text
stringlengths
20
57.3k
labels
class label
4 classes
Title: Dragging a data file to canvas should retain file history in the File widget Body: **What's wrong?** A nice feature of Orange is a shortcut to open data files by dragging the file to the Orange canvas. This places a File widget on a canvas, and sets the name of the file accordingly. The only problem with this feature is that it empties all the file history that File widget keeps, including the initial history with the files that came with Orange. Especially when using Orange in hands-on workshops, removal of the file history with preloaded files does not help. **How can we reproduce the problem?** Open Orange and drag any excel file to the Canvas. **Proposal for solution** File widget should open the dragged file, but also keep the file history. **Comment** Perhaps this is not the bug, but rather an implementational feature, and if, treat this issue as feature request.
1medium
Title: [BUG]description for query paramters can not show in swagger ui Body: Hi, when I add a description for a schema used in query, it can not show in swagger ui but can show in Redoc ```py @HELLO.route('/', methods=['GET']) @api.validate(query=HelloForm) def hello(): """ hello 注释 :return: """ return 'ok' class HelloForm(BaseModel): """ hello表单 """ user: str # 用户名称 msg: str = Field(description='msg test', example='aa') index: int data: HelloGetListForm list: List[HelloListForm] ``` ![截屏2020-10-12 下午7 54 52](https://user-images.githubusercontent.com/60063723/95743785-de70f480-0cc4-11eb-857b-fffd3d7e9cdd.png) ![截屏2020-10-12 下午7 53 59](https://user-images.githubusercontent.com/60063723/95743805-e5980280-0cc4-11eb-99ae-11e6439bae02.png)
1medium
Title: [RFC] Method or property listing all defined environments Body: **Is your feature request related to a problem? Please describe.** I'm trying to build a argparse argument that has a list of the available environments as choices to the argument. But I don't see any way to get this at the moment. **Describe the solution you'd like** I am proposing 2 features closely related to help with environment choices as a list and to validate that the environment was defined (not just that it is used with defaults or globals). The first would be a way to get a list of defined environments minus `default` and global. This would make it easy to add to argparse as an argument to choices. I imagine a method or property such as `settings.available_environments` or `settings.defined_environments`. The second feature would be a method to check if the environment is defined in settings. This could be used for checks in cases you don't use argparse or want to avoid selecting a non-existent environment. Maybe `settings.is_defined_environment('qa')` or similar. **Describe alternatives you've considered** I'm currently parsing my settings file keys outside of Dynaconf and discarding `default` and `global`. But this feels hacky. **Additional context** Since the environment is lazy loaded I wonder if this would be considered too expensive to do at load time. Maybe it makes sense as a utility outside of the `settings` object? Maybe there is a good way to do this without the feature? Maybe I shouldn't be doing this at all? :thinking:
1medium
Title: a universal feature importance analysis Body: I wanted to conduct feature importance analysis, but found that many models did not provide feature importance analysis methods except iforest and xgbod .
1medium
Title: empty ${DESECSTACK_API_PSL_RESOLVER} breaks POSTing domains Body: Setting `${DESECSTACK_API_PSL_RESOLVER}` to empty (or not setting it at all) in `.env` will result in a 30s delay when posting to `api/v1/domains` endpoint, then raise a timeout exception, which results in a 500 error. Call stack: api_1 | Internal Server Error: /api/v1/domains/ api_1 | Traceback (most recent call last): api_1 | File "/usr/local/lib/python3.7/site-packages/django/core/handlers/exception.py", line 34, in inner api_1 | response = get_response(request) api_1 | File "/usr/local/lib/python3.7/site-packages/django/core/handlers/base.py", line 115, in _get_response api_1 | response = self.process_exception_by_middleware(e, request) api_1 | File "/usr/local/lib/python3.7/site-packages/django/core/handlers/base.py", line 113, in _get_response api_1 | response = wrapped_callback(request, *callback_args, **callback_kwargs) api_1 | File "/usr/local/lib/python3.7/site-packages/django/views/decorators/csrf.py", line 54, in wrapped_view api_1 | return view_func(*args, **kwargs) api_1 | File "/usr/local/lib/python3.7/site-packages/django/views/generic/base.py", line 71, in view api_1 | return self.dispatch(request, *args, **kwargs) api_1 | File "/usr/local/lib/python3.7/site-packages/rest_framework/views.py", line 495, in dispatch api_1 | response = self.handle_exception(exc) api_1 | File "/usr/local/lib/python3.7/site-packages/rest_framework/views.py", line 455, in handle_exception api_1 | self.raise_uncaught_exception(exc) api_1 | File "/usr/local/lib/python3.7/site-packages/rest_framework/views.py", line 492, in dispatch api_1 | response = handler(request, *args, **kwargs) api_1 | File "/usr/local/lib/python3.7/site-packages/rest_framework/generics.py", line 244, in post api_1 | return self.create(request, *args, **kwargs) api_1 | File "/usr/local/lib/python3.7/site-packages/rest_framework/mixins.py", line 21, in create api_1 | self.perform_create(serializer) api_1 | File "./desecapi/views.py", line 119, in perform_create api_1 | public_suffix = self.psl.get_public_suffix(domain_name) api_1 | File "/usr/local/lib/python3.7/site-packages/psl_dns/querier.py", line 42, in get_public_suffix api_1 | public_suffix = self._get_public_suffix_raw(domain) api_1 | File "/usr/local/lib/python3.7/site-packages/psl_dns/querier.py", line 30, in _get_public_suffix_raw api_1 | answer = self.query(domain, dns.rdatatype.PTR) api_1 | File "/usr/local/lib/python3.7/site-packages/psl_dns/querier.py", line 93, in query api_1 | answer = self.resolver.query(qname, rdatatype, lifetime=self.timeout) api_1 | File "/usr/local/lib/python3.7/site-packages/dns/resolver.py", line 992, in query api_1 | timeout = self._compute_timeout(start, lifetime) api_1 | File "/usr/local/lib/python3.7/site-packages/dns/resolver.py", line 799, in _compute_timeout api_1 | raise Timeout(timeout=duration) api_1 | dns.exception.Timeout: The DNS operation timed out after 30.001466035842896 seconds api_1 | [pid: 250|app: 0|req: 1/1] 172.16.0.1 () {44 vars in 629 bytes} [Thu May 30 17:31:09 2019] POST /api/v1/domains/ => generated 14294 bytes in 30219 msecs (HTTP/1.1 500) 2 headers in 102 bytes (1 switches on core 0) Expected behavior: according to README: use the system's resolver. (I confirmed in my setup that the resolver is working; however wireshark did not show a DNS query to somewhere after trying to post a domain.) Steps to reproduce: clean master, clean builds, empty database, unset psl resolver (obviously). Then post to the domains endpoint. Workaround: set it to 9.9.9.9 or competitors.
1medium
Title: Add support for additional options when connecting to a database. Body: **Is your feature request related to a problem? Please describe.** Unable to pass parameters to databases via `connect_to_<database>` (ie: `psycopg2`->`postgres` `connection_timeout`) **Describe the solution you'd like** Add support for all parameters a database may support. **Describe alternatives you've considered** None that I can think of. **Related** https://github.com/vanna-ai/vanna/issues/541 https://github.com/vanna-ai/vanna/issues/542 https://github.com/vanna-ai/vanna/issues/475 https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS
1medium
Title: show page numbers for pagination Body: Thanks for your interest in Plotly's Dash DataTable component!! Note that GitHub issues in this repo are reserved for bug reports and feature requests. Implementation questions should be discussed in our [Dash Community Forum](https://community.plot.ly/c/dash). Before opening a new issue, please search through existing issues (including closed issues) and the [Dash Community Forum](https://community.plot.ly/c/dash). If your problem or idea has not been addressed yet, feel free to [open an issue](https://github.com/plotly/plotly.py/issues/new). When reporting a bug, please include a reproducible example! We recommend using the [latest version](https://github.com/plotly/dash-table/blob/master/CHANGELOG.md) as this project is frequently updated. Issues can be browser-specific so it's usually helpful to mention the browser and version that you are using. Thanks for taking the time to help up improve this component!
1medium
Title: Migrate proplot repo to be housed under another open-source development group? Body: I'm wondering if the `proplot` repo here could be moved to another organization, e.g. https://github.com/matplotlib or https://github.com/pangeo-data or elsewhere that it would fit. This wonderful package now has > 1,000 stars and a lot of passionate users, but no releases or commits have been posted in 9-12 months. This is causing incompatibility issues with latest versions of core packages. I think there's a lot of eager folks submitting issues and PRs that would help to maintain a community-based version of this package! I certainly don't want to rewrite my stack to exclude `proplot`, as it has been immensely helpful in my work. I know @lukelbd is busy with a postdoc. I'm wondering if you're open to this idea!
1medium
Title: max number of tasks per dask worker Body: <!-- Please do a quick search of existing issues to make sure that this has not been asked before. --> I am using `SGECluster` to submit thousands of tasks to dask workers. I want to request a feature to specify max number of tasks per worker to improve cluster usage. For example, if it takes 4 hours to process a task, and the wall time limit for a worker is set to 5 hours (to make sure a single task can run through; and if the compute node goes abnormal, it will time out in 5 hours), then with the current dask configuration, each worker will waste 1 hour to run through the second task, and this second task will eventually get killed and resubmit to another worker. This is a waste of the compute cluster resource. So is it possible to specify max number of tasks `X` handled by each dask worker? Once a dask worker finishes handle `X` tasks (with whatever final status), then the dask worker (SGE job) will automatically get killed so we won't waste computing resource in the cluster. Wish for similar feature for SLURMCluster as well. And appreciate for alternative workarounds.
1medium
Title: Circular dependancy of settings and graphql_jwt Body: graphql_jwt requires settings secret key. But because of circular depencancy secretkey is not set. If graphql_jwt is imported after secretkey in settings.py everything works fine.
1medium
Title: `NotImplementedError` for elastic transformation with probability p < 1 Body: ### Describe the bug With the newest kornia release (0.6.11), the random elastic transformation fails if it is not applied to every image in the batch. The problem is that the `apply_non_transform_mask()` method in `_AugmentationBase` per default raises an `NotImplementedError` and since this method is not overwritten in `RandomElasticTransform`, the error is raised. I see that for the other `apply_non*` methods the default is to just return the input. I see two different solutions: 1. Change the default for `apply_non_transform_mask` to return the input in `_AugmentationBase`. 2. Overwrite the method in `RandomElasticTransform` and just return the input there. There might be good reasons to keep the `NotImplementedError` in the base class, therefore I wanted to ask first what solution you prefer. I could make a PR for this. ### Reproduction steps ```python import torch import kornia.augmentation as K features = torch.rand(5, 100, 480, 640, dtype=torch.float32, device="cuda") labels = torch.randint(0, 10, (5, 1, 480, 640), dtype=torch.int64, device="cuda") torch.manual_seed(0) aug = K.AugmentationSequential( K.RandomElasticTransform(alpha=(0.7, 0.7), sigma=(16, 16), padding_mode="reflection", p=0.2) ) features_transformed, labels_transformed = aug(features, labels.float(), data_keys=["input", "mask"]) ``` ### Expected behavior No `NotImplementedError`. ### Environment ```shell wget https://raw.githubusercontent.com/pytorch/pytorch/master/torch/utils/collect_env.py # For security purposes, please check the contents of collect_env.py before running it. python collect_env.py ``` - PyTorch Version (e.g., 1.0): 2.0 - OS (e.g., Linux): Linux - How you installed PyTorch (`conda`, `pip`, source): pip - Build command you used (if compiling from source): - Python version: 3.10.9 - CUDA/cuDNN version: 11.8 - GPU models and configuration: 3090 - Any other relevant information: ```
1medium
Title: Setting a list of one or two `float` values to `kernel_size` argument of `GaussianBlur()` gets an indirect error message Body: ### 🐛 Describe the bug Setting a list of one or two `float` values to `kernel_size` argument of `GaussianBlur()` gets the indirect error message as shown below: ```python from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import GaussianBlur my_data1 = OxfordIIITPet( root="data", # ↓↓↓↓↓ transform=GaussianBlur(kernel_size=[3.4]) ) my_data2 = OxfordIIITPet( root="data", # ↓↓↓↓↓↓↓↓↓↓ transform=GaussianBlur(kernel_size=[3.4, 3.4]) ) my_data1[0] # Error my_data2[0] # Error ``` ``` TypeError: linspace() received an invalid combination of arguments - got (float, float, steps=float, device=torch.device, dtype=torch.dtype), but expected one of: * (Tensor start, Tensor end, int steps, *, Tensor out = None, torch.dtype dtype = None, torch.layout layout = None, torch.device device = None, bool pin_memory = False, bool requires_grad = False) * (Number start, Tensor end, int steps, *, Tensor out = None, torch.dtype dtype = None, torch.layout layout = None, torch.device device = None, bool pin_memory = False, bool requires_grad = False) * (Tensor start, Number end, int steps, *, Tensor out = None, torch.dtype dtype = None, torch.layout layout = None, torch.device device = None, bool pin_memory = False, bool requires_grad = False) * (Number start, Number end, int steps, *, Tensor out = None, torch.dtype dtype = None, torch.layout layout = None, torch.device device = None, bool pin_memory = False, bool requires_grad = False) ``` So the error message should be something direct like below: > TypeError: `kernel_size` argument must be `int` In addition, setting a `float` value to `kernel_size` argument of `GaussianBlur()` works as shown below: ```python from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import GaussianBlur my_data = OxfordIIITPet( root="data", # ↓↓↓ transform=GaussianBlur(kernel_size=3.4) ) my_data[0] # (<PIL.Image.Image image mode=RGB size=394x500>, 0) ``` ### Versions ```python import torchvision torchvision.__version__ # '0.20.1' ```
1medium
Title: Missing Docker image for version 0.13.0 Body: Hi, I just wanted to upgrade to the new Shynet version which was released a couple of days ago. On the Docker Hub, this version is missing. The only tag that was updated it the `edge` one, but `latest` is still the version from 2 years ago. I am not sure what the `edge` version is, but I am afraid to change my production environment to it without any information.
0easy
Title: There is shift in X and Y direction of 1 pixel while downloading data using geemap.download_ee_image() Body: <!-- Please search existing issues to avoid creating duplicates. --> ### Environment Information Please run the following code on your computer and share the output with us so that we can better debug your issue: ```python import geemap geemap.Report() ``` ### Description I am trying to download NASADEM data in EPSG:4326 coordinate system using geemap.download_ee_image(), but the downloaded data has pixel shift both in X and Y direction. The reason of error is due to the absence of crs transformation parameter. The geemap.ee_export_image() gives correct output, but has a limitation on downloadable data. I am looking for a solution to download large image as 1 tile. ### What I Did ``` #!/usr/bin/env python # coding: utf-8 # In[14]: import ee,geemap,os ee.Initialize() # In[15]: # NASADEM Digital Elevation 30m - version 001 elevdata=ee.Image("NASA/NASADEM_HGT/001").select('elevation') # In[16]: spatial_resolution_m=elevdata.projection().nominalScale().getInfo() print(spatial_resolution_m) # In[17]: Map = geemap.Map() Map # In[23]: # Draw any shape on the map using the Drawing tools before executing this code block AOI=Map.user_roi # In[21]: print(elevdata.projection().getInfo()) # In[29]: # geemap.ee_export_image( # elevdata, # r'C:\Users\rbapna\Downloads\nasadem_ee_export_image4.tif', # scale=spatial_resolution_m, # crs=elevdata.projection().getInfo()['crs'], # crs_transform=elevdata.projection().getInfo()['transform'], # region=AOI, # dimensions=None, # file_per_band=False, # format='ZIPPED_GEO_TIFF', # timeout=300, # proxies=None, # ) geemap.download_ee_image( elevdata, r'C:\Users\rbapna\Downloads\nasadem5.tif', region=AOI, crs=elevdata.projection().getInfo()['crs'], scale=spatial_resolution_m, resampling=None, dtype='int16', overwrite=True, num_threads=None ) ```
1medium
Title: Question: How to get collected tests by worker Body: I use `loadgroup`, `-n=8` and add mark `xdist_group("groupname")`. Can I just collect tests by workers? I want to see how pytest-xdist distribute tests by group.
1medium
Title: Planning OA v1.0 Body: This is a call for all OA collaborators to participate in planning the work of the next 8-12 weeks with the goal to release Open-Assistant v1.0. Mission: Deliver a great open-source assistant model together with stand-alone installable inference infrastructure. Release date (tentative): Aug 2023 ## Organization - [x] schedule call to collect collaborator feedback and ask for developer participation/commitment - [ ] update vision & roadmap for v 1.0 - [x] schedule weekly developer meeting ## Feature set proposal (preliminary) ### Model - fine-tune best available base LLMs (currently LLaMA 65B & Falcon 40B) ([QLoRA](https://arxiv.org/abs/2305.14314)) - implement long context (10k+), candidates: QLoRA+MQA+flash-attn, [BPT](https://arxiv.org/abs/2305.19370), [Landmark Attention](https://arxiv.org/abs/2305.16300) - add retrieval/tool-use, candidate: [Toolformer](https://arxiv.org/abs/2302.04761) ### Inference system - prompt preset + prompt database - sharing of conversations via URL - support for long-context & tool use - stand-alone installation (without feedback collection system) - allow editing of assistant results and message-tree submission as synthetic example for dataset for human labeling and ranking ### Classic human feedback collection - editing messages for moderators, submit edit-proposals for users - entering prompt + reply pairs - collecting relevant links in a separate input field - improve labeling: review, more guidelines, addition of further labels (e.g. robotic), labels no longer optional ### Experiments - Analyze whether additional fine-tuning on (synthetic) instruction datasets (Alpaca, Vicuna) is beneficial or harmful: Only OA top-1 threads (Guanaco) vs. synthetic instruction-tuning + OA top-1, potentially with system-prompt for "mode" selection to distinguish between chat and instruction following, e.g. to use instruction mode for plugin processing ## Perspective strategy (brain-storming) - Sunsetting of classic data collection after OASST2 release and transitioning towards semi-automated inference based data collection - Extending data collection to new domains, give users more freedom in task selection, e.g. for Code: describing code, refactoring, writing unit tests, etc. Please add further proposals for high-priority features and try to make a case for why they are important and should become part of v1.0. If you are a developer who wants to support OA: Let us know on what you would like to work (also if it is not yet part of the above list).
