIhi" "sqo4uQBlrQDPI2jx5gMQUFu39A3veW3ru9leMmO19aQ2JDm8C5SCuDJBgUJRM6DkKE5WFYUF" "cLSAxgOnNeiqBHZt6z2wO2UdSvXGrfimFNYrIzhHbca/LlOcTzL0coJsj8IRKC4pJhfAXvKB" "dKBFQu+AdjsnsG/AOpzc+RZWKkc8FgcFGDYApas1SgtAUjxXJOK+a1XUgRHrzc4JlMslqB5C" "ZYbg+Sws2rAYByPlSQcntNQtNSLaNGCoxv07HRJAQ63ioM6MI2fGPdt6DngKDbVK1kS9IKBV" "PQmN6P4qBNAgGlw/jqJp9vKKBtVILrA4nA+GegAPBCT8Z0P6RF0dvAfgwdRRIu2rYfU+sLKr" "mtcCq3UIPGyABmupzIBRoOIkuXzF7oyACq2KDne5FmQC2fC+UyWtZxmIlchtseg1sti2yzf2" "z8n8559kdmzbYW/evLnalgAGmLr+Lp00aw3WYomUUaDfKpNJphmIDWEZXvd1N9m80HNj+Fs5" "Pvx0TY0AE6sQUGB45SOA0m0kwyWnHfLdh8nGd5NJDGMqEwyXoi5QXJrAltmVsNxabq2mrWVi" "qHoitkpCBJwKp6uTVDbaVGKziK5wWWaQoAOGu2IbO5pGkLfuKocD5WrJwVRQXirjXC+DAdY6" "1ZSYCng8cnxNk8K1fukF/eA+FqAFpIaiMT0VXgIr5fcohUfosca23EzgTh3cDep5taFdcCN1" "bviAMTB98OZqakfAH65vx4rqKBlNm2+8grUeWGCrGW5S9yWwti7ofW5Ucx9rIBK6bIRB2lVN" "Y29tQcBonG4Ta6k/NSBeDkSH2Sp0GoiUYYsQ+AB+0rTt4hov/lpQ0lrKDT/F66y3IjLN9rmh" "VQVo1b4StHgkWhAIEjioKBFfx91GFzR5wJ5HRINpem3YQfzyklAihgCjxDT1SvLvLLLkR0rA" "jdzOmjxwotbVf656+/20YmS9wrIfvSdO8p53A0UAM0RihVqIjNSB/WXRIFpwXVhebgxCkwdu" "/33b/kXY94VD/KWPjvY9lduVvaWxCVzYYipxW1eKFhwRajcdat9RemP+vd2jbx6cCIt19Gf0" "6fETw28fKR6jf9Ci24LuuFeuMWC2IIlLXxVl70+5ZDckuxWuFuIxqIjgTDOjzvV9UC7OTbbS" "3fGvmW3bauyzE/nCFXe4dIMsy45tVX889oT+83RXV5d5bf21MXIyZD3re2WGgnyfOFK9VG0J" "/MAEOhmnTp1KXF28mlsXWzezf+/+1legyPgPTicVRBS2XfsAAAAASUVORK5CYII=") getbookicoIcon = bookico.GetIcon<|fim▁end|>
slash = "\\" if os.path.isfile(sys.path[0]): #fix for compiled binaries homepath = os.path.dirname(sys.path[0]) + slash else: homepath = sys.path[0] + slash
<|file_name|>prefs.py<|end_file_name|><|fim▁begin|>import os, socket, sys, urllib from wx.lib.embeddedimage import PyEmbeddedImage ldc_name = "Live Debian Creator" ldc_cli_version = "1.4.0" ldc_gui_version = "1.11.0" if (sys.platform == "win32"): slash = "\\" if os.path.isfile(sys.path[0]): #fix for compiled binaries <|fim_middle|> else: homepath = sys.path[0] + slash else: slash = "/" #socket.setdefaulttimeout(10) def defineBrowserAgent(uiname, uiversion): class AppURLopener(urllib.FancyURLopener): version = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" #version = uiname + " " + uiversion + " / " + sys.platform urllib._urlopener = AppURLopener() bookico = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAYAAABzenr0AAAABHNCSVQICAgIfAhkiAAABPZJ" "REFUWIWtl09sFFUcxz/iYN+YTZyNxewiTWiV6FZQtqhkN3pgGw6UW6unJVxEDtaThJMc9WLg" "oj1hwJhANURqQkw9NGwTla0c6JqArELSMVCzi63uKJX5UR7Bw8x0Z2d3yxJ5yctM3vu93/f7" "+ztv4CGPqamp9A/nL2Q6lTceBqht26pw7kL+7K+10S/tJ9OpBBPASCdnH/k/wFNTU+nzc/+M" "2v925a2N21Sq1yKJg/wxV7XWyIHBnYPjD53A9PS0mrv+e/6yw6gT60+72iK7AVJJSBoCBihD" "AVC6WK7O3bx3+thFyY30ycSH7+w5FNXXcQgymUzaei49+vHMX/kq/SqpYGiDRbYHlBFoigMu" "gklxHsZ1NlG4yygvKiruWauV3vsS2L59e+qZVwfHqsnB3G8LkI2ZHHzdImGBaZi+BgVaqIhi" "sqo4uQBlrQDPI2jx5gMQUFu39A3veW3ru9leMmO19aQ2JDm8C5SCuDJBgUJRM6DkKE5WFYUF" "cLSAxgOnNeiqBHZt6z2wO2UdSvXGrfimFNYrIzhHbca/LlOcTzL0coJsj8IRKC4pJhfAXvKB" "dKBFQu+AdjsnsG/AOpzc+RZWKkc8FgcFGDYApas1SgtAUjxXJOK+a1XUgRHrzc4JlMslqB5C" "ZYbg+Sws2rAYByPlSQcntNQtNSLaNGCoxv07HRJAQ63ioM6MI2fGPdt6DngKDbVK1kS9IKBV" "PQmN6P4qBNAgGlw/jqJp9vKKBtVILrA4nA+GegAPBCT8Z0P6RF0dvAfgwdRRIu2rYfU+sLKr" "mtcCq3UIPGyABmupzIBRoOIkuXzF7oyACq2KDne5FmQC2fC+UyWtZxmIlchtseg1sti2yzf2" "z8n8559kdmzbYW/evLnalgAGmLr+Lp00aw3WYomUUaDfKpNJphmIDWEZXvd1N9m80HNj+Fs5" "Pvx0TY0AE6sQUGB45SOA0m0kwyWnHfLdh8nGd5NJDGMqEwyXoi5QXJrAltmVsNxabq2mrWVi" "qHoitkpCBJwKp6uTVDbaVGKziK5wWWaQoAOGu2IbO5pGkLfuKocD5WrJwVRQXirjXC+DAdY6" "1ZSYCng8cnxNk8K1fukF/eA+FqAFpIaiMT0VXgIr5fcohUfosca23EzgTh3cDep5taFdcCN1" "bviAMTB98OZqakfAH65vx4rqKBlNm2+8grUeWGCrGW5S9yWwti7ofW5Ucx9rIBK6bIRB2lVN" "Y29tQcBonG4Ta6k/NSBeDkSH2Sp0GoiUYYsQ+AB+0rTt4hov/lpQ0lrKDT/F66y3IjLN9rmh" "VQVo1b4StHgkWhAIEjioKBFfx91GFzR5wJ5HRINpem3YQfzyklAihgCjxDT1SvLvLLLkR0rA" "jdzOmjxwotbVf656+/20YmS9wrIfvSdO8p53A0UAM0RihVqIjNSB/WXRIFpwXVhebgxCkwdu" "/33b/kXY94VD/KWPjvY9lduVvaWxCVzYYipxW1eKFhwRajcdat9RemP+vd2jbx6cCIt19Gf0" "6fETw28fKR6jf9Ci24LuuFeuMWC2IIlLXxVl70+5ZDckuxWuFuIxqIjgTDOjzvV9UC7OTbbS" "3fGvmW3bauyzE/nCFXe4dIMsy45tVX889oT+83RXV5d5bf21MXIyZD3re2WGgnyfOFK9VG0J" "/MAEOhmnTp1KXF28mlsXWzezf+/+1legyPgPTicVRBS2XfsAAAAASUVORK5CYII=") getbookicoIcon = bookico.GetIcon<|fim▁end|>
homepath = os.path.dirname(sys.path[0]) + slash
<|file_name|>prefs.py<|end_file_name|><|fim▁begin|>import os, socket, sys, urllib from wx.lib.embeddedimage import PyEmbeddedImage ldc_name = "Live Debian Creator" ldc_cli_version = "1.4.0" ldc_gui_version = "1.11.0" if (sys.platform == "win32"): slash = "\\" if os.path.isfile(sys.path[0]): #fix for compiled binaries homepath = os.path.dirname(sys.path[0]) + slash else: <|fim_middle|> else: slash = "/" #socket.setdefaulttimeout(10) def defineBrowserAgent(uiname, uiversion): class AppURLopener(urllib.FancyURLopener): version = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" #version = uiname + " " + uiversion + " / " + sys.platform urllib._urlopener = AppURLopener() bookico = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAYAAABzenr0AAAABHNCSVQICAgIfAhkiAAABPZJ" "REFUWIWtl09sFFUcxz/iYN+YTZyNxewiTWiV6FZQtqhkN3pgGw6UW6unJVxEDtaThJMc9WLg" "oj1hwJhANURqQkw9NGwTla0c6JqArELSMVCzi63uKJX5UR7Bw8x0Z2d3yxJ5yctM3vu93/f7" "+ztv4CGPqamp9A/nL2Q6lTceBqht26pw7kL+7K+10S/tJ9OpBBPASCdnH/k/wFNTU+nzc/+M" "2v925a2N21Sq1yKJg/wxV7XWyIHBnYPjD53A9PS0mrv+e/6yw6gT60+72iK7AVJJSBoCBihD" "AVC6WK7O3bx3+thFyY30ycSH7+w5FNXXcQgymUzaei49+vHMX/kq/SqpYGiDRbYHlBFoigMu" "gklxHsZ1NlG4yygvKiruWauV3vsS2L59e+qZVwfHqsnB3G8LkI2ZHHzdImGBaZi+BgVaqIhi" "sqo4uQBlrQDPI2jx5gMQUFu39A3veW3ru9leMmO19aQ2JDm8C5SCuDJBgUJRM6DkKE5WFYUF" "cLSAxgOnNeiqBHZt6z2wO2UdSvXGrfimFNYrIzhHbca/LlOcTzL0coJsj8IRKC4pJhfAXvKB" "dKBFQu+AdjsnsG/AOpzc+RZWKkc8FgcFGDYApas1SgtAUjxXJOK+a1XUgRHrzc4JlMslqB5C" "ZYbg+Sws2rAYByPlSQcntNQtNSLaNGCoxv07HRJAQ63ioM6MI2fGPdt6DngKDbVK1kS9IKBV" "PQmN6P4qBNAgGlw/jqJp9vKKBtVILrA4nA+GegAPBCT8Z0P6RF0dvAfgwdRRIu2rYfU+sLKr" "mtcCq3UIPGyABmupzIBRoOIkuXzF7oyACq2KDne5FmQC2fC+UyWtZxmIlchtseg1sti2yzf2" "z8n8559kdmzbYW/evLnalgAGmLr+Lp00aw3WYomUUaDfKpNJphmIDWEZXvd1N9m80HNj+Fs5" "Pvx0TY0AE6sQUGB45SOA0m0kwyWnHfLdh8nGd5NJDGMqEwyXoi5QXJrAltmVsNxabq2mrWVi" "qHoitkpCBJwKp6uTVDbaVGKziK5wWWaQoAOGu2IbO5pGkLfuKocD5WrJwVRQXirjXC+DAdY6" "1ZSYCng8cnxNk8K1fukF/eA+FqAFpIaiMT0VXgIr5fcohUfosca23EzgTh3cDep5taFdcCN1" "bviAMTB98OZqakfAH65vx4rqKBlNm2+8grUeWGCrGW5S9yWwti7ofW5Ucx9rIBK6bIRB2lVN" "Y29tQcBonG4Ta6k/NSBeDkSH2Sp0GoiUYYsQ+AB+0rTt4hov/lpQ0lrKDT/F66y3IjLN9rmh" "VQVo1b4StHgkWhAIEjioKBFfx91GFzR5wJ5HRINpem3YQfzyklAihgCjxDT1SvLvLLLkR0rA" "jdzOmjxwotbVf656+/20YmS9wrIfvSdO8p53A0UAM0RihVqIjNSB/WXRIFpwXVhebgxCkwdu" "/33b/kXY94VD/KWPjvY9lduVvaWxCVzYYipxW1eKFhwRajcdat9RemP+vd2jbx6cCIt19Gf0" "6fETw28fKR6jf9Ci24LuuFeuMWC2IIlLXxVl70+5ZDckuxWuFuIxqIjgTDOjzvV9UC7OTbbS" "3fGvmW3bauyzE/nCFXe4dIMsy45tVX889oT+83RXV5d5bf21MXIyZD3re2WGgnyfOFK9VG0J" "/MAEOhmnTp1KXF28mlsXWzezf+/+1legyPgPTicVRBS2XfsAAAAASUVORK5CYII=") getbookicoIcon = bookico.GetIcon<|fim▁end|>
homepath = sys.path[0] + slash
<|file_name|>prefs.py<|end_file_name|><|fim▁begin|>import os, socket, sys, urllib from wx.lib.embeddedimage import PyEmbeddedImage ldc_name = "Live Debian Creator" ldc_cli_version = "1.4.0" ldc_gui_version = "1.11.0" if (sys.platform == "win32"): slash = "\\" if os.path.isfile(sys.path[0]): #fix for compiled binaries homepath = os.path.dirname(sys.path[0]) + slash else: homepath = sys.path[0] + slash else: <|fim_middle|> #socket.setdefaulttimeout(10) def defineBrowserAgent(uiname, uiversion): class AppURLopener(urllib.FancyURLopener): version = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" #version = uiname + " " + uiversion + " / " + sys.platform urllib._urlopener = AppURLopener() bookico = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAYAAABzenr0AAAABHNCSVQICAgIfAhkiAAABPZJ" "REFUWIWtl09sFFUcxz/iYN+YTZyNxewiTWiV6FZQtqhkN3pgGw6UW6unJVxEDtaThJMc9WLg" "oj1hwJhANURqQkw9NGwTla0c6JqArELSMVCzi63uKJX5UR7Bw8x0Z2d3yxJ5yctM3vu93/f7" "+ztv4CGPqamp9A/nL2Q6lTceBqht26pw7kL+7K+10S/tJ9OpBBPASCdnH/k/wFNTU+nzc/+M" "2v925a2N21Sq1yKJg/wxV7XWyIHBnYPjD53A9PS0mrv+e/6yw6gT60+72iK7AVJJSBoCBihD" "AVC6WK7O3bx3+thFyY30ycSH7+w5FNXXcQgymUzaei49+vHMX/kq/SqpYGiDRbYHlBFoigMu" "gklxHsZ1NlG4yygvKiruWauV3vsS2L59e+qZVwfHqsnB3G8LkI2ZHHzdImGBaZi+BgVaqIhi" "sqo4uQBlrQDPI2jx5gMQUFu39A3veW3ru9leMmO19aQ2JDm8C5SCuDJBgUJRM6DkKE5WFYUF" "cLSAxgOnNeiqBHZt6z2wO2UdSvXGrfimFNYrIzhHbca/LlOcTzL0coJsj8IRKC4pJhfAXvKB" "dKBFQu+AdjsnsG/AOpzc+RZWKkc8FgcFGDYApas1SgtAUjxXJOK+a1XUgRHrzc4JlMslqB5C" "ZYbg+Sws2rAYByPlSQcntNQtNSLaNGCoxv07HRJAQ63ioM6MI2fGPdt6DngKDbVK1kS9IKBV" "PQmN6P4qBNAgGlw/jqJp9vKKBtVILrA4nA+GegAPBCT8Z0P6RF0dvAfgwdRRIu2rYfU+sLKr" "mtcCq3UIPGyABmupzIBRoOIkuXzF7oyACq2KDne5FmQC2fC+UyWtZxmIlchtseg1sti2yzf2" "z8n8559kdmzbYW/evLnalgAGmLr+Lp00aw3WYomUUaDfKpNJphmIDWEZXvd1N9m80HNj+Fs5" "Pvx0TY0AE6sQUGB45SOA0m0kwyWnHfLdh8nGd5NJDGMqEwyXoi5QXJrAltmVsNxabq2mrWVi" "qHoitkpCBJwKp6uTVDbaVGKziK5wWWaQoAOGu2IbO5pGkLfuKocD5WrJwVRQXirjXC+DAdY6" "1ZSYCng8cnxNk8K1fukF/eA+FqAFpIaiMT0VXgIr5fcohUfosca23EzgTh3cDep5taFdcCN1" "bviAMTB98OZqakfAH65vx4rqKBlNm2+8grUeWGCrGW5S9yWwti7ofW5Ucx9rIBK6bIRB2lVN" "Y29tQcBonG4Ta6k/NSBeDkSH2Sp0GoiUYYsQ+AB+0rTt4hov/lpQ0lrKDT/F66y3IjLN9rmh" "VQVo1b4StHgkWhAIEjioKBFfx91GFzR5wJ5HRINpem3YQfzyklAihgCjxDT1SvLvLLLkR0rA" "jdzOmjxwotbVf656+/20YmS9wrIfvSdO8p53A0UAM0RihVqIjNSB/WXRIFpwXVhebgxCkwdu" "/33b/kXY94VD/KWPjvY9lduVvaWxCVzYYipxW1eKFhwRajcdat9RemP+vd2jbx6cCIt19Gf0" "6fETw28fKR6jf9Ci24LuuFeuMWC2IIlLXxVl70+5ZDckuxWuFuIxqIjgTDOjzvV9UC7OTbbS" "3fGvmW3bauyzE/nCFXe4dIMsy45tVX889oT+83RXV5d5bf21MXIyZD3re2WGgnyfOFK9VG0J" "/MAEOhmnTp1KXF28mlsXWzezf+/+1legyPgPTicVRBS2XfsAAAAASUVORK5CYII=") getbookicoIcon = bookico.GetIcon<|fim▁end|>
slash = "/"
<|file_name|>prefs.py<|end_file_name|><|fim▁begin|>import os, socket, sys, urllib from wx.lib.embeddedimage import PyEmbeddedImage ldc_name = "Live Debian Creator" ldc_cli_version = "1.4.0" ldc_gui_version = "1.11.0" if (sys.platform == "win32"): slash = "\\" if os.path.isfile(sys.path[0]): #fix for compiled binaries homepath = os.path.dirname(sys.path[0]) + slash else: homepath = sys.path[0] + slash else: slash = "/" #socket.setdefaulttimeout(10) def <|fim_middle|>(uiname, uiversion): class AppURLopener(urllib.FancyURLopener): version = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" #version = uiname + " " + uiversion + " / " + sys.platform urllib._urlopener = AppURLopener() bookico = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAYAAABzenr0AAAABHNCSVQICAgIfAhkiAAABPZJ" "REFUWIWtl09sFFUcxz/iYN+YTZyNxewiTWiV6FZQtqhkN3pgGw6UW6unJVxEDtaThJMc9WLg" "oj1hwJhANURqQkw9NGwTla0c6JqArELSMVCzi63uKJX5UR7Bw8x0Z2d3yxJ5yctM3vu93/f7" "+ztv4CGPqamp9A/nL2Q6lTceBqht26pw7kL+7K+10S/tJ9OpBBPASCdnH/k/wFNTU+nzc/+M" "2v925a2N21Sq1yKJg/wxV7XWyIHBnYPjD53A9PS0mrv+e/6yw6gT60+72iK7AVJJSBoCBihD" "AVC6WK7O3bx3+thFyY30ycSH7+w5FNXXcQgymUzaei49+vHMX/kq/SqpYGiDRbYHlBFoigMu" "gklxHsZ1NlG4yygvKiruWauV3vsS2L59e+qZVwfHqsnB3G8LkI2ZHHzdImGBaZi+BgVaqIhi" "sqo4uQBlrQDPI2jx5gMQUFu39A3veW3ru9leMmO19aQ2JDm8C5SCuDJBgUJRM6DkKE5WFYUF" "cLSAxgOnNeiqBHZt6z2wO2UdSvXGrfimFNYrIzhHbca/LlOcTzL0coJsj8IRKC4pJhfAXvKB" "dKBFQu+AdjsnsG/AOpzc+RZWKkc8FgcFGDYApas1SgtAUjxXJOK+a1XUgRHrzc4JlMslqB5C" "ZYbg+Sws2rAYByPlSQcntNQtNSLaNGCoxv07HRJAQ63ioM6MI2fGPdt6DngKDbVK1kS9IKBV" "PQmN6P4qBNAgGlw/jqJp9vKKBtVILrA4nA+GegAPBCT8Z0P6RF0dvAfgwdRRIu2rYfU+sLKr" "mtcCq3UIPGyABmupzIBRoOIkuXzF7oyACq2KDne5FmQC2fC+UyWtZxmIlchtseg1sti2yzf2" "z8n8559kdmzbYW/evLnalgAGmLr+Lp00aw3WYomUUaDfKpNJphmIDWEZXvd1N9m80HNj+Fs5" "Pvx0TY0AE6sQUGB45SOA0m0kwyWnHfLdh8nGd5NJDGMqEwyXoi5QXJrAltmVsNxabq2mrWVi" "qHoitkpCBJwKp6uTVDbaVGKziK5wWWaQoAOGu2IbO5pGkLfuKocD5WrJwVRQXirjXC+DAdY6" "1ZSYCng8cnxNk8K1fukF/eA+FqAFpIaiMT0VXgIr5fcohUfosca23EzgTh3cDep5taFdcCN1" "bviAMTB98OZqakfAH65vx4rqKBlNm2+8grUeWGCrGW5S9yWwti7ofW5Ucx9rIBK6bIRB2lVN" "Y29tQcBonG4Ta6k/NSBeDkSH2Sp0GoiUYYsQ+AB+0rTt4hov/lpQ0lrKDT/F66y3IjLN9rmh" "VQVo1b4StHgkWhAIEjioKBFfx91GFzR5wJ5HRINpem3YQfzyklAihgCjxDT1SvLvLLLkR0rA" "jdzOmjxwotbVf656+/20YmS9wrIfvSdO8p53A0UAM0RihVqIjNSB/WXRIFpwXVhebgxCkwdu" "/33b/kXY94VD/KWPjvY9lduVvaWxCVzYYipxW1eKFhwRajcdat9RemP+vd2jbx6cCIt19Gf0" "6fETw28fKR6jf9Ci24LuuFeuMWC2IIlLXxVl70+5ZDckuxWuFuIxqIjgTDOjzvV9UC7OTbbS" "3fGvmW3bauyzE/nCFXe4dIMsy45tVX889oT+83RXV5d5bf21MXIyZD3re2WGgnyfOFK9VG0J" "/MAEOhmnTp1KXF28mlsXWzezf+/+1legyPgPTicVRBS2XfsAAAAASUVORK5CYII=") getbookicoIcon = bookico.GetIcon<|fim▁end|>
defineBrowserAgent
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2])<|fim▁hole|>class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): <|fim_middle|> class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): <|fim_middle|> def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): <|fim_middle|> class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): <|fim_middle|> class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): <|fim_middle|> class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): <|fim_middle|> ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): <|fim_middle|> ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): <|fim_middle|> class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): <|fim_middle|> def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): <|fim_middle|> class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): <|fim_middle|> class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): <|fim_middle|> class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): <|fim_middle|> ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): <|fim_middle|> ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): <|fim_middle|> class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): <|fim_middle|> def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): <|fim_middle|> class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): <|fim_middle|> class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): <|fim_middle|> class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): <|fim_middle|> ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): <|fim_middle|> ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): <|fim_middle|> class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): <|fim_middle|> def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
pass
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): <|fim_middle|> class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
return (input_shape[0], input_shape[2])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): <|fim_middle|> class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
pass
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): <|fim_middle|> ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
pass
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): <|fim_middle|> class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): <|fim_middle|> def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): <|fim_middle|> class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): <|fim_middle|> class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
pass
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): <|fim_middle|> ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
pass
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): <|fim_middle|> class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): <|fim_middle|> def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): <|fim_middle|> class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): <|fim_middle|> class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
pass