entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|---|
MobileBertSelfAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {})
# %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (x2), xmask)
tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = float("-inf")
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = (tmp4 != 0)
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = (tmp9 != 0)
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = (tmp15 != 0)
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = (tmp21 != 0)
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(buf2, primals_8, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
del buf9
return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from _paritybench_helpers import _mock_config
import math
import torch
from torch import nn
import torch.utils.checkpoint
class MobileBertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.true_hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.true_hidden_size, self.all_head_size)
self.key = nn.Linear(config.true_hidden_size, self.all_head_size)
self.value = nn.Linear(config.true_hidden_size if config.
use_bottleneck_attention else config.hidden_size, self.
all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, query_tensor, key_tensor, value_tensor,
attention_mask=None, head_mask=None, output_attentions=None):
mixed_query_layer = self.query(query_tensor)
mixed_key_layer = self.key(key_tensor)
mixed_value_layer = self.value(value_tensor)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (
context_layer,)
return outputs
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'config': _mock_config(num_attention_heads=4,
true_hidden_size=4, use_bottleneck_attention=4,
attention_probs_dropout_prob=0.5)}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + x2, xmask)
tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = float('-inf')
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4 != 0
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = tmp9 != 0
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = tmp15 != 0
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp21 != 0
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf8, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf9
return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class MobileBertSelfAttentionNew(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.true_hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.true_hidden_size, self.all_head_size)
self.key = nn.Linear(config.true_hidden_size, self.all_head_size)
self.value = nn.Linear(config.true_hidden_size if config.
use_bottleneck_attention else config.hidden_size, self.
all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0, input_1, input_2):
primals_1 = self.query.weight
primals_2 = self.query.bias
primals_4 = self.key.weight
primals_5 = self.key.bias
primals_7 = self.value.weight
primals_8 = self.value.bias
primals_3 = input_0
primals_6 = input_1
primals_9 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
Clemens123/transformers
|
MobileBertSelfAttention
| false | 12,523 |
[
"Apache-2.0"
] | 0 |
22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
|
https://github.com/Clemens123/transformers/tree/22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
|
GANFeatLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/iq/ciqmlx25k25rx32bs7fubhubwruuaxcvtawo6uwpgtrjrhiilqst.py
# Topologically Sorted Source Nodes: [loss, loss_1, unweighted_loss, truediv, loss_2, loss_3, loss_4, unweighted_loss_1, truediv_1, loss_5, loss_6, loss_7, unweighted_loss_2, truediv_2, loss_8, loss_9, loss_10, unweighted_loss_3, truediv_3, loss_11, loss_12, loss_13, unweighted_loss_4, truediv_4, loss_14, loss_15, loss_16, unweighted_loss_5, truediv_5, loss_17, loss_18, loss_19, unweighted_loss_6, truediv_6, loss_20, loss_21, loss_22, unweighted_loss_7, truediv_7, loss_23, loss_24, loss_25, unweighted_loss_8, truediv_8, loss_26, loss_27, loss_28, unweighted_loss_9, truediv_9, loss_29, loss_30, loss_31, unweighted_loss_10, truediv_10, loss_32, loss_33, loss_34, unweighted_loss_11, truediv_11, loss_35, mul_12], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mul, aten.div, aten.add]
# Source node to ATen node mapping:
# loss => abs_1, sub
# loss_1 => mean
# loss_10 => mean_3
# loss_11 => add_3
# loss_12 => abs_5, sub_4
# loss_13 => mean_4
# loss_14 => add_4
# loss_15 => abs_6, sub_5
# loss_16 => mean_5
# loss_17 => add_5
# loss_18 => abs_7, sub_6
# loss_19 => mean_6
# loss_2 => add
# loss_20 => add_6
# loss_21 => abs_8, sub_7
# loss_22 => mean_7
# loss_23 => add_7
# loss_24 => abs_9, sub_8
# loss_25 => mean_8
# loss_26 => add_8
# loss_27 => abs_10, sub_9
# loss_28 => mean_9
# loss_29 => add_9
# loss_3 => abs_2, sub_1
# loss_30 => abs_11, sub_10
# loss_31 => mean_10
# loss_32 => add_10
# loss_33 => abs_12, sub_11
# loss_34 => mean_11
# loss_35 => add_11
# loss_4 => mean_1
# loss_5 => add_1
# loss_6 => abs_3, sub_2
# loss_7 => mean_2
# loss_8 => add_2
# loss_9 => abs_4, sub_3
# mul_12 => mul_12
# truediv => div
# truediv_1 => div_1
# truediv_10 => div_10
# truediv_11 => div_11
# truediv_2 => div_2
# truediv_3 => div_3
# truediv_4 => div_4
# truediv_5 => div_5
# truediv_6 => div_6
# truediv_7 => div_7
# truediv_8 => div_8
# truediv_9 => div_9
# unweighted_loss => mul
# unweighted_loss_1 => mul_1
# unweighted_loss_10 => mul_10
# unweighted_loss_11 => mul_11
# unweighted_loss_2 => mul_2
# unweighted_loss_3 => mul_3
# unweighted_loss_4 => mul_4
# unweighted_loss_5 => mul_5
# unweighted_loss_6 => mul_6
# unweighted_loss_7 => mul_7
# unweighted_loss_8 => mul_8
# unweighted_loss_9 => mul_9
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_1, %select_3), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_5, %select_7), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_2,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 1.0), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, 4), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %div_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_9, %select_11), kwargs = {})
# %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_3,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 1.0), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_2, 4), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %div_2), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_13, %select_15), kwargs = {})
# %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_4,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_3, 1.0), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_3, 4), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %div_3), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_17, %select_19), kwargs = {})
# %abs_5 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_4,), kwargs = {})
# %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_5,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_4, 1.0), kwargs = {})
# %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_4, 4), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %div_4), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_21, %select_23), kwargs = {})
# %abs_6 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_5,), kwargs = {})
# %mean_5 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_6,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_5, 1.0), kwargs = {})
# %div_5 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_5, 4), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %div_5), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_25, %select_27), kwargs = {})
# %abs_7 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_6,), kwargs = {})
# %mean_6 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_7,), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_6, 1.0), kwargs = {})
# %div_6 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_6, 4), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %div_6), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_29, %select_31), kwargs = {})
# %abs_8 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_7,), kwargs = {})
# %mean_7 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_8,), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_7, 1.0), kwargs = {})
# %div_7 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_7, 4), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %div_7), kwargs = {})
# %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_33, %select_35), kwargs = {})
# %abs_9 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_8,), kwargs = {})
# %mean_8 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_9,), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_8, 1.0), kwargs = {})
# %div_8 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_8, 4), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %div_8), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_37, %select_39), kwargs = {})
# %abs_10 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_9,), kwargs = {})
# %mean_9 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_10,), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_9, 