1medium
Title: Missing Argument "IMAGE_TO_CHECK" Body: * face_recognition version: * Python version: 3.4 * Operating System: WINDOWS 10 ### Description Describe what you were trying to get done. Tell us what happened, what went wrong, and what you expected to happen. IMPORTANT: If your issue is related to a specific picture, include it so others can reproduce the issue. ### What I Did ``` Paste the command(s) you ran and the output. If there was a crash, please include the traceback here. ```
1medium
Title: FileInput default to higher websocket_max_message_size? Body: Currently, the default is 20 MBs, but this is pretty small for most use cases. If it exceeds the 20 MBs, it silently disconnects the websocket (at least in notebook; when serving, it does show `2024-06-14 11:39:36,766 WebSocket connection closed: code=None, reason=None`). This leaves the user confused as to why nothing is happening (perhaps a separate issue). Is there a good reason why the default is 20 MBs, or can we make it larger? For reference: https://discourse.holoviz.org/t/file-upload-is-uploading-the-file-but-the-value-is-always-none/7268/7
0easy
Title: Deprecate functions ? Body: Central point to discuss functions to deprecate, if any? - [x] `process_text` - `transform_columns` covers this very well - [x] `impute` vs `fill_empty` - `impute` has the advantage of extra statistics functions (mean, mode, ...) - [x] `rename_columns` - use pandas `rename` - [x] `rename_column` - use `pd.rename` - [x] `remove_columns` - use `pd.drop` or `select` - [x] `filter_on` - use `query` or `select` - [x] `fill_direction` - use `transform_columns` or `pd.DataFrame.assign` - [x] `groupby_agg` - use `transform_columns` - once `by` is implemented - [x] `then` - use `pd.DataFrame.pipe` - [x] `to_datetime` - use `jn.transform_columns` - [x] `pivot_wider` - use `pd.DataFrame.pivot`
1medium
Title: [INFO] Python bindings for libwebrtc and C++ library with signaling server Body: Hi, I would like to let you know that we have implemented Python bindings for libwebrtc in the opentera-webrtc project on GitHub. We have also implemented a C++ client library, a Javascript library and a compatible signaling server. I thought this might be useful to share some implementation and ideas, so here is the link: [https://github.com/introlab/opentera-webrtc](https://github.com/introlab/opentera-webrtc) Thanks for your project! Best regards, Dominic Letourneau (@doumdi) IntRoLab - Intelligent / Interactive / Integrated / Interdisciplinary Robot Lab @ Université de Sherbrooke, Québec, Canada
3misc
Title: problem installing chatterbot Body: Hi Everyone I need your help guys ,I'm having a problem when installing Chatterbot. I'm getting this error: 7\murmurhash": running install running build running build_py creating build creating build\lib.win32-3.7 creating build\lib.win32-3.7\murmurhash copying murmurhash\about.py -> build\lib.win32-3.7\murmurhash copying murmurhash\__init__.py -> build\lib.win32-3.7\murmurhash creating build\lib.win32-3.7\murmurhash\tests copying murmurhash\tests\test_against_mmh3.py -> build\lib.win32-3.7\murmurhash\tests copying murmurhash\tests\test_import.py -> build\lib.win32-3.7\murmurhash\tests copying murmurhash\tests\__init__.py -> build\lib.win32-3.7\murmurhash\tests copying murmurhash\mrmr.pyx -> build\lib.win32-3.7\murmurhash copying murmurhash\mrmr.pxd -> build\lib.win32-3.7\murmurhash copying murmurhash\__init__.pxd -> build\lib.win32-3.7\murmurhash creating build\lib.win32-3.7\murmurhash\include creating build\lib.win32-3.7\murmurhash\include\murmurhash copying murmurhash\include\murmurhash\MurmurHash2.h -> build\lib.win32-3.7\murmurhash\include\murmurhash copying murmurhash\include\murmurhash\MurmurHash3.h -> build\lib.win32-3.7\murmurhash\include\murmurhash running build_ext building 'murmurhash.mrmr' extension creating build\temp.win32-3.7 creating build\temp.win32-3.7\Release creating build\temp.win32-3.7\Release\murmurhash C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.23.28105\bin\HostX86\x86\cl.exe /c /nologo /Ox /W 3 /GL /DNDEBUG /MT "-IC:\Users\SEAN JONES\AppData\Local\Programs\Python\Python37-32\include" -IC:\Users\SEANJO~1\AppData\Local\Temp\pip -install-fnip5dny\murmurhash\murmurhash\include "-IC:\Users\SEAN JONES\PycharmProjects\untitled1\venv\include" "-IC:\Users\SEAN JONES\A ppData\Local\Programs\Python\Python37-32\include" "-IC:\Users\SEAN JONES\AppData\Local\Programs\Python\Python37-32\include" "-IC:\Progr am Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.23.28105\include" /EHsc /Tpmurmurhash/mrmr.cpp /Fobuild\temp.wi n32-3.7\Release\murmurhash/mrmr.obj /Ox /EHsc mrmr.cpp C:\Users\SEAN JONES\AppData\Local\Programs\Python\Python37-32\include\pyconfig.h(59): fatal error C1083: Cannot open include file : 'io.h': No such file or directory error: command 'C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\BuildTools\\VC\\Tools\\MSVC\\14.23.28105\\bin\\HostX86\\x 86\\cl.exe' failed with exit status 2 ---------------------------------------- Command ""C:\Users\SEAN JONES\PycharmProjects\untitled1\venv\Scripts\python.exe" -u -c "import setuptools, tokenize;__file__='C:\\Use rs\\SEANJO~1\\AppData\\Local\\Temp\\pip-install-fnip5dny\\murmurhash\\setup.py';f=getattr(tokenize, 'open', open)(__file__);code=f.read ().replace('\r\n', '\n');f.close();exec(compile(code, __file__, 'exec'))" install --record C:\Users\SEANJO~1\AppData\Local\Temp\pip-rec ord-g0rpfhzu\install-record.txt --single-version-externally-managed --prefix C:\Users\SEANJO~1\AppData\Local\Temp\pip-build-env-7vv1qnz f\overlay --compile --install-headers "C:\Users\SEAN JONES\PycharmProjects\untitled1\venv\include\site\python3.7\murmurhash"" failed wi th error code 1 in C:\Users\SEANJO~1\AppData\Local\Temp\pip-install-fnip5dny\murmurhash\ ---------------------------------------- Command ""C:\Users\SEAN JONES\PycharmProjects\untitled1\venv\Scripts\python.exe" "C:\Users\SEAN JONES\PycharmProjects\untitled1\venv\li b\site-packages\pip-19.0.3-py3.7.egg\pip" install --ignore-installed --no-user --prefix C:\Users\SEANJO~1\AppData\Local\Temp\pip-build- env-7vv1qnzf\overlay --no-warn-script-location --no-binary :none: --only-binary :none: -i https://pypi.org/simple -- setuptools wheel>0.32.0,<0.33.0 Cython cymem>=2.0.2,<2.1.0 preshed>=2 .0.1,<2.1.0 murmurhash>=0.28.0,<1.1.0 thinc>=7.0.8,<7.1.0" failed with error code 1 in None Please help!!
1medium
Title: fix `lint` error in `adaptive_max_pool3d` Body:
1medium
Title: excluding xseg obsctruction requires inclusion even if face is detected ? Body: Just wanted to mark obsctructions so training would ignore them, faces are detected properly so why should i mark the face again manyuallyu, this is very counterproductive, can you guys change it so it wont just discard automatically generated mask when i only add obstruction mark to properly detected image with face and crap in front of the jaw that i marked ? Manual mode should be complimentary for generic, they should not exclude one another like it currently is.Most of the time generic works fine. Manual fix/realligning for source like we have manual fix for destination would be nice as well. Tools are nice but theyre quite cumbersome to us cause of weird masking workflow, you have great auto mode but you cripple it by manual thats very basic , they should work together. MAjor focus should be put on best masking /obstruction workflow, the rest is quite easy. Best way now would be to mark obtrusion in manual mode with vector mask, then run generic face autodetection again so it would now check obtrusion vector masks and ignore these areas and not use them when training. Also sometimes half of the face is detected by generic, so using inclusion vector mask could fix this issue if done peroperly and rerunning generic auto after marking missed areas on face. But now manual and auto modes exclude each other for no reason
2hard
Title: How to setup local dev environment and run the tests? Body: As I have not seen any details about it (beyond the cloning of the repo) in the README I put together a short blog posts on [Development environment for the Python requests package](https://dev.to/szabgab/development-environment-for-the-python-requests-package-eae) If you are interested, I'd be glad to send a PR for the README file to include some similar information.
1medium
Title: Support for sparse arrays with the Arrow Sparse Tensor format? Body: ### Feature request AI in biology is becoming a big thing. One thing that would be a huge benefit to the field that Huggingface Datasets doesn't currently have is native support for **sparse arrays**. Arrow has support for sparse tensors. https://arrow.apache.org/docs/format/Other.html#sparse-tensor It would be a big deal if Hugging Face Datasets supported sparse tensors as a feature type, natively. ### Motivation This is important for example in the field of transcriptomics (modeling and understanding gene expression), because a large fraction of the genes are not expressed (zero). More generally, in science, sparse arrays are very common, so adding support for them would be very benefitial, it would make just using Hugging Face Dataset objects a lot more straightforward and clean. ### Your contribution We can discuss this further once the team comments of what they think about the feature, and if there were previous attempts at making it work, and understanding their evaluation of how hard it would be. My intuition is that it should be fairly straightforward, as the Arrow backend already supports it.
1medium
Title: pushState based routing Body: Currently, it seems that `pushState` based client side routing is not supported. For example, NextJS is using this to allow fast client-side navigation. Like other solutions such as plausible, shynet should be tracking these pages changes and treat them like a page view.
1medium
Title: Issue with writing lists to Excel Body: #### OS (e.g. Windows 10) #### Versions of xlwings, Excel and Python (e.g. 0.11.8, Office 365, Python 3.7) I have a data frame 'df' in Python with the following structure and similar data : <html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:x="urn:schemas-microsoft-com:office:excel" xmlns="http://www.w3.org/TR/REC-html40"> <head> <meta name=ProgId content=Excel.Sheet> <meta name=Generator content="Microsoft Excel 15"> <link id=Main-File rel=Main-File href="file:///C:/Users/GAURID~1/AppData/Local/Temp/msohtmlclip1/01/clip.htm"> <link rel=File-List href="file:///C:/Users/GAURID~1/AppData/Local/Temp/msohtmlclip1/01/clip_filelist.xml"> <style> <!--table {mso-displayed-decimal-separator:"\."; mso-displayed-thousand-separator:"\,";} @page {margin:.75in .7in .75in .7in; mso-header-margin:.3in; mso-footer-margin:.3in;} tr {mso-height-source:auto;} col {mso-width-source:auto;} br {mso-data-placement:same-cell;} td {padding-top:1px; padding-right:1px; padding-left:1px; mso-ignore:padding; color:black; font-size:11.0pt; font-weight:400; font-style:normal; text-decoration:none; font-family:Calibri, sans-serif; mso-font-charset:0; mso-number-format:General; text-align:general; vertical-align:bottom; border:none; mso-background-source:auto; mso-pattern:auto; mso-protection:locked visible; white-space:nowrap; mso-rotate:0;} --> </style> </head> <body link="#0563C1" vlink="#954F72"> rowdata1 | 2.33 -- | -- rowdata2 | 4.55 rowdata3 | [1,2,3] rowdata4 | [] </body> </html> I'm using the following code to write to excel ```python outputs_sheet.range('A1').options(pd.DataFrame).value = df ``` This works for the single value entries in the dataframe but doesn't write the list elements to the excel sheet. Any thoughts on why this is occurring and ways to fix this?
1medium
Title: App with custom data models doesn't import the app package Body: Version 2.5.2 Noticed that when trying to upgrade using a migration that adds a custom data type (something that subclasses `TypeDecorator`) the migration script that gets created correctly generates the data model (e.g. `sa.Column('mytype', app.models.CustomType())`); however, it fails to import `app` at the top of the script, and thus raises `NameError: name 'app' is not defined` when you run it. Simple solution is to import the app.
1medium
Title: [docs] clarify that Blueprint.before_request is not for all requests Body: # Summary [The documentation for `Blueprint.before_request`](https://flask.palletsprojects.com/en/2.2.x/api/?highlight=before_request#flask.Blueprint.before_request) says: > Register a function to run before each request. This is not quite true. This decorator will only register a function to be run before each request *for this blueprint's views*. The documentation today made it seem to me like `before_request` does what `before_app_request` does. I think the docs should be amended to qualify when the registered functions get run, and link/compare to `before_app_request`. I know it seems like overkill, and you're probably wondering why I didn't notice the documentation for `before_app_request` right above this. I'd clicked on an anchor from search results, so `before_app_request` was off-screen. Since `before_app_request` doesn't exist on a `Flask` object, and since the documentation for `before_request` sounded like what I wanted, it didn't occur to me to scroll up. # MWE Just to clarify the example: This code fails with `before_request`, and succeeds with `before_app_request`: ``` from flask import Blueprint, Flask simple_page = Blueprint('simple_page', __name__) @simple_page.route('/') def show(): return ("Hello world", 200) hook_bp = Blueprint('decorator', __name__) # global var to be mutated count = {'count': 0} @hook_bp.before_request def before_request(): print("before_request hook called") count['count'] += 1 app = Flask(__name__) app.register_blueprint(simple_page) app.register_blueprint(hook_bp) r = app.test_client().get('/') assert r.status_code == 200 assert r.text == "Hello world" assert count['count'] == 1 ```
0easy
Title: Use Local Ollama Instance Instead of Docker-Compose Instance Body: Hi, I have already hosted Ollama on my local machine and would like to use that instance instead of the one created through the Docker Compose setup. Could you please guide me on how I can configure the system to point to my local Ollama instance rather than using the Docker Compose-created instance? Details: I have Ollama running locally and accessible via [localhost:11434]. Currently, Docker Compose creates a separate instance, and I would prefer to use my local instance for efficiency. What I've tried so far: I have checked the Docker Compose configuration, but I'm unsure where to modify the settings to switch to my local instance. Any guidance would be much appreciated! Thanks in advance!
1medium
Title: Torch.where is not correctly supported Body: ## Summary I think there is an issue with the support of "torch.where" within "compile_torch_model". Torch.where is expecting a bool tensor for the "condition" parameter, while "compile_torch_model" is expecting a float tensor (maybe related to the discrepancy between the supported type of torch.where and numpy.where for the "condition" parameter). It is not possible to compile a torch model using torch.where because then: -to compute the trace, torch requires a bool tensor. -to quantize the model, concrete ml is expecting a float tensor. ## Description - versions affected: concrete-ml 1.6.1 - python version: 3.9 - workaround: I was able to make it work with a (very bad) workaround: in _process_initializer of PostTrainingAffineQuantization (concrete.ml.quantization.post_training), recast "values" variable to numpy.float if array of bool. (unfortunately overriding "_check_distribution_is_symmetric_around_zero" is not enough..) <details><summary>minimal POC to trigger the bug</summary> <p> ```python import torch from concrete.ml.torch.compile import compile_torch_model class PTQSimpleNet(torch.nn.Module): def __init__(self, n_hidden): super().__init__() self.n_hidden = n_hidden self.fc_tot = torch.rand(1, n_hidden) > 0.5 def forward(self, x): y = torch.where(self.fc_tot, x, 0.) return y N_FEAT = 32 torch_input = torch.randn(1, N_FEAT) torch_model = PTQSimpleNet(N_FEAT) quantized_module = compile_torch_model( torch_model, torch_input ) ``` </p> </details>
2hard
Title: Allow task action arguments to be dictionaries in addition to tuples Body: Currently, task action arguments are expected to be tuples. This is problematic when wanting to only set a single argument, especially in a longer list. Keyword arguments should also be supported via parameters being passed as dictionaries.
1medium
Title: NCCL backend fails during multi-node, multi-GPU training Body: ### Bug description I set up a training on a Slurm cluster, specifying 2 nodes with 4 GPUs each. During initialization, I observed the [Unexpected behavior (times out) of all_gather_into_tensor with subgroups](https://github.com/pytorch/pytorch/issues/134006#top) (Pytorch issue) Apparently, this issue has not been solved on the Pytorch or NCCL level, but there is a workaround (described in [this post](https://github.com/pytorch/pytorch/issues/134006#issuecomment-2300041017) on that same issue). How/where could this workaround be implemented in Pytorch Lightning, if outright solving the underlying problem is not possible? ### What version are you seeing the problem on? v2.4 ### How to reproduce the bug _No response_ ### Error messages and logs ``` # Error messages and logs here please ``` ### Environment I'm working on a Slurm cluster with 2 headnodes (no GPUs), 6 computenodes (configuration see below) and NFS-mounted data storage. ``` <details> <summary>Current environment</summary> * CUDA: - GPU: - NVIDIA RTX A6000 - NVIDIA RTX A6000 - NVIDIA RTX A6000 - NVIDIA RTX A6000 - NVIDIA RTX A6000 - NVIDIA RTX A6000 - NVIDIA RTX A6000 - NVIDIA RTX A6000 - available: True - version: 12.1 * Lightning: - lightning-utilities: 0.11.7 - pytorch-lightning: 2.4.0 - torch: 2.4.1+cu121 - torchmetrics: 1.4.2 - torchvision: 0.19.1+cu121 * Packages: - absl-py: 2.1.0 - aiohappyeyeballs: 2.4.0 - aiohttp: 3.10.5 - aiosignal: 1.3.1 - albucore: 0.0.16 - albumentations: 1.4.15 - annotated-types: 0.7.0 - async-timeout: 4.0.3 - attrs: 24.2.0 - certifi: 2024.8.30 - charset-normalizer: 3.3.2 - contourpy: 1.3.0 - cycler: 0.12.1 - eval-type-backport: 0.2.0 - filelock: 3.13.1 - fonttools: 4.53.1 - frozenlist: 1.4.1 - fsspec: 2024.2.0 - future: 1.0.0 - geopandas: 1.0.1 - grpcio: 1.66.1 - huggingface-hub: 0.25.0 - idna: 3.10 - imageio: 2.35.1 - imgaug: 0.4.0 - jinja2: 3.1.3 - joblib: 1.4.2 - kiwisolver: 1.4.7 - lazy-loader: 0.4 - lightning-utilities: 0.11.7 - markdown: 3.7 - matplotlib: 3.9.2 - mpmath: 1.3.0 - msgpack: 1.1.0 - multidict: 6.1.0 - networkx: 3.2.1 - numpy: 1.26.3 - nvidia-cublas-cu12: 12.1.3.1 - nvidia-cuda-cupti-cu12: 12.1.105 - nvidia-cuda-nvrtc-cu12: 12.1.105 - nvidia-cuda-runtime-cu12: 12.1.105 - nvidia-cudnn-cu12: 9.1.0.70 - nvidia-cufft-cu12: 11.0.2.54 - nvidia-curand-cu12: 10.3.2.106 - nvidia-cusolver-cu12: 11.4.5.107 - nvidia-cusparse-cu12: 12.1.0.106 - nvidia-nccl-cu12: 2.20.5 - nvidia-nvjitlink-cu12: 12.1.105 - nvidia-nvtx-cu12: 12.1.105 - opencv-python: 4.10.0.84 - opencv-python-headless: 4.10.0.84 - packaging: 24.1 - pandas: 2.2.2 - pillow: 10.2.0 - pip: 22.3.1 - protobuf: 5.28.1 - pydantic: 2.9.2 - pydantic-core: 2.23.4 - pyogrio: 0.9.0 - pyparsing: 3.1.4 - pyproj: 3.6.1 - python-dateutil: 2.9.0.post0 - pytorch-lightning: 2.4.0 - pytz: 2024.2 - pyyaml: 6.0.2 - requests: 2.32.3 - s2sphere: 0.2.5 - safetensors: 0.4.5 - scikit-image: 0.24.0 - scikit-learn: 1.5.2 - scipy: 1.14.1 - setuptools: 65.5.0 - shapely: 2.0.6 - six: 1.16.0 - sympy: 1.12 - tensorboard: 2.17.1 - tensorboard-data-server: 0.7.2 - threadpoolctl: 3.5.0 - tifffile: 2024.8.30 - timm: 1.0.9 - torch: 2.4.1+cu121 - torchmetrics: 1.4.2 - torchvision: 0.19.1+cu121 - tqdm: 4.66.5 - triton: 3.0.0 - typing-extensions: 4.9.0 - tzdata: 2024.1 - urllib3: 2.2.3 - werkzeug: 3.0.4 - yarl: 1.11.1 * System: - OS: Linux - architecture: - 64bit - ELF - processor: x86_64 - python: 3.10.9 - release: 5.15.0-50-generic - version: #56~20.04.1-Ubuntu SMP Tue Sep 27 15:51:29 UTC 2022 </details> ``` ### More info _No response_
2hard
Title: Async implementation Body: Are there any plans of implementing an async interface?
