prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): <|fim_middle|> ############################################### if __name__ == '__main__': pass<|fim▁end|>
pass
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: <|fim_middle|> assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
strides = pool_size
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': <|fim_middle|> assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
data_format = default_data_format
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: <|fim_middle|> self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
strides = self.pool_size
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': <|fim_middle|> elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
rows = input_shape[2] cols = input_shape[3]
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': <|fim_middle|> else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
rows = input_shape[1] cols = input_shape[2]
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: <|fim_middle|> rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': <|fim_middle|> elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
return (input_shape[0], input_shape[1], rows, cols)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': <|fim_middle|> else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
return (input_shape[0], rows, cols, input_shape[3])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: <|fim_middle|> class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': <|fim_middle|> assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
dim_ordering = default_data_format
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: <|fim_middle|> self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
strides = self.pool_size
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': <|fim_middle|> elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4]
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': <|fim_middle|> else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3]
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: <|fim_middle|> len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': <|fim_middle|> elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': <|fim_middle|> else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: <|fim_middle|> class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': <|fim_middle|> self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
data_format = default_data_format
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': <|fim_middle|> else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
return (input_shape[0], input_shape[3])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: <|fim_middle|> class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
return (input_shape[0], input_shape[1])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': <|fim_middle|> self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
data_format = default_data_format
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': <|fim_middle|> else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
return (input_shape[0], input_shape[4])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: <|fim_middle|> class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
return (input_shape[0], input_shape[1])
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': <|fim_middle|> <|fim▁end|>
pass
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def <|fim_middle|>(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def <|fim_middle|>(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
get_output_shape_for
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def <|fim_middle|>(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def <|fim_middle|>(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def <|fim_middle|>(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def <|fim_middle|>(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
get_output_shape_for
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def <|fim_middle|>(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def <|fim_middle|>(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def <|fim_middle|>(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def <|fim_middle|>(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
get_output_shape_for
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def <|fim_middle|>(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def <|fim_middle|>(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def <|fim_middle|>(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def <|fim_middle|>(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
get_output_shape_for
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def <|fim_middle|>(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def <|fim_middle|>(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
get_output_shape_for
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def <|fim_middle|>(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
__init__
<|file_name|>layers_pooling.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from layers_basic import LW_Layer, default_data_format from layers_convolutional import conv_output_length ############################################### class _LW_Pooling1D(LW_Layer): input_dim = 3 def __init__(self, pool_size=2, strides=None, padding='valid'): if strides is None: strides = pool_size assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.pool_length = pool_size self.stride = strides self.border_mode = padding def get_output_shape_for(self, input_shape): length = conv_output_length(input_shape[1], self.pool_length, self.border_mode, self.stride) return (input_shape[0], length, input_shape[2]) class LW_MaxPooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_MaxPooling1D, self).__init__(pool_size, strides, padding) class LW_AveragePooling1D(_LW_Pooling1D): def __init__(self, pool_size=2, strides=None, padding='valid'): super(LW_AveragePooling1D, self).__init__(pool_size, strides, padding) ############################################### class _LW_Pooling2D(LW_Layer): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): if data_format == 'default': data_format = default_data_format assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert padding in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = padding self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.dim_ordering == 'channels_last': rows = input_shape[1] cols = input_shape[2] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) rows = conv_output_length(rows, self.pool_size[0], self.border_mode, self.strides[0]) cols = conv_output_length(cols, self.pool_size[1], self.border_mode, self.strides[1]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], rows, cols) elif self.dim_ordering == 'channels_last': return (input_shape[0], rows, cols, input_shape[3]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_MaxPooling2D, self).