prompt
large_stringlengths 72
9.34k
| completion
large_stringlengths 0
7.61k
|
---|---|
<|file_name|>ssf_reader.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python -*- coding:utf-8 -*-
__Author__ = "Riyaz Ahmad Bhat"
__Email__ = "[email protected]"
import re
from collections import namedtuple
from sanity_checker import SanityChecker
class DefaultList(list):
"""Equivalent of Default dictionaries for Indexing Errors."""
def __init__(self, default=None):
self.default = default
list.__init__(self)
def __getitem__(self, index):
try: return list.__getitem__(self, index)
except IndexError: return self.default
class SSFReader (SanityChecker):
def __init__ (self, sentence):
super(SSFReader, self).__init__()
self.id_ = int()
self.nodeList = list()
self.chunk_word = dict()
self.sentence = sentence
self.modifierModified = dict()
self.node = namedtuple('node',
('id', 'head', 'children', 'pos', 'poslcat', 'af', 'vpos', 'name','drel','parent',
'chunkId', 'chunkType', 'mtype', 'troot', 'coref', 'stype','voicetype', 'posn'))
self.features = namedtuple('features',
('lemma','cat','gen','num','per','case','vib','tam'))
def getAnnotations (self):
children_ = list()
for line in self.sentence.split("\n"):
nodeInfo = line.decode("utf-8").split("\t")
if nodeInfo[0].isdigit():
assert len(nodeInfo) == 4 # no need to process trash! FIXME
attributeValue_pairs = self.FSPairs(nodeInfo[3][4:-1])
attributes = self.updateFSValues(attributeValue_pairs)
h = attributes.get #NOTE h -> head node attributes
elif nodeInfo[0].replace(".",'',1).isdigit():
assert (len(nodeInfo) == 4) and (nodeInfo[1] and nodeInfo[2] != '') # FIXME
self.id_ += 1
pos_ = nodeInfo[2].encode("utf-8").decode("ascii",'ignore').encode("ascii")
wordForm_ = nodeInfo[1]
attributeValue_pairs = self.FSPairs(nodeInfo[3][4:-1])
if attributeValue_pairs['name'] == h('head_'):# NOTE head word of the chunk
self.nodeList.append(self.node(str(self.id_),wordForm_,children_,pos_,h('poslcat_'),
self.features(h('lemma_') if h('lemma_') else wordForm_ ,h('cat_'),h('gen_'), h('num_'),
h('per_'),h('case_'),h('vib_'),h('tam_')),h('vpos_'),h('head_'),h('drel_'),
h('parent_'),h('chunkId_'),":".join(('head',h('chunkId_'))),h('mtype_'),h('troot_'),
h('coref_'),h('stype_'),h('voicetype_'),h('posn_')))
self.modifierModified[h('chunkId_')] = h('parent_')
self.chunk_word[h('chunkId_')] = h('head_')
else:
attributes = self.updateFSValues(attributeValue_pairs)
c = attributes.get #NOTE c -> child node attributes
children_.append(self.node(str(self.id_),wordForm_,[],pos_,c('poslcat_'),self.features(c('lemma_') \
if c('lemma_') else wordForm_ ,c('cat_'),c('gen_'),c('num_'),c('per_'),c('case_'),c('vib_'),
c('tam_')),c('vpos_'),c('name_'),"_","_",None,":".join(('child',h('chunkId_'))),c('mtype_'),
c('troot_'),c('coref_'),None, None, c('posn_')))
else: children_ = list()
return self
def FSPairs (self, FS) :
feats = dict()
for feat in FS.split():
if "=" not in feat:continue
feat = re.sub("af='+","af='",feat.replace("dmrel=",'drel='))
assert len(feat.split("=")) == 2
attribute,value = feat.split("=")
feats[attribute] = value
return feats
def morphFeatures (self, AF):
"LEMMA,CAT,GEN,NUM,PER,CASE,VIB,TAM"
assert len(AF[:-1].split(",")) == 8 # no need to process trash! FIXME
lemma_,cat_,gen_,num_,per_,case_,vib_,tam_ = AF.split(",")
if len(lemma_) > 1: lemma_ = lemma_.strip("'")
return lemma_.strip("'"),cat_,gen_,num_,per_,case_,vib_,tam_.strip("'")
def updateFSValues (self, attributeValue_pairs):
attributes = dict(zip(['head_','poslcat_','af_','vpos_','name_','drel_','parent_','mtype_','troot_','chunkId_',\
'coref_','stype_','voicetype_','posn_'], [None] * 14))
attributes.update(dict(zip(['lemma_','cat_','gen_','num_','per_','case_','vib_','tam_'], [''] * 8)))
for key,value in attributeValue_pairs.items():
if key == "af":
<|fim_middle|>
elif key == "drel":
assert len(value.split(":")) == 2 # no need to process trash! FIXME
attributes['drel_'], attributes['parent_'] = re.sub("'|\"",'',value).split(":")
assert attributes['drel_'] and attributes['parent_'] != "" # no need to process trash! FIXME
else:
variable = str(key) + "_"
if variable == "name_": attributes['chunkId_'] = re.sub("'|\"",'',value)
attributes[variable] = re.sub("'|\"",'',value)
return attributes
<|fim▁end|> | attributes['lemma_'],attributes['cat_'],attributes['gen_'],attributes['num_'],\
attributes['per_'],attributes['case_'],attributes['vib_'],attributes['tam_'] = \
self.morphFeatures (value) |
<|file_name|>ssf_reader.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python -*- coding:utf-8 -*-
__Author__ = "Riyaz Ahmad Bhat"
__Email__ = "[email protected]"
import re
from collections import namedtuple
from sanity_checker import SanityChecker
class DefaultList(list):
"""Equivalent of Default dictionaries for Indexing Errors."""
def __init__(self, default=None):
self.default = default
list.__init__(self)
def __getitem__(self, index):
try: return list.__getitem__(self, index)
except IndexError: return self.default
class SSFReader (SanityChecker):
def __init__ (self, sentence):
super(SSFReader, self).__init__()
self.id_ = int()
self.nodeList = list()
self.chunk_word = dict()
self.sentence = sentence
self.modifierModified = dict()
self.node = namedtuple('node',
('id', 'head', 'children', 'pos', 'poslcat', 'af', 'vpos', 'name','drel','parent',
'chunkId', 'chunkType', 'mtype', 'troot', 'coref', 'stype','voicetype', 'posn'))
self.features = namedtuple('features',
('lemma','cat','gen','num','per','case','vib','tam'))
def getAnnotations (self):
children_ = list()
for line in self.sentence.split("\n"):
nodeInfo = line.decode("utf-8").split("\t")
if nodeInfo[0].isdigit():
assert len(nodeInfo) == 4 # no need to process trash! FIXME
attributeValue_pairs = self.FSPairs(nodeInfo[3][4:-1])
attributes = self.updateFSValues(attributeValue_pairs)
h = attributes.get #NOTE h -> head node attributes
elif nodeInfo[0].replace(".",'',1).isdigit():
assert (len(nodeInfo) == 4) and (nodeInfo[1] and nodeInfo[2] != '') # FIXME
self.id_ += 1
pos_ = nodeInfo[2].encode("utf-8").decode("ascii",'ignore').encode("ascii")
wordForm_ = nodeInfo[1]
attributeValue_pairs = self.FSPairs(nodeInfo[3][4:-1])
if attributeValue_pairs['name'] == h('head_'):# NOTE head word of the chunk
self.nodeList.append(self.node(str(self.id_),wordForm_,children_,pos_,h('poslcat_'),
self.features(h('lemma_') if h('lemma_') else wordForm_ ,h('cat_'),h('gen_'), h('num_'),
h('per_'),h('case_'),h('vib_'),h('tam_')),h('vpos_'),h('head_'),h('drel_'),
h('parent_'),h('chunkId_'),":".join(('head',h('chunkId_'))),h('mtype_'),h('troot_'),
h('coref_'),h('stype_'),h('voicetype_'),h('posn_')))
self.modifierModified[h('chunkId_')] = h('parent_')
self.chunk_word[h('chunkId_')] = h('head_')
else:
attributes = self.updateFSValues(attributeValue_pairs)
c = attributes.get #NOTE c -> child node attributes
children_.append(self.node(str(self.id_),wordForm_,[],pos_,c('poslcat_'),self.features(c('lemma_') \
if c('lemma_') else wordForm_ ,c('cat_'),c('gen_'),c('num_'),c('per_'),c('case_'),c('vib_'),
c('tam_')),c('vpos_'),c('name_'),"_","_",None,":".join(('child',h('chunkId_'))),c('mtype_'),
c('troot_'),c('coref_'),None, None, c('posn_')))
else: children_ = list()
return self
def FSPairs (self, FS) :
feats = dict()
for feat in FS.split():
if "=" not in feat:continue
feat = re.sub("af='+","af='",feat.replace("dmrel=",'drel='))
assert len(feat.split("=")) == 2
attribute,value = feat.split("=")
feats[attribute] = value
return feats
def morphFeatures (self, AF):
"LEMMA,CAT,GEN,NUM,PER,CASE,VIB,TAM"
assert len(AF[:-1].split(",")) == 8 # no need to process trash! FIXME
lemma_,cat_,gen_,num_,per_,case_,vib_,tam_ = AF.split(",")
if len(lemma_) > 1: lemma_ = lemma_.strip("'")
return lemma_.strip("'"),cat_,gen_,num_,per_,case_,vib_,tam_.strip("'")
def updateFSValues (self, attributeValue_pairs):
attributes = dict(zip(['head_','poslcat_','af_','vpos_','name_','drel_','parent_','mtype_','troot_','chunkId_',\
'coref_','stype_','voicetype_','posn_'], [None] * 14))
attributes.update(dict(zip(['lemma_','cat_','gen_','num_','per_','case_','vib_','tam_'], [''] * 8)))
for key,value in attributeValue_pairs.items():
if key == "af":
attributes['lemma_'],attributes['cat_'],attributes['gen_'],attributes['num_'],\
attributes['per_'],attributes['case_'],attributes['vib_'],attributes['tam_'] = \
self.morphFeatures (value)
elif key == "drel":
<|fim_middle|>
else:
variable = str(key) + "_"
if variable == "name_": attributes['chunkId_'] = re.sub("'|\"",'',value)
attributes[variable] = re.sub("'|\"",'',value)
return attributes
<|fim▁end|> | assert len(value.split(":")) == 2 # no need to process trash! FIXME
attributes['drel_'], attributes['parent_'] = re.sub("'|\"",'',value).split(":")
assert attributes['drel_'] and attributes['parent_'] != "" # no need to process trash! FIXME |
<|file_name|>ssf_reader.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python -*- coding:utf-8 -*-
__Author__ = "Riyaz Ahmad Bhat"
__Email__ = "[email protected]"
import re
from collections import namedtuple
from sanity_checker import SanityChecker
class DefaultList(list):
"""Equivalent of Default dictionaries for Indexing Errors."""
def __init__(self, default=None):
self.default = default
list.__init__(self)
def __getitem__(self, index):
try: return list.__getitem__(self, index)
except IndexError: return self.default
class SSFReader (SanityChecker):
def __init__ (self, sentence):
super(SSFReader, self).__init__()
self.id_ = int()
self.nodeList = list()
self.chunk_word = dict()
self.sentence = sentence
self.modifierModified = dict()
self.node = namedtuple('node',
('id', 'head', 'children', 'pos', 'poslcat', 'af', 'vpos', 'name','drel','parent',
'chunkId', 'chunkType', 'mtype', 'troot', 'coref', 'stype','voicetype', 'posn'))
self.features = namedtuple('features',
('lemma','cat','gen','num','per','case','vib','tam'))
def getAnnotations (self):
children_ = list()
for line in self.sentence.split("\n"):
nodeInfo = line.decode("utf-8").split("\t")
if nodeInfo[0].isdigit():
assert len(nodeInfo) == 4 # no need to process trash! FIXME
attributeValue_pairs = self.FSPairs(nodeInfo[3][4:-1])
attributes = self.updateFSValues(attributeValue_pairs)
h = attributes.get #NOTE h -> head node attributes
elif nodeInfo[0].replace(".",'',1).isdigit():
assert (len(nodeInfo) == 4) and (nodeInfo[1] and nodeInfo[2] != '') # FIXME
self.id_ += 1
pos_ = nodeInfo[2].encode("utf-8").decode("ascii",'ignore').encode("ascii")
wordForm_ = nodeInfo[1]
attributeValue_pairs = self.FSPairs(nodeInfo[3][4:-1])
if attributeValue_pairs['name'] == h('head_'):# NOTE head word of the chunk
self.nodeList.append(self.node(str(self.id_),wordForm_,children_,pos_,h('poslcat_'),
self.features(h('lemma_') if h('lemma_') else wordForm_ ,h('cat_'),h('gen_'), h('num_'),
h('per_'),h('case_'),h('vib_'),h('tam_')),h('vpos_'),h('head_'),h('drel_'),
h('parent_'),h('chunkId_'),":".join(('head',h('chunkId_'))),h('mtype_'),h('troot_'),
h('coref_'),h('stype_'),h('voicetype_'),h('posn_')))
self.modifierModified[h('chunkId_')] = h('parent_')
self.chunk_word[h('chunkId_')] = h('head_')
else:
attributes = self.updateFSValues(attributeValue_pairs)
c = attributes.get #NOTE c -> child node attributes
children_.append(self.node(str(self.id_),wordForm_,[],pos_,c('poslcat_'),self.features(c('lemma_') \
if c('lemma_') else wordForm_ ,c('cat_'),c('gen_'),c('num_'),c('per_'),c('case_'),c('vib_'),
c('tam_')),c('vpos_'),c('name_'),"_","_",None,":".join(('child',h('chunkId_'))),c('mtype_'),
c('troot_'),c('coref_'),None, None, c('posn_')))
else: children_ = list()
return self
def FSPairs (self, FS) :
feats = dict()
for feat in FS.split():
if "=" not in feat:continue
feat = re.sub("af='+","af='",feat.replace("dmrel=",'drel='))
assert len(feat.split("=")) == 2
attribute,value = feat.split("=")
feats[attribute] = value
return feats
def morphFeatures (self, AF):
"LEMMA,CAT,GEN,NUM,PER,CASE,VIB,TAM"
assert len(AF[:-1].split(",")) == 8 # no need to process trash! FIXME
lemma_,cat_,gen_,num_,per_,case_,vib_,tam_ = AF.split(",")
if len(lemma_) > 1: lemma_ = lemma_.strip("'")
return lemma_.strip("'"),cat_,gen_,num_,per_,case_,vib_,tam_.strip("'")
def updateFSValues (self, attributeValue_pairs):
attributes = dict(zip(['head_','poslcat_','af_','vpos_','name_','drel_','parent_','mtype_','troot_','chunkId_',\
'coref_','stype_','voicetype_','posn_'], [None] * 14))
attributes.update(dict(zip(['lemma_','cat_','gen_','num_','per_','case_','vib_','tam_'], [''] * 8)))
for key,value in attributeValue_pairs.items():
if key == "af":
attributes['lemma_'],attributes['cat_'],attributes['gen_'],attributes['num_'],\
attributes['per_'],attributes['case_'],attributes['vib_'],attributes['tam_'] = \
self.morphFeatures (value)
elif key == "drel":
assert len(value.split(":")) == 2 # no need to process trash! FIXME
attributes['drel_'], attributes['parent_'] = re.sub("'|\"",'',value).split(":")
assert attributes['drel_'] and attributes['parent_'] != "" # no need to process trash! FIXME
else:
<|fim_middle|>
return attributes
<|fim▁end|> | variable = str(key) + "_"
if variable == "name_": attributes['chunkId_'] = re.sub("'|\"",'',value)
attributes[variable] = re.sub("'|\"",'',value) |
<|file_name|>ssf_reader.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python -*- coding:utf-8 -*-
__Author__ = "Riyaz Ahmad Bhat"
__Email__ = "[email protected]"
import re
from collections import namedtuple
from sanity_checker import SanityChecker
class DefaultList(list):
"""Equivalent of Default dictionaries for Indexing Errors."""
def __init__(self, default=None):
self.default = default
list.__init__(self)
def __getitem__(self, index):
try: return list.__getitem__(self, index)
except IndexError: return self.default
class SSFReader (SanityChecker):
def __init__ (self, sentence):
super(SSFReader, self).__init__()
self.id_ = int()
self.nodeList = list()
self.chunk_word = dict()
self.sentence = sentence
self.modifierModified = dict()
self.node = namedtuple('node',
('id', 'head', 'children', 'pos', 'poslcat', 'af', 'vpos', 'name','drel','parent',
'chunkId', 'chunkType', 'mtype', 'troot', 'coref', 'stype','voicetype', 'posn'))
self.features = namedtuple('features',
('lemma','cat','gen','num','per','case','vib','tam'))
def getAnnotations (self):
children_ = list()
for line in self.sentence.split("\n"):
nodeInfo = line.decode("utf-8").split("\t")
if nodeInfo[0].isdigit():
assert len(nodeInfo) == 4 # no need to process trash! FIXME
attributeValue_pairs = self.FSPairs(nodeInfo[3][4:-1])
attributes = self.updateFSValues(attributeValue_pairs)
h = attributes.get #NOTE h -> head node attributes
elif nodeInfo[0].replace(".",'',1).isdigit():
assert (len(nodeInfo) == 4) and (nodeInfo[1] and nodeInfo[2] != '') # FIXME
self.id_ += 1
pos_ = nodeInfo[2].encode("utf-8").decode("ascii",'ignore').encode("ascii")
wordForm_ = nodeInfo[1]
attributeValue_pairs = self.FSPairs(nodeInfo[3][4:-1])
if attributeValue_pairs['name'] == h('head_'):# NOTE head word of the chunk
self.nodeList.append(self.node(str(self.id_),wordForm_,children_,pos_,h('poslcat_'),
self.features(h('lemma_') if h('lemma_') else wordForm_ ,h('cat_'),h('gen_'), h('num_'),
h('per_'),h('case_'),h('vib_'),h('tam_')),h('vpos_'),h('head_'),h('drel_'),
h('parent_'),h('chunkId_'),":".join(('head',h('chunkId_'))),h('mtype_'),h('troot_'),
h('coref_'),h('stype_'),h('voicetype_'),h('posn_')))
self.modifierModified[h('chunkId_')] = h('parent_')
self.chunk_word[h('chunkId_')] = h('head_')
else:
attributes = self.updateFSValues(attributeValue_pairs)
c = attributes.get #NOTE c -> child node attributes
children_.append(self.node(str(self.id_),wordForm_,[],pos_,c('poslcat_'),self.features(c('lemma_') \
if c('lemma_') else wordForm_ ,c('cat_'),c('gen_'),c('num_'),c('per_'),c('case_'),c('vib_'),
c('tam_')),c('vpos_'),c('name_'),"_","_",None,":".join(('child',h('chunkId_'))),c('mtype_'),
c('troot_'),c('coref_'),None, None, c('posn_')))
else: children_ = list()
return self
def FSPairs (self, FS) :
feats = dict()
for feat in FS.split():
if "=" not in feat:continue
feat = re.sub("af='+","af='",feat.replace("dmrel=",'drel='))
assert len(feat.split("=")) == 2
attribute,value = feat.split("=")
feats[attribute] = value
return feats
def morphFeatures (self, AF):
"LEMMA,CAT,GEN,NUM,PER,CASE,VIB,TAM"
assert len(AF[:-1].split(",")) == 8 # no need to process trash! FIXME
lemma_,cat_,gen_,num_,per_,case_,vib_,tam_ = AF.split(",")
if len(lemma_) > 1: lemma_ = lemma_.strip("'")
return lemma_.strip("'"),cat_,gen_,num_,per_,case_,vib_,tam_.strip("'")
def updateFSValues (self, attributeValue_pairs):
attributes = dict(zip(['head_','poslcat_','af_','vpos_','name_','drel_','parent_','mtype_','troot_','chunkId_',\
'coref_','stype_','voicetype_','posn_'], [None] * 14))
attributes.update(dict(zip(['lemma_','cat_','gen_','num_','per_','case_','vib_','tam_'], [''] * 8)))
for key,value in attributeValue_pairs.items():
if key == "af":
attributes['lemma_'],attributes['cat_'],attributes['gen_'],attributes['num_'],\
attributes['per_'],attributes['case_'],attributes['vib_'],attributes['tam_'] = \
self.morphFeatures (value)
elif key == "drel":
assert len(value.split(":")) == 2 # no need to process trash! FIXME
attributes['drel_'], attributes['parent_'] = re.sub("'|\"",'',value).split(":")
assert attributes['drel_'] and attributes['parent_'] != "" # no need to process trash! FIXME