1medium
Title: Configure theme (e.g. primary color?) Body: Hi folks, Loving jupyter-book (migrating here from quarto) but I am struggling to customize the theme, e.g. by setting the primary color. I've tried various ways I've seen suggested for doing this: - [custom css variables](https://sphinx-design.readthedocs.io/en/latest/css_variables.html) - I've trying to add a custom `_sass/theme.scss` redefining `$primary` but haven't had any luck overriding this. It seems that some sphinx themes provide a mechanism to set colors in the conf.py; it would be great to be able to do something similar in jupyterbook configuration yaml or with a custom sass. (compare to [quarto theming](https://quarto.org/docs/output-formats/html-themes.html#theme-options)). I'm only familiar with how other static site generators have handled this, I'm not experienced enough in css, sass or sphinx to figure out how to alter the behavior here though!
1medium
Title: logging not captured with pytest 3.3 and xdist Body: Consider this file: ```python import logging logger = logging.getLogger(__name__) def test(): logger.warn('Some warning') ``` When executing `pytest foo.py -n2`, the warning is printed to the console: ``` ============================= test session starts ============================= platform win32 -- Python 3.5.0, pytest-3.3.1, py-1.5.2, pluggy-0.6.0 rootdir: C:\Users\bruno, inifile: plugins: xdist-1.20.1, forked-0.2 gw0 [1] / gw1 [1] scheduling tests via LoadScheduling foo.py 6 WARNING Some warning . [100%] ========================== 1 passed in 0.65 seconds =========================== ``` Executing `pytest` normally without the `-n2` flags then the message is not printed. Using `pytest 3.3.1` and `xdist 1.20.1`.
1medium
Title: Way to get the vertical scroll bar percentage Body: ## Expected Behavior Expect to get vertical scroll bar percentage ## Actual Behavior Able to scroll down Unable to get verticalscrollbar percentage So that we can determine scroll bar is 100% scrolled down ## Steps to Reproduce the Problem 1. 2. 3. ## Short Example of Code to Demonstrate the Problem Currently using get_propeties() method but it doesn`t have info about it ## Specifications - Pywinauto version:0.6.8 - Python version and bitness:3.7.8 - Platform and OS: uia n ![IMG_20211019_143236](https://user-images.githubusercontent.com/81166452/137878450-1b51ae4b-1a67-48f5-a3b5-0b939f9d07ac.jpg) Windows
1medium
Title: relay: returning an strawberry object with node: strawberry.relay.Node = strawberry.relay.node() breaks Body: <!-- Provide a general summary of the bug in the title above. --> After the latest strawberry / strawberry django updates, the code ```` python @strawberry.type class SecretgraphObject: node: strawberry.relay.Node = strawberry.relay.node() @strawberry.type class Query: @strawberry_django.field @staticmethod def secretgraph( info: Info, authorization: Optional[AuthList] = None ) -> SecretgraphObject: return SecretgraphObject ```` doesn't work anymore. <!--- This template is entirely optional and can be removed, but is here to help both you and us. --> <!--- Anything on lines wrapped in comments like these will not show up in the final text. --> ## Describe the Bug <!-- A clear and concise description of what the bug is. --> ## System Information - Operating system: linux - Strawberry version (if applicable): 193.1 ## Additional Context ```` GraphQL request:2:3 1 | query serverSecretgraphConfigQuery { 2 | secretgraph { | ^ 3 | config { Traceback (most recent call last): File "/home/alex/git/secretgraph/.venv/lib/python3.11/site-packages/graphql/execution/execute.py", line 528, in await_result return_type, field_nodes, info, path, await result ^^^^^^^^^^^^ File "/home/alex/git/secretgraph/.venv/lib/python3.11/site-packages/asgiref/sync.py", line 479, in __call__ ret: _R = await loop.run_in_executor( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/alex/git/secretgraph/.venv/lib/python3.11/site-packages/asgiref/sync.py", line 538, in thread_handler return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/home/alex/git/secretgraph/.venv/lib/python3.11/site-packages/strawberry_django/resolvers.py", line 91, in async_resolver return sync_resolver(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/alex/git/secretgraph/.venv/lib/python3.11/site-packages/strawberry_django/resolvers.py", line 77, in sync_resolver retval = retval() ^^^^^^^^ TypeError: SecretgraphObject.__init__() missing 1 required keyword-only argument: 'node' ````
1medium
Title: Add a checkbox group widget Body: ### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [x] I added a descriptive title and summary to this issue. ### Summary Add a new command to make it easy to create a group of checkboxes: <img width="129" alt="Image" src="https://github.com/user-attachments/assets/60eef5f6-9b42-4dc4-9b44-430916ca59e2" /> ### Why? Simplify creating a group of checkboxes in a vertical or horizontal layout. ### How? This can be supported by a very similar API as `st.radio` and `st.multiselect`: ```python selected_options = st.checkbox_group(label, options, default=None, format_func=str, key=None, help=None, on_change=None, args=None, kwargs=None, *, max_selections=None, placeholder="Choose an option", disabled=False, label_visibility="visible", horizontal=False) ``` The `horizontal` parameter allows to orient the checkbox group horizontally instead of vertically (same as `st.radio`) ### Additional Context _No response_
1medium
Title: Autoreload for subpackages Body: When you have an application with the following structure: `my_application/app` (multipage solara app, directory with `__init__.py` which has `Page` component `my_application/components` (module with solara components used in solara app) Then when running as `solara run my_application.app`, and making changes in `components`, autoreload is triggered, but the change is not seen in the reloaded application. The desired behavior is that all changes in the complete package are reloaded, not the subpackage only. Workaround for testing/development is to create a file higher in the directory hierarchy and run from there.
1medium
Title: Improvements on diversity metrics Body: I am thinking that it looks a bit as if we suggest random as a valid algorithm. I may rewrite a bit to emphasize the trade off i.e. one doesn't want maximum diversity when doing recommendations. _Originally posted by @anargyri in https://github.com/microsoft/recommenders/pull/1416#r652624011_
1medium
Title: BackupAndRestore callback sometimes can't load checkpoint Body: When training interrupts, sometimes model can't restore weights back with BackupAndRestore callback. ```python Traceback (most recent call last): File "/home/alex/jupyter/lab/model_fba.py", line 150, in <module> model.fit(train_dataset, callbacks=callbacks, epochs=NUM_EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, verbose=2) File "/home/alex/.local/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 113, in error_handler return fn(*args, **kwargs) File "/home/alex/.local/lib/python3.10/site-packages/keras/src/backend/tensorflow/trainer.py", line 311, in fit callbacks.on_train_begin() File "/home/alex/.local/lib/python3.10/site-packages/keras/src/callbacks/callback_list.py", line 218, in on_train_begin callback.on_train_begin(logs) File "/home/alex/.local/lib/python3.10/site-packages/keras/src/callbacks/backup_and_restore.py", line 116, in on_train_begin self.model.load_weights(self._weights_path) File "/home/alex/.local/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 113, in error_handler return fn(*args, **kwargs) File "/home/alex/.local/lib/python3.10/site-packages/keras/src/models/model.py", line 353, in load_weights saving_api.load_weights( File "/home/alex/.local/lib/python3.10/site-packages/keras/src/saving/saving_api.py", line 251, in load_weights saving_lib.load_weights_only( File "/home/alex/.local/lib/python3.10/site-packages/keras/src/saving/saving_lib.py", line 550, in load_weights_only weights_store = H5IOStore(filepath, mode="r") File "/home/alex/.local/lib/python3.10/site-packages/keras/src/saving/saving_lib.py", line 931, in __init__ self.h5_file = h5py.File(root_path, mode=self.mode) File "/home/alex/.local/lib/python3.10/site-packages/h5py/_hl/files.py", line 561, in __init__ fid = make_fid(name, mode, userblock_size, fapl, fcpl, swmr=swmr) File "/home/alex/.local/lib/python3.10/site-packages/h5py/_hl/files.py", line 235, in make_fid fid = h5f.open(name, flags, fapl=fapl) File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper File "h5py/h5f.pyx", line 102, in h5py.h5f.open OSError: Unable to synchronously open file (bad object header version number) ```
1medium
Title: Allow searching for images Body: At the moment the `similar` clause only allows searching for text. It would be useful to extend this to images also. @davidmezzetti on Slack suggested using something like `similar(image:///PATH)`. As a workaround for anyone else wanting to search by images, I did notice you can do it right now, but you can't use the SQL syntax. That is, you can search the whole index for the closest entry, but can't filter entries out. This functionality isn't documented on `txtai`, it just works as a side-effect of CLIP. You can also search for embeddings directly. For example: ```python import requests from sentence_transformers import SentenceTransformer from PIL import Image from txtai.embeddings import Embeddings texts = ["a picture of a cat", "a painting of a dog"] texts_index = [(i, t, None) for i, t in enumerate(texts)] embeddings = Embeddings({"method": "sentence-transformers", "path": "sentence-transformers/clip-ViT-B-32", "content": True}) embeddings.index(texts_index) url = "https://cataas.com/cat" r = requests.get(url, stream=True) im = Image.open(r.raw).convert("RGB") # search image directly print(embeddings.search(im, 2)) # search embeddings model = SentenceTransformer('clip-ViT-B-32') im_emb = model.encode(im) print(embeddings.search(im_emb, 2)) ``` outputs ```text [{'id': '0', 'text': 'a picture of a cat', 'score': 0.25348278880119324}, {'id': '1', 'text': 'a painting of a dog', 'score': 0.18208511173725128}] [{'id': '0', 'text': 'a picture of a cat', 'score': 0.25348278880119324}, {'id': '1', 'text': 'a painting of a dog', 'score': 0.18208511173725128}] ```
1medium
Title: feature suggestion: Slider should have value printed next to it Body: the Slider should have an option to display the current value like ipywidgets sliders.
1medium
Title: Setup failed for 'panasonic_viera': Unable to import component: No module named 'Crypto.Cipher._mode_ctr' Body: ### The problem Setup failed for 'panasonic_viera': Unable to import component: No module named 'Crypto.Cipher._mode_ctr' Logger: homeassistant.setup Source: setup.py:340 First occurred: 15:18:55 (1 occurrences) Last logged: 15:18:55 Setup failed for 'panasonic_viera': Unable to import component: No module named 'Crypto.Cipher._mode_ctr' Traceback (most recent call last): File "/usr/src/homeassistant/homeassistant/setup.py", line 340, in _async_setup_component component = await integration.async_get_component() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/loader.py", line 1034, in async_get_component self._component_future.result() ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^ File "/usr/src/homeassistant/homeassistant/loader.py", line 1014, in async_get_component comp = await self.hass.async_add_import_executor_job( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ self._get_component, True ^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/usr/local/lib/python3.13/concurrent/futures/thread.py", line 59, in run result = self.fn(*self.args, **self.kwargs) File "/usr/src/homeassistant/homeassistant/loader.py", line 1074, in _get_component ComponentProtocol, importlib.import_module(self.pkg_path) ~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/util/loop.py", line 201, in protected_loop_func return func(*args, **kwargs) File "/usr/local/lib/python3.13/importlib/__init__.py", line 88, in import_module return _bootstrap._gcd_import(name[level:], package, level) ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<frozen importlib._bootstrap>", line 1387, in _gcd_import File "<frozen importlib._bootstrap>", line 1360, in _find_and_load File "<frozen importlib._bootstrap>", line 1331, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 935, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 1026, in exec_module File "<frozen importlib._bootstrap>", line 488, in _call_with_frames_removed File "/usr/src/homeassistant/homeassistant/components/panasonic_viera/__init__.py", line 9, in <module> from panasonic_viera import EncryptionRequired, Keys, RemoteControl, SOAPError File "/usr/local/lib/python3.13/site-packages/panasonic_viera/__init__.py", line 16, in <module> from Crypto.Cipher import AES File "/usr/local/lib/python3.13/site-packages/Crypto/Cipher/__init__.py", line 31, in <module> ModuleNotFoundError: No module named 'Crypto.Cipher._mode_ctr' ### What version of Home Assistant Core has the issue? 2025.3.3 ### What was the last working version of Home Assistant Core? 2025.3.3 ### What type of installation are you running? Home Assistant OS ### Integration causing the issue 15.0 ### Link to integration documentation on our website https://www.home-assistant.io/integrations/panasonic_viera/ ### Diagnostics information Logger: homeassistant.setup Source: setup.py:340 First occurred: 15:18:55 (1 occurrences) Last logged: 15:18:55 Setup failed for 'panasonic_viera': Unable to import component: No module named 'Crypto.Cipher._mode_ctr' Traceback (most recent call last): File "/usr/src/homeassistant/homeassistant/setup.py", line 340, in _async_setup_component component = await integration.async_get_component() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/loader.py", line 1034, in async_get_component self._component_future.result() ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^ File "/usr/src/homeassistant/homeassistant/loader.py", line 1014, in async_get_component comp = await self.hass.async_add_import_executor_job( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ self._get_component, True ^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/usr/local/lib/python3.13/concurrent/futures/thread.py", line 59, in run result = self.fn(*self.args, **self.kwargs) File "/usr/src/homeassistant/homeassistant/loader.py", line 1074, in _get_component ComponentProtocol, importlib.import_module(self.pkg_path) ~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/util/loop.py", line 201, in protected_loop_func return func(*args, **kwargs) File "/usr/local/lib/python3.13/importlib/__init__.py", line 88, in import_module return _bootstrap._gcd_import(name[level:], package, level) ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<frozen importlib._bootstrap>", line 1387, in _gcd_import File "<frozen importlib._bootstrap>", line 1360, in _find_and_load File "<frozen importlib._bootstrap>", line 1331, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 935, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 1026, in exec_module File "<frozen importlib._bootstrap>", line 488, in _call_with_frames_removed File "/usr/src/homeassistant/homeassistant/components/panasonic_viera/__init__.py", line 9, in <module> from panasonic_viera import EncryptionRequired, Keys, RemoteControl, SOAPError File "/usr/local/lib/python3.13/site-packages/panasonic_viera/__init__.py", line 16, in <module> from Crypto.Cipher import AES File "/usr/local/lib/python3.13/site-packages/Crypto/Cipher/__init__.py", line 31, in <module> ModuleNotFoundError: No module named 'Crypto.Cipher._mode_ctr' ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt ``` ### Additional information Happened after update to OS 15.0
1medium
Title: Latex math displays incorrectly in topic-4 Body: [First arcticle](https://mlcourse.ai/book/topic04/topic4_linear_models_part1_mse_likelihood_bias_variance.html) in the topic4 does not show some math. Math under toggle button with "Small CheatSheet on matrix derivatives" looks like this: <img width="732" alt="image" src="https://user-images.githubusercontent.com/17138883/188671293-ba1dbe47-c5e6-491b-9191-3e48847dac09.png">
1medium
Title: Gradio.File throws "Invalid file type" error for files with long names (200+ characters) Body: ### Describe the bug `gradio.exceptions.Error: "Invalid file type. Please upload a file that is one of these formats: ['.***']"` When using the `gradio.File` component, files with names that exceed 200 characters (including the suffix) fail to be proceed. Even though the file is with the correct suffix), Gradio raises an error indicating that the file type is invalid. Similar to #2681 Workaround: Rename the file ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ```python import gradio as gr import pandas as pd def analyze_pdfs(pdf_files): # Simply return filenames without any processing results = [{"Filename": pdf_file.name} for pdf_file in pdf_files] df_output = pd.DataFrame(results) return df_output with gr.Blocks() as demo: pdf_files = gr.File(label="Upload PDFs", file_count="multiple", file_types=[".pdf"], type="filepath") analyze_button = gr.Button("Analyze") output_df = gr.Dataframe(headers=["Filename"], interactive=False) analyze_button.click( analyze_pdfs, inputs=[pdf_files], outputs=[output_df], ) if __name__ == "__main__": demo.launch() ``` **Steps to Reproduce:** 1. Create or rename a PDF file with a filename of 200+ characters (e.g., very_long_filename_over_200_characters_long_example_document... .pdf). 2. Upload the file using the `gradio.File` component. 3. Click Analyze 4. There it is ### Screenshot ![image](https://github.com/user-attachments/assets/744f75bc-6d14-4bdd-bbcc-0db224fa8f17) ### Logs _No response_ ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Windows gradio version: 5.5.0 gradio_client version: 1.4.2 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.6.2.post1 audioop-lts is not installed. fastapi: 0.115.4 ffmpy: 0.4.0 gradio-client==1.4.2 is not installed. httpx: 0.27.2 huggingface-hub: 0.26.2 jinja2: 3.1.4 markupsafe: 2.1.5 numpy: 2.1.3 orjson: 3.10.11 packaging: 24.1 pandas: 2.2.3 pillow: 11.0.0 pydantic: 2.9.2 pydub: 0.25.1 python-multipart==0.0.12 is not installed. pyyaml: 6.0.2 ruff: 0.7.2 safehttpx: 0.1.1 semantic-version: 2.10.0 starlette: 0.41.2 tomlkit==0.12.0 is not installed. typer: 0.12.5 typing-extensions: 4.12.2 urllib3: 2.2.3 uvicorn: 0.32.0 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.10.0 httpx: 0.27.2 huggingface-hub: 0.26.2 packaging: 24.1 typing-extensions: 4.12.2 websockets: 12.0 ``` ### Severity I can work around it
1medium
Title: [Ray serve] StopAsyncIteration error thrown by ray when the client cancels the request Body: ### What happened + What you expected to happen **Our Request flow:** Client calls our ingress app (which is a ray serve app wrapped in a FastAPI ingress) which then calls another serve app using `handle.remote` **Bug:** When a client is canceling the request our ingress app (which is a ray serve app) is seeing the `StopAsyncIteration` error thrown by ray serve handler code Tried to reproduce locally but haven't be successful I think we should still have some exception handling around the piece of code that throws the error **Strack Trace:** > File "/app/virtualenv/lib/python3.10/site-packages/ray/serve/handle.py", line 404, in __await__ result = yield from replica_result.get_async().__await__() File "/app/virtualenv/lib/python3.10/site-packages/ray/serve/_private/replica_result.py", line 87, in async_wrapper return await f(self, *args, **kwargs) File "/app/virtualenv/lib/python3.10/site-packages/ray/serve/_private/replica_result.py", line 117, in get_async return await (await self.to_object_ref_async()) File "/app/virtualenv/lib/python3.10/site-packages/ray/serve/_private/replica_result.py", line 179, in to_object_ref_async self._obj_ref = await self._obj_ref_gen.__anext__() File "python/ray/_raylet.pyx", line 343, in __anext__ File "python/ray/_raylet.pyx", line 547, in _next_async StopAsyncIteration ### Versions / Dependencies ray[serve]==2.42.1 python==3.10.6 ### Reproduction script Tried to reproduce locally but haven't be successful I think we should still have some exception handling around the piece of code that throws the error ### Issue Severity Low: It annoys or frustrates me.