__init__(pool_size, strides, padding, data_format) class LW_AveragePooling2D(_LW_Pooling2D): def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format='default'): super(LW_AveragePooling2D, self).__init__(pool_size, strides, padding, data_format) ############################################### class _LW_Pooling3D(LW_Layer): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): if dim_ordering == 'default': dim_ordering = default_data_format assert dim_ordering in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}' self.pool_size = tuple(pool_size) if strides is None: strides = self.pool_size self.strides = tuple(strides) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.dim_ordering = dim_ordering def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] elif self.dim_ordering == 'channels_last': len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) len_dim1 = conv_output_length(len_dim1, self.pool_size[0], self.border_mode, self.strides[0]) len_dim2 = conv_output_length(len_dim2, self.pool_size[1], self.border_mode, self.strides[1]) len_dim3 = conv_output_length(len_dim3, self.pool_size[2], self.border_mode, self.strides[2]) if self.dim_ordering == 'channels_first': return (input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3) elif self.dim_ordering == 'channels_last': return (input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]) else: raise Exception('Invalid dim_ordering: ' + self.dim_ordering) class LW_MaxPooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_MaxPooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) class LW_AveragePooling3D(_LW_Pooling3D): def __init__(self, pool_size=(2, 2, 2), strides=None, border_mode='valid', dim_ordering='default'): super(LW_AveragePooling3D, self).__init__(pool_size, strides, border_mode, dim_ordering) ############################################### class _LW_GlobalPooling1D(LW_Layer): def __init__(self): pass def get_output_shape_for(self, input_shape): return (input_shape[0], input_shape[2]) class LW_GlobalAveragePooling1D(_LW_GlobalPooling1D): pass class LW_GlobalMaxPooling1D(_LW_GlobalPooling1D): pass ############################################### class _LW_GlobalPooling2D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def get_output_shape_for(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[3]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling2D(_LW_GlobalPooling2D): pass class LW_GlobalMaxPooling2D(_LW_GlobalPooling2D): pass ############################################### class _LW_GlobalPooling3D(LW_Layer): def __init__(self, data_format='default'): if data_format == 'default': data_format = default_data_format self.dim_ordering = data_format def <|fim_middle|>(self, input_shape): if self.dim_ordering == 'channels_last': return (input_shape[0], input_shape[4]) else: return (input_shape[0], input_shape[1]) class LW_GlobalAveragePooling3D(_LW_GlobalPooling3D): pass class LW_GlobalMaxPooling3D(_LW_GlobalPooling3D): pass ############################################### if __name__ == '__main__': pass<|fim▁end|>
get_output_shape_for
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object):<|fim▁hole|> # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this..<|fim▁end|>
"""Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): <|fim_middle|> <|fim▁end|>
"""Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this..
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): <|fim_middle|> def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys()))
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): <|fim_middle|> def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
"""Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): <|fim_middle|> def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
"""Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): <|fim_middle|> <|fim▁end|>
"""Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this..
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: <|fim_middle|> self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
assert IAuth.providedBy(auth)
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: <|fim_middle|> if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
self.config[act] = kwargs[act] del kwargs[act]
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: <|fim_middle|> def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys()))
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: <|fim_middle|> cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
raise KeyError("unknown action")
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: <|fim_middle|> return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
return True
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: <|fim_middle|> cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
raise KeyError("unknown action")
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): <|fim_middle|> return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
return True
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: <|fim_middle|> cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
raise KeyError("unknown action")
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: <|fim_middle|> <|fim▁end|>
if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this..
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): <|fim_middle|> else: return True # anyone can do this.. <|fim▁end|>
if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: <|fim_middle|> user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
return False
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": <|fim_middle|> if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
return False
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): <|fim_middle|> return False else: return True # anyone can do this.. <|fim▁end|>
if callable(cfg) and not cfg(user, *args): return False return True
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): <|fim_middle|> return True return False else: return True # anyone can do this.. <|fim▁end|>
return False
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: <|fim_middle|> <|fim▁end|>
return True # anyone can do this..