1.0), kwargs = {})
# %div_9 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_9, 4), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %div_9), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_41, %select_43), kwargs = {})
# %abs_11 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_10,), kwargs = {})
# %mean_10 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_11,), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_10, 1.0), kwargs = {})
# %div_10 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_10, 4), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, %div_10), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_45, %select_47), kwargs = {})
# %abs_12 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_11,), kwargs = {})
# %mean_11 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_12,), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_11, 1.0), kwargs = {})
# %div_11 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_11, 4), kwargs = {})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %div_11), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_11, 1.0), kwargs = {})
triton_per_fused_abs_add_div_mean_mul_sub_0 = async_compile.triton('triton_per_fused_abs_add_div_mean_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_mean_mul_sub_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 24, 'num_reduction': 12, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_div_mean_mul_sub_0(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (128 + r0), None)
tmp1 = tl.load(in_ptr1 + (128 + r0), None)
tmp7 = tl.load(in_ptr0 + (r0), None)
tmp8 = tl.load(in_ptr1 + (r0), None)
tmp14 = tl.load(in_ptr0 + (144 + r0), None)
tmp15 = tl.load(in_ptr1 + (144 + r0), None)
tmp21 = tl.load(in_ptr0 + (16 + r0), None)
tmp22 = tl.load(in_ptr1 + (16 + r0), None)
tmp28 = tl.load(in_ptr0 + (160 + r0), None)
tmp29 = tl.load(in_ptr1 + (160 + r0), None)
tmp35 = tl.load(in_ptr0 + (32 + r0), None)
tmp36 = tl.load(in_ptr1 + (32 + r0), None)
tmp42 = tl.load(in_ptr0 + (192 + r0), None)
tmp43 = tl.load(in_ptr1 + (192 + r0), None)
tmp49 = tl.load(in_ptr0 + (64 + r0), None)
tmp50 = tl.load(in_ptr1 + (64 + r0), None)
tmp56 = tl.load(in_ptr0 + (208 + r0), None)
tmp57 = tl.load(in_ptr1 + (208 + r0), None)
tmp63 = tl.load(in_ptr0 + (80 + r0), None)
tmp64 = tl.load(in_ptr1 + (80 + r0), None)
tmp70 = tl.load(in_ptr0 + (224 + r0), None)
tmp71 = tl.load(in_ptr1 + (224 + r0), None)
tmp77 = tl.load(in_ptr0 + (96 + r0), None)
tmp78 = tl.load(in_ptr1 + (96 + r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.sum(tmp4, 1)[:, None]
tmp9 = tmp7 - tmp8
tmp10 = tl_math.abs(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp20 = tl.sum(tmp18, 1)[:, None]
tmp23 = tmp21 - tmp22
tmp24 = tl_math.abs(tmp23)
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.sum(tmp25, 1)[:, None]
tmp30 = tmp28 - tmp29
tmp31 = tl_math.abs(tmp30)
tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK])
tmp34 = tl.sum(tmp32, 1)[:, None]
tmp37 = tmp35 - tmp36
tmp38 = tl_math.abs(tmp37)
tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK])
tmp41 = tl.sum(tmp39, 1)[:, None]
tmp44 = tmp42 - tmp43
tmp45 = tl_math.abs(tmp44)
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = tl.sum(tmp46, 1)[:, None]
tmp51 = tmp49 - tmp50
tmp52 = tl_math.abs(tmp51)
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = tl.sum(tmp53, 1)[:, None]
tmp58 = tmp56 - tmp57
tmp59 = tl_math.abs(tmp58)
tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK])
tmp62 = tl.sum(tmp60, 1)[:, None]
tmp65 = tmp63 - tmp64
tmp66 = tl_math.abs(tmp65)
tmp67 = tl.broadcast_to(tmp66, [XBLOCK, RBLOCK])
tmp69 = tl.sum(tmp67, 1)[:, None]
tmp72 = tmp70 - tmp71
tmp73 = tl_math.abs(tmp72)
tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK])
tmp76 = tl.sum(tmp74, 1)[:, None]
tmp79 = tmp77 - tmp78
tmp80 = tl_math.abs(tmp79)
tmp81 = tl.broadcast_to(tmp80, [XBLOCK, RBLOCK])
tmp83 = tl.sum(tmp81, 1)[:, None]
tmp84 = 16.0
tmp85 = tmp13 / tmp84
tmp86 = 1.0
tmp87 = tmp85 * tmp86
tmp88 = 0.25
tmp89 = tmp87 * tmp88
tmp90 = 0.0
tmp91 = tmp89 + tmp90
tmp92 = tmp27 / tmp84
tmp93 = tmp92 * tmp86
tmp94 = tmp93 * tmp88
tmp95 = tmp91 + tmp94
tmp96 = tmp41 / tmp84
tmp97 = tmp96 * tmp86
tmp98 = tmp97 * tmp88
tmp99 = tmp95 + tmp98
tmp100 = tmp55 / tmp84
tmp101 = tmp100 * tmp86
tmp102 = tmp101 * tmp88
tmp103 = tmp99 + tmp102
tmp104 = tmp69 / tmp84
tmp105 = tmp104 * tmp86
tmp106 = tmp105 * tmp88
tmp107 = tmp103 + tmp106
tmp108 = tmp83 / tmp84
tmp109 = tmp108 * tmp86
tmp110 = tmp109 * tmp88
tmp111 = tmp107 + tmp110
tmp112 = tmp6 / tmp84
tmp113 = tmp112 * tmp86
tmp114 = tmp113 * tmp88
tmp115 = tmp111 + tmp114
tmp116 = tmp20 / tmp84
tmp117 = tmp116 * tmp86
tmp118 = tmp117 * tmp88
tmp119 = tmp115 + tmp118
tmp120 = tmp34 / tmp84
tmp121 = tmp120 * tmp86
tmp122 = tmp121 * tmp88
tmp123 = tmp119 + tmp122
tmp124 = tmp48 / tmp84
tmp125 = tmp124 * tmp86
tmp126 = tmp125 * tmp88
tmp127 = tmp123 + tmp126
tmp128 = tmp62 / tmp84
tmp129 = tmp128 * tmp86
tmp130 = tmp129 * tmp88
tmp131 = tmp127 + tmp130
tmp132 = tmp76 / tmp84
tmp133 = tmp132 * tmp86
tmp134 = tmp133 * tmp88
tmp135 = tmp131 + tmp134
tmp136 = tmp135 * tmp86
tl.debug_barrier()
tl.store(in_out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp136, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((), (), torch.float32)
buf13 = buf10; del buf10 # reuse
buf14 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [loss, loss_1, unweighted_loss, truediv, loss_2, loss_3, loss_4, unweighted_loss_1, truediv_1, loss_5, loss_6, loss_7, unweighted_loss_2, truediv_2, loss_8, loss_9, loss_10, unweighted_loss_3, truediv_3, loss_11, loss_12, loss_13, unweighted_loss_4, truediv_4, loss_14, loss_15, loss_16, unweighted_loss_5, truediv_5, loss_17, loss_18, loss_19, unweighted_loss_6, truediv_6, loss_20, loss_21, loss_22, unweighted_loss_7, truediv_7, loss_23, loss_24, loss_25, unweighted_loss_8, truediv_8, loss_26, loss_27, loss_28, unweighted_loss_9, truediv_9, loss_29, loss_30, loss_31, unweighted_loss_10, truediv_10, loss_32, loss_33, loss_34, unweighted_loss_11, truediv_11, loss_35, mul_12], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mul, aten.div, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_abs_add_div_mean_mul_sub_0.run(buf14, arg0_1, arg1_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf14, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import functools
import torch
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import init as init
from torchvision.models import vgg as vgg
import torch.utils.data
from torch.utils import data as data
from torch import autograd as autograd
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are 'none', 'mean' and 'sum'.
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
else:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean'):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
'none', 'mean' and 'sum'. Default: 'mean'.
Returns:
Tensor: Loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) > 1:
weight = weight.sum()
else:
weight = weight.sum() * loss.size(1)
loss = loss.sum() / weight
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
**kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction)
return loss
return wrapper
@weighted_loss
def l1_loss(pred, target):
return F.l1_loss(pred, target, reduction='none')
@weighted_loss
def mse_loss(pred, target):
return F.mse_loss(pred, target, reduction='none')
@weighted_loss
def charbonnier_loss(pred, target, eps=1e-12):
return torch.sqrt((pred - target) ** 2 + eps)
class L1Loss(nn.Module):
"""L1 (mean absolute error, MAE) loss.
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
"""
def __init__(self, loss_weight=1.0, reduction='mean'):
super(L1Loss, self).__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
def forward(self, pred, target, weight=None, **kwargs):
"""
Args:
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
weights. Default: None.
"""
return self.loss_weight * l1_loss(pred, target, weight, reduction=
self.reduction)
class MSELoss(nn.Module):
"""MSE (L2) loss.
Args:
loss_weight (float): Loss weight for MSE loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
"""
def __init__(self, loss_weight=1.0, reduction='mean'):
super(MSELoss, self).__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
def forward(self, pred, target, weight=None, **kwargs):
"""
Args:
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
weights. Default: None.
"""
return self.loss_weight * mse_loss(pred, target, weight, reduction=
self.reduction)
class CharbonnierLoss(nn.Module):
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable
variant of L1Loss).
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate
Super-Resolution".
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
eps (float): A value used to control the curvature near zero.
Default: 1e-12.
"""
def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12):
super(CharbonnierLoss, self).__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.eps = eps
def forward(self, pred, target, weight=None, **kwargs):
"""
Args:
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
weights. Default: None.