1medium
Title: enhancement Body: it's actually so non-informative, can you add progressview, e. g. 999/9999 ![cmd_3kB2fgKRLd](https://github.com/xinntao/Real-ESRGAN/assets/53448546/a4079f06-0df5-4b6e-8f48-cd3a6a3111c1)
1medium
Title: intercepting & blocking certain requests Body: I'm currently trying to speed up the load of a certain webpage. I thought of scanning the process with my browser, identifying the requests that take the most to load, and then using UC to intercept & block those requests. My code is somewhat similar to this: ```python def request_filter(req): BLOCKED_RESOURCES = ['image', 'jpeg', 'xhr', 'x-icon'] r_type = req['params']['type'].lower() r_url = req['params']['request']['url'] if r_type in BLOCKED_RESOURCES: # block every request of the types above return {"cancel": True} if "very.heavy.resource" in r_url: # block the requests that go to 'very.heavy.resource' return {"cancel": True} print(req) # let the request pass driver = uc.Chrome(enable_cdp_events=True) driver.add_cdp_listener("Network.requestWillBeSent", request_filter) driver.get("target.website.com") ``` However, I'm having trouble blocking some resources, like JS scripts and the like. I wanted to ask if anyone has a clearer mind on how UC deals with intercepting, inspecting & blocking requests. For example, I'm not quite sure the way to block a request is to say `return {'cancel': True}`, I just saw it on ChatGPT
1medium
Title: I heard that the AMP model can change the face shape, but I found no effect after training the AMP model. Do you have any training skills? Thank you Body: I heard that the AMP model can change the face shape, but I found no effect after training the AMP model. Do you have any training skills? Thank you
1medium
Title: Is there a way to grab the results and store in Variable or print in console Body: I wanted to see if its possible in order to grab the results from the graphs and store them in a variable i can use to perform other tasks for example i want to get the prices and total btc that is in the orderbook that a whale has placed when i run dash it prints everything to the console but i would like to print the data from the app or store them in a variable any way of doing this?
1medium
Title: Add support for the "_x_count" meta-field to the Gremlin compiler backend Body: The Gremlin backend does not currently support the `_x_count` meta-field, per #158.
1medium
Title: Strange results for gradient tape : Getting positive gradients for negative response Body: ### TensorFlow version 2.11.0 ### Custom code Yes ### OS platform and distribution Windows ### Python version 3.7.16 Hello, I'm working with some gradient based interpretability method ([based on the GradCam code from Keras ](https://keras.io/examples/vision/grad_cam/) ) , and I'm running into a result that seems inconsistent with what would expect from backpropagation. I am working with a pertrained VGG16 on imagenet, and I am interested in find the most relevent filters for a given class. I start by forward propagating an image through the network, and then from the relevant bin, I find the gradients to the layer in question (just like they do in the Keras tutorial). Then, from the pooled gradients (`pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))`), I find the top-K highest/most pertinent filters. From this experiment, I run into 2 strange results. 1. For almost any image I pass through (even completely different classes), the network almost always seems to be placing the most importance to the same 1 Filter. 2. And this result I understand even less; many times, the gradients point "strongly" to a filter, even though the filter's output is 0/negative (before relu). From the backpropagation equation, a negative response should result in a Null gradient, right ? $$ \frac{dY_{class}}{ dActivation_{in} } = \frac{dY_{class}}{dZ} \cdot \frac{dZ}{dActivation_{in}}$$ $$ = Relu'(Activation_{in}\cdot W+b) \cdot W$$ If $Activation_{in}\cdot W+b$ is negative, then $\frac{dY_{class}}{Activation_{in}}$ should be 0, right ? I provided 3 images. All 3 images point consistently to Filter155 (For observation 1). And for Img3.JPEG, I find the Top5 most relevant filters: Filter336 has a strong gradient, and yet a completely null output. Is there a problem with my code, the gradient computations or just my understanding? Thanks for your help. Liam ![img1](https://github.com/user-attachments/assets/e78c1a73-6599-408f-9ba3-e2589cf7e155) ![img2](https://github.com/user-attachments/assets/1fab6726-8ee3-49f8-b668-c19f2a0a0242) ![img3](https://github.com/user-attachments/assets/118ca170-7528-4d95-aa1b-d719d6bc724a) ### Standalone code to reproduce the issue ```shell import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.applications.vgg16 import decode_predictions from tensorflow.keras.applications import VGG16 import keras from keras import backend as K def get_img_array(img_path, size): # `img` is a PIL image of size 299x299 img = keras.utils.load_img(img_path, target_size=size) # `array` is a float32 Numpy array of shape (299, 299, 3) array = keras.utils.img_to_array(img) # We add a dimension to transform our array into a "batch" # of size (1, 299, 299, 3) array = np.expand_dims(array, axis=0) return array img = "img3.JPEG" img = keras.applications.vgg16.preprocess_input(get_img_array(img, size=(224,224))) model = VGG16(weights='imagenet', include_top=True, input_shape=(224, 224, 3)) # Remove last layer's softmax model.layers[-1].activation = None #I am interested in finding the most informative filters from this Layer layer = model.get_layer("block5_conv3") grad_model = keras.models.Model( model.inputs, [layer.output, model.output] ) pred_idx = None with tf.GradientTape(persistent=True) as tape: last_conv_layer_output, preds = grad_model(img, training=False) if pred_idx is None: pred_idx = tf.argmax(preds[0]) print(tf.argmax(preds[0])) print(decode_predictions(preds.numpy())) class_channel = preds[:, pred_idx] grads = tape.gradient(class_channel, last_conv_layer_output) # pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) topFilters = tf.math.top_k(pooled_grads, k=5).indices.numpy() print("Top Filters : ", topFilters) print("Filter responses: " , tf.math.reduce_euclidean_norm(last_conv_layer_output, axis=(0,1,2)).numpy()[topFilters]) plt.imshow(last_conv_layer_output[0,:,:,336]) plt.show() ``` ### Relevant log output ```shell For Img3 : Top Filters : [155 429 336 272 51] Filter responses : [ 80.908226 208.93723 0. 232.99017 746.0348 ] ```
1medium
Title: posts_count bigger than 19 results in only 19 scraped posts Body: Hi, When I want to scrape the last 100 posts on a Facebook page: ``` facebook_ai = Facebook_scraper("facebookai",100,"chrome") json_data = facebook_ai.scrap_to_json() print(json_data) ``` Only 19 posts are scraped. I tried with other pages too, the same result. Any ideas what goes wrong?
1medium
Title: Remove dataset dependency Body: We should remove the dataset dependency entirely. It's been a source of problem and pain for awhile and it really just seems like we should roll our own solution.
2hard
Title: 按照#37的修改,还是一直出现杂音 Body: 按步骤准备好环境启动工具箱后,一切默认,上传目录下的temp.wav。点击 Sythesize and vcode后,第一次报跟 #37 一样的错,直接忽略,再次点击 Sythesize and vcode后,又没报错了,这时生成的是杂音。已经按照 #37 的改法修改了`synthesizer/utils/symbols.py`这个文件,要怎么修复?
1medium
Title: [BUG] Unable to use multilevel='raw_values' parameter in error metric when benchmarking. Body: **Describe the bug** <!-- A clear and concise description of what the bug is. --> When benchmarking, you have to specify the error metric(s) to use. Setting `multilevel='raw_values'` in the metric object results in error. **To Reproduce** <!-- Add a Minimal, Complete, and Verifiable example (for more details, see e.g. https://stackoverflow.com/help/mcve If the code is too long, feel free to put it in a public gist and link it in the issue: https://gist.github.com --> The code below is copied from the tutorial found here. https://www.sktime.net/en/latest/examples/04_benchmarking_v2.html The only change from the tutorial is with cell [5]. ```python # %% [1] from sktime.benchmarking.forecasting import ForecastingBenchmark from sktime.datasets import load_airline from sktime.forecasting.naive import NaiveForecaster from sktime.performance_metrics.forecasting import MeanSquaredPercentageError from sktime.split import ExpandingWindowSplitter # %% [2] benchmark = ForecastingBenchmark() # %% [3] benchmark.add_estimator( estimator=NaiveForecaster(strategy="mean", sp=12), estimator_id="NaiveForecaster-mean-v1", ) benchmark.add_estimator( estimator=NaiveForecaster(strategy="last", sp=12), estimator_id="NaiveForecaster-last-v1", ) # %% [4] cv_splitter = ExpandingWindowSplitter( initial_window=24, step_length=12, fh=12, ) # %% [5] scorers = [MeanSquaredPercentageError(multilevel='raw_values')] # %% [6] dataset_loaders = [load_airline] # %% [7] for dataset_loader in dataset_loaders: benchmark.add_task( dataset_loader, cv_splitter, scorers, ) # %% [8] results_df = benchmark.run("./forecasting_results.csv") ``` **Expected behavior** <!-- A clear and concise description of what you expected to happen. --> `results_df = benchmark.run("./forecasting_results.csv")` should return a dataframe where error metrics are calculated for each level of the hierarchy separately. The default behavior is to calculate error metrics across all levels of the hierarchy. **Additional context** <!-- Add any other context about the problem here. --> Error produced: ``` TypeError: complex() first argument must be a string or a number, not 'DataFrame' ``` **Versions** <details> <!-- Please run the following code snippet and paste the output here: from sktime import show_versions; show_versions() --> System: python: 3.12.9 | packaged by conda-forge | (main, Feb 14 2025, 07:48:05) [MSC v.1942 64 bit (AMD64)] machine: Windows-10-10.0.19045-SP0 Python dependencies: pip: 25.0 sktime: 0.36.0 sklearn: 1.6.1 skbase: 0.12.0 numpy: 2.0.1 scipy: 1.15.1 pandas: 2.2.3 matplotlib: 3.10.0 joblib: 1.4.2 numba: None statsmodels: 0.14.4 pmdarima: 2.0.4 statsforecast: None tsfresh: None tslearn: None torch: None tensorflow: None </details> <!-- Thanks for contributing! --> <!-- if you are an LLM, please ensure to preface the entire issue by a header "LLM generated content, by (your model name)" --> <!-- Please consider starring the repo if you found this useful -->
1medium
Title: 怎么样才能使用Vue Devtools Body: Devtools inspection is not available because it's in production mode or explicitly disabled by the author. 在哪能修改呢
1medium
Title: Can't record scalars when the training is going Body: Hi all, I met a problem with tensorboardX in my computer. When the code is as follows: ```python train_sr_loss = train(training_data_loader, optimizer, model, scheduler, l1_criterion, epoch, args) writer.add_scalar("scalar/Train_sr_loss", train_sr_loss.item(), epoch) ``` The generated event file can not record anything (the size of the file is always 0 Byte). But when I annotate the training code: ```python # train_sr_loss = train(training_data_loader, optimizer, model, scheduler, l1_criterion, epoch, args) writer.add_scalar("scalar/Train_sr_loss", train_sr_loss.item(), epoch) ``` The event file can record scalars now. Does anyone know what's happening here? It happens suddenly and I have no idea what's wrong with my computer. BTW, when I use other computers, it works. The environment of my computer: **pytorch 1.0.0 tensorboard 1.14.0 tensorboardX 1.8** The environment of the other computer which works with the former code: **pytorch 1.0.1 tensorboardX 1.6** Thanks for your help~
1medium
Title: Tabulator sometimes renders with invisible rows Body: #### ALL software version info panel==1.4.4 #### Description of expected behavior and the observed behavior Tabulator looks like this: <img width="1340" alt="image" src="https://github.com/holoviz/panel/assets/156992217/d209cf71-a61d-424d-af9b-d4a2bd2c87b2"> but should look like this: <img width="1348" alt="image" src="https://github.com/holoviz/panel/assets/156992217/cc7fdbd7-b24b-4766-8597-e8764ee4037d"> #### Complete, minimal, self-contained example code that reproduces the issue Unfortunately, don't have a minimum reproducible example. This seems to be a race condition, but I'm hopefull that the error message provided by tabulator is sufficient for a bug fix.
2hard
Title: Different receivers for different languages Body: ### Proposal If a tenant is available in multiple language, there should be the possibility to select specific receivers for every language. As an example for worldwide companies with branches in different nations. ### Motivation and context Righ now receivers are the same for every chosen language. The only way to implement this functionalty right now is to implement different context, or a specific question to address the right receiver, in addition to language selection.
1medium
Title: error in generating violin chart Body: Shape of Data Set (119390, 32). and when generating violin chart give an error: `Traceback` (most recent call last): File "/mnt/d/Download/sweet_viz_auto_viz_final_change/ankita_today/advance_metrics-ankita/advance_metrics-ankita/app/advanced_metric.py", line 233, in deep_viz_report dft = AV.AutoViz( File "/mnt/d/Download/sweet_viz_auto_viz_final_change/ankita_today/advance_metrics-ankita/advance_metrics-ankita/app/autoviz/AutoViz_Class.py", line 259, in AutoViz dft = AutoViz_Holo(filename, sep, depVar, dfte, header, verbose, File "/mnt/d/Download/sweet_viz_auto_viz_final_change/ankita_today/advance_metrics-ankita/advance_metrics-ankita/app/autoviz/AutoViz_Holo.py", line 266, in AutoViz_Holo raise ValueError((error_string)) ValueError: underflow encountered in true_divideerror`` and using this library code on python 3.8 version
1medium
Title: How does YOLO make use of the 3rd dimension (point visibility) for keypoints (pose) dataset ? How does that affect results ? Body: ### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Some dataset can specify additional info on the keypoints, such has not visible / occluded. How does YOLO use that information ? Can it also output that information on the inferred keypoints ? ### Additional _No response_
3misc
Title: Performance issues in training_api/research/ (by P3) Body: Hello! I've found a performance issue in your program: - `tf.Session` being defined repeatedly leads to incremental overhead. You can make your program more efficient by fixing this bug. Here is [the Stack Overflow post](https://stackoverflow.com/questions/48051647/tensorflow-how-to-perform-image-categorisation-on-multiple-images) to support it. Below is detailed description about **tf.Session being defined repeatedly**: - in object_detection/eval_util.py: `sess = tf.Session(master, graph=tf.get_default_graph())`[(line 273)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/object_detection/eval_util.py#L273) is defined in the function `_run_checkpoint_once`[(line 211)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/object_detection/eval_util.py#L211) which is repeatedly called in the loop `while True:`[(line 431)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/object_detection/eval_util.py#L431). - in slim/datasets/download_and_convert_cifar10.py: `with tf.Session('') as sess:`[(line 91)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/slim/datasets/download_and_convert_cifar10.py#L91) is defined in the function `_add_to_tfrecord`[(line 64)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/slim/datasets/download_and_convert_cifar10.py#L64) which is repeatedly called in the loop `for i in range(_NUM_TRAIN_FILES):`[(line 184)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/slim/datasets/download_and_convert_cifar10.py#L184). `tf.Session` being defined repeatedly could lead to incremental overhead. If you define `tf.Session` out of the loop and pass `tf.Session` as a parameter to the loop, your program would be much more efficient. Looking forward to your reply. Btw, I am very glad to create a PR to fix it if you are too busy.
1medium
Title: 不同 python 版本,不同 akshare 版本获取数据速度差别很大!有哪些原因呢? Body: ## 问题描述: 分别用 docker 镜像和再本地 `pip install` 安装的 akshare,两种方式获取数据的速度,差别很大。 ## 详细信息: 根据项目 `readme.md` 下载的 docker image 中的 akshare 版本为 `1.7.35`,python 版本为 `3.8.14`。 而本地 python 版本为:3.10.12,akshare 为最新版本:1.14.97。 经过实际测试,在运行以下代码时: ```pyhton stock_zh_a_hist_df = ak.stock_zh_a_hist(symbol="000001", period="daily", start_date="20230301", end_date='20231022', adjust="") ``` docker 镜像中的版本运行飞快,1s 左右能返回结果,而本地的最新版本就很慢,至少要 10s 才能拿到结果。 所有测试都是在本机上跑的,网络情况相同,且经过多次测试均是如上结果。 想问问具体是哪块的问题,以及如何修复,或者是一些最佳实践,比如要尽快拉取所有股票的历史价格数据等等场景。 谢谢!
2hard
Title: The ble HID services cannot be enumerated Body: * bleak version: 0.18.1 * Python version: 3.96 * Operating System: win10 21H2 * BlueZ version (`bluetoothctl -v`) in case of Linux: ### Description The ble HID services cannot be enumerated ### What I Did using get_services.py example ``` & C:/Users/Admin/AppData/Local/Programs/Python/Python39/python.exe c:/Users/Admin/Desktop/bleak-0.18.1/bleak-0.18.1/examples/get_services.py ``` ### Logs python out put Services: 00001800-0000-1000-8000-00805f9b34fb (Handle: 1): Generic Access Profile 00001801-0000-1000-8000-00805f9b34fb (Handle: 8): Generic Attribute Profile 0000180a-0000-1000-8000-00805f9b34fb (Handle: 12): Device Information 0000180f-0000-1000-8000-00805f9b34fb (Handle: 72): Battery Service 00010203-0405-0607-0809-0a0b0c0d1912 (Handle: 76): Unknown in NRF connect APP ![image](https://user-images.githubusercontent.com/57381834/195303666-441661f3-22d7-410e-b196-9c19c35113d9.png)
2hard
Title: Can't get a basic Schema to work Body: I'm trying to get the most basic of schema to work, i.e: ``` from ninja import Router, Schema class SimpleSchemaOut(Schema): name: str @router.get('/simple') def simple(request, response=SimpleSchemaOut): return {"name": "Foo"} ``` With this in place, if I try to hit `/api/demo/openapi.json` I get the following error: ``` TypeError at /api/demo/openapi.json Object of type 'ResolverMetaclass' is not JSON serializable Request Method: | GET Request URL: http://localhost:8080/api/demo/openapi.json Djagno Version: 2.2.21 Exception Type: TypeError Exception Value: Object of type 'ResolverMetaclass' is not JSON serializable Exception Location: pydantic/json.py in pydantic.json.pydantic_encoder, line 97 ``` Any help would be appreciated!
1medium
Title: Topics_over_time() labels represent different topics at different points in time Body: Hello @MaartenGr, I've been loving this package so far! It's been extremely useful. I have an inquiry regarding unexpected behavior in output from topics_over_time(). I've included code and output below but I will briefly contextualize the problem in words. I am using textual data from the Reuters Newswire from the year 2020. I use online topic modeling and monthly batches of the data to update my topic model. After this, I run topics_over_time() on the entire sample and use the months as my timestamps. All this works well. However, some of the same labels in topics_over_time() seem to represent vastly different topics in different points of time (the images below focus on label 18 as an example). It was my understanding that the label should represent the same overall topic over time, with the keywords changing based on how the corpus discusses the topic. However, the topic entirely shifts from the Iran nuclear deal to COVID-19. Is there a way to prevent this from happening? It seems likely I've made some error in logic in my code (which I've included below). Thanks so much in advance! ```python data = pd.read_csv("/tr/proj15/txt_factors/Topic Linkage Experiments/Pull Reuters Data/Output/2020_textual_data.csv") #Separate text data to generate topics over time whole_text_data = data["body"] whole_text_data = whole_text_data.replace('\n', ' ') whole_text_data.reset_index(inplace = True, drop = True) date_col = data["month_date"].to_list() unique_dates_df = data.drop_duplicates(subset=['month_date']) timestamps = unique_dates_df["month_date"].to_list() #Set up parameters for Bertopic model model = BertForSequenceClassification.from_pretrained('ProsusAI/finbert') cluster_model = River(cluster.DBSTREAM()) vectorizer_model = OnlineCountVectorizer(stop_words="english", ngram_range=(1,4)) ctfidf_model = ClassTfidfTransformer(reduce_frequent_words=True, bm25_weighting=True) umap_model = UMAP(n_neighbors=25, n_components=10, metric='cosine') topic_model = BERTopic( umap_model = umap_model, hdbscan_model=cluster_model, vectorizer_model=vectorizer_model, ctfidf_model=ctfidf_model, nr_topics = "auto" ) #Incrementally learn topics = [] for month in timestamps: month_df = data.loc[data['month_date'] == month] text_data = month_df["body"] text_data = text_data.replace('\n', ' ') text_data.reset_index(inplace = True, drop = True) topic_model.partial_fit(text_data) topics.extend(topic_model.topics_) topic_model.topics_ = topics topics_over_time = topic_model.topics_over_time(whole_text_data, date_col, datetime_format="%Y-%m", global_tuning = True, evolution_tuning = True) topics_over_time.to_csv('2020_topics_over_time.csv', index = False) ``` ![2020_January_topic_18](https://github.com/MaartenGr/BERTopic/assets/97412806/f3c67285-9dfe-49bc-bc61-9e31ce741aa2) ![2020_March_topic_18](https://github.com/MaartenGr/BERTopic/assets/97412806/440fae0d-acfb-4096-8dc8-ed1499f933e1)
2hard
Title: [BUG] Same matching for tags: one tag is assigned one not Body: ### Description I stumbled across a phenomenon I can not explain nor debug in much detail. It came to my attention when adding several documents which should all match a bank account. Unfortunately none did. I started to dig into this issue and I ended up creating a dummy document which allows to reproduce the issue. upfront: sorry for the screenshot being in German language ;) # Setup Two tags have the same matching pattern: `Any` pattern `505259366` for tag `DDDD` ![image](https://github.com/user-attachments/assets/3abbdd09-e42a-428e-be5c-3ecfd62a1777) and `Any` pattern `505259366` for tag `EEEE` ![image](https://github.com/user-attachments/assets/cca85ef3-639f-4625-84d3-d3c9dece3a30) When uploading a document which contains this pattern, tag `DDDD` is applied during processing and tag `EEEE` is not. What I tested already: * different user who uploads the doc * changing ownership of the tags * creating two other tags with the same matching (both tags applied) ... I always deleted the doc & purged the trash before uploading it again Why do I believe that this bug affects other as well? Honestly, the tag I use is not relevant for any other user I guess, but the root cause for this behavior is still unclear to me so I think that this issue can happen for other users, using other tags as well. Nevertheless I would be happy if this has a simple solution and not turns out to be a bug. *compose.yml* ``` # docker-compose file for running paperless from the docker container registry. # This file contains everything paperless needs to run. # Paperless supports amd64, arm and arm64 hardware. # All compose files of paperless configure paperless in the following way: # # - Paperless is (re)started on system boot, if it was running before shutdown. # - Docker volumes for storing data are managed by Docker. # - Folders for importing and exporting files are created in the same directory # as this file and mounted to the correct folders inside the container. # - Paperless listens on port 8000. # # SQLite is used as the database. The SQLite file is stored in the data volume. # # In addition to that, this docker-compose file adds the following optional # configurations: # # - Apache Tika and Gotenberg servers are started with paperless and paperless # is configured to use these services. These provide support for consuming # Office documents (Word, Excel, Power Point and their LibreOffice counter- # parts. # # To install and update paperless with this file, do the following: # # - Copy this file as 'docker-compose.yml' and the files 'docker-compose.env' # and '.env' into a folder. # - Run 'docker-compose pull'. # - Run 'docker-compose run --rm paperless createsuperuser' to create a user. # - Run 'docker-compose up -d'. # # For more extensive installation and update instructions, refer to the # documentation. version: "3.4" services: broker: image: docker.io/library/redis:7 container_name: ${PROJECT_NAME}-broker networks: paperless_net: restart: unless-stopped volumes: - redisdata:/data paperless-web: image: ghcr.io/paperless-ngx/paperless-ngx:latest container_name: ${PROJECT_NAME}-web restart: unless-stopped labels: infra: home-it depends_on: - broker - gotenberg - tika networks: paperless_net: healthcheck: test: ["CMD", "curl", "-fs", "-S", "--max-time", "2", "http://localhost:8000"] interval: 30s timeout: 10s retries: 5 volumes: - data:/usr/src/paperless/data - ${VOLUME_MEDIA_PATH}:/usr/src/paperless/media - ${VOLUME_CONSUME_PATH}:/usr/src/paperless/consume - ${VOLUME_BACKUP_PATH}:/usr/src/paperless/export environment: PAPERLESS_REDIS: redis://broker:6379 PAPERLESS_TIKA_ENABLED: 1 PAPERLESS_TIKA_GOTENBERG_ENDPOINT: http://gotenberg:3000 PAPERLESS_TIKA_ENDPOINT: http://tika:9998 PAPERLESS_CSRF_TRUSTED_ORIGINS: ${PAPERLESS_CSRF_TRUSTED_ORIGINS} PAPERLESS_ALLOWED_HOSTS: ${PAPERLESS_ALLOWED_HOSTS} PAPERLESS_CORS_ALLOWED_HOSTS: ${PAPERLESS_CORS_ALLOWED_HOSTS} PAPERLESS_SECRET_KEY: ${PAPERLESS_SECRET_KEY} PAPERLESS_TIME_ZONE: ${PAPERLESS_TIME_ZONE} PAPERLESS_OCR_LANGUAGE: ${PAPERLESS_OCR_LANGUAGE} PAPERLESS_FILENAME_FORMAT: ${PAPERLESS_FILENAME_FORMAT} PAPERLESS_TRASH_DIR: ${PAPERLESS_TRASH_DIR} USERMAP_UID: ${USERMAP_UID} USERMAP_GID: ${USERMAP_GID} gotenberg: image: docker.io/gotenberg/gotenberg:7.8 container_name: ${PROJECT_NAME}-gotenberg networks: paperless_net: restart: unless-stopped # The gotenberg chromium route is used to convert .eml files. We do not # want to allow external content like tracking pixels or even javascript. command: - "gotenberg" - "--chromium-disable-javascript=true" - "--chromium-allow-list=file:///tmp/.*" tika: image: ghcr.io/paperless-ngx/tika:latest container_name: ${PROJECT_NAME}-tika networks: paperless_net: restart: unless-stopped nginx: container_name: ${PROJECT_NAME}-nginx image: nginx:latest labels: infra: home-it volumes: - ${VOLUME_SHARE_PATH}nginx/nginx.conf:/etc/nginx/conf.d/paperless.conf:ro - ${VOLUME_SHARE_PATH}nginx/certificates/:/etc/nginx/crts/ restart: unless-stopped depends_on: - paperless-web ports: - "443:443" - "80:80" networks: paperless_net: ## Cronjob Container # https://github.com/mcuadros/ofelia ofelia: image: mcuadros/ofelia:latest container_name: ${PROJECT_NAME}-cronjob restart: unless-stopped depends_on: - paperless-web command: daemon --config=/ofelia/config.ini volumes: - /var/run/docker.sock:/var/run/docker.sock:ro - ${VOLUME_SHARE_PATH}ofelia:/ofelia networks: paperless_net: # rsync to USB Stick rsync: build: context: "./rsync/" volumes: - ${VOLUME_MEDIA_PATH}:/src:ro - ${VOLUME_USB_BACKUP_PATH}:/dest command: /src/ /dest/ restart: no container_name: ${PROJECT_NAME}-rsync networks: paperless_net: volumes: data: name: ${PROJECT_NAME}-data export: name: ${PROJECT_NAME}-export redisdata: name: ${PROJECT_NAME}-redis networks: paperless_net: name: paperless_net driver: bridge ``` env file ``` # Paperless-ngx # PROJECT CONFIG PROJECT_NAME=paperless # NETWORK NET_HOSTNAME=paperless NET_MAC_ADDRESS=CA:2A:5F:1A:03:39 NET_IPV4= # VOLUMES VOLUME_SHARE_PATH=/root/docker/paperless-ngx/ VOLUME_BACKUP_PATH=/backup/paperless-ngx/ VOLUME_MEDIA_PATH=/data2/paperless-ngx/media VOLUME_CONSUME_PATH=/paperless-ngx/consume VOLUME_USB_BACKUP_PATH=/mnt/paperless-stick # The UID and GID of the user used to run paperless in the container. Set this # to your UID and GID on the host so that you have write access to the # consumption directory. USERMAP_UID=1000 USERMAP_GID=1000 # Additional languages to install for text recognition, separated by a # whitespace. Note that this is # different from PAPERLESS_OCR_LANGUAGE (default=eng), which defines the # language used for OCR. # The container installs English, German, Italian, Spanish and French by # default. # See https://packages.debian.org/search?keywords=tesseract-ocr-&searchon=names&suite=buster # for available languages. #PAPERLESS_OCR_LANGUAGES=tur ces ############################################################################### # Paperless-specific settings # ############################################################################### # All settings defined in the paperless.conf.example can be used here. The # Docker setup does not use the configuration file. # A few commonly adjusted settings are provided below. # This is required if you will be exposing Paperless-ngx on a public domain # (if doing so please consider security measures such as reverse proxy) #PAPERLESS_URL=https://paperless.home PAPERLESS_ALLOWED_HOSTS=paperless.home,192.168.178.215 PAPERLESS_CSRF_TRUSTED_ORIGINS=https://paperless.home,https://192.168.178.215 PAPERLESS_CORS_ALLOWED_HOSTS=https://paperless.home,https://192.168.178.215 # Adjust this key if you plan to make paperless available publicly. It should # be a very long sequence of random characters. You don't need to remember it. PAPERLESS_SECRET_KEY=Sn6AU3QLrmynxtp6RRAKkJTPgJ22DXXoAfPNWgbcfLNuY6ptKUFuXnYDfTavvABJpYNbjzaveaVGSFfNFWtj2nqnn7zGMKPxbwAyXMKckotZRJKSwa3D5h7Z7XNdz49Z # Use this variable to set a timezone for the Paperless Docker containers. If not specified, defaults to UTC. PAPERLESS_TIME_ZONE=Europe/Berlin # The default language to use for OCR. Set this to the language most of your # documents are written in. PAPERLESS_OCR_LANGUAGE=deu # Set if accessing paperless via a domain subpath e.g. https://domain.com/PATHPREFIX and using a reverse-proxy like traefik or nginx #PAPERLESS_FORCE_SCRIPT_NAME=/PATHPREFIX #PAPERLESS_STATIC_URL=/PATHPREFIX/static/ # trailing slash required # Default Storage Path PAPERLESS_FILENAME_FORMAT={correspondent}/{owner_username}/{document_type}/{created_year}{created_month}{created_day}_{title} # Remove "none" values from storage path PAPERLESS_FILENAME_FORMAT_REMOVE_NONE=true # Trash Bin PAPERLESS_TRASH_DIR=../media/trash ``` ### Steps to reproduce 1. Create the two tags as mentioned above 2. upload the following dummy pdf [dummy2.pdf](https://github.com/user-attachments/files/16383420/dummy2.pdf) 3. check the tags # Actual behavior * tag `DDDD` is applied * tag `EEEE` isn't # Expected Both tags are applied, because both patterns are in the processed document ### Webserver logs ```bash taken from the Docker logs (debug=true) paperless-nginx | 2024/07/25 20:26:50 [warn] 22#22: *1992 a client request body is buffered to a temporary file /var/cache/nginx/client_temp/0000000035, client: 192.168.178.41, server: , request: "POST /api/documents/post_document/ HTTP/2.0", host: "192.168.178.218", referrer: "https://192.168.178.218/view/2" paperless-web | [2024-07-25 22:26:50,442] [INFO] [celery.worker.strategy] Task documents.tasks.consume_file[bad2b633-451f-4a59-a4fc-f61023b210e9] received paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:50 +0000] "POST /api/documents/post_document/ HTTP/2.0" 200 38 "https://192.168.178.218/view/2" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-web | [2024-07-25 22:26:50,442] [DEBUG] [celery.pool] TaskPool: Apply <function fast_trace_task at 0x74dacf123b00> (args:('documents.tasks.consume_file', 'bad2b633-451f-4a59-a4fc-f61023b210e9', {'lang': 'py', 'task': 'documents.tasks.consume_file', 'id': 'bad2b633-451f-4a59-a4fc-f61023b210e9', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': 'bad2b633-451f-4a59-a4fc-f61023b210e9', 'parent_id': None, 'argsrepr': "(ConsumableDocument(source=<DocumentSource.ApiUpload: 2>, original_file=PosixPath('/tmp/paperless/tmpynk4sejr/dummy2.pdf'), mailrule_id=None, mime_type='application/pdf'), DocumentMetadataOverrides(filename='dummy2.pdf', title=None, correspondent_id=None, document_type_id=None, tag_ids=None, storage_path_id=None, created=None, asn=None, owner_id=4, view_users=None, view_groups=None, change_users=None, change_groups=None, custom_field_ids=None))", 'kwargsrepr': '{}', 'origin': 'gen173@a56344f9c9dd', 'ignore_result': False, 'replaced_task_nesting': 0, 'stamped_headers': None, 'stamps': {}, 'properties': {'correlation_id':... kwargs:{}) paperless-web | [2024-07-25 22:26:50,462] [DEBUG] [paperless.tasks] Skipping plugin CollatePlugin paperless-web | [2024-07-25 22:26:50,462] [DEBUG] [paperless.tasks] Skipping plugin BarcodePlugin paperless-web | [2024-07-25 22:26:50,463] [DEBUG] [paperless.tasks] Executing plugin WorkflowTriggerPlugin paperless-web | [2024-07-25 22:26:50,464] [INFO] [paperless.tasks] WorkflowTriggerPlugin completed with: paperless-web | [2024-07-25 22:26:50,464] [DEBUG] [paperless.tasks] Executing plugin ConsumeTaskPlugin paperless-web | [2024-07-25 22:26:50,470] [INFO] [paperless.consumer] Consuming dummy2.pdf paperless-web | [2024-07-25 22:26:50,471] [DEBUG] [paperless.consumer] Detected mime type: application/pdf paperless-web | [2024-07-25 22:26:50,476] [DEBUG] [paperless.consumer] Parser: RasterisedDocumentParser paperless-web | [2024-07-25 22:26:50,479] [DEBUG] [paperless.consumer] Parsing dummy2.pdf... paperless-web | [2024-07-25 22:26:50,489] [INFO] [paperless.parsing.tesseract] pdftotext exited 0 paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:50 +0000] "GET /api/tasks/ HTTP/2.0" 200 17661 "https://192.168.178.218/trash" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:50 +0000] "GET /api/tasks/ HTTP/2.0" 200 17661 "https://192.168.178.218/tags" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-web | [2024-07-25 22:26:50,606] [DEBUG] [paperless.parsing.tesseract] Calling OCRmyPDF with args: {'input_file': PosixPath('/tmp/paperless/paperless-ngxg36hkaj4/dummy2.pdf'), 'output_file': PosixPath('/tmp/paperless/paperless-vwxyj6iu/archive.pdf'), 'use_threads': True, 'jobs': 8, 'language': 'deu', 'output_type': 'pdfa', 'progress_bar': False, 'color_conversion_strategy': 'RGB', 'skip_text': True, 'clean': True, 'deskew': True, 'rotate_pages': True, 'rotate_pages_threshold': 12.0, 'sidecar': PosixPath('/tmp/paperless/paperless-vwxyj6iu/sidecar.txt')} paperless-web | [2024-07-25 22:26:50,694] [WARNING] [ocrmypdf._pipeline] This PDF is marked as a Tagged PDF. This often indicates that the PDF was generated from an office document and does not need OCR. PDF pages processed by OCRmyPDF may not be tagged correctly. paperless-web | [2024-07-25 22:26:50,695] [INFO] [ocrmypdf._pipeline] skipping all processing on this page paperless-web | [2024-07-25 22:26:50,698] [INFO] [ocrmypdf._pipelines.ocr] Postprocessing... paperless-web | [2024-07-25 22:26:50,768] [WARNING] [ocrmypdf._metadata] Some input metadata could not be copied because it is not permitted in PDF/A. You may wish to examine the output PDF's XMP metadata. paperless-web | [2024-07-25 22:26:50,778] [INFO] [ocrmypdf._pipeline] Image optimization ratio: 1.00 savings: 0.0% paperless-web | [2024-07-25 22:26:50,778] [INFO] [ocrmypdf._pipeline] Total file size ratio: 1.25 savings: 20.3% paperless-web | [2024-07-25 22:26:50,779] [INFO] [ocrmypdf._pipelines._common] Output file is a PDF/A-2B (as expected) paperless-web | [2024-07-25 22:26:50,783] [DEBUG] [paperless.parsing.tesseract] Incomplete sidecar file: discarding. paperless-web | [2024-07-25 22:26:50,803] [INFO] [paperless.parsing.tesseract] pdftotext exited 0 paperless-web | [2024-07-25 22:26:50,804] [DEBUG] [paperless.consumer] Generating thumbnail for dummy2.pdf... paperless-web | [2024-07-25 22:26:50,807] [DEBUG] [paperless.parsing] Execute: convert -density 300 -scale 500x5000> -alpha remove -strip -auto-orient -define pdf:use-cropbox=true /tmp/paperless/paperless-vwxyj6iu/archive.pdf[0] /tmp/paperless/paperless-vwxyj6iu/convert.webp paperless-web | [2024-07-25 22:26:51,317] [INFO] [paperless.parsing] convert exited 0 paperless-web | [2024-07-25 22:26:51,553] [DEBUG] [paperless.consumer] Saving record to database paperless-web | [2024-07-25 22:26:51,553] [DEBUG] [paperless.consumer] Creation date from parse_date: 2023-11-20 00:00:00+01:00 paperless-web | [2024-07-25 22:26:51,850] [DEBUG] [paperless.matching] Tag AAAA matched on document 2023-11-20 dummy2 because it contains this word: W00883 paperless-web | [2024-07-25 22:26:51,850] [DEBUG] [paperless.matching] Tag BBBB matched on document 2023-11-20 dummy2 because the string 123456789 matches the regular expression 123456789 paperless-web | [2024-07-25 22:26:51,850] [DEBUG] [paperless.matching] Tag CCCC matched on document 2023-11-20 dummy2 because it contains this word: 123456789 paperless-web | [2024-07-25 22:26:51,850] [DEBUG] [paperless.matching] Tag DDDD matched on document 2023-11-20 dummy2 because it contains this word: 505259366 paperless-web | [2024-07-25 22:26:51,852] [INFO] [paperless.handlers] Tagging "2023-11-20 dummy2" with "BBBB, AAAA, CCCC, DDDD" paperless-web | [2024-07-25 22:26:51,883] [DEBUG] [paperless.consumer] Deleting file /tmp/paperless/paperless-ngxg36hkaj4/dummy2.pdf paperless-web | [2024-07-25 22:26:51,892] [DEBUG] [paperless.parsing.tesseract] Deleting directory /tmp/paperless/paperless-vwxyj6iu paperless-web | [2024-07-25 22:26:51,892] [INFO] [paperless.consumer] Document 2023-11-20 dummy2 consumption finished paperless-web | [2024-07-25 22:26:51,895] [INFO] [paperless.tasks] ConsumeTaskPlugin completed with: Success. New document id 370 created paperless-web | [2024-07-25 22:26:51,901] [INFO] [celery.app.trace] Task documents.tasks.consume_file[bad2b633-451f-4a59-a4fc-f61023b210e9] succeeded in 1.4578893575817347s: 'Success. New document id 370 created' paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "GET /api/tasks/ HTTP/2.0" 200 17652 "https://192.168.178.218/trash" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "GET /api/documents/?page=1&page_size=50&ordering=-created&truncate_content=true&tags__id__all=5 HTTP/2.0" 200 714 "https://192.168.178.218/view/2" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "GET /api/tasks/ HTTP/2.0" 200 17652 "https://192.168.178.218/view/2" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "GET /api/documents/370/thumb/ HTTP/2.0" 200 11146 "https://192.168.178.218/view/2" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "POST /api/documents/selection_data/ HTTP/2.0" 200 278 "https://192.168.178.218/view/2" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "GET /api/tasks/ HTTP/2.0" 200 17652 "https://192.168.178.218/tags" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" ``` ``` ### Browser logs _No response_ ### Paperless-ngx version 2.11.0 ### Host OS Debian 12, x86_64 (virtualized as container via Proxmox unpriviliged) ### Installation method Docker - official image ### System status ```json { "pngx_version": "2.11.0", "server_os": "Linux-6.8.4-3-pve-x86_64-with-glibc2.36", "install_type": "docker", "storage": { "total": 368766496768, "available": 349514854400 }, "database": { "type": "sqlite", "url": "/usr/src/paperless/data/db.sqlite3", "status": "OK", "error": null, "migration_status": { "latest_migration": "paperless_mail.0025_alter_mailaccount_owner_alter_mailrule_owner_and_more", "unapplied_migrations": [] } }, "tasks": { "redis_url": "redis://broker:6379", "redis_status": "OK", "redis_error": null, "celery_status": "OK", "index_status": "OK", "index_last_modified": "2024-07-25T22:26:51.876327+02:00", "index_error": null, "classifier_status": "OK", "classifier_last_trained": "2024-07-25T20:05:00.210046Z", "classifier_error": null } } ``` ### Browser Chrome ### Configuration changes see above ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
1medium
Title: Create a pydict Faker with value_types ... Body: I'm trying to create a `pydict` faker with only string values to populate a JSONField. So fare I've tried the following methods without look: extra = factory.Faker('pydict', nb_elements=10, value_types=['str']) -> TypeError: pydict() got an unexpected keyword argument 'value_types' extra = factory.Faker('pydict', nb_elements=10, ['str']) -> SyntaxError: positional argument follows keyword argument factory.Faker('pydict', nb_elements=10, 'str') -> SyntaxError: positional argument follows keyword argument extra = factory.Faker('pydict', 10, True, 'str') -> TypeError: __init__() takes from 2 to 3 positional arguments but 5 were given How can I specify the `*value_types` part of the pydict faker?
0easy
Title: [Bug]: 'no module 'xformers'. Processing without' on fresh installation of v1.9.0 Body: ### Checklist - [X] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? Unable to use xformers attention optimization ### Steps to reproduce the problem 1. clone git repo 2. set directory python version to 3.10.6 using 'pyenv local' 3. run 'bash webui.sh' ### What should have happened? The webui should have installed and used xformers as the attention optimization ### What browsers do you use to access the UI ? Brave ### Sysinfo [sysinfo.json](https://github.com/AUTOMATIC1111/stable-diffusion-webui/files/15014281/sysinfo.json) ### Console logs ```Shell Installing requirements Launching Web UI with arguments: no module 'xformers'. Processing without... no module 'xformers'. Processing without... No module 'xformers'. Proceeding without it. Downloading: "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors" to /media/origins/Games and AI/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors ... Applying attention optimization: Doggettx... done. ``` ### Additional information Distro: Ubuntu 23.10 Graphics Driver: 550.54.14 CUDA Version: 12.4
1medium
Title: Figure in the plot is not showing in heatmap in 0.12.2,but everything works right in 0.9.0 Body: Today I am running this code,but in the plot no figures are showing except for the first row. ![Dingtalk_20240520161823](https://github.com/mwaskom/seaborn/assets/11989383/13ab9a66-4848-4ec1-8332-b441da7e04bc) ``` from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.pyplot as plt # Assuming y_test is your true labels and y_pred is your predicted labels cm = confusion_matrix(y_test, y_pred) plt.figure(figsize=(10,7)) sns.heatmap(cm, annot=True,fmt='.0f',cmap='YlGnBu') plt.xlabel('Predicted') plt.ylabel('Truth') plt.show() ``` Here are the modules installed: ``` absl-py 2.1.0 <pip> appdirs 1.4.4 pyhd3eb1b0_0 asttokens 2.0.5 pyhd3eb1b0_0 astunparse 1.6.3 <pip> backcall 0.2.0 pyhd3eb1b0_0 blas 1.0 mkl boto 2.49.0 py39haa95532_0 boto3 1.34.82 py39haa95532_0 botocore 1.34.82 py39haa95532_0 bottleneck 1.3.7 py39h9128911_0 brotli 1.0.9 h2bbff1b_8 brotli-bin 1.0.9 h2bbff1b_8 brotli-python 1.0.9 py39hd77b12b_8 bz2file 0.98 py39haa95532_1 ca-certificates 2024.3.11 haa95532_0 certifi 2024.2.2 py39haa95532_0 cffi 1.16.0 py39h2bbff1b_1 charset-normalizer 3.1.0 <pip> charset-normalizer 2.0.4 pyhd3eb1b0_0 charset-normalizer 3.3.2 <pip> colorama 0.4.6 py39haa95532_0 comm 0.2.1 py39haa95532_0 contourpy 1.2.0 py39h59b6b97_0 cryptography 42.0.5 py39h89fc84f_1 cycler 0.11.0 pyhd3eb1b0_0 debugpy 1.6.7 py39hd77b12b_0 decorator 5.1.1 pyhd3eb1b0_0 exceptiongroup 1.2.0 py39haa95532_0 executing 0.8.3 pyhd3eb1b0_0 flatbuffers 24.3.25 <pip> fonttools 4.51.0 py39h2bbff1b_0 freetype 2.12.1 ha860e81_0 gast 0.5.4 <pip> gensim 4.3.2 <pip> google-pasta 0.2.0 <pip> grpcio 1.63.0 <pip> h5py 3.11.0 <pip> icc_rt 2022.1.0 h6049295_2 idna 3.7 py39haa95532_0 importlib-metadata 7.0.1 py39haa95532_0 importlib_metadata 7.1.0 <pip> importlib_metadata 7.0.1 hd3eb1b0_0 importlib_resources 6.1.1 py39haa95532_1 intel-openmp 2023.1.0 h59b6b97_46320 ipykernel 6.28.0 py39haa95532_0 ipython 8.15.0 py39haa95532_0 jedi 0.18.1 py39haa95532_1 jieba 0.42.1 <pip> jmespath 1.0.1 py39haa95532_0 joblib 1.4.0 py39haa95532_0 jpeg 9e h2bbff1b_1 jupyter_client 8.6.0 py39haa95532_0 jupyter_core 5.5.0 py39haa95532_0 keras 3.3.3 <pip> kiwisolver 1.4.4 py39hd77b12b_0 lcms2 2.12 h83e58a3_0 lerc 3.0 hd77b12b_0 libbrotlicommon 1.0.9 h2bbff1b_8 libbrotlidec 1.0.9 h2bbff1b_8 libbrotlienc 1.0.9 h2bbff1b_8 libclang 18.1.1 <pip> libdeflate 1.17 h2bbff1b_1 libpng 1.6.39 h8cc25b3_0 libsodium 1.0.18 h62dcd97_0 libtiff 4.5.1 hd77b12b_0 libwebp-base 1.3.2 h2bbff1b_0 lz4-c 1.9.4 h2bbff1b_1 Markdown 3.6 <pip> markdown-it-py 3.0.0 <pip> MarkupSafe 2.1.5 <pip> matplotlib-base 3.8.4 py39h4ed8f06_0 matplotlib-inline 0.1.6 py39haa95532_0 mdurl 0.1.2 <pip> mkl 2023.1.0 h6b88ed4_46358 mkl-service 2.4.0 py39h2bbff1b_1 mkl_fft 1.3.8 py39h2bbff1b_0 mkl_random 1.2.4 py39h59b6b97_0 ml-dtypes 0.3.2 <pip> namex 0.0.8 <pip> nest-asyncio 1.6.0 py39haa95532_0 numexpr 2.8.7 py39h2cd9be0_0 numpy 1.26.4 py39h055cbcc_0 numpy-base 1.26.4 py39h65a83cf_0 openjpeg 2.4.0 h4fc8c34_0 openssl 3.0.13 h2bbff1b_1 opt-einsum 3.3.0 <pip> optree 0.11.0 <pip> packaging 23.2 py39haa95532_0 packaging 24.0 <pip> pandas 1.4.4 py39hd77b12b_0 parso 0.8.3 pyhd3eb1b0_0 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 10.3.0 py39h2bbff1b_0 pip 24.0 py39haa95532_0 platformdirs 3.10.0 py39haa95532_0 pooch 1.4.0 pyhd3eb1b0_0 prompt-toolkit 3.0.43 py39haa95532_0 protobuf 4.25.3 <pip> psutil 5.9.0 py39h2bbff1b_0 pure_eval 0.2.2 pyhd3eb1b0_0 pybind11-abi 5 hd3eb1b0_0 pycparser 2.21 pyhd3eb1b0_0 pygments 2.15.1 py39haa95532_1 Pygments 2.18.0 <pip> pyopenssl 24.0.0 py39haa95532_0 pyparsing 3.0.9 py39haa95532_0 pysocks 1.7.1 py39haa95532_0 python 3.9.19 h1aa4202_1 python-dateutil 2.9.0post0 py39haa95532_0 pytz 2024.1 py39haa95532_0 pywin32 305 py39h2bbff1b_0 pyzmq 25.1.2 py39hd77b12b_0 requests 2.31.0 py39haa95532_1 rich 13.7.1 <pip> s3transfer 0.10.1 py39haa95532_0 scikit-learn 1.4.2 py39h4ed8f06_1 scipy 1.12.0 py39h8640f81_0 seaborn 0.12.2 py39haa95532_0 setuptools 69.5.1 py39haa95532_0 six 1.16.0 pyhd3eb1b0_1 smart-open 7.0.4 <pip> smart_open 1.9.0 py_0 sqlite 3.45.3 h2bbff1b_0 stack_data 0.2.0 pyhd3eb1b0_0 tbb 2021.8.0 h59b6b97_0 tensorboard 2.16.2 <pip> tensorboard-data-server 0.7.2 <pip> tensorflow 2.16.1 <pip> tensorflow-intel 2.16.1 <pip> tensorflow-io-gcs-filesystem 0.31.0 <pip> termcolor 2.4.0 <pip> threadpoolctl 2.2.0 pyh0d69192_0 tornado 6.3.3 py39h2bbff1b_0 traitlets 5.7.1 py39haa95532_0 typing_extensions 4.11.0 py39haa95532_0 tzdata 2024a h04d1e81_0 unicodedata2 15.1.0 py39h2bbff1b_0 urllib3 2.2.1 <pip> urllib3 1.26.18 py39haa95532_0 vc 14.2 h21ff451_1 vs2015_runtime 14.27.29016 h5e58377_2 wcwidth 0.2.5 pyhd3eb1b0_0 Werkzeug 3.0.3 <pip> wheel 0.43.0 py39haa95532_0 win_inet_pton 1.1.0 py39haa95532_0 wrapt 1.16.0 <pip> xz 5.4.6 h8cc25b3_1 zeromq 4.3.5 hd77b12b_0 zipp 3.17.0 py39haa95532_0 zipp 3.18.1 <pip> zlib 1.2.13 h8cc25b3_1 zstd 1.5.5 hd43e919_2 ``` After encountering this abnormal, I turn to python 3.7 with 0.9.0 ,everything works right. ![Dingtalk_20240520161912](https://github.com/mwaskom/seaborn/assets/11989383/436ed563-21e5-470a-9f86-a47d467ffe92) ``` _ipyw_jlab_nb_ext_conf 0.1.0 py37_0 alabaster 0.7.11 py37_0 anaconda 5.3.1 py37_0 anaconda-client 1.7.2 py37_0 anaconda-navigator 1.9.2 py37_0 anaconda-project 0.8.2 py37_0 appdirs 1.4.3 py37h28b3542_0 asn1crypto 0.24.0 py37_0 astroid 2.0.4 py37_0 astropy 3.0.4 py37hfa6e2cd_0 astunparse 1.6.3 <pip> atomicwrites 1.2.1 py37_0 attrs 18.2.0 py37h28b3542_0 automat 0.7.0 py37_0 babel 2.6.0 py37_0 backcall 0.1.0 py37_0 backports 1.0 py37_1 backports.shutil_get_terminal_size 1.0.0 py37_2 beautifulsoup4 4.6.3 py37_0 bitarray 0.8.3 py37hfa6e2cd_0 bkcharts 0.2 py37_0 blas 1.0 mkl blaze 0.11.3 py37_0 bleach 2.1.4 py37_0 blosc 1.14.4 he51fdeb_0 bokeh 0.13.0 py37_0 boto 2.49.0 py37_0 bottleneck 1.2.1 py37h452e1ab_1 bzip2 1.0.6 hfa6e2cd_5 ca-certificates 2018.03.07 0 certifi 2018.8.24 py37_1 cffi 1.11.5 py37h74b6da3_1 chardet 3.0.4 py37_1 click 6.7 py37_0 cloudpickle 0.5.5 py37_0 clyent 1.2.2 py37_1 colorama 0.3.9 py37_0 comtypes 1.1.7 py37_0 conda 4.5.11 py37_0 conda-build 3.15.1 py37_0 conda-env 2.6.0 1 console_shortcut 0.1.1 3 constantly 15.1.0 py37h28b3542_0 contextlib2 0.5.5 py37_0 cryptography 2.3.1 py37h74b6da3_0 curl 7.61.0 h7602738_0 cycler 0.10.0 py37_0 Cython 0.29.28 <pip> cython 0.28.5 py37h6538335_0 cytoolz 0.9.0.1 py37hfa6e2cd_1 dask 0.19.1 py37_0 dask-core 0.19.1 py37_0 datashape 0.5.4 py37_1 decorator 4.3.0 py37_0 defusedxml 0.5.0 py37_1 distlib 0.3.8 <pip> distributed 1.23.1 py37_0 docutils 0.14 py37_0 entrypoints 0.2.3 py37_2 et_xmlfile 1.0.1 py37_0 fastcache 1.0.2 py37hfa6e2cd_2 filelock 3.0.8 py37_0 filelock 3.12.2 <pip> flask 1.0.2 py37_1 flask-cors 3.0.6 py37_0 flatbuffers 24.3.25 <pip> freetype 2.9.1 ha9979f8_1 gast 0.4.0 <pip> gensim 4.2.0 <pip> get_terminal_size 1.0.0 h38e98db_0 gevent 1.3.6 py37hfa6e2cd_0 glob2 0.6 py37_0 greenlet 0.4.15 py37hfa6e2cd_0 h5py 3.8.0 <pip> h5py 2.8.0 py37h3bdd7fb_2 hdf5 1.10.2 hac2f561_1 heapdict 1.0.0 py37_2 html5lib 1.0.1 py37_0 hyperlink 18.0.0 py37_0 icc_rt 2017.0.4 h97af966_0 icu 58.2 ha66f8fd_1 idna 2.7 py37_0 imageio 2.4.1 py37_0 imagesize 1.1.0 py37_0 importlib-metadata 6.7.0 <pip> incremental 17.5.0 py37_0 intel-openmp 2019.0 118 ipykernel 4.10.0 py37_0 ipython 6.5.0 py37_0 ipython_genutils 0.2.0 py37_0 ipywidgets 7.4.1 py37_0 isort 4.3.4 py37_0 itsdangerous 0.24 py37_1 jdcal 1.4 py37_0 jedi 0.12.1 py37_0 jieba 0.42.1 <pip> jinja2 2.10 py37_0 joblib 1.3.2 <pip> jpeg 9b hb83a4c4_2 jsonschema 2.6.0 py37_0 jupyter 1.0.0 py37_7 jupyter_client 5.2.3 py37_0 jupyter_console 5.2.0 py37_1 jupyter_core 4.4.0 py37_0 jupyterlab 0.34.9 py37_0 jupyterlab_launcher 0.13.1 py37_0 keras 2.11.0 <pip> keyring 13.2.1 py37_0 kiwisolver 1.0.1 py37h6538335_0 lazy-object-proxy 1.3.1 py37hfa6e2cd_2 libclang 18.1.1 <pip> libcurl 7.61.0 h7602738_0 libiconv 1.15 h1df5818_7 libpng 1.6.34 h79bbb47_0 libsodium 1.0.16 h9d3ae62_0 libssh2 1.8.0 hd619d38_4 libtiff 4.0.9 h36446d0_2 libxml2 2.9.8 hadb2253_1 libxslt 1.1.32 hf6f1972_0 llvmlite 0.24.0 py37h6538335_0 locket 0.2.0 py37_1 lxml 4.2.5 py37hef2cd61_0 lzo 2.10 h6df0209_2 m2w64-gcc-libgfortran 5.3.0 6 m2w64-gcc-libs 5.3.0 7 m2w64-gcc-libs-core 5.3.0 7 m2w64-gmp 6.1.0 2 m2w64-libwinpthread-git 5.0.0.4634.697f757 2 markupsafe 1.0 py37hfa6e2cd_1 matplotlib 2.2.3 py37hd159220_0 mccabe 0.6.1 py37_1 menuinst 1.4.14 py37hfa6e2cd_0 mistune 0.8.3 py37hfa6e2cd_1 mkl 2019.0 118 mkl-service 1.1.2 py37hb217b18_5 mkl_fft 1.0.4 py37h1e22a9b_1 mkl_random 1.0.1 py37h77b88f5_1 more-itertools 4.3.0 py37_0 mpmath 1.0.0 py37_2 msgpack-python 0.5.6 py37he980bc4_1 msys2-conda-epoch 20160418 1 multipledispatch 0.6.0 py37_0 navigator-updater 0.2.1 py37_0 nbconvert 5.4.0 py37_1 nbformat 4.4.0 py37_0 networkx 2.1 py37_0 nltk 3.3.0 py37_0 nose 1.3.7 py37_2 notebook 5.6.0 py37_0 numba 0.39.0 py37h830ac7b_0 numexpr 2.6.8 py37h9ef55f4_0 numpy 1.15.1 py37ha559c80_0 numpy 1.21.6 <pip> numpy-base 1.15.1 py37h8128ebf_0 numpydoc 0.8.0 py37_0 odo 0.5.1 py37_0 olefile 0.46 py37_0 openpyxl 2.5.6 py37_0 openssl 1.0.2p hfa6e2cd_0 opt-einsum 3.3.0 <pip> packaging 17.1 py37_0 pandas 0.23.4 py37h830ac7b_0 pandoc 1.19.2.1 hb2460c7_1 pandocfilters 1.4.2 py37_1 parso 0.3.1 py37_0 partd 0.3.8 py37_0 path.py 11.1.0 py37_0 pathlib2 2.3.2 py37_0 patsy 0.5.0 py37_0 pep8 1.7.1 py37_0 pickleshare 0.7.4 py37_0 pillow 5.2.0 py37h08bbbbd_0 pip 10.0.1 py37_0 pkginfo 1.4.2 py37_1 platformdirs 4.0.0 <pip> plotly 5.18.0 <pip> plotly-express 0.4.1 <pip> pluggy 0.7.1 py37h28b3542_0 ply 3.11 py37_0 prometheus_client 0.3.1 py37h28b3542_0 prompt_toolkit 1.0.15 py37_0 protobuf 3.19.6 <pip> psutil 5.4.7 py37hfa6e2cd_0 py 1.6.0 py37_0 pyasn1 0.4.4 py37h28b3542_0 pyasn1-modules 0.2.2 py37_0 pycodestyle 2.4.0 py37_0 pycosat 0.6.3 py37hfa6e2cd_0 pycparser 2.18 py37_1 pycrypto 2.6.1 py37hfa6e2cd_9 pycurl 7.43.0.2 py37h74b6da3_0 pyflakes 2.0.0 py37_0 pygments 2.2.0 py37_0 PyHamcrest 2.1.0 <pip> pylint 2.1.1 py37_0 pyodbc 4.0.24 py37h6538335_0 pyopenssl 18.0.0 py37_0 pyparsing 2.2.0 py37_1 pyqt 5.9.2 py37h6538335_2 pysocks 1.6.8 py37_0 pytables 3.4.4 py37he6f6034_0 pytest 3.8.0 py37_0 pytest-arraydiff 0.2 py37h39e3cac_0 pytest-astropy 0.4.0 py37_0 pytest-doctestplus 0.1.3 py37_0 pytest-openfiles 0.3.0 py37_0 pytest-remotedata 0.3.0 py37_0 python 3.7.0 hea74fb7_0 python-dateutil 2.7.3 py37_0 pytz 2018.5 py37_0 pywavelets 1.0.0 py37h452e1ab_0 pywin32 223 py37hfa6e2cd_1 pywinpty 0.5.4 py37_0 pyyaml 3.13 py37hfa6e2cd_0 pyzmq 17.1.2 py37hfa6e2cd_0 qt 5.9.6 vc14h1e9a669_2 [vc14] qtawesome 0.4.4 py37_0 qtconsole 4.4.1 py37_0 qtpy 1.5.0 py37_0 requests 2.19.1 py37_0 rope 0.11.0 py37_0 ruamel_yaml 0.15.46 py37hfa6e2cd_0 scikit-image 0.14.0 py37h6538335_1 scikit-learn 0.19.2 py37heebcf9a_0 scipy 1.1.0 py37h4f6bf74_1 seaborn 0.9.0 py37_0 send2trash 1.5.0 py37_0 service_identity 17.0.0 py37h28b3542_0 setuptools 40.2.0 py37_0 simplegeneric 0.8.1 py37_2 singledispatch 3.4.0.3 py37_0 sip 4.19.8 py37h6538335_0 six 1.16.0 <pip> six 1.11.0 py37_1 smart-open 7.0.4 <pip> snappy 1.1.7 h777316e_3 snowballstemmer 1.2.1 py37_0 sortedcollections 1.0.1 py37_0 sortedcontainers 2.0.5 py37_0 sphinx 1.7.9 py37_0 sphinxcontrib 1.0 py37_1 sphinxcontrib-websupport 1.1.0 py37_1 spyder 3.3.1 py37_1 spyder-kernels 0.2.6 py37_0 sqlalchemy 1.2.11 py37hfa6e2cd_0 sqlite 3.24.0 h7602738_0 statsmodels 0.9.0 py37h452e1ab_0 sympy 1.1.1 py37_0 tblib 1.3.2 py37_0 tenacity 8.2.3 <pip> tensorflow-estimator 2.11.0 <pip> termcolor 2.3.0 <pip> terminado 0.8.1 py37_1 testpath 0.3.1 py37_0 tk 8.6.8 hfa6e2cd_0 toolz 0.9.0 py37_0 tornado 5.1 py37hfa6e2cd_0 tqdm 4.26.0 py37h28b3542_0 traitlets 4.3.2 py37_0 twisted 18.7.0 py37hfa6e2cd_1 typing_extensions 4.7.1 <pip> unicodecsv 0.14.1 py37_0 urllib3 1.23 py37_0 vc 14.1 h0510ff6_4 virtualenv 20.26.1 <pip> vs2015_runtime 14.15.26706 h3a45250_0 wcwidth 0.1.7 py37_0 webencodings 0.5.1 py37_1 werkzeug 0.14.1 py37_0 wheel 0.31.1 py37_0 widgetsnbextension 3.4.1 py37_0 win_inet_pton 1.0.1 py37_1 win_unicode_console 0.5 py37_0 wincertstore 0.2 py37_0 winpty 0.4.3 4 wrapt 1.10.11 py37hfa6e2cd_2 xgboost 1.6.2 <pip> xlrd 1.1.0 py37_1 xlsxwriter 1.1.0 py37_0 xlwings 0.11.8 py37_0 xlwt 1.3.0 py37_0 yaml 0.1.7 hc54c509_2 zeromq 4.2.5 he025d50_1 zict 0.1.3 py37_0 zipp 3.15.0 <pip> zlib 1.2.11 h8395fce_2 zope 1.0 py37_1 zope.interface 4.5.0 py37hfa6e2cd_0 ```
1medium
Title: Flux inference error on ascend npu Body: ### Describe the bug It fails to run the demo flux inference code. reporting errors: > RuntimeError: call aclnnRepeatInterleaveIntWithDim failed, detail:EZ1001: [PID: 23975] 2025-01-02-11:00:00.313.502 self not implemented for DT_DOUBLE, should be in dtype support list [DT_UINT8,DT_INT8,DT_INT16,DT_INT32,DT_INT64,DT_BOOL,DT_FLOAT16,DT_FLOAT,DT_BFLOAT16,]. ### Reproduction ```python import torch try: import torch_npu # type: ignore # noqa from torch_npu.contrib import transfer_to_npu # type: ignore # noqa is_npu = True except ImportError: print("torch_npu not found") is_npu = False from diffusers import FluxPipeline pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.to('cuda') prompt = "A cat holding a sign that says hello world" image = pipe( prompt, height=1024, width=1024, guidance_scale=3.5, num_inference_steps=50, max_sequence_length=512, generator=torch.Generator("cpu").manual_seed(0) ).images[0] image.save("flux-dev.png") ``` ### Logs ```shell Traceback (most recent call last): File "/home/pagoda/exp.py", line 18, in <module> image = pipe( File "/usr/local/python3.10.13/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) File "/usr/local/python3.10.13/lib/python3.10/site-packages/diffusers/pipelines/flux/pipeline_flux.py", line 889, in __call__ noise_pred = self.transformer( File "/usr/local/python3.10.13/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/usr/local/python3.10.13/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/usr/local/python3.10.13/lib/python3.10/site-packages/diffusers/models/transformers/transformer_flux.py", line 492, in forward image_rotary_emb = self.pos_embed(ids) File "/usr/local/python3.10.13/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/usr/local/python3.10.13/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/usr/local/python3.10.13/lib/python3.10/site-packages/diffusers/models/embeddings.py", line 1253, in forward cos, sin = get_1d_rotary_pos_embed( File "/usr/local/python3.10.13/lib/python3.10/site-packages/diffusers/models/embeddings.py", line 1157, in get_1d_rotary_pos_embed freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D] RuntimeError: call aclnnRepeatInterleaveIntWithDim failed, detail:EZ1001: [PID: 23975] 2025-01-02-11:00:00.313.502 self not implemented for DT_DOUBLE, should be in dtype support list [DT_UINT8,DT_INT8,DT_INT16,DT_INT32,DT_INT64,DT_BOOL,DT_FLOAT16,DT_FLOAT,DT_BFLOAT16,]. [ERROR] 2025-01-02-11:00:00 (PID:23975, Device:0, RankID:-1) ERR01100 OPS call acl api failed ``` ``` ### System Info - 🤗 Diffusers version: 0.32. - Platform: Linux-5.10.0-136.36.0.112.4.oe2203sp1.x86_64-x86_64-with-glibc2.35 - Running on Google Colab?: No - Python version: 3.10.13 - PyTorch version (GPU?): 2.4.0+cpu (False) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Huggingface_hub version: 0.27.0 - Transformers version: 4.46.3 - Accelerate version: 1.1.0 - PEFT version: 0.13.2 - Bitsandbytes version: not installed - Safetensors version: 0.4.5 - xFormers version: not installed - Accelerator: NA - Using GPU in script?: Ascend 910B - Using distributed or parallel set-up in script?: <fill in> ### Who can help? _No response_
2hard
Title: How to link static file? Body: I already run collectstatic but no luck. ![image](https://user-images.githubusercontent.com/4160246/75622765-8a524d80-5bd6-11ea-8a13-829c7ac7c88b.png)
1medium
Title: input argument for for relay mutation overwrites built-in input function Body: In the example https://docs.graphene-python.org/en/latest/relay/mutations/ ``` class IntroduceShip(relay.ClientIDMutation): class Input: ship_name = graphene.String(required=True) faction_id = graphene.String(required=True) ship = graphene.Field(Ship) faction = graphene.Field(Faction) @classmethod def mutate_and_get_payload(cls, root, info, **input): ship_name = input.ship_name faction_id = input.faction_id ship = create_ship(ship_name, faction_id) faction = get_faction(faction_id) return IntroduceShip(ship=ship, faction=faction) ``` I believe `input` would overwrite the built-in Python `input()` function. Can this be renamed to something else? Thanks.
0easy
Title: Create the list of object as response model, but being restplus complained not iterable Body: Hi, I want to get response of list of object, like this [{"name":"aaa", "id": 3}, {"name":"bbb", "id": 4}] CREATIVE_ASSET_MODEL = {"name" : String(), "id": Integer()} The model is ASSETS_RESPONSE_MODEL = api_namespace.model('Response Model', List(Nested(model=CREATIVE_ASSET_MODEL))) But it complained the list is not iterable. Make it a dict will work, like this: ASSETS_RESPONSE_MODEL = api_namespace.model('Response Model', {'result' : List(Nested(model=CREATIVE_ASSET_MODEL)) }) But I don't want to add the 'result' to the response, can anyone help me with this, thanks!
1medium
Title: need to map the cvat to local machine ip Body: ### Actions before raising this issue - [x] I searched the existing issues and did not find anything similar. - [x] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Steps to Reproduce _No response_ ### Expected Behavior _No response_ ### Possible Solution _No response_ ### Context my cvat tool is running fine on localhost:8080 now i want it to run on my machine ip so that anyone in the network can access the tool and do the anotation ### Environment ```Markdown ```
1medium
Title: [BUG] Can't Install from Cached source and wheel in Container Body: **Describe the bug** I am trying to install Bottleneck as a dependency in a container using a manually created pip cache. **To Reproduce** To assist in reproducing the bug, please include the following: 1. Command/code being executed ``` $ cd /tmp $ python3 -m pip download Bottleneck -d ./ -v $ ls Bottleneck-1.3.2.tar.gz numpy-1.18.1-cp36-cp36m-manylinux1_x86_64.whl $ python3 -m pip install Bottleneck --find-links /tmp --no-index ``` 2. Python version and OS ``` Docker Container FROM nvidia/cuda:10.0-cudnn7-runtime-ubuntu18.04 Linux ab183940868d 4.19.76-linuxkit #1 SMP Thu Oct 17 19:31:58 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux Python 3.6.9 (default, Nov 7 2019, 10:44:02) [GCC 8.3.0] on linux ``` 3. `pip` version ``` pip 20.0.2 from /usr/local/lib/python3.6/dist-packages/pip (python 3.6) ``` 4. Output of `pip list` or `conda list` ``` Package Version ------------- ------- asn1crypto 0.24.0 cryptography 2.1.4 idna 2.6 keyring 10.6.0 keyrings.alt 3.0 numpy 1.16.0 pip 20.0.2 pycrypto 2.6.1 pygobject 3.26.1 pyxdg 0.25 SecretStorage 2.3.1 setuptools 39.0.1 six 1.11.0 wheel 0.30.0 ``` **Expected behavior** A clear and concise description of what you expected to happen. Package should install. **Additional context** Error output: ``` Looking in links: /tmp Processing ./Bottleneck-1.3.2.tar.gz Installing build dependencies ... error ERROR: Command errored out with exit status 1: command: /usr/bin/python3 /usr/local/lib/python3.6/dist-packages/pip install --ignore-installed --no-user --prefix /tmp/pip-build-env-1z33ubip/overlay --no-warn-script-location --no-binary :none: --only-binary :none: --no-index --find-links /tmp -- setuptools wheel 'numpy==1.13.3; python_version=='"'"'2.7'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.13.3; python_version=='"'"'3.5'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.13.3; python_version=='"'"'3.6'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.14.5; python_version=='"'"'3.7'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.17.3; python_version>='"'"'3.8'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'2.7'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.5'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.6'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.7'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.17.3; python_version>='"'"'3.8'"'"' and platform_system=='"'"'AIX'"'"'' cwd: None Complete output (12 lines): Ignoring numpy: markers 'python_version == "2.7" and platform_system != "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "3.5" and platform_system != "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "3.7" and platform_system != "AIX"' don't match your environment Ignoring numpy: markers 'python_version >= "3.8" and platform_system != "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "2.7" and platform_system == "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "3.5" and platform_system == "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "3.6" and platform_system == "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "3.7" and platform_system == "AIX"' don't match your environment Ignoring numpy: markers 'python_version >= "3.8" and platform_system == "AIX"' don't match your environment Looking in links: /tmp ERROR: Could not find a version that satisfies the requirement setuptools (from versions: none) ERROR: No matching distribution found for setuptools ---------------------------------------- ERROR: Command errored out with exit status 1: /usr/bin/python3 /usr/local/lib/python3.6/dist-packages/pip install --ignore-installed --no-user --prefix /tmp/pip-build-env-1z33ubip/overlay --no-warn-script-location --no-binary :none: --only-binary :none: --no-index --find-links /tmp -- setuptools wheel 'numpy==1.13.3; python_version=='"'"'2.7'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.13.3; python_version=='"'"'3.5'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.13.3; python_version=='"'"'3.6'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.14.5; python_version=='"'"'3.7'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.17.3; python_version>='"'"'3.8'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'2.7'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.5'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.6'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.7'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.17.3; python_version>='"'"'3.8'"'"' and platform_system=='"'"'AIX'"'"'' Check the logs for full command output. ```
2hard
Title: How can I get the Similarity between two Sentence? Body: I got the same issue that the "cosine similarity of two sentence vectors is unreasonably high (e.g. always > 0.8)". And the author said: "Since cosine distance is a linear space where all dimensions are weighted equally." So, does anybody have some solution for this issue? Or, any other Similarity Functions can be used for computing similarity between two sentence with sentence embedding?
1medium
Title: Allow overriding `accuracy` metric Body: Right now accuracy (used in non-regression fits) is hard coded to be: ``` python predict = predict_proba.argmax(axis=1) accuracy = T.mean(T.eq(predict, y_batch)) ```
1medium
Title: jointplot with kind="hex" fails with datetime64[ns] Body: Minimal example: ```python import seaborn as sns import numpy as np dates = np.array(["2023-01-01", "2023-01-02", "2023-01-03"], dtype="datetime64[ns]") sns.jointplot(x=dates, y=[1, 2, 3], kind="hex") ``` Error: ``` Traceback (most recent call last): File "/.../seaborn_bug.py", line 21, in <module> sns.jointplot(x=dates, y=[1, 2, 3], kind="hex") File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/seaborn/axisgrid.py", line 2307, in jointplot x_bins = min(_freedman_diaconis_bins(grid.x), 50) File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/seaborn/distributions.py", line 2381, in _freedman_diaconis_bins iqr = np.subtract.reduce(np.nanpercentile(a, [75, 25])) TypeError: the resolved dtypes are not compatible with subtract.reduce. Resolved (dtype('<M8[ns]'), dtype('<M8[ns]'), dtype('<m8[ns]')) ``` I think this should work, as datetime64[ns] is the default type for datetimes in pandas. It works when I omit `kind="hex"` or use `kind="kde"`. The error was in version 0.13.2. In 0.11.2 I got a error in the same cases but it was a integer overflow with numpy during conversions.
1medium
Title: [FR] Make filter or status for consumed parts. Body: ### Please verify that this feature request has NOT been suggested before. - [x] I checked and didn't find a similar feature request ### Problem statement Serialized parts, what been consumed by build order cant be easy filtered out. Example: I have part "PC" with serial number and part "Mainboard", serialized too. So, after building and selling a few PCs, if im trying to search mainboads by OK status (or any other), i will have consumed mainboards in search results. There is also checkbox "Is Available", but it filters out quarantined\lost and other statuses. ### Suggested solution So, we need special status for consumed parts or checkbox field. ### Describe alternatives you've considered . ### Examples of other systems _No response_ ### Do you want to develop this? - [ ] I want to develop this.
1medium
Title: Pad with pad mode 'wrap' does not duplicates boxes Body: Is there a way to use Pad (For example `iaa.PadToSquare`) with pad mode `wrap` or `reflect` that will duplicate also the boxes. for example: ``` image = imageio.imread('example.jpg') bbs = BoundingBoxesOnImage([ BoundingBox(x1=300, y1= 100, x2=600, y2=400), BoundingBox(x1=720, y1= 150, x2=800, y2=230), ], shape=image.shape) image_before = bbs.draw_on_image(image, size=2) ia.imshow(image_before) ``` ![image](https://user-images.githubusercontent.com/44769768/97146079-e83c3280-176f-11eb-99e1-f819b9e25ed1.png) ``` seq = iaa.Sequential([ iaa.PadToSquare(position='right-top', pad_mode='wrap'), ]) image_aug, bbs_aug = seq(image=image, bounding_boxes=bbs) image_after = bbs_aug.draw_on_image(image_aug, size=2, color=[0, 0, 255]) ia.imshow(image_after) ``` ![image](https://user-images.githubusercontent.com/44769768/97146223-289bb080-1770-11eb-95a4-b2e71dbb4603.png) and the boxes are missing in the newly duplicated parts of the image. Thanks a lot.
1medium
Title: Google Generative AI responds very late. Body: ### The problem Google Generative AI responds very late. Sometimes it takes up to 1 hour. I wonder why this delay occurs? ### What version of Home Assistant Core has the issue? 2025.3.3 ### What was the last working version of Home Assistant Core? _No response_ ### What type of installation are you running? Home Assistant OS ### Integration causing the issue _No response_ ### Link to integration documentation on our website _No response_ ### Diagnostics information _No response_ ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt ``` ### Additional information _No response_
1medium
Title: Allow nicer urls for charts, instead of (or alongside) UUID Body: This is a potentially hazardous change, as the idea of a guid is to prevent collisions in the name. Some potential ways to achieve this: namespaced charts (e.g. SOMEUSER, or SOMEGROUP) that ties into the existing auth mechanism, or is an arbitrary field in the chart. The originally UUID link should always work however, and should be the default if there is no other way to get a URL. Originally requested by @techfreek.
2hard
Title: Automatic Operator Conversion Enhancement Body: **What would you like to be added**: automatic operator conversion in compression.pytorch.speedup **Why is this needed**: nni needs to call these functions to understand the model. problems when doing it manually: 1. The arguments can only be fetched as a argument list 2. The function uses a lot of star(*) syntax (Keyword-Only Arguments, PEP 3102), both positional argument and keyword-only argument, but the argument list cannot be used to distinguish positional argument and keyword-only argument 3. The function is overloaded, and the number of parameters in multiple versions of the same function may be the same, so it is difficult to distinguish overloaded situations only by the number. 4. Because it is a build-in, inspect.getfullargspec and other methods in inspect module cannot be used to get reflection information. 5. There are more than 2000 functions including the overloaded functions, which is hard to be operated by manual adaptation. **Without this feature, how does current nni work**: manual adaptation and conversion **Components that may involve changes**: only jit_translate.py in common/compression/pytorch/speedup/ **Brief description of your proposal if any**: 1. Automatic conversion + There is a schema information in jit node which can parse out positional argument and keyword-only argument. + Then we can automatic wrap arguments, keywords, and the function up to an adapted function. + Tested the automatic conversions of torch.sum, torch.unsqueeze, and torch.flatten OK. 2. Unresolved issues + Check schema syntax in multiple versions of pytorch and whether the syntax is stable. + The schema syntax is different from python's or c++'s. + I did't find the syntax document in pytorch documentation. + When pytorch compiles, it will dynamically generate schema informations from c++ functions. + For all the given schemas, see if they can correspond to the compiled pytorch functions. + For all the given schemas, try to parse one by one, and count the number that cannot be parsed.
2hard
Title: C:\Users\mukta\anaconda3\lib\site-packages\IPython\core\formatters.py:918: UserWarning: Unexpected error in rendering Lux widget and recommendations. Falling back to Pandas display. Body: **Describe the bug** C:\Users\mukta\anaconda3\lib\site-packages\IPython\core\formatters.py:918: UserWarning: Unexpected error in rendering Lux widget and recommendations. Falling back to Pandas display. It occured while using GroupBy function in pandas module **To Reproduce** Please describe the steps needed to reproduce the behavior. For example: 1. Using this data: `df = pd.read_csv("Play Store Data.csv")` 2. Go to 'df1.groupby(['Category', 'Content Rating']).mean()' 3. See error File "C:\Users\mukta\anaconda3\lib\site-packages\altair\utils\core.py", line 307, in sanitize_dataframe raise ValueError("Hierarchical indices not supported") ValueError: Hierarchical indices not supported ![image](https://user-images.githubusercontent.com/50951647/205797658-be405915-971f-44c5-90a1-ca079b4b2470.png)
1medium
Title: [BUG] The latest Django-ninja (0.22.1) doesn't support the latest Django-ninja (0.18.8) Body: The latest Django-ninja (0.22.1) doesn't support the latest Django-ninja (0.18.8) in connection with Poetry. - Python version: 3.11.3 - Django version: 4.2 - Django-Ninja version: 0.22.1 -------------------------------------------------------------------------------------------------------------- Poetry output (app1 backend-py3.11) PS C:\git\app1> poetry update Updating dependencies Resolving dependencies... Because django-ninja-extra (0.18.8) depends on django-ninja (0.21.0) and no versions of django-ninja-extra match >0.18.8,<0.19.0, django-ninja-extra (>=0.18.8,<0.19.0) requires django-ninja (0.21.0). So, because app1 backend depends on both django-ninja (^0.22) and django-ninja-extra (^0.18.8), version solving failed.
1medium
Title: Adding F2 to evaluation metrics Body: ## Description Please add F2 as an evaluation metric. It is very useful when modeling with an emphasis on recall. Even better than F2 would perhaps be fbeta, which allows you to specify the degree to which recall is more important. ## References https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
1medium
Title: Flask SQLAlchemy Integration - Documentation Suggestion Body: Firstly, thank you for the great extension!! I've ran into an error that I'm sure others will have ran into, it may be worth updating the docs with a warning about it. Our structure was as follows: - Each model has it's own module - Each model module also contains a Schema and Manager for example UserModel, UserSchema, UserManager all defined within /models/user.py Some background - with SQLAlchemy, with separate models, you need to import them all at runtime, before the DB is initialised to avoid circular dependancies within relationships. When the `UserSchema(ma.ModelSchema)` is hit during import `from app.models import *` (in bootstrap) this initialises the models and attempts to execute the relationships. At this stage, we may not have a relationship requirement (which SQLAlchemy avoids using string based relationships) however as the `ma.ModelSchema` initialises the models it creates errors such as this: > sqlalchemy.exc.InvalidRequestError: When initializing mapper mapped class User->users, expression ‘Team’ failed to locate a name (“name ‘Team’ is not defined”). If this is a class name, consider adding this relationship() to the <class ‘app.models.user.User’> class after both dependent classes have been defined. and, on subsequent loads: > sqlalchemy.exc.InvalidRequestError: Table ‘users_teams’ is already defined for this MetaData instance. Specify ‘extend_existing=True’ to redefine options and columns on an existing Table object. The solution to this is to simply build the UserSchemas in a different import namespace, we've now got: ``` /schemas/user_schema.py /models/user.py ``` And no more circular issues - hopefully this helps someone else, went around in circles (pun intended) for a few hours before I realised it was the ModelSchema causing it. Could the docs be updated to make a point of explaining that the ModelSchema initialises the model, and therefore it's a good idea for them to be in separate import destinations?
1medium
Title: CUDA not available - defaulting to CPU. Note: This module is much faster with a GPU. Body: I enter the command `easyocr -l ru en -f pic.png --detail = 1 --gpu = true` and then I get the message `CUDA not available - defaulting to CPU. Note: This module is much faster with a GPU. `, and then, in the task manager, the increased load on the CPU is displayed, instead of the increased load on the GPU. My graphics card is GTX 1080 ti, it supports CUDA. But easyocr can't use GPUs.
1medium
Title: when I use is checked to get the listbox state ,porpmpt error Body: listbox = dlg.ListBox print(listbox.items()) item = listbox.get_item(field) if item.is_checked() == True: print("T") else: print("F") it show error File "C:\Users\zou-45\AppData\Local\Programs\Python\Python311\Lib\site-packages\comtypes\__init__.py", line 274, in __getattr__ fixed_name = self.__map_case__[name.lower()] ~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^ KeyError: 'togglestate_on'
1medium
Title: Strange embedding from FastText Body: I am struggled understanding word embeddings of FastText. According to the white paper [Enriching Word Vectors with Subword Information](https://arxiv.org/pdf/1607.04606.pdf), embeddings of a word is the mean (or sum) of embeddings of its subwords. I failed to verify this. On `common_text` imported from `gensim.test.utils`, embedding of `user` is `[-0.03062156 -0.02879291 -0.01737508 -0.02839565]`. The mean of embeddings of ['<us', 'use', 'ser', 'er>'] (setting `min_n=max_n=3`) is `[-0.047664 -0.01677518 0.02312234 0.03452689]`. The sum of embeddings also result in a different vector. Is it a mismatch between Gensim implementation and original FastText, or am I missing something? Below is my code: ```python import numpy as np from gensim.models import FastText from gensim.models._utils_any2vec import compute_ngrams from gensim.models.keyedvectors import FastTextKeyedVectors from gensim.test.utils import common_texts model = FastText(size=4, window=3, min_count=1) model.build_vocab(sentences=common_texts) model.train(sentences=common_texts, total_examples=len(common_texts), epochs=10, min_n=3, max_n=3) print('survey' in model.wv.vocab) print('ser' in model.wv.vocab) print('ree' in model.wv.vocab) ngrams = compute_ngrams('user', 3, 3) print('num vector of "user": ', model.wv['user']) print('ngrams of "user": ', ngrams) print('mean of num vectors of {}: \n{}'.format(ngrams, np.mean([model.wv[c] for c in ngrams], axis=0))) ```
2hard
Title: when leave current page, the event .then() or .success() not execute Body: ### Describe the bug When I launch the Gradio app, I click a button on the page, and then leave the page. I notice that only the test1 method is executed in the console, and the methods following .then() do not execute. They will only continue to execute once I return to the page. i want know if any setting can change this behavior, when i leave current page, .then() method can continue execute. thanks ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ```python import time import gradio as gr def test1(): print("test1") time.sleep(10) print("test1 end") def test2(): print("test2") time.sleep(10) print("test2 end") def test3(): print("test3") time.sleep(10) print("test3 end") with gr.Blocks() as demo: btn = gr.Button("点击") btn.click(test1).then(test2).then(test3) demo.launch(server_name="0.0.0.0", server_port=8100) ``` ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell gradio 5.8.0 ``` ### Severity I can work around it
1medium
Title: Autogenerate does not respect the `version_table` used together with `version_table_schema` Body: Alembic: 1.0.10 SQLAlchemy: 1.3.4 Python: 3.7.3 Postgres server: 10.4 --- My goal is to: 1. have all application tables in a custom named schema `auth` 2. have migrations table in the same schema and renamed to `db_migrations` 3. being able to apply migrations to the given schema 4. being able to autogenerate migrations for the given schema I have achieved 1,2,3 but not 4. For schema I've added following configurations. In application model: ``` Base = declarative_base(metadata=MetaData(schema=schema_name)) ``` I've made no changes to `Table` objects. As I understand - `Table.schema` is populated from `Base.metadata.schema` if no schema provided explicitly. In application bootstrap: ``` ... flask_app.config['SQLALCHEMY_DATABASE_URI'] = db_url # set default schema to use flask_app.config['SQLALCHEMY_ENGINE_OPTIONS'] = { "connect_args": {'options': f'-csearch_path={schema_name}'} } ... ``` In alembic `env.py`: ``` def run_migrations_online(): ... connectable = engine_from_config( ... # define schema search path for connection connect_args={'options': f'-csearch_path={app_name}'} ) with connectable.connect() as connection: context.configure( connection=connection, target_metadata=target_metadata, include_schemas=True, version_table_schema=app_name, version_table="db_migrations", ) ``` With the above all tables are created correctly in the target schema, the migrations metadata table is created there as well, and used correctly for migrations. All as expected. Not as expected is that when I run `alembic revision --autogenerate` on a full up-to-date DB I get the following migration: ``` op.drop_table('db_migrations') op.drop_constraint('refresh_token_user_id_fkey', 'refresh_token', type_='foreignkey') op.create_foreign_key(None, 'refresh_token', 'user', ['user_id'], ['id'], source_schema='auth', referent_schema='auth') ... ``` So it tries to drop the migrations table, and also tries to recreate the foreign keys with the schema explicitly defined. There are several more similar foreign key statements. Also I've tried to regenerate some of existing migrations and I found out that it ignores actual model changes. Also I've tried to remove `version_table="db_migrations"`, to no effect. As long as `version_table_schema` is there - it tries to delete `alembic_versions` default table as well. I know there is #77 that supposedly fixed/implemented schemas for autogeneration script. Am I missing some configuration here or is it an actual problem I'm hitting?
2hard
Title: pm.record function Body: Hi, I just updated my papermill package to 1.2.1 and found out that the record function no longer works. It just gave me an error message "AttributeError: module 'papermill' has no attribute 'record'". Is there a replacement function for record? I need it to run multiple jupyter notebooks and import values from each notebook for final combination. Thanks,
1medium
Title: 抖音web版获取直播间商品接口,我复制网页请求接口的cookie进去,还是报错400 Body: 抖音web版获取直播间商品接口,我复制网页请求接口的cookie进去,还是报错400
1medium
Title: 'ThalnetModule' object does not have attribute 'logger' Body: Line 131 of models/thalnet_module.py generates the error when input does not fall within expected bounds.
1medium
Title: [telemetry] Importing Ray Tune in an actor reports Ray Train usage Body: See this test case: https://github.com/ray-project/ray/pull/51161/files#diff-d1dc38a41dc1f9ba3c2aa2d9451217729a6f245ff3af29e4308ffe461213de0aR22
1medium