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def <|fim_middle|>(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
__init__
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def <|fim_middle|>(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
advertiseAction
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def <|fim_middle|>(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def actionAllowed(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
needAuthForm
<|file_name|>authz.py<|end_file_name|><|fim▁begin|>from buildbot.status.web.auth import IAuth class Authz(object): """Decide who can do what.""" knownActions = [ # If you add a new action here, be sure to also update the documentation # at docs/cfg-statustargets.texinfo 'gracefulShutdown', 'forceBuild', 'forceAllBuilds', 'pingBuilder', 'stopBuild', 'stopAllBuilds', 'cancelPendingBuild', ] def __init__(self, default_action=False, auth=None, **kwargs): self.auth = auth if auth: assert IAuth.providedBy(auth) self.config = dict( (a, default_action) for a in self.knownActions ) for act in self.knownActions: if act in kwargs: self.config[act] = kwargs[act] del kwargs[act] if kwargs: raise ValueError("unknown authorization action(s) " + ", ".join(kwargs.keys())) def advertiseAction(self, action): """Should the web interface even show the form for ACTION?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: return True return False def needAuthForm(self, action): """Does this action require an authentication form?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg == 'auth' or callable(cfg): return True return False def <|fim_middle|>(self, action, request, *args): """Is this ACTION allowed, given this http REQUEST?""" if action not in self.knownActions: raise KeyError("unknown action") cfg = self.config.get(action, False) if cfg: if cfg == 'auth' or callable(cfg): if not self.auth: return False user = request.args.get("username", ["<unknown>"])[0] passwd = request.args.get("passwd", ["<no-password>"])[0] if user == "<unknown>" or passwd == "<no-password>": return False if self.auth.authenticate(user, passwd): if callable(cfg) and not cfg(user, *args): return False return True return False else: return True # anyone can do this.. <|fim▁end|>
actionAllowed
<|file_name|>__init__.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """ Linguistic and other taggers. Tagging each token in a sentence with supplementary information, such as its part-of-speech (POS) tag, and named entity (NE) tag. """ __all__ = [ "PerceptronTagger", "pos_tag", "pos_tag_sents", "tag_provinces", "chunk_parse", "NER", ] <|fim▁hole|>from pythainlp.tag.pos_tag import pos_tag, pos_tag_sents from pythainlp.tag._tag_perceptron import PerceptronTagger from pythainlp.tag.chunk import chunk_parse from pythainlp.tag.named_entity import NER<|fim▁end|>
from pythainlp.tag.locations import tag_provinces
<|file_name|>linkbox.py<|end_file_name|><|fim▁begin|># # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2000-2006 Donald N. Allingham # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # $Id$ <|fim▁hole|># # Standard python modules # #------------------------------------------------------------------------- import logging _LOG = logging.getLogger(".widgets.linkbox") #------------------------------------------------------------------------- # # GTK/Gnome modules # #------------------------------------------------------------------------- from gi.repository import GObject from gi.repository import Gtk #------------------------------------------------------------------------- # # LinkBox class # #------------------------------------------------------------------------- class LinkBox(Gtk.HBox): def __init__(self, link, button): GObject.GObject.__init__(self) self.set_spacing(6) self.pack_start(link, False, True, 0) if button: self.pack_start(button, False, True, 0) self.show()<|fim▁end|>
__all__ = ["LinkBox"] #-------------------------------------------------------------------------
<|file_name|>linkbox.py<|end_file_name|><|fim▁begin|># # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2000-2006 Donald N. Allingham # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # $Id$ __all__ = ["LinkBox"] #------------------------------------------------------------------------- # # Standard python modules # #------------------------------------------------------------------------- import logging _LOG = logging.getLogger(".widgets.linkbox") #------------------------------------------------------------------------- # # GTK/Gnome modules # #------------------------------------------------------------------------- from gi.repository import GObject from gi.repository import Gtk #------------------------------------------------------------------------- # # LinkBox class # #------------------------------------------------------------------------- class LinkBox(Gtk.HBox): <|fim_middle|> <|fim▁end|>
def __init__(self, link, button): GObject.GObject.__init__(self) self.set_spacing(6) self.pack_start(link, False, True, 0) if button: self.pack_start(button, False, True, 0) self.show()
<|file_name|>linkbox.py<|end_file_name|><|fim▁begin|># # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2000-2006 Donald N. Allingham # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # $Id$ __all__ = ["LinkBox"] #------------------------------------------------------------------------- # # Standard python modules # #------------------------------------------------------------------------- import logging _LOG = logging.getLogger(".widgets.linkbox") #------------------------------------------------------------------------- # # GTK/Gnome modules # #------------------------------------------------------------------------- from gi.repository import GObject from gi.repository import Gtk #------------------------------------------------------------------------- # # LinkBox class # #------------------------------------------------------------------------- class LinkBox(Gtk.HBox): def __init__(self, link, button): <|fim_middle|> <|fim▁end|>
GObject.GObject.__init__(self) self.set_spacing(6) self.pack_start(link, False, True, 0) if button: self.pack_start(button, False, True, 0) self.show()
<|file_name|>linkbox.py<|end_file_name|><|fim▁begin|># # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2000-2006 Donald N. Allingham # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # $Id$ __all__ = ["LinkBox"] #------------------------------------------------------------------------- # # Standard python modules # #------------------------------------------------------------------------- import logging _LOG = logging.getLogger(".widgets.linkbox") #------------------------------------------------------------------------- # # GTK/Gnome modules # #------------------------------------------------------------------------- from gi.repository import GObject from gi.repository import Gtk #------------------------------------------------------------------------- # # LinkBox class # #------------------------------------------------------------------------- class LinkBox(Gtk.HBox): def __init__(self, link, button): GObject.GObject.__init__(self) self.set_spacing(6) self.pack_start(link, False, True, 0) if button: <|fim_middle|> self.show() <|fim▁end|>
self.pack_start(button, False, True, 0)
<|file_name|>linkbox.py<|end_file_name|><|fim▁begin|># # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2000-2006 Donald N. Allingham # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # $Id$ __all__ = ["LinkBox"] #------------------------------------------------------------------------- # # Standard python modules # #------------------------------------------------------------------------- import logging _LOG = logging.getLogger(".widgets.linkbox") #------------------------------------------------------------------------- # # GTK/Gnome modules # #------------------------------------------------------------------------- from gi.repository import GObject from gi.repository import Gtk #------------------------------------------------------------------------- # # LinkBox class # #------------------------------------------------------------------------- class LinkBox(Gtk.HBox): def <|fim_middle|>(self, link, button): GObject.GObject.__init__(self) self.set_spacing(6) self.pack_start(link, False, True, 0) if button: self.pack_start(button, False, True, 0) self.show() <|fim▁end|>
__init__
<|file_name|>git.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """Git tools.""" from shlex import split from plumbum import ProcessExecutionError from plumbum.cmd import git DEVELOPMENT_BRANCH = "develop" def run_git(*args, dry_run=False, quiet=False): """Run a git command, print it before executing and capture the output.""" command = git[split(" ".join(args))] if not quiet: print("{}{}".format("[DRY-RUN] " if dry_run else "", command)) if dry_run: return ""<|fim▁hole|> print(rv) return rv def branch_exists(branch): """Return True if the branch exists.""" try: run_git("rev-parse --verify {}".format(branch), quiet=True) return True except ProcessExecutionError: return False def get_current_branch(): """Get the current branch name.""" return run_git("rev-parse --abbrev-ref HEAD", quiet=True).strip()<|fim▁end|>
rv = command() if not quiet and rv:
<|file_name|>git.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """Git tools.""" from shlex import split from plumbum import ProcessExecutionError from plumbum.cmd import git DEVELOPMENT_BRANCH = "develop" def run_git(*args, dry_run=False, quiet=False): <|fim_middle|> def branch_exists(branch): """Return True if the branch exists.""" try: run_git("rev-parse --verify {}".format(branch), quiet=True) return True except ProcessExecutionError: return False def get_current_branch(): """Get the current branch name.""" return run_git("rev-parse --abbrev-ref HEAD", quiet=True).strip() <|fim▁end|>
"""Run a git command, print it before executing and capture the output.""" command = git[split(" ".join(args))] if not quiet: print("{}{}".format("[DRY-RUN] " if dry_run else "", command)) if dry_run: return "" rv = command() if not quiet and rv: print(rv) return rv