else:
variable = str(key) + "_"
if variable == "name_": <|fim_middle|>
attributes[variable] = re.sub("'|\"",'',value)
return attributes
<|fim▁end|> | attributes['chunkId_'] = re.sub("'|\"",'',value) |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))<|fim▁hole|> return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')<|fim▁end|> | suite.addTest(unittest.makeSuite(GeneratorEventTest)) |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
<|fim_middle|>
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called) |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
<|fim_middle|>
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | self.observers_called = 0
self.event = Event() |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
<|fim_middle|>
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | self.observers_called += 1 |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
<|fim_middle|>
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called) |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
<|fim_middle|>
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6)) |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
<|fim_middle|>
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event()) |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
<|fim_middle|>
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6)) |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
<|fim_middle|>
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event())) |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
<|fim_middle|>
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event())) |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
<|fim_middle|>
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event())) |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
<|fim_middle|>
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
<|fim_middle|>
<|fim▁end|> | unittest.main(defaultTest='suite') |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def <|fim_middle|>(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | setUp |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def <|fim_middle|>(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | probe |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def <|fim_middle|>(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | test_can_notify_all_observers |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def <|fim_middle|>(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | test_returns_first_non_null_result |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def <|fim_middle|>(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | test_passes_all_event_parameters_to_observers |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def <|fim_middle|>(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | test_can_unroll_lists |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def <|fim_middle|>(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | test_can_return_non_iterable_items |
<|file_name|>events_test.py<|end_file_name|><|fim▁begin|># This file is a part of MediaDrop (http://www.mediadrop.net),
# Copyright 2009-2014 MediaDrop contributors
# For the exact contribution history, see the git revision log.
# The source code contained in this file is licensed under the GPLv3 or
# (at your option) any later version.
# See LICENSE.txt in the main project directory, for more information.
from mediadrop.lib.test.pythonic_testcase import *
from mediadrop.plugin.events import Event, FetchFirstResultEvent, GeneratorEvent
class EventTest(PythonicTestCase):
def setUp(self):
self.observers_called = 0
self.event = Event()
def probe(self):
self.observers_called += 1
def test_can_notify_all_observers(self):
self.event.post_observers.append(self.probe)
self.event.pre_observers.append(self.probe)
assert_equals(0, self.observers_called)
self.event()
assert_equals(2, self.observers_called)
class FetchFirstResultEventTest(PythonicTestCase):
def test_returns_first_non_null_result(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 1)
event.post_observers.append(lambda: 2)
assert_equals(1, event())
def test_passes_all_event_parameters_to_observers(self):
event = FetchFirstResultEvent([])
event.post_observers.append(lambda foo, bar=None: foo)
event.post_observers.append(lambda foo, bar=None: bar or foo)
assert_equals(4, event(4))
assert_equals(6, event(None, bar=6))
class GeneratorEventTest(PythonicTestCase):
def test_can_unroll_lists(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, 2, 3])
event.post_observers.append(lambda: ('a', 'b'))
assert_equals([1, 2, 3, 'a', 'b'], list(event()))
def test_can_return_non_iterable_items(self):
event = GeneratorEvent([])
event.post_observers.append(lambda: [1, ])
event.post_observers.append(lambda: None)
event.post_observers.append(lambda: 5)
event.post_observers.append(lambda: 'some value')
assert_equals([1, None, 5, 'some value'], list(event()))
import unittest
def <|fim_middle|>():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(EventTest))
suite.addTest(unittest.makeSuite(FetchFirstResultEventTest))
suite.addTest(unittest.makeSuite(GeneratorEventTest))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
<|fim▁end|> | suite |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
<|fim▁hole|> """Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])<|fim▁end|> | @property
def nonoauth_params(self):
|
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
<|fim_middle|>
<|fim▁end|> | """The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys]) |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
<|fim_middle|>
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | """Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
<|fim_middle|>
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
<|fim_middle|>
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
<|fim_middle|>
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
<|fim_middle|>
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header) |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
<|fim_middle|>
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | """Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted) |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
<|fim_middle|>
<|fim▁end|> | """Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys]) |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
<|fim_middle|>
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.') |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
<|fim_middle|>
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.') |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
<|fim_middle|>
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ]) |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
<|fim_middle|>
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ]) |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def <|fim_middle|>(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | _checks_positive_for_oauth |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def <|fim_middle|>(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | str_oauth_header |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def <|fim_middle|>(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | str_oauth_POST |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def <|fim_middle|>(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | str_oauth_GET |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def <|fim_middle|>(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | params |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def <|fim_middle|>(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def nonoauth_params(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | oauth_params |
<|file_name|>request.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
import oauth2 # XXX pumazi: factor this out
from webob.multidict import MultiDict, NestedMultiDict
from webob.request import Request as WebObRequest
__all__ = ['Request']
class Request(WebObRequest):
"""The OAuth version of the WebOb Request.
Provides an easier way to obtain OAuth request parameters
(e.g. oauth_token) from the WSGI environment."""
def _checks_positive_for_oauth(self, params_var):
"""Simple check for the presence of OAuth parameters."""
checks = [ p.find('oauth_') >= 0 for p in params_var ]
return True in checks
@property
def str_oauth_header(self):
extracted = {}
# Check for OAuth in the Header
if 'authorization' in self.headers:
auth_header = self.headers['authorization']
# Check that the authorization header is OAuth.
if auth_header[:6] == 'OAuth ':
auth_header = auth_header.lstrip('OAuth ')
try:
# Extract the parameters from the header.
extracted = oauth2.Request._split_header(auth_header)
except:
raise Error('Unable to parse OAuth parameters from '
'the Authorization header.')
return extracted
@property
def str_oauth_POST(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_POST):
extracted = dict([ (k, v,) for k, v in self.str_POST.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
@property
def str_oauth_GET(self):
extracted = {}
if self._checks_positive_for_oauth(self.str_GET):
extracted = dict([ (k, v,) for k, v in self.str_GET.iteritems()
if (k.find('oauth_') >= 0) ])
return extracted
def params(self):
params = WebObRequest.params.fget(self)
return NestedMultiDict(params, self.str_oauth_header)
params = property(params, doc=WebObRequest.params.__doc__)
@property
def oauth_params(self):
"""Simple way to get the OAuth parameters without sifting through
the entire stack of parameters.
We check the header first, because it is low hanging fruit.
However, it would be more efficient to check for the POSTed
parameters, because the specification defines the POST method as the
recommended request type before using GET or the Authorization
header."""
extracted = {}
# OAuth in the Header
extracted.update(self.str_oauth_header)
# OAuth in a GET or POST method
extracted.update(self.str_oauth_GET)
extracted.update(self.str_oauth_POST)
# Return the extracted oauth variables
return MultiDict(extracted)
@property
def <|fim_middle|>(self):
"""Simple way to get the non-OAuth parameters from the request."""
oauth_param_keys = self.oauth_params.keys()
return dict([(k, v) for k, v in self.params.iteritems() if k not in oauth_param_keys])
<|fim▁end|> | nonoauth_params |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
return res
elif candidate > target:
right = middle - 1
else:
left = middle + 1
return res
<|fim▁hole|> nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res
def main():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
raise SystemExit(main())<|fim▁end|> |
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
res = None |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
<|fim_middle|>
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res
def main():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
raise SystemExit(main())
<|fim▁end|> | while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
return res
elif candidate > target:
right = middle - 1
else:
left = middle + 1
return res |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
return res
elif candidate > target:
right = middle - 1
else:
left = middle + 1
return res
class Solution:
<|fim_middle|>
def main():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
raise SystemExit(main())
<|fim▁end|> | def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
return res
elif candidate > target:
right = middle - 1
else:
left = middle + 1
return res
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
<|fim_middle|>
def main():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
raise SystemExit(main())
<|fim▁end|> | res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
return res
elif candidate > target:
right = middle - 1
else:
left = middle + 1
return res
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res
def main():
<|fim_middle|>
if __name__ == '__main__':
raise SystemExit(main())
<|fim▁end|> | sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0 |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
<|fim_middle|>
if candidate == target:
return res
elif candidate > target:
right = middle - 1
else:
left = middle + 1
return res
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res
def main():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
raise SystemExit(main())
<|fim▁end|> | res = candidate |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
<|fim_middle|>
elif candidate > target:
right = middle - 1
else:
left = middle + 1
return res
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res
def main():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
raise SystemExit(main())
<|fim▁end|> | return res |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
return res
elif candidate > target:
<|fim_middle|>
else:
left = middle + 1
return res
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res
def main():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
raise SystemExit(main())
<|fim▁end|> | right = middle - 1 |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
return res
elif candidate > target:
right = middle - 1
else:
<|fim_middle|>
return res
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res
def main():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
raise SystemExit(main())
<|fim▁end|> | left = middle + 1 |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
return res
elif candidate > target:
right = middle - 1
else:
left = middle + 1
return res
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res
def main():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
<|fim_middle|>
<|fim▁end|> | raise SystemExit(main()) |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def <|fim_middle|>(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
return res
elif candidate > target:
right = middle - 1
else:
left = middle + 1
return res
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res
def main():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
raise SystemExit(main())
<|fim▁end|> | bsearch |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
return res
elif candidate > target:
right = middle - 1
else:
left = middle + 1
return res
class Solution:
def <|fim_middle|>(self, nums: List[int], target: int) -> Optional[int]:
res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res
def main():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
raise SystemExit(main())
<|fim▁end|> | threeSumClosest |
<|file_name|>16.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
from typing import List, Optional
"""
16. 3Sum Closest
https://leetcode.com/problems/3sum-closest/
"""
def bsearch(nums, left, right, res, i, j, target):
while left <= right:
middle = (left + right) // 2
candidate = nums[i] + nums[j] + nums[middle]
if res is None or abs(candidate - target) < abs(res - target):
res = candidate
if candidate == target:
return res
elif candidate > target:
right = middle - 1
else:
left = middle + 1
return res
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> Optional[int]:
res = None
nums = sorted(nums)
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
res = bsearch(nums, j + 1, len(nums) - 1, res, i, j, target)
return res
def <|fim_middle|>():
sol = Solution()
print(sol.threeSumClosest([-111, -111, 3, 6, 7, 16, 17, 18, 19], 13))
return 0
if __name__ == '__main__':
raise SystemExit(main())
<|fim▁end|> | main |
<|file_name|>volread.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
# Copyright (C) 2012, Almar Klein
#
# Visvis is distributed under the terms of the (new) BSD License.
# The full license can be found in 'license.txt'.
import visvis as vv
import numpy as np
import os
# Try importing imageio
imageio = None
try:
import imageio
except ImportError:
pass
def volread(filename):
""" volread(filename)
Read volume from a file. If filename is 'stent', read a dedicated
test dataset. For reading any other kind of volume, the imageio
package is required.
"""
if filename == 'stent':
# Get full filename
path = vv.misc.getResourceDir()
filename2 = os.path.join(path, 'stent_vol.ssdf')
if os.path.isfile(filename2):
filename = filename2
else:
raise IOError("File '%s' does not exist." % filename)
# Load
s = vv.ssdf.load(filename)
return s.vol.astype('int16') * s.colorscale<|fim▁hole|>
else:
raise RuntimeError("visvis.volread needs the imageio package to read arbitrary files.")
if __name__ == '__main__':
vol = vv.volread('stent')
t = vv.volshow(vol)
t.renderStyle = 'mip' # maximum intensity projection (is the default)<|fim▁end|> |
elif imageio is not None:
return imageio.volread(filename) |
<|file_name|>volread.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
# Copyright (C) 2012, Almar Klein
#
# Visvis is distributed under the terms of the (new) BSD License.
# The full license can be found in 'license.txt'.
import visvis as vv
import numpy as np
import os
# Try importing imageio
imageio = None
try:
import imageio
except ImportError:
pass
def volread(filename):
<|fim_middle|>
if __name__ == '__main__':
vol = vv.volread('stent')
t = vv.volshow(vol)
t.renderStyle = 'mip' # maximum intensity projection (is the default)
<|fim▁end|> | """ volread(filename)
Read volume from a file. If filename is 'stent', read a dedicated
test dataset. For reading any other kind of volume, the imageio
package is required.
"""
if filename == 'stent':
# Get full filename
path = vv.misc.getResourceDir()
filename2 = os.path.join(path, 'stent_vol.ssdf')
if os.path.isfile(filename2):
filename = filename2
else:
raise IOError("File '%s' does not exist." % filename)
# Load
s = vv.ssdf.load(filename)
return s.vol.astype('int16') * s.colorscale
elif imageio is not None:
return imageio.volread(filename)
else:
raise RuntimeError("visvis.volread needs the imageio package to read arbitrary files.") |
<|file_name|>volread.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
# Copyright (C) 2012, Almar Klein
#
# Visvis is distributed under the terms of the (new) BSD License.
# The full license can be found in 'license.txt'.
import visvis as vv
import numpy as np
import os
# Try importing imageio
imageio = None
try:
import imageio
except ImportError:
pass
def volread(filename):
""" volread(filename)
Read volume from a file. If filename is 'stent', read a dedicated
test dataset. For reading any other kind of volume, the imageio
package is required.
"""
if filename == 'stent':
# Get full filename
<|fim_middle|>
elif imageio is not None:
return imageio.volread(filename)
else:
raise RuntimeError("visvis.volread needs the imageio package to read arbitrary files.")
if __name__ == '__main__':
vol = vv.volread('stent')
t = vv.volshow(vol)
t.renderStyle = 'mip' # maximum intensity projection (is the default)
<|fim▁end|> | path = vv.misc.getResourceDir()
filename2 = os.path.join(path, 'stent_vol.ssdf')
if os.path.isfile(filename2):
filename = filename2
else:
raise IOError("File '%s' does not exist." % filename)
# Load
s = vv.ssdf.load(filename)
return s.vol.astype('int16') * s.colorscale |
<|file_name|>volread.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
# Copyright (C) 2012, Almar Klein
#
# Visvis is distributed under the terms of the (new) BSD License.
# The full license can be found in 'license.txt'.
import visvis as vv
import numpy as np
import os
# Try importing imageio
imageio = None
try:
import imageio
except ImportError:
pass
def volread(filename):
""" volread(filename)
Read volume from a file. If filename is 'stent', read a dedicated
test dataset. For reading any other kind of volume, the imageio
package is required.
"""
if filename == 'stent':
# Get full filename
path = vv.misc.getResourceDir()
filename2 = os.path.join(path, 'stent_vol.ssdf')
if os.path.isfile(filename2):
<|fim_middle|>
else:
raise IOError("File '%s' does not exist." % filename)
# Load
s = vv.ssdf.load(filename)
return s.vol.astype('int16') * s.colorscale
elif imageio is not None:
return imageio.volread(filename)
else:
raise RuntimeError("visvis.volread needs the imageio package to read arbitrary files.")
if __name__ == '__main__':
vol = vv.volread('stent')
t = vv.volshow(vol)
t.renderStyle = 'mip' # maximum intensity projection (is the default)
<|fim▁end|> | filename = filename2 |
<|file_name|>volread.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
# Copyright (C) 2012, Almar Klein
#
# Visvis is distributed under the terms of the (new) BSD License.
# The full license can be found in 'license.txt'.
import visvis as vv
import numpy as np
import os
# Try importing imageio
imageio = None
try:
import imageio
except ImportError:
pass
def volread(filename):
""" volread(filename)
Read volume from a file. If filename is 'stent', read a dedicated
test dataset. For reading any other kind of volume, the imageio
package is required.
"""
if filename == 'stent':
# Get full filename
path = vv.misc.getResourceDir()
filename2 = os.path.join(path, 'stent_vol.ssdf')
if os.path.isfile(filename2):
filename = filename2
else:
<|fim_middle|>
# Load
s = vv.ssdf.load(filename)
return s.vol.astype('int16') * s.colorscale
elif imageio is not None:
return imageio.volread(filename)
else:
raise RuntimeError("visvis.volread needs the imageio package to read arbitrary files.")
if __name__ == '__main__':
vol = vv.volread('stent')
t = vv.volshow(vol)
t.renderStyle = 'mip' # maximum intensity projection (is the default)
<|fim▁end|> | raise IOError("File '%s' does not exist." % filename) |
<|file_name|>volread.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
# Copyright (C) 2012, Almar Klein
#
# Visvis is distributed under the terms of the (new) BSD License.
# The full license can be found in 'license.txt'.
import visvis as vv
import numpy as np
import os
# Try importing imageio
imageio = None
try:
import imageio
except ImportError:
pass
def volread(filename):
""" volread(filename)
Read volume from a file. If filename is 'stent', read a dedicated
test dataset. For reading any other kind of volume, the imageio
package is required.
"""
if filename == 'stent':
# Get full filename
path = vv.misc.getResourceDir()
filename2 = os.path.join(path, 'stent_vol.ssdf')
if os.path.isfile(filename2):
filename = filename2
else:
raise IOError("File '%s' does not exist." % filename)
# Load
s = vv.ssdf.load(filename)
return s.vol.astype('int16') * s.colorscale
elif imageio is not None:
<|fim_middle|>
else:
raise RuntimeError("visvis.volread needs the imageio package to read arbitrary files.")
if __name__ == '__main__':
vol = vv.volread('stent')
t = vv.volshow(vol)
t.renderStyle = 'mip' # maximum intensity projection (is the default)
<|fim▁end|> | return imageio.volread(filename) |
<|file_name|>volread.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
# Copyright (C) 2012, Almar Klein
#
# Visvis is distributed under the terms of the (new) BSD License.
# The full license can be found in 'license.txt'.
import visvis as vv
import numpy as np
import os
# Try importing imageio
imageio = None
try:
import imageio
except ImportError:
pass
def volread(filename):
""" volread(filename)
Read volume from a file. If filename is 'stent', read a dedicated
test dataset. For reading any other kind of volume, the imageio
package is required.
"""
if filename == 'stent':
# Get full filename
path = vv.misc.getResourceDir()
filename2 = os.path.join(path, 'stent_vol.ssdf')
if os.path.isfile(filename2):
filename = filename2
else:
raise IOError("File '%s' does not exist." % filename)
# Load
s = vv.ssdf.load(filename)
return s.vol.astype('int16') * s.colorscale
elif imageio is not None:
return imageio.volread(filename)
else:
<|fim_middle|>
if __name__ == '__main__':
vol = vv.volread('stent')
t = vv.volshow(vol)
t.renderStyle = 'mip' # maximum intensity projection (is the default)
<|fim▁end|> | raise RuntimeError("visvis.volread needs the imageio package to read arbitrary files.") |
<|file_name|>volread.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
# Copyright (C) 2012, Almar Klein
#
# Visvis is distributed under the terms of the (new) BSD License.
# The full license can be found in 'license.txt'.
import visvis as vv
import numpy as np
import os
# Try importing imageio
imageio = None
try:
import imageio
except ImportError:
pass
def volread(filename):
""" volread(filename)
Read volume from a file. If filename is 'stent', read a dedicated
test dataset. For reading any other kind of volume, the imageio
package is required.
"""
if filename == 'stent':
# Get full filename
path = vv.misc.getResourceDir()
filename2 = os.path.join(path, 'stent_vol.ssdf')
if os.path.isfile(filename2):
filename = filename2
else:
raise IOError("File '%s' does not exist." % filename)
# Load
s = vv.ssdf.load(filename)
return s.vol.astype('int16') * s.colorscale
elif imageio is not None:
return imageio.volread(filename)
else:
raise RuntimeError("visvis.volread needs the imageio package to read arbitrary files.")
if __name__ == '__main__':
<|fim_middle|>
<|fim▁end|> | vol = vv.volread('stent')
t = vv.volshow(vol)
t.renderStyle = 'mip' # maximum intensity projection (is the default) |
<|file_name|>volread.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
# Copyright (C) 2012, Almar Klein
#
# Visvis is distributed under the terms of the (new) BSD License.
# The full license can be found in 'license.txt'.
import visvis as vv
import numpy as np
import os
# Try importing imageio
imageio = None
try:
import imageio
except ImportError:
pass
def <|fim_middle|>(filename):
""" volread(filename)
Read volume from a file. If filename is 'stent', read a dedicated
test dataset. For reading any other kind of volume, the imageio
package is required.
"""
if filename == 'stent':
# Get full filename
path = vv.misc.getResourceDir()
filename2 = os.path.join(path, 'stent_vol.ssdf')
if os.path.isfile(filename2):
filename = filename2
else:
raise IOError("File '%s' does not exist." % filename)
# Load
s = vv.ssdf.load(filename)
return s.vol.astype('int16') * s.colorscale
elif imageio is not None:
return imageio.volread(filename)
else:
raise RuntimeError("visvis.volread needs the imageio package to read arbitrary files.")
if __name__ == '__main__':
vol = vv.volread('stent')
t = vv.volshow(vol)
t.renderStyle = 'mip' # maximum intensity projection (is the default)
<|fim▁end|> | volread |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}<|fim▁hole|>@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)<|fim▁end|> | |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
<|fim_middle|>
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
} |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
<|fim_middle|>
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen) |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
<|fim_middle|>
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | return test_data['spec'] |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
<|fim_middle|>
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | return eval_variables(spec.index, choosers) |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
<|fim_middle|>
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns) |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
<|fim_middle|>
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities']) |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
<|fim_middle|>
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]])) |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
<|fim_middle|>
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y'])) |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
<|fim_middle|>
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1])) |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
<|fim_middle|>
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z']) |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
<|fim_middle|>
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4]) |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
<|fim_middle|>
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected) |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
<|fim_middle|>
<|fim▁end|> | expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected) |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def <|fim_middle|>(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | test_data |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def <|fim_middle|>(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | choosers |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def <|fim_middle|>(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | spec |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def <|fim_middle|>(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | choosers_dm |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def <|fim_middle|>(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | utilities |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def <|fim_middle|>(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | test_utils_to_probs |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def <|fim_middle|>():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | test_utils_to_probs_raises |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def <|fim_middle|>():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | test_make_choices_only_one |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def <|fim_middle|>(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | test_make_choices_real_probs |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def <|fim_middle|>():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | interaction_choosers |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def <|fim_middle|>():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | interaction_alts |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def <|fim_middle|>(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def test_interaction_dataset_sampled(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | test_interaction_dataset_no_sample |
<|file_name|>test_mnl.py<|end_file_name|><|fim▁begin|># ActivitySim
# Copyright (C) 2014-2015 Synthicity, LLC
# See full license in LICENSE.txt.
import os.path
import numpy as np
import pandas as pd
import pandas.util.testing as pdt
import pytest
from ..activitysim import eval_variables
from .. import mnl
# this is lifted straight from urbansim's test_mnl.py
@pytest.fixture(scope='module', params=[
('fish.csv',
'fish_choosers.csv',
pd.DataFrame(
[[-0.02047652], [0.95309824]], index=['price', 'catch'],
columns=['Alt']),
pd.DataFrame([
[0.2849598, 0.2742482, 0.1605457, 0.2802463],
[0.1498991, 0.4542377, 0.2600969, 0.1357664]],
columns=['beach', 'boat', 'charter', 'pier']))])
def test_data(request):
data, choosers, spec, probabilities = request.param
return {
'data': data,
'choosers': choosers,
'spec': spec,
'probabilities': probabilities
}
@pytest.fixture
def choosers(test_data):
filen = os.path.join(
os.path.dirname(__file__), 'data', test_data['choosers'])
return pd.read_csv(filen)
@pytest.fixture
def spec(test_data):
return test_data['spec']
@pytest.fixture
def choosers_dm(choosers, spec):
return eval_variables(spec.index, choosers)
@pytest.fixture
def utilities(choosers_dm, spec, test_data):
utils = choosers_dm.dot(spec).astype('float')
return pd.DataFrame(
utils.as_matrix().reshape(test_data['probabilities'].shape),
columns=test_data['probabilities'].columns)
def test_utils_to_probs(utilities, test_data):
probs = mnl.utils_to_probs(utilities)
pdt.assert_frame_equal(probs, test_data['probabilities'])
def test_utils_to_probs_raises():
with pytest.raises(RuntimeError):
mnl.utils_to_probs(
pd.DataFrame([[1, 2, np.inf, 3]]))
def test_make_choices_only_one():
probs = pd.DataFrame(
[[1, 0, 0], [0, 1, 0]], columns=['a', 'b', 'c'], index=['x', 'y'])
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([0, 1], index=['x', 'y']))
def test_make_choices_real_probs(random_seed, utilities):
probs = mnl.utils_to_probs(utilities)
choices = mnl.make_choices(probs)
pdt.assert_series_equal(
choices,
pd.Series([1, 2], index=[0, 1]))
@pytest.fixture(scope='module')
def interaction_choosers():
return pd.DataFrame({
'attr': ['a', 'b', 'c', 'b']},
index=['w', 'x', 'y', 'z'])
@pytest.fixture(scope='module')
def interaction_alts():
return pd.DataFrame({
'prop': [10, 20, 30, 40]},
index=[1, 2, 3, 4])
def test_interaction_dataset_no_sample(interaction_choosers, interaction_alts):
expected = pd.DataFrame({
'attr': ['a'] * 4 + ['b'] * 4 + ['c'] * 4 + ['b'] * 4,
'prop': [10, 20, 30, 40] * 4,
'chooser_idx': ['w'] * 4 + ['x'] * 4 + ['y'] * 4 + ['z'] * 4},
index=[1, 2, 3, 4] * 4)
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
def <|fim_middle|>(
interaction_choosers, interaction_alts, random_seed):
expected = pd.DataFrame({
'attr': ['a'] * 2 + ['b'] * 2 + ['c'] * 2 + ['b'] * 2,
'prop': [30, 40, 10, 30, 40, 10, 20, 10],
'chooser_idx': ['w'] * 2 + ['x'] * 2 + ['y'] * 2 + ['z'] * 2},
index=[3, 4, 1, 3, 4, 1, 2, 1])
interacted = mnl.interaction_dataset(
interaction_choosers, interaction_alts, sample_size=2)
interacted, expected = interacted.align(expected, axis=1)
pdt.assert_frame_equal(interacted, expected)
<|fim▁end|> | test_interaction_dataset_sampled |
<|file_name|>test_secrecy.py<|end_file_name|><|fim▁begin|># Copyright 2015 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
# <|fim▁hole|># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from rigour.errors import ValidationFailed
from rigour.types import *
from rigour.constraints import length_between
import rigour
import pytest
def test_secrecy_declared_before():
t = String().secret().constrain(length_between(4,6))
with pytest.raises(ValidationFailed) as excinfo:
t.check("xxx")
message = str(excinfo)
assert "xxx" not in message
def test_secrecy_declared_after():
t = String().constrain(length_between(4,6)).secret()
with pytest.raises(ValidationFailed) as excinfo:
t.check("xxx")
message = str(excinfo)
assert "xxx" not in message<|fim▁end|> | # Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, |
<|file_name|>test_secrecy.py<|end_file_name|><|fim▁begin|># Copyright 2015 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from rigour.errors import ValidationFailed
from rigour.types import *
from rigour.constraints import length_between
import rigour
import pytest
def test_secrecy_declared_before():
<|fim_middle|>
def test_secrecy_declared_after():
t = String().constrain(length_between(4,6)).secret()
with pytest.raises(ValidationFailed) as excinfo:
t.check("xxx")
message = str(excinfo)
assert "xxx" not in message
<|fim▁end|> | t = String().secret().constrain(length_between(4,6))
with pytest.raises(ValidationFailed) as excinfo:
t.check("xxx")
message = str(excinfo)
assert "xxx" not in message |
<|file_name|>test_secrecy.py<|end_file_name|><|fim▁begin|># Copyright 2015 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from rigour.errors import ValidationFailed
from rigour.types import *
from rigour.constraints import length_between
import rigour
import pytest
def test_secrecy_declared_before():
t = String().secret().constrain(length_between(4,6))
with pytest.raises(ValidationFailed) as excinfo:
t.check("xxx")
message = str(excinfo)
assert "xxx" not in message
def test_secrecy_declared_after():
<|fim_middle|>
<|fim▁end|> | t = String().constrain(length_between(4,6)).secret()
with pytest.raises(ValidationFailed) as excinfo:
t.check("xxx")
message = str(excinfo)
assert "xxx" not in message |
<|file_name|>test_secrecy.py<|end_file_name|><|fim▁begin|># Copyright 2015 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from rigour.errors import ValidationFailed
from rigour.types import *
from rigour.constraints import length_between
import rigour
import pytest
def <|fim_middle|>():
t = String().secret().constrain(length_between(4,6))
with pytest.raises(ValidationFailed) as excinfo:
t.check("xxx")
message = str(excinfo)
assert "xxx" not in message
def test_secrecy_declared_after():
t = String().constrain(length_between(4,6)).secret()
with pytest.raises(ValidationFailed) as excinfo:
t.check("xxx")
message = str(excinfo)
assert "xxx" not in message
<|fim▁end|> | test_secrecy_declared_before |
<|file_name|>test_secrecy.py<|end_file_name|><|fim▁begin|># Copyright 2015 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from rigour.errors import ValidationFailed
from rigour.types import *
from rigour.constraints import length_between
import rigour
import pytest
def test_secrecy_declared_before():
t = String().secret().constrain(length_between(4,6))
with pytest.raises(ValidationFailed) as excinfo:
t.check("xxx")
message = str(excinfo)
assert "xxx" not in message
def <|fim_middle|>():
t = String().constrain(length_between(4,6)).secret()
with pytest.raises(ValidationFailed) as excinfo:
t.check("xxx")
message = str(excinfo)
assert "xxx" not in message
<|fim▁end|> | test_secrecy_declared_after |
<|file_name|>try_except_finally.py<|end_file_name|><|fim▁begin|>'''
c++ finally
'''
def myfunc():
b = False
try:
print('trying something that will fail...')
print('some call that fails at runtime')
f = open('/tmp/nosuchfile')
except:
print('got exception')
finally:
print('finally cleanup')
b = True
<|fim▁hole|> TestError( b == True )
def main():
myfunc()<|fim▁end|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.