"""
return self.loss_weight * charbonnier_loss(pred, target, weight,
eps=self.eps, reduction=self.reduction)
class GANFeatLoss(nn.Module):
"""Define feature matching loss for gans
Args:
criterion (str): Support 'l1', 'l2', 'charbonnier'.
loss_weight (float): Loss weight. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
"""
def __init__(self, criterion='l1', loss_weight=1.0, reduction='mean'):
super(GANFeatLoss, self).__init__()
if criterion == 'l1':
self.loss_op = L1Loss(loss_weight, reduction)
elif criterion == 'l2':
self.loss_op = MSELoss(loss_weight, reduction)
elif criterion == 'charbonnier':
self.loss_op = CharbonnierLoss(loss_weight, reduction)
else:
raise ValueError(
f'Unsupported loss mode: {criterion}. Supported ones are: l1|l2|charbonnier'
)
self.loss_weight = loss_weight
def forward(self, pred_fake, pred_real):
num_d = len(pred_fake)
loss = 0
for i in range(num_d):
num_intermediate_outputs = len(pred_fake[i]) - 1
for j in range(num_intermediate_outputs):
unweighted_loss = self.loss_op(pred_fake[i][j], pred_real[i
][j].detach())
loss += unweighted_loss / num_d
return loss * self.loss_weight
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import functools
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import init as init
from torchvision.models import vgg as vgg
import torch.utils.data
from torch.utils import data as data
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_add_div_mean_mul_sub_0(in_out_ptr1, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (128 + r0), None)
tmp1 = tl.load(in_ptr1 + (128 + r0), None)
tmp7 = tl.load(in_ptr0 + r0, None)
tmp8 = tl.load(in_ptr1 + r0, None)
tmp14 = tl.load(in_ptr0 + (144 + r0), None)
tmp15 = tl.load(in_ptr1 + (144 + r0), None)
tmp21 = tl.load(in_ptr0 + (16 + r0), None)
tmp22 = tl.load(in_ptr1 + (16 + r0), None)
tmp28 = tl.load(in_ptr0 + (160 + r0), None)
tmp29 = tl.load(in_ptr1 + (160 + r0), None)
tmp35 = tl.load(in_ptr0 + (32 + r0), None)
tmp36 = tl.load(in_ptr1 + (32 + r0), None)
tmp42 = tl.load(in_ptr0 + (192 + r0), None)
tmp43 = tl.load(in_ptr1 + (192 + r0), None)
tmp49 = tl.load(in_ptr0 + (64 + r0), None)
tmp50 = tl.load(in_ptr1 + (64 + r0), None)
tmp56 = tl.load(in_ptr0 + (208 + r0), None)
tmp57 = tl.load(in_ptr1 + (208 + r0), None)
tmp63 = tl.load(in_ptr0 + (80 + r0), None)
tmp64 = tl.load(in_ptr1 + (80 + r0), None)
tmp70 = tl.load(in_ptr0 + (224 + r0), None)
tmp71 = tl.load(in_ptr1 + (224 + r0), None)
tmp77 = tl.load(in_ptr0 + (96 + r0), None)
tmp78 = tl.load(in_ptr1 + (96 + r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.sum(tmp4, 1)[:, None]
tmp9 = tmp7 - tmp8
tmp10 = tl_math.abs(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp20 = tl.sum(tmp18, 1)[:, None]
tmp23 = tmp21 - tmp22
tmp24 = tl_math.abs(tmp23)
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.sum(tmp25, 1)[:, None]
tmp30 = tmp28 - tmp29
tmp31 = tl_math.abs(tmp30)
tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK])
tmp34 = tl.sum(tmp32, 1)[:, None]
tmp37 = tmp35 - tmp36
tmp38 = tl_math.abs(tmp37)
tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK])
tmp41 = tl.sum(tmp39, 1)[:, None]
tmp44 = tmp42 - tmp43
tmp45 = tl_math.abs(tmp44)
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = tl.sum(tmp46, 1)[:, None]
tmp51 = tmp49 - tmp50
tmp52 = tl_math.abs(tmp51)
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = tl.sum(tmp53, 1)[:, None]
tmp58 = tmp56 - tmp57
tmp59 = tl_math.abs(tmp58)
tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK])
tmp62 = tl.sum(tmp60, 1)[:, None]
tmp65 = tmp63 - tmp64
tmp66 = tl_math.abs(tmp65)
tmp67 = tl.broadcast_to(tmp66, [XBLOCK, RBLOCK])
tmp69 = tl.sum(tmp67, 1)[:, None]
tmp72 = tmp70 - tmp71
tmp73 = tl_math.abs(tmp72)
tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK])
tmp76 = tl.sum(tmp74, 1)[:, None]
tmp79 = tmp77 - tmp78
tmp80 = tl_math.abs(tmp79)
tmp81 = tl.broadcast_to(tmp80, [XBLOCK, RBLOCK])
tmp83 = tl.sum(tmp81, 1)[:, None]
tmp84 = 16.0
tmp85 = tmp13 / tmp84
tmp86 = 1.0
tmp87 = tmp85 * tmp86
tmp88 = 0.25
tmp89 = tmp87 * tmp88
tmp90 = 0.0
tmp91 = tmp89 + tmp90
tmp92 = tmp27 / tmp84
tmp93 = tmp92 * tmp86
tmp94 = tmp93 * tmp88
tmp95 = tmp91 + tmp94
tmp96 = tmp41 / tmp84
tmp97 = tmp96 * tmp86
tmp98 = tmp97 * tmp88
tmp99 = tmp95 + tmp98
tmp100 = tmp55 / tmp84
tmp101 = tmp100 * tmp86
tmp102 = tmp101 * tmp88
tmp103 = tmp99 + tmp102
tmp104 = tmp69 / tmp84
tmp105 = tmp104 * tmp86
tmp106 = tmp105 * tmp88
tmp107 = tmp103 + tmp106
tmp108 = tmp83 / tmp84
tmp109 = tmp108 * tmp86
tmp110 = tmp109 * tmp88
tmp111 = tmp107 + tmp110
tmp112 = tmp6 / tmp84
tmp113 = tmp112 * tmp86
tmp114 = tmp113 * tmp88
tmp115 = tmp111 + tmp114
tmp116 = tmp20 / tmp84
tmp117 = tmp116 * tmp86
tmp118 = tmp117 * tmp88
tmp119 = tmp115 + tmp118
tmp120 = tmp34 / tmp84
tmp121 = tmp120 * tmp86
tmp122 = tmp121 * tmp88
tmp123 = tmp119 + tmp122
tmp124 = tmp48 / tmp84
tmp125 = tmp124 * tmp86
tmp126 = tmp125 * tmp88
tmp127 = tmp123 + tmp126
tmp128 = tmp62 / tmp84
tmp129 = tmp128 * tmp86
tmp130 = tmp129 * tmp88
tmp131 = tmp127 + tmp130
tmp132 = tmp76 / tmp84
tmp133 = tmp132 * tmp86
tmp134 = tmp133 * tmp88
tmp135 = tmp131 + tmp134
tmp136 = tmp135 * tmp86
tl.debug_barrier()
tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp136, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((), (), torch.float32)
buf13 = buf10
del buf10
buf14 = buf13
del buf13
get_raw_stream(0)
triton_per_fused_abs_add_div_mean_mul_sub_0[grid(1)](buf14, arg0_1,
arg1_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf14,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are 'none', 'mean' and 'sum'.
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
else:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean'):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
'none', 'mean' and 'sum'. Default: 'mean'.
Returns:
Tensor: Loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) > 1:
weight = weight.sum()
else:
weight = weight.sum() * loss.size(1)
loss = loss.sum() / weight
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
**kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction)
return loss
return wrapper
@weighted_loss
def l1_loss(pred, target):
return F.l1_loss(pred, target, reduction='none')
@weighted_loss
def mse_loss(pred, target):
return F.mse_loss(pred, target, reduction='none')
@weighted_loss
def charbonnier_loss(pred, target, eps=1e-12):
return torch.sqrt((pred - target) ** 2 + eps)
class L1Loss(nn.Module):
"""L1 (mean absolute error, MAE) loss.
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
"""
def __init__(self, loss_weight=1.0, reduction='mean'):
super(L1Loss, self).__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
def forward(self, pred, target, weight=None, **kwargs):
"""
Args:
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
weights. Default: None.
"""
return self.loss_weight * l1_loss(pred, target, weight, reduction=
self.reduction)
class MSELoss(nn.Module):
"""MSE (L2) loss.