<|file_name|>git.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """Git tools.""" from shlex import split from plumbum import ProcessExecutionError from plumbum.cmd import git DEVELOPMENT_BRANCH = "develop" def run_git(*args, dry_run=False, quiet=False): """Run a git command, print it before executing and capture the output.""" command = git[split(" ".join(args))] if not quiet: print("{}{}".format("[DRY-RUN] " if dry_run else "", command)) if dry_run: return "" rv = command() if not quiet and rv: print(rv) return rv def branch_exists(branch): <|fim_middle|> def get_current_branch(): """Get the current branch name.""" return run_git("rev-parse --abbrev-ref HEAD", quiet=True).strip() <|fim▁end|>
"""Return True if the branch exists.""" try: run_git("rev-parse --verify {}".format(branch), quiet=True) return True except ProcessExecutionError: return False
<|file_name|>git.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """Git tools.""" from shlex import split from plumbum import ProcessExecutionError from plumbum.cmd import git DEVELOPMENT_BRANCH = "develop" def run_git(*args, dry_run=False, quiet=False): """Run a git command, print it before executing and capture the output.""" command = git[split(" ".join(args))] if not quiet: print("{}{}".format("[DRY-RUN] " if dry_run else "", command)) if dry_run: return "" rv = command() if not quiet and rv: print(rv) return rv def branch_exists(branch): """Return True if the branch exists.""" try: run_git("rev-parse --verify {}".format(branch), quiet=True) return True except ProcessExecutionError: return False def get_current_branch(): <|fim_middle|> <|fim▁end|>
"""Get the current branch name.""" return run_git("rev-parse --abbrev-ref HEAD", quiet=True).strip()
<|file_name|>git.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """Git tools.""" from shlex import split from plumbum import ProcessExecutionError from plumbum.cmd import git DEVELOPMENT_BRANCH = "develop" def run_git(*args, dry_run=False, quiet=False): """Run a git command, print it before executing and capture the output.""" command = git[split(" ".join(args))] if not quiet: <|fim_middle|> if dry_run: return "" rv = command() if not quiet and rv: print(rv) return rv def branch_exists(branch): """Return True if the branch exists.""" try: run_git("rev-parse --verify {}".format(branch), quiet=True) return True except ProcessExecutionError: return False def get_current_branch(): """Get the current branch name.""" return run_git("rev-parse --abbrev-ref HEAD", quiet=True).strip() <|fim▁end|>
print("{}{}".format("[DRY-RUN] " if dry_run else "", command))
<|file_name|>git.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """Git tools.""" from shlex import split from plumbum import ProcessExecutionError from plumbum.cmd import git DEVELOPMENT_BRANCH = "develop" def run_git(*args, dry_run=False, quiet=False): """Run a git command, print it before executing and capture the output.""" command = git[split(" ".join(args))] if not quiet: print("{}{}".format("[DRY-RUN] " if dry_run else "", command)) if dry_run: <|fim_middle|> rv = command() if not quiet and rv: print(rv) return rv def branch_exists(branch): """Return True if the branch exists.""" try: run_git("rev-parse --verify {}".format(branch), quiet=True) return True except ProcessExecutionError: return False def get_current_branch(): """Get the current branch name.""" return run_git("rev-parse --abbrev-ref HEAD", quiet=True).strip() <|fim▁end|>
return ""
<|file_name|>git.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """Git tools.""" from shlex import split from plumbum import ProcessExecutionError from plumbum.cmd import git DEVELOPMENT_BRANCH = "develop" def run_git(*args, dry_run=False, quiet=False): """Run a git command, print it before executing and capture the output.""" command = git[split(" ".join(args))] if not quiet: print("{}{}".format("[DRY-RUN] " if dry_run else "", command)) if dry_run: return "" rv = command() if not quiet and rv: <|fim_middle|> return rv def branch_exists(branch): """Return True if the branch exists.""" try: run_git("rev-parse --verify {}".format(branch), quiet=True) return True except ProcessExecutionError: return False def get_current_branch(): """Get the current branch name.""" return run_git("rev-parse --abbrev-ref HEAD", quiet=True).strip() <|fim▁end|>
print(rv)
<|file_name|>git.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """Git tools.""" from shlex import split from plumbum import ProcessExecutionError from plumbum.cmd import git DEVELOPMENT_BRANCH = "develop" def <|fim_middle|>(*args, dry_run=False, quiet=False): """Run a git command, print it before executing and capture the output.""" command = git[split(" ".join(args))] if not quiet: print("{}{}".format("[DRY-RUN] " if dry_run else "", command)) if dry_run: return "" rv = command() if not quiet and rv: print(rv) return rv def branch_exists(branch): """Return True if the branch exists.""" try: run_git("rev-parse --verify {}".format(branch), quiet=True) return True except ProcessExecutionError: return False def get_current_branch(): """Get the current branch name.""" return run_git("rev-parse --abbrev-ref HEAD", quiet=True).strip() <|fim▁end|>
run_git
<|file_name|>git.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """Git tools.""" from shlex import split from plumbum import ProcessExecutionError from plumbum.cmd import git DEVELOPMENT_BRANCH = "develop" def run_git(*args, dry_run=False, quiet=False): """Run a git command, print it before executing and capture the output.""" command = git[split(" ".join(args))] if not quiet: print("{}{}".format("[DRY-RUN] " if dry_run else "", command)) if dry_run: return "" rv = command() if not quiet and rv: print(rv) return rv def <|fim_middle|>(branch): """Return True if the branch exists.""" try: run_git("rev-parse --verify {}".format(branch), quiet=True) return True except ProcessExecutionError: return False def get_current_branch(): """Get the current branch name.""" return run_git("rev-parse --abbrev-ref HEAD", quiet=True).strip() <|fim▁end|>
branch_exists
<|file_name|>git.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """Git tools.""" from shlex import split from plumbum import ProcessExecutionError from plumbum.cmd import git DEVELOPMENT_BRANCH = "develop" def run_git(*args, dry_run=False, quiet=False): """Run a git command, print it before executing and capture the output.""" command = git[split(" ".join(args))] if not quiet: print("{}{}".format("[DRY-RUN] " if dry_run else "", command)) if dry_run: return "" rv = command() if not quiet and rv: print(rv) return rv def branch_exists(branch): """Return True if the branch exists.""" try: run_git("rev-parse --verify {}".format(branch), quiet=True) return True except ProcessExecutionError: return False def <|fim_middle|>(): """Get the current branch name.""" return run_git("rev-parse --abbrev-ref HEAD", quiet=True).strip() <|fim▁end|>
get_current_branch
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): """BrowserID authentication backend""" name = 'persona' <|fim▁hole|> def get_user_details(self, response): """Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''} def extra_data(self, user, uid, response, details): """Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']} def auth_complete(self, *args, **kwargs): """Completes loging process, must return user instance""" if not 'assertion' in self.data: raise AuthMissingParameter(self, 'assertion') response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': raise AuthFailed(self) kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs)<|fim▁end|>
def get_user_id(self, details, response): """Use BrowserID email as ID""" return details['email']
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): <|fim_middle|> <|fim▁end|>
"""BrowserID authentication backend""" name = 'persona' def get_user_id(self, details, response): """Use BrowserID email as ID""" return details['email'] def get_user_details(self, response): """Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''} def extra_data(self, user, uid, response, details): """Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']} def auth_complete(self, *args, **kwargs): """Completes loging process, must return user instance""" if not 'assertion' in self.data: raise AuthMissingParameter(self, 'assertion') response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': raise AuthFailed(self) kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs)
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): """BrowserID authentication backend""" name = 'persona' def get_user_id(self, details, response): <|fim_middle|> def get_user_details(self, response): """Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''} def extra_data(self, user, uid, response, details): """Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']} def auth_complete(self, *args, **kwargs): """Completes loging process, must return user instance""" if not 'assertion' in self.data: raise AuthMissingParameter(self, 'assertion') response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': raise AuthFailed(self) kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs) <|fim▁end|>
"""Use BrowserID email as ID""" return details['email']
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): """BrowserID authentication backend""" name = 'persona' def get_user_id(self, details, response): """Use BrowserID email as ID""" return details['email'] def get_user_details(self, response): <|fim_middle|> def extra_data(self, user, uid, response, details): """Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']} def auth_complete(self, *args, **kwargs): """Completes loging process, must return user instance""" if not 'assertion' in self.data: raise AuthMissingParameter(self, 'assertion') response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': raise AuthFailed(self) kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs) <|fim▁end|>
"""Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''}
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): """BrowserID authentication backend""" name = 'persona' def get_user_id(self, details, response): """Use BrowserID email as ID""" return details['email'] def get_user_details(self, response): """Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''} def extra_data(self, user, uid, response, details): <|fim_middle|> def auth_complete(self, *args, **kwargs): """Completes loging process, must return user instance""" if not 'assertion' in self.data: raise AuthMissingParameter(self, 'assertion') response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': raise AuthFailed(self) kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs) <|fim▁end|>
"""Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']}
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): """BrowserID authentication backend""" name = 'persona' def get_user_id(self, details, response): """Use BrowserID email as ID""" return details['email'] def get_user_details(self, response): """Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''} def extra_data(self, user, uid, response, details): """Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']} def auth_complete(self, *args, **kwargs): <|fim_middle|> <|fim▁end|>
"""Completes loging process, must return user instance""" if not 'assertion' in self.data: raise AuthMissingParameter(self, 'assertion') response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': raise AuthFailed(self) kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs)
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): """BrowserID authentication backend""" name = 'persona' def get_user_id(self, details, response): """Use BrowserID email as ID""" return details['email'] def get_user_details(self, response): """Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''} def extra_data(self, user, uid, response, details): """Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']} def auth_complete(self, *args, **kwargs): """Completes loging process, must return user instance""" if not 'assertion' in self.data: <|fim_middle|> response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': raise AuthFailed(self) kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs) <|fim▁end|>
raise AuthMissingParameter(self, 'assertion')
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): """BrowserID authentication backend""" name = 'persona' def get_user_id(self, details, response): """Use BrowserID email as ID""" return details['email'] def get_user_details(self, response): """Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''} def extra_data(self, user, uid, response, details): """Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']} def auth_complete(self, *args, **kwargs): """Completes loging process, must return user instance""" if not 'assertion' in self.data: raise AuthMissingParameter(self, 'assertion') response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': <|fim_middle|> kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs) <|fim▁end|>
raise AuthFailed(self)
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): """BrowserID authentication backend""" name = 'persona' def <|fim_middle|>(self, details, response): """Use BrowserID email as ID""" return details['email'] def get_user_details(self, response): """Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''} def extra_data(self, user, uid, response, details): """Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']} def auth_complete(self, *args, **kwargs): """Completes loging process, must return user instance""" if not 'assertion' in self.data: raise AuthMissingParameter(self, 'assertion') response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': raise AuthFailed(self) kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs) <|fim▁end|>
get_user_id
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): """BrowserID authentication backend""" name = 'persona' def get_user_id(self, details, response): """Use BrowserID email as ID""" return details['email'] def <|fim_middle|>(self, response): """Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''} def extra_data(self, user, uid, response, details): """Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']} def auth_complete(self, *args, **kwargs): """Completes loging process, must return user instance""" if not 'assertion' in self.data: raise AuthMissingParameter(self, 'assertion') response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': raise AuthFailed(self) kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs) <|fim▁end|>
get_user_details
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): """BrowserID authentication backend""" name = 'persona' def get_user_id(self, details, response): """Use BrowserID email as ID""" return details['email'] def get_user_details(self, response): """Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''} def <|fim_middle|>(self, user, uid, response, details): """Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']} def auth_complete(self, *args, **kwargs): """Completes loging process, must return user instance""" if not 'assertion' in self.data: raise AuthMissingParameter(self, 'assertion') response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': raise AuthFailed(self) kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs) <|fim▁end|>
extra_data
<|file_name|>persona.py<|end_file_name|><|fim▁begin|>""" BrowserID support """ from social.backends.base import BaseAuth from social.exceptions import AuthFailed, AuthMissingParameter class PersonaAuth(BaseAuth): """BrowserID authentication backend""" name = 'persona' def get_user_id(self, details, response): """Use BrowserID email as ID""" return details['email'] def get_user_details(self, response): """Return user details, BrowserID only provides Email.""" # {'status': 'okay', # 'audience': 'localhost:8000', # 'expires': 1328983575529, # 'email': '[email protected]', # 'issuer': 'browserid.org'} email = response['email'] return {'username': email.split('@', 1)[0], 'email': email, 'fullname': '', 'first_name': '', 'last_name': ''} def extra_data(self, user, uid, response, details): """Return users extra data""" return {'audience': response['audience'], 'issuer': response['issuer']} def <|fim_middle|>(self, *args, **kwargs): """Completes loging process, must return user instance""" if not 'assertion' in self.data: raise AuthMissingParameter(self, 'assertion') response = self.get_json('https://browserid.org/verify', data={ 'assertion': self.data['assertion'], 'audience': self.strategy.request_host() }, method='POST') if response.get('status') == 'failure': raise AuthFailed(self) kwargs.update({'response': response, 'backend': self}) return self.strategy.authenticate(*args, **kwargs) <|fim▁end|>
auth_complete
<|file_name|>netmiko_sh_arp.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # Use Netmiko to execute 'show arp' on pynet-rtr1, pynet-rtr2, and juniper-srx. from netmiko import ConnectHandler def main(): # Definition of routers rtr1 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', } rtr2 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', 'port': 8022, } srx = { 'device_type': 'juniper', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', 'port': 9822, } # Create a list of all the routers. all_routers = [rtr1, rtr2, srx] # Loop through all the routers and show arp. for a_router in all_routers: net_connect = ConnectHandler(**a_router) output = net_connect.send_command("show arp") print "\n\n>>>>>>>>> Device {0} <<<<<<<<<".format(a_router['device_type']) print output<|fim▁hole|>if __name__ == "__main__": main()<|fim▁end|>
print ">>>>>>>>> End <<<<<<<<<"
<|file_name|>netmiko_sh_arp.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # Use Netmiko to execute 'show arp' on pynet-rtr1, pynet-rtr2, and juniper-srx. from netmiko import ConnectHandler def main(): # Definition of routers <|fim_middle|> if __name__ == "__main__": main() <|fim▁end|>
rtr1 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', } rtr2 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', 'port': 8022, } srx = { 'device_type': 'juniper', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', 'port': 9822, } # Create a list of all the routers. all_routers = [rtr1, rtr2, srx] # Loop through all the routers and show arp. for a_router in all_routers: net_connect = ConnectHandler(**a_router) output = net_connect.send_command("show arp") print "\n\n>>>>>>>>> Device {0} <<<<<<<<<".format(a_router['device_type']) print output print ">>>>>>>>> End <<<<<<<<<"
<|file_name|>netmiko_sh_arp.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # Use Netmiko to execute 'show arp' on pynet-rtr1, pynet-rtr2, and juniper-srx. from netmiko import ConnectHandler def main(): # Definition of routers rtr1 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', } rtr2 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', 'port': 8022, } srx = { 'device_type': 'juniper', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', 'port': 9822, } # Create a list of all the routers. all_routers = [rtr1, rtr2, srx] # Loop through all the routers and show arp. for a_router in all_routers: net_connect = ConnectHandler(**a_router) output = net_connect.send_command("show arp") print "\n\n>>>>>>>>> Device {0} <<<<<<<<<".format(a_router['device_type']) print output print ">>>>>>>>> End <<<<<<<<<" if __name__ == "__main__": <|fim_middle|> <|fim▁end|>
main()
<|file_name|>netmiko_sh_arp.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # Use Netmiko to execute 'show arp' on pynet-rtr1, pynet-rtr2, and juniper-srx. from netmiko import ConnectHandler def <|fim_middle|>(): # Definition of routers rtr1 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', } rtr2 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', 'port': 8022, } srx = { 'device_type': 'juniper', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', 'port': 9822, } # Create a list of all the routers. all_routers = [rtr1, rtr2, srx] # Loop through all the routers and show arp. for a_router in all_routers: net_connect = ConnectHandler(**a_router) output = net_connect.send_command("show arp") print "\n\n>>>>>>>>> Device {0} <<<<<<<<<".format(a_router['device_type']) print output print ">>>>>>>>> End <<<<<<<<<" if __name__ == "__main__": main() <|fim▁end|>
main