Args:
loss_weight (float): Loss weight for MSE loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
"""
def __init__(self, loss_weight=1.0, reduction='mean'):
super(MSELoss, self).__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
def forward(self, pred, target, weight=None, **kwargs):
"""
Args:
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
weights. Default: None.
"""
return self.loss_weight * mse_loss(pred, target, weight, reduction=
self.reduction)
class CharbonnierLoss(nn.Module):
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable
variant of L1Loss).
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate
Super-Resolution".
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
eps (float): A value used to control the curvature near zero.
Default: 1e-12.
"""
def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12):
super(CharbonnierLoss, self).__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.eps = eps
def forward(self, pred, target, weight=None, **kwargs):
"""
Args:
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
weights. Default: None.
"""
return self.loss_weight * charbonnier_loss(pred, target, weight,
eps=self.eps, reduction=self.reduction)
class GANFeatLossNew(nn.Module):
"""Define feature matching loss for gans
Args:
criterion (str): Support 'l1', 'l2', 'charbonnier'.
loss_weight (float): Loss weight. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
"""
def __init__(self, criterion='l1', loss_weight=1.0, reduction='mean'):
super(GANFeatLossNew, self).__init__()
if criterion == 'l1':
self.loss_op = L1Loss(loss_weight, reduction)
elif criterion == 'l2':
self.loss_op = MSELoss(loss_weight, reduction)
elif criterion == 'charbonnier':
self.loss_op = CharbonnierLoss(loss_weight, reduction)
else:
raise ValueError(
f'Unsupported loss mode: {criterion}. Supported ones are: l1|l2|charbonnier'
)
self.loss_weight = loss_weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
hyunobae/BasicSR
|
GANFeatLoss
| false | 12,524 |
[
"Apache-2.0"
] | 0 |
f2c2fc6cf28933658816c808f55c95fa20b16483
|
https://github.com/hyunobae/BasicSR/tree/f2c2fc6cf28933658816c808f55c95fa20b16483
|
Net
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/yb/cybsjfmgf75kwyq3kyez46wzwjgjffwtsqe2uwa7bdzwlb6l22gt.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (20, 4), (4, 1))
assert_size_stride(primals_2, (20, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (20, 20), (20, 1))
assert_size_stride(primals_5, (20, ), (1, ))
assert_size_stride(primals_6, (20, 20), (20, 1))
assert_size_stride(primals_7, (20, ), (1, ))
assert_size_stride(primals_8, (4, 20), (20, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0); del buf0 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 1280, grid=grid(1280), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 20), (20, 1), 0), reinterpret_tensor(primals_4, (20, 20), (1, 20), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6, (20, 20), (1, 20), 0), alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (20, 4), (1, 20), 0), alpha=1, beta=1, out=buf4)
del primals_9
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 20), (20, 1), 0), buf2, buf3, primals_8, primals_6, primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((20, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((20, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((20, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self, n_input, n_output):
super(Net, self).__init__()
self.fc1 = nn.Linear(n_input, 20)
self.dropout1 = nn.Dropout(0.25)
self.fc2 = nn.Linear(20, 20)
self.dropout2 = nn.Dropout(0.25)
self.fc3 = nn.Linear(20, 20)
self.dropout3 = nn.Dropout(0.25)
self.fc4 = nn.Linear(20, n_output)
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.dropout1(x)
x = self.fc2(x)
x = self.dropout2(x)
x = self.fc3(x)
x = self.dropout3(x)
x = self.fc4(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_input': 4, 'n_output': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (20, 4), (4, 1))
assert_size_stride(primals_2, (20,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (20, 20), (20, 1))
assert_size_stride(primals_5, (20,), (1,))
assert_size_stride(primals_6, (20, 20), (20, 1))
assert_size_stride(primals_7, (20,), (1,))
assert_size_stride(primals_8, (4, 20), (20, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1280)](buf1,
primals_2, buf5, 1280, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 20),
(20, 1), 0), reinterpret_tensor(primals_4, (20, 20), (1, 20), 0
), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6,
(20, 20), (1, 20), 0), alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8,
(20, 4), (1, 20), 0), alpha=1, beta=1, out=buf4)
del primals_9
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 20), (20, 1), 0
), buf2, buf3, primals_8, primals_6, primals_4, buf5
class NetNew(nn.Module):
def __init__(self, n_input, n_output):
super(NetNew, self).__init__()
self.fc1 = nn.Linear(n_input, 20)
self.dropout1 = nn.Dropout(0.25)
self.fc2 = nn.Linear(20, 20)
self.dropout2 = nn.Dropout(0.25)
self.fc3 = nn.Linear(20, 20)
self.dropout3 = nn.Dropout(0.25)
self.fc4 = nn.Linear(20, n_output)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
ihsgnef/duolingo-halflife-regression
|
Net
| false | 12,525 |
[
"MIT"
] | 0 |
01c7895eee0450462b5277a055d2ae1de58f1be5
|
https://github.com/ihsgnef/duolingo-halflife-regression/tree/01c7895eee0450462b5277a055d2ae1de58f1be5
|
Conv_Q
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/sn/csnsms5tdtjok5uxcwcbko2ioqfann3pwnmkfhlujgvnsujd5bud.py
# Topologically Sorted Source Nodes: [conv2d, c], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# c => relu
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 156800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 1225) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/f4/cf4q74veoggsxdgdkl43ap6cyqfylpfk3qs7wdqoebyfzzb36dvw.py
# Topologically Sorted Source Nodes: [conv2d_1, c_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# c_1 => relu_1
# conv2d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/jd/cjdph23oasfased5f2dfu7kch7qcwjhegz6fxsrsn22yzjy3qj2u.py
# Topologically Sorted Source Nodes: [conv2d_2, c_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# c_2 => relu_2
# conv2d_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 196) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/b5/cb5bmriikeb3z65rmk4n4vz3fvd4pzjrhfemonu665rzgwpxeamm.py
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# q => relu_3
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_9), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_3 = async_compile.triton('triton_poi_fused_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/u2/cu22r6l6j2dwad6ehxo727pi566vx4re7y7wswbfiuiqovkorg37.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {})
triton_poi_fused__log_softmax_4 = async_compile.triton('triton_poi_fused__log_softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/r4/cr4lhbz4zupusb2cwexdjmmp7mdneumkf5mp763v3ocsgjeaa5ai.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_5 = async_compile.triton('triton_poi_fused__log_softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (32, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 4, 144, 144), (82944, 20736, 144, 1))
assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (512, 3136), (3136, 1))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (512, 3136), (3136, 1))
assert_size_stride(primals_11, (512, ), (1, ))
assert_size_stride(primals_12, (4, 512), (512, 1))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, 512), (512, 1))
assert_size_stride(primals_15, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 35, 35), (39200, 1225, 35, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, c], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 156800, grid=grid(156800), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 16, 16), (16384, 256, 16, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, c_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 65536, grid=grid(65536), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 14, 14), (12544, 196, 14, 1))
buf5 = buf4; del buf4 # reuse
buf14 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_2, c_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_2.run(buf5, primals_7, buf14, 50176, grid=grid(50176), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0), reinterpret_tensor(primals_8, (3136, 512), (1, 3136), 0), out=buf6)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.relu]
triton_poi_fused_relu_3.run(buf7, primals_9, 8192, grid=grid(8192), stream=stream0)
del primals_9
buf8 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0), reinterpret_tensor(primals_10, (3136, 512), (1, 3136), 0), out=buf8)
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [i], Original ATen: [aten.relu]
triton_poi_fused_relu_3.run(buf9, primals_11, 8192, grid=grid(8192), stream=stream0)
del primals_11
buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [i_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_13, buf9, reinterpret_tensor(primals_12, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf10)
del primals_13
buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_15, buf7, reinterpret_tensor(primals_14, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf11)
del primals_15
buf12 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_4.run(buf10, buf12, 64, grid=grid(64), stream=stream0)
buf13 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_5.run(buf12, buf13, 64, grid=grid(64), stream=stream0)
del buf12
return (buf11, buf13, buf10, primals_1, primals_3, primals_4, primals_6, buf1, buf3, reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0), buf7, buf9, buf13, primals_14, primals_12, primals_10, primals_8, buf14, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 144, 144), (82944, 20736, 144, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 3136), (3136, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((512, 3136), (3136, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv_Q(nn.Module):
def __init__(self, frames, num_actions):
super(Conv_Q, self).__init__()
self.c1 = nn.Conv2d(frames, 32, kernel_size=8, stride=4)
self.c2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
self.c3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
self.q1 = nn.Linear(3136, 512)
self.q2 = nn.Linear(512, num_actions)
self.i1 = nn.Linear(3136, 512)
self.i2 = nn.Linear(512, num_actions)
def forward(self, state):
c = F.relu(self.c1(state))
c = F.relu(self.c2(c))
c = F.relu(self.c3(c))
q = F.relu(self.q1(c.reshape(-1, 3136)))
i = F.relu(self.i1(c.reshape(-1, 3136)))
i = self.i2(i)
return self.q2(q), F.log_softmax(i, dim=1), i
def get_inputs():
return [torch.rand([4, 4, 144, 144])]
def get_init_inputs():
return [[], {'frames': 4, 'num_actions': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 156800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 1225 % 32
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 196 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused__log_softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (32, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 144, 144), (82944, 20736, 144, 1))
assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (512, 3136), (3136, 1))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (512, 3136), (3136, 1))
assert_size_stride(primals_11, (512,), (1,))
assert_size_stride(primals_12, (4, 512), (512, 1))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4, 512), (512, 1))
assert_size_stride(primals_15, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4,
4), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 35, 35), (39200, 1225, 35, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(156800)](buf1, primals_2,
156800, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 16, 16), (16384, 256, 16, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(65536)](buf3, primals_5,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 14, 14), (12544, 196, 14, 1))
buf5 = buf4
del buf4
buf14 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_2[grid(50176)](
buf5, primals_7, buf14, 50176, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_7
buf6 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0
), reinterpret_tensor(primals_8, (3136, 512), (1, 3136), 0),
out=buf6)
buf7 = buf6
del buf6
triton_poi_fused_relu_3[grid(8192)](buf7, primals_9, 8192, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_9
buf8 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0
), reinterpret_tensor(primals_10, (3136, 512), (1, 3136), 0),
out=buf8)
buf9 = buf8
del buf8
triton_poi_fused_relu_3[grid(8192)](buf9, primals_11, 8192, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_11
buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_13, buf9, reinterpret_tensor(
primals_12, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf10)
del primals_13
buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_15, buf7, reinterpret_tensor(
primals_14, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf11)
del primals_15
buf12 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused__log_softmax_4[grid(64)](buf10, buf12, 64, XBLOCK=
64, num_warps=1, num_stages=1)
buf13 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused__log_softmax_5[grid(64)](buf12, buf13, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del buf12
return (buf11, buf13, buf10, primals_1, primals_3, primals_4, primals_6,
buf1, buf3, reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0),
buf7, buf9, buf13, primals_14, primals_12, primals_10, primals_8, buf14
)
class Conv_QNew(nn.Module):
def __init__(self, frames, num_actions):
super(Conv_QNew, self).__init__()
self.c1 = nn.Conv2d(frames, 32, kernel_size=8, stride=4)
self.c2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
self.c3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
self.q1 = nn.Linear(3136, 512)
self.q2 = nn.Linear(512, num_actions)
self.i1 = nn.Linear(3136, 512)
self.i2 = nn.Linear(512, num_actions)
def forward(self, input_0):
primals_1 = self.c1.weight
primals_2 = self.c1.bias
primals_4 = self.c2.weight
primals_5 = self.c2.bias
primals_6 = self.c3.weight
primals_7 = self.c3.bias
primals_8 = self.q1.weight
primals_9 = self.q1.bias
primals_12 = self.q2.weight
primals_13 = self.q2.bias
primals_10 = self.i1.weight
primals_11 = self.i1.bias
primals_14 = self.i2.weight
primals_15 = self.i2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0], output[1], output[2]
|
hotaekjoo/SQV
|
Conv_Q
| false | 12,526 |
[
"MIT"
] | 0 |
d725342e7fd8548ee5fa018e5ccac4542969deed
|
https://github.com/hotaekjoo/SQV/tree/d725342e7fd8548ee5fa018e5ccac4542969deed
|
PARALossSoftmax
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/zn/cznprkeuyccqrgaq2oqedmt6b75mnapuac3rarw7btkcaemyq7x5.py
# Topologically Sorted Source Nodes: [sum_3], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# sum_3 => sum_3
# Graph fragment:
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [2, 3]), kwargs = {})
triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/j7/cj77m2bzgkd6jk6t3eqsj57vmqyiw345xi2hoc3yj5ajgchquhtw.py
# Topologically Sorted Source Nodes: [mul, score], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# mul => mul
# score => sum_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %view), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2, 3]), kwargs = {})
triton_per_fused_mul_sum_1 = async_compile.triton('triton_per_fused_mul_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr1 + (16 + r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr1 + (32 + r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (48 + r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 * tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/gd/cgdq755g3clp3t5icrbudwx4ir4xygtoz6ug4jo2euegtyg5mdnp.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# loss => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sum_2, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_2, %amax), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/g7/cg7zqcudvkdhfi4dqltqxwoll2w7m6pdkmngtisjjnrxjomtzxby.py
# Topologically Sorted Source Nodes: [label, loss], Original ATen: [aten.argmax, aten.nll_loss_forward]
# Source node to ATen node mapping:
# label => argmax
# loss => convert_element_type, div, full_default_1, ne_1, ne_2, neg, sum_5, sum_6, where_1
# Graph fragment:
# %argmax : [num_users=4] = call_function[target=torch.ops.aten.argmax.default](args = (%sum_3, -1), kwargs = {})
# %ne_1 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%argmax, -100), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_1, %neg, %full_default_1), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where_1,), kwargs = {})
# %ne_2 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%argmax, -100), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne_2,), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_5, torch.float32), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_6, %convert_element_type), kwargs = {})
triton_per_fused_argmax_nll_loss_forward_3 = async_compile.triton('triton_per_fused_argmax_nll_loss_forward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_argmax_nll_loss_forward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_argmax_nll_loss_forward_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp61 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1, 1], 0, tl.int64)
tmp11 = tl.full([1, 1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1, 1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1, 1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tl.full([1, 1], -100, tl.int64)
tmp48 = tmp46 != tmp47
tmp49 = tl.where(tmp48, tmp46, tmp10)
tmp50 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp51 = tmp49 + tmp50
tmp52 = tmp49 < 0
tmp53 = tl.where(tmp52, tmp51, tmp49)
tl.device_assert((0 <= tmp53) & (tmp53 < 4), "index out of bounds: 0 <= tmp53 < 4")
tmp55 = tl.load(in_ptr1 + (tmp53 + (4*r0)), None, eviction_policy='evict_last')
tmp57 = tl_math.exp(tmp56)
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp57 + tmp59
tmp62 = tl_math.exp(tmp61)
tmp63 = tmp60 + tmp62
tmp65 = tl_math.exp(tmp64)
tmp66 = tmp63 + tmp65
tmp67 = tl_math.log(tmp66)
tmp68 = tmp55 - tmp67
tmp69 = -tmp68
tmp70 = 0.0
tmp71 = tl.where(tmp48, tmp69, tmp70)
tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK])
tmp74 = tl.sum(tmp72, 1)[:, None]
tmp75 = tmp48.to(tl.int64)
tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK])
tmp78 = tl.sum(tmp76, 1)[:, None]
tmp79 = tmp78.to(tl.float32)
tmp80 = tmp74 / tmp79
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp80, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sum_3], Original ATen: [aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_sum_0.run(arg0_1, buf0, 16, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, score], Original ATen: [aten.mul, aten.sum]
triton_per_fused_mul_sum_1.run(arg1_1, arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf2, buf3, 16, grid=grid(16), stream=stream0)
del buf2
buf4 = empty_strided_cuda((), (), torch.float32)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [label, loss], Original ATen: [aten.argmax, aten.nll_loss_forward]
triton_per_fused_argmax_nll_loss_forward_3.run(buf6, buf0, buf3, 1, 4, grid=grid(1), stream=stream0)
del buf0
del buf3
return (buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class PARALossSoftmax(nn.Module):
"""
Softmax classifier for sentence-level relation extraction.
"""
def __init__(self):
"""
Args:
sentence_encoder: encoder for sentences
num_class: number of classes
id2rel: dictionary of id -> relation name mapping
"""
super().__init__()
def forward(self, score, predicate_one_hot_labels):
soft = True
if predicate_one_hot_labels.is_sparse:
predicate_one_hot_labels = predicate_one_hot_labels.to_dense()
if not soft:
entity_mask = predicate_one_hot_labels.sum(dim=1)
label = predicate_one_hot_labels.argmax(dim=1)
loss = F.cross_entropy(score, label, reduction='none')
loss = loss * entity_mask
loss = loss.sum(dim=(1, 2)) / entity_mask.sum(dim=(1, 2))
loss = loss.mean()
else:
entity_mask = predicate_one_hot_labels.sum(dim=1, keepdim=True
).repeat_interleave(score.shape[1], dim=1).float()
score = (score * entity_mask).sum(dim=(2, 3))
label = predicate_one_hot_labels.sum(dim=(2, 3)).argmax(dim=-1)
loss = F.cross_entropy(score, label)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tl.load(in_ptr1 + (16 + r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp4 = tl.load(in_ptr1 + (32 + r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (48 + r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 * tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_per_fused_argmax_nll_loss_forward_3(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp61 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1, 1], 0, tl.int64)
tmp11 = tl.full([1, 1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1, 1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1, 1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tl.full([1, 1], -100, tl.int64)
tmp48 = tmp46 != tmp47
tmp49 = tl.where(tmp48, tmp46, tmp10)
tmp50 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp51 = tmp49 + tmp50
tmp52 = tmp49 < 0
tmp53 = tl.where(tmp52, tmp51, tmp49)
tl.device_assert((0 <= tmp53) & (tmp53 < 4),
'index out of bounds: 0 <= tmp53 < 4')
tmp55 = tl.load(in_ptr1 + (tmp53 + 4 * r0), None, eviction_policy=
'evict_last')
tmp57 = tl_math.exp(tmp56)
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp57 + tmp59
tmp62 = tl_math.exp(tmp61)
tmp63 = tmp60 + tmp62
tmp65 = tl_math.exp(tmp64)
tmp66 = tmp63 + tmp65
tmp67 = tl_math.log(tmp66)
tmp68 = tmp55 - tmp67
tmp69 = -tmp68
tmp70 = 0.0
tmp71 = tl.where(tmp48, tmp69, tmp70)
tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK])
tmp74 = tl.sum(tmp72, 1)[:, None]
tmp75 = tmp48.to(tl.int64)
tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK])
tmp78 = tl.sum(tmp76, 1)[:, None]
tmp79 = tmp78.to(tl.float32)
tmp80 = tmp74 / tmp79
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp80, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_sum_0[grid(16)](arg0_1, buf0, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_per_fused_mul_sum_1[grid(16)](arg1_1, arg0_1, buf2, 16, 16,
XBLOCK=8, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__log_softmax_2[grid(16)](buf2, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf2
buf4 = empty_strided_cuda((), (), torch.float32)
buf6 = buf4
del buf4
triton_per_fused_argmax_nll_loss_forward_3[grid(1)](buf6, buf0,
buf3, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf3
return buf6,
class PARALossSoftmaxNew(nn.Module):
"""
Softmax classifier for sentence-level relation extraction.
"""
def __init__(self):
"""
Args:
sentence_encoder: encoder for sentences
num_class: number of classes
id2rel: dictionary of id -> relation name mapping
"""
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
igorvlnascimento/open-nre
|
PARALossSoftmax
| false | 12,527 |
[
"MIT"
] | 0 |
a6e42ef074d62be4d3ceb571f412d5be8c0502d7
|
https://github.com/igorvlnascimento/open-nre/tree/a6e42ef074d62be4d3ceb571f412d5be8c0502d7
|
ModulatedConv2d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# bias => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ri/criuvsdl3sferb4bb6ci5zaps3wys7xxcpybz7vfo2ba4q7cuq6c.py
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# demod => rsqrt
# mul_2 => mul_2
# pow_1 => pow_1
# sum_1 => sum_1
# weight => mul_3
# weight_1 => mul_4
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.125), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_3, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %view_1), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_2 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 16)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (64*x4)), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
buf3 = buf0; del buf0 # reuse
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_2.run(buf4, primals_5, buf2, buf5, 16, 64, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1))
return (reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0), primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from torch.autograd import Function
import math
import torch
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import init as init
from torchvision.models import vgg as vgg
import torch.utils.data
from torch.utils import data as data
from torch import autograd as autograd
def make_resample_kernel(k):
"""Make resampling kernel for UpFirDn.
Args:
k (list[int]): A list indicating the 1D resample kernel magnitude.
Returns:
Tensor: 2D resampled kernel.
"""
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class UpFirDnSmooth(nn.Module):
"""Upsample, FIR filter, and downsample (smooth version).
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
upsample_factor (int): Upsampling scale factor. Default: 1.
downsample_factor (int): Downsampling scale factor. Default: 1.
kernel_size (int): Kernel size: Default: 1.
"""
def __init__(self, resample_kernel, upsample_factor=1,
downsample_factor=1, kernel_size=1):
super(UpFirDnSmooth, self).__init__()
self.upsample_factor = upsample_factor
self.downsample_factor = downsample_factor
self.kernel = make_resample_kernel(resample_kernel)
if upsample_factor > 1:
self.kernel = self.kernel * upsample_factor ** 2
if upsample_factor > 1:
pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1)
self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1
elif downsample_factor > 1:
pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1)
self.pad = (pad + 1) // 2, pad // 2
else:
raise NotImplementedError
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})'
)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out,
3, 1, negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input,
gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0,
negative_slope, scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=
0, lr_mul=1, activation=None):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ['fused_lrelu', None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]."
)
self.scale = 1 / math.sqrt(in_channels) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).
div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(
bias_init_val))
else:
self.register_parameter('bias', None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == 'fused_lrelu':
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})'
)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer.
Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
eps (float): A value added to the denominator for numerical stability.
Default: 1e-8.
"""
def __init__(self, in_channels, out_channels, kernel_size,
num_style_feat, demodulate=True, sample_mode=None, resample_kernel=
(1, 3, 3, 1), eps=1e-08):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
if self.sample_mode == 'upsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2,
downsample_factor=1, kernel_size=kernel_size)
elif self.sample_mode == 'downsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1,
downsample_factor=2, kernel_size=kernel_size)
elif self.sample_mode is None:
pass
else:
raise ValueError(
f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]."
)
self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2)
self.modulation = EqualLinear(num_style_feat, in_channels, bias=
True, bias_init_val=1, lr_mul=1, activation=None)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size))
self.padding = kernel_size // 2
def forward(self, x, style):
"""Forward function.
Args:
x (Tensor): Tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
Returns:
Tensor: Modulated tensor after convolution.
"""
b, c, h, w = x.shape
style = self.modulation(style).view(b, 1, c, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
weight = weight.view(b * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.sample_mode == 'upsample':
x = x.view(1, b * c, h, w)
weight = weight.view(b, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(b * c, self.
out_channels, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
out = self.smooth(out)
elif self.sample_mode == 'downsample':
x = self.smooth(x)
x = x.view(1, b * c, *x.shape[2:4])
out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
else:
x = x.view(1, b * c, h, w)
out = F.conv2d(x, weight, padding=self.padding, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})'
)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4,
'num_style_feat': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch.autograd import Function
import math
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import init as init
from torchvision.models import vgg as vgg
import torch.utils.data
from torch.utils import data as data
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = rindex // 16
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 64 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 64 * x4), tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
buf3 = buf0
del buf0
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_2[grid(16)](buf4, primals_5,
buf2, buf5, 16, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4,
4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1))
return reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0
), primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16,
4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16,
4, 4), (256, 16, 4, 1), 0)
def make_resample_kernel(k):
"""Make resampling kernel for UpFirDn.
Args:
k (list[int]): A list indicating the 1D resample kernel magnitude.
Returns:
Tensor: 2D resampled kernel.
"""
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class UpFirDnSmooth(nn.Module):
"""Upsample, FIR filter, and downsample (smooth version).
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
upsample_factor (int): Upsampling scale factor. Default: 1.
downsample_factor (int): Downsampling scale factor. Default: 1.
kernel_size (int): Kernel size: Default: 1.
"""
def __init__(self, resample_kernel, upsample_factor=1,
downsample_factor=1, kernel_size=1):
super(UpFirDnSmooth, self).__init__()
self.upsample_factor = upsample_factor
self.downsample_factor = downsample_factor
self.kernel = make_resample_kernel(resample_kernel)
if upsample_factor > 1:
self.kernel = self.kernel * upsample_factor ** 2
if upsample_factor > 1:
pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1)
self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1
elif downsample_factor > 1:
pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1)
self.pad = (pad + 1) // 2, pad // 2
else:
raise NotImplementedError
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})'
)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out,
3, 1, negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input,
gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0,
negative_slope, scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=
0, lr_mul=1, activation=None):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ['fused_lrelu', None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]."
)
self.scale = 1 / math.sqrt(in_channels) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).
div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(
bias_init_val))
else:
self.register_parameter('bias', None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == 'fused_lrelu':
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})'
)
class ModulatedConv2dNew(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer.
Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
eps (float): A value added to the denominator for numerical stability.
Default: 1e-8.
"""
def __init__(self, in_channels, out_channels, kernel_size,
num_style_feat, demodulate=True, sample_mode=None, resample_kernel=
(1, 3, 3, 1), eps=1e-08):
super(ModulatedConv2dNew, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
if self.sample_mode == 'upsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2,
downsample_factor=1, kernel_size=kernel_size)
elif self.sample_mode == 'downsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1,
downsample_factor=2, kernel_size=kernel_size)
elif self.sample_mode is None:
pass
else:
raise ValueError(
f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]."
)
self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2)
self.modulation = EqualLinear(num_style_feat, in_channels, bias=
True, bias_init_val=1, lr_mul=1, activation=None)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size))
self.padding = kernel_size // 2
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})'
)
def forward(self, input_0, input_1):
primals_5 = self.weight
primals_3 = self.modulation.weight
primals_2 = self.modulation.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
hyunobae/BasicSR
|
ModulatedConv2d
| false | 12,528 |
[
"Apache-2.0"
] | 0 |
f2c2fc6cf28933658816c808f55c95fa20b16483
|
https://github.com/hyunobae/BasicSR/tree/f2c2fc6cf28933658816c808f55c95fa20b16483
|
ToRGB
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# bias => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/on/conl6eemb3vyjzkllydlouehrcxphkzifo5kmslz6fgiz6ixsw5h.py
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_2 => mul_2
# weight => mul_3
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.5), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/go/cgoav6av4bzem4wmdmkiowlmjpeiubwc67bqu6es4aivwlfpxzhh.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out_3 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_5, buf2, buf3, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf5, primals_6, 192, grid=grid(192), stream=stream0)
del primals_6
return (buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from torch.autograd import Function
import math
import torch
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import init as init
from torchvision.models import vgg as vgg
import torch.utils.data
from torch.utils import data as data
from torch import autograd as autograd
def make_resample_kernel(k):
"""Make resampling kernel for UpFirDn.
Args:
k (list[int]): A list indicating the 1D resample kernel magnitude.
Returns:
Tensor: 2D resampled kernel.
"""
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class UpFirDnUpsample(nn.Module):
"""Upsample, FIR filter, and downsample (upsampole version).
References:
1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501
2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
factor (int): Upsampling scale factor. Default: 2.
"""
def __init__(self, resample_kernel, factor=2):
super(UpFirDnUpsample, self).__init__()
self.kernel = make_resample_kernel(resample_kernel) * factor ** 2
self.factor = factor
pad = self.kernel.shape[0] - factor
self.pad = (pad + 1) // 2 + factor - 1, pad // 2
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1,
pad=self.pad)
return out
def __repr__(self):
return f'{self.__class__.__name__}(factor={self.factor})'
class UpFirDnSmooth(nn.Module):
"""Upsample, FIR filter, and downsample (smooth version).
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
upsample_factor (int): Upsampling scale factor. Default: 1.
downsample_factor (int): Downsampling scale factor. Default: 1.
kernel_size (int): Kernel size: Default: 1.
"""
def __init__(self, resample_kernel, upsample_factor=1,
downsample_factor=1, kernel_size=1):
super(UpFirDnSmooth, self).__init__()
self.upsample_factor = upsample_factor
self.downsample_factor = downsample_factor
self.kernel = make_resample_kernel(resample_kernel)
if upsample_factor > 1:
self.kernel = self.kernel * upsample_factor ** 2
if upsample_factor > 1:
pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1)
self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1
elif downsample_factor > 1:
pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1)
self.pad = (pad + 1) // 2, pad // 2
else:
raise NotImplementedError
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})'
)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out,
3, 1, negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input,
gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0,
negative_slope, scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=
0, lr_mul=1, activation=None):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ['fused_lrelu', None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]."
)
self.scale = 1 / math.sqrt(in_channels) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).
div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(
bias_init_val))
else:
self.register_parameter('bias', None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == 'fused_lrelu':
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})'
)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer.
Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
eps (float): A value added to the denominator for numerical stability.
Default: 1e-8.
"""
def __init__(self, in_channels, out_channels, kernel_size,
num_style_feat, demodulate=True, sample_mode=None, resample_kernel=
(1, 3, 3, 1), eps=1e-08):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
if self.sample_mode == 'upsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2,
downsample_factor=1, kernel_size=kernel_size)
elif self.sample_mode == 'downsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1,
downsample_factor=2, kernel_size=kernel_size)
elif self.sample_mode is None:
pass
else:
raise ValueError(
f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]."
)
self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2)
self.modulation = EqualLinear(num_style_feat, in_channels, bias=
True, bias_init_val=1, lr_mul=1, activation=None)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size))
self.padding = kernel_size // 2
def forward(self, x, style):
"""Forward function.
Args:
x (Tensor): Tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
Returns:
Tensor: Modulated tensor after convolution.
"""
b, c, h, w = x.shape
style = self.modulation(style).view(b, 1, c, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
weight = weight.view(b * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.sample_mode == 'upsample':
x = x.view(1, b * c, h, w)
weight = weight.view(b, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(b * c, self.
out_channels, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
out = self.smooth(out)
elif self.sample_mode == 'downsample':
x = self.smooth(x)
x = x.view(1, b * c, *x.shape[2:4])
out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
else:
x = x.view(1, b * c, h, w)
out = F.conv2d(x, weight, padding=self.padding, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})'
)
class ToRGB(nn.Module):
"""To RGB from features.
Args:
in_channels (int): Channel number of input.
num_style_feat (int): Channel number of style features.
upsample (bool): Whether to upsample. Default: True.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
"""
def __init__(self, in_channels, num_style_feat, upsample=True,
resample_kernel=(1, 3, 3, 1)):
super(ToRGB, self).__init__()
if upsample:
self.upsample = UpFirDnUpsample(resample_kernel, factor=2)
else:
self.upsample = None
self.modulated_conv = ModulatedConv2d(in_channels, 3, kernel_size=1,
num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, x, style, skip=None):
"""Forward function.
Args:
x (Tensor): Feature tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
skip (Tensor): Base/skip tensor. Default: None.
Returns:
Tensor: RGB images.
"""
out = self.modulated_conv(x, style)
out = out + self.bias
if skip is not None:
if self.upsample:
skip = self.upsample(skip)
out = out + skip
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'num_style_feat': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.autograd import Function
import math
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import init as init
from torchvision.models import vgg as vgg
import torch.utils.data
from torch.utils import data as data
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
triton_poi_fused_mul_2[grid(48)](primals_5, buf2, buf3, 48, XBLOCK=
64, num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4,
1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf4
triton_poi_fused_add_3[grid(192)](buf5, primals_6, 192, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_6
return buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (12,
4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4,
4), (256, 16, 4, 1), 0)
def make_resample_kernel(k):
"""Make resampling kernel for UpFirDn.
Args:
k (list[int]): A list indicating the 1D resample kernel magnitude.
Returns:
Tensor: 2D resampled kernel.
"""
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class UpFirDnUpsample(nn.Module):
"""Upsample, FIR filter, and downsample (upsampole version).
References:
1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501
2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
factor (int): Upsampling scale factor. Default: 2.
"""
def __init__(self, resample_kernel, factor=2):
super(UpFirDnUpsample, self).__init__()
self.kernel = make_resample_kernel(resample_kernel) * factor ** 2
self.factor = factor
pad = self.kernel.shape[0] - factor
self.pad = (pad + 1) // 2 + factor - 1, pad // 2
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1,
pad=self.pad)
return out
def __repr__(self):
return f'{self.__class__.__name__}(factor={self.factor})'
class UpFirDnSmooth(nn.Module):
"""Upsample, FIR filter, and downsample (smooth version).
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
upsample_factor (int): Upsampling scale factor. Default: 1.
downsample_factor (int): Downsampling scale factor. Default: 1.
kernel_size (int): Kernel size: Default: 1.
"""
def __init__(self, resample_kernel, upsample_factor=1,
downsample_factor=1, kernel_size=1):
super(UpFirDnSmooth, self).__init__()
self.upsample_factor = upsample_factor
self.downsample_factor = downsample_factor
self.kernel = make_resample_kernel(resample_kernel)
if upsample_factor > 1:
self.kernel = self.kernel * upsample_factor ** 2
if upsample_factor > 1:
pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1)
self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1
elif downsample_factor > 1:
pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1)
self.pad = (pad + 1) // 2, pad // 2
else:
raise NotImplementedError
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})'
)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out,
3, 1, negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input,
gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0,
negative_slope, scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=
0, lr_mul=1, activation=None):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ['fused_lrelu', None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]."
)
self.scale = 1 / math.sqrt(in_channels) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).
div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(
bias_init_val))
else:
self.register_parameter('bias', None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == 'fused_lrelu':
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})'
)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer.
Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
eps (float): A value added to the denominator for numerical stability.
Default: 1e-8.
"""
def __init__(self, in_channels, out_channels, kernel_size,
num_style_feat, demodulate=True, sample_mode=None, resample_kernel=
(1, 3, 3, 1), eps=1e-08):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
if self.sample_mode == 'upsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2,
downsample_factor=1, kernel_size=kernel_size)
elif self.sample_mode == 'downsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1,
downsample_factor=2, kernel_size=kernel_size)
elif self.sample_mode is None:
pass
else:
raise ValueError(
f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]."
)
self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2)
self.modulation = EqualLinear(num_style_feat, in_channels, bias=
True, bias_init_val=1, lr_mul=1, activation=None)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size))
self.padding = kernel_size // 2
def forward(self, x, style):
"""Forward function.
Args:
x (Tensor): Tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
Returns:
Tensor: Modulated tensor after convolution.
"""
b, c, h, w = x.shape
style = self.modulation(style).view(b, 1, c, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
weight = weight.view(b * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.sample_mode == 'upsample':
x = x.view(1, b * c, h, w)
weight = weight.view(b, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(b * c, self.
out_channels, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
out = self.smooth(out)
elif self.sample_mode == 'downsample':
x = self.smooth(x)
x = x.view(1, b * c, *x.shape[2:4])
out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
else:
x = x.view(1, b * c, h, w)
out = F.conv2d(x, weight, padding=self.padding, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})'
)
class ToRGBNew(nn.Module):
"""To RGB from features.
Args:
in_channels (int): Channel number of input.
num_style_feat (int): Channel number of style features.
upsample (bool): Whether to upsample. Default: True.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
"""
def __init__(self, in_channels, num_style_feat, upsample=True,
resample_kernel=(1, 3, 3, 1)):
super(ToRGBNew, self).__init__()
if upsample:
self.upsample = UpFirDnUpsample(resample_kernel, factor=2)
else:
self.upsample = None
self.modulated_conv = ModulatedConv2d(in_channels, 3, kernel_size=1,
num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input_0, input_1):
primals_6 = self.bias
primals_5 = self.modulated_conv.weight
primals_3 = self.modulated_conv.modulation.weight
primals_2 = self.modulated_conv.modulation.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
hyunobae/BasicSR
|
ToRGB
| false | 12,529 |
[
"Apache-2.0"
] | 0 |
f2c2fc6cf28933658816c808f55c95fa20b16483
|
https://github.com/hyunobae/BasicSR/tree/f2c2fc6cf28933658816c808f55c95fa20b16483
|
ScaleNorm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/y5/cy5ov25os6ahougpa3kl7wzdvh2f45fbyqrhdatlufu4ubybiquf.py
# Topologically Sorted Source Nodes: [norm, norm_1, clamp, truediv, mul], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.clamp, aten.div]
# Source node to ATen node mapping:
# clamp => clamp_min
# mul => mul_1
# norm => pow_1, pow_2, sum_1
# norm_1 => mul
# truediv => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2.0), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 1e-05), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %clamp_min), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_2), kwargs = {})
triton_poi_fused_clamp_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_clamp_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (0))
tmp19 = tl.broadcast_to(tmp18, [XBLOCK])
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 0.5
tmp14 = tmp12 * tmp13
tmp15 = 1e-05
tmp16 = triton_helpers.maximum(tmp14, tmp15)
tmp17 = tmp0 / tmp16
tmp20 = tmp17 * tmp19
tl.store(out_ptr0 + (x2), tmp20, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm, norm_1, clamp, truediv, mul], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.clamp, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class ScaleNorm(nn.Module):
def __init__(self, dim, eps=1e-05):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(1))
def forward(self, x):
norm = torch.linalg.norm(x, dim=-1, keepdim=True)
norm *= self.scale
return x / norm.clamp(min=self.eps) * self.g
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + 0)
tmp19 = tl.broadcast_to(tmp18, [XBLOCK])
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 0.5
tmp14 = tmp12 * tmp13
tmp15 = 1e-05
tmp16 = triton_helpers.maximum(tmp14, tmp15)
tmp17 = tmp0 / tmp16
tmp20 = tmp17 * tmp19
tl.store(out_ptr0 + x2, tmp20, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_mul_0[grid(256)](
primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_2
return buf0, primals_1
class ScaleNormNew(nn.Module):
def __init__(self, dim, eps=1e-05):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(1))
def forward(self, input_0):
primals_2 = self.g
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
imflash217/bumblebee
|
ScaleNorm
| false | 12,530 |
[
"MIT"
] | 0 |
09343d42634aa954cac867f7e426eee260b4df57
|
https://github.com/imflash217/bumblebee/tree/09343d42634aa954cac867f7e426eee260b4df57
|
ReluSquared
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/23/c23p7mzbu3tuw3h544yc6vkom55w3r24x3tq7agdzk7kmijrfdy3.py
# Topologically Sorted Source Nodes: [relu, pow_1], Original ATen: [aten.relu, aten.pow]
# Source node to ATen node mapping:
# pow_1 => pow_1
# relu => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%relu, 2), kwargs = {})
triton_poi_fused_pow_relu_0 = async_compile.triton('triton_poi_fused_pow_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_pow_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = tmp2 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [relu, pow_1], Original ATen: [aten.relu, aten.pow]
stream0 = get_raw_stream(0)
triton_poi_fused_pow_relu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.functional as F
class ReluSquared(nn.Module):
def forward(self, input):
return F.relu(input) ** 2
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_pow_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = tmp2 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_pow_relu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ReluSquaredNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
imflash217/bumblebee
|
ReluSquared
| false | 12,531 |
[
"MIT"
] | 0 |
09343d42634aa954cac867f7e426eee260b4df57
|
https://github.com/imflash217/bumblebee/tree/09343d42634aa954cac867f7e426eee260b4df57
|
gram_mse_loss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/bd/cbd2h4op74e45nx5onkhofg7zxoa7pqzo5udz6qliljjewca2ljf.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.mse_loss]
# Source node to ATen node mapping:
# out => mean, pow_1, sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
triton_per_fused_mse_loss_0 = async_compile.triton('triton_per_fused_mse_loss_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mse_loss_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mse_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex % 64
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (r2), None)
tmp1 = 0.0625
tmp2 = tmp0 * tmp1
tmp4 = tmp2 - tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = 256.0
tmp10 = tmp8 / tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [G], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0), out=buf0)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.mse_loss]
stream0 = get_raw_stream(0)
triton_per_fused_mse_loss_0.run(buf2, buf0, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg1_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class gram_matrix(nn.Module):
def forward(self, input):
b, c, w, h = input.size()
F = input.view(b, c, h * w)
G = torch.bmm(F, F.transpose(1, 2))
G.div_(h * w)
return G
class gram_mse_loss(nn.Module):
def forward(self, input, target):
out = nn.MSELoss()(gram_matrix()(input), target)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mse_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex % 64
r2 = rindex
tmp0 = tl.load(in_ptr0 + r0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + r2, None)
tmp1 = 0.0625
tmp2 = tmp0 * tmp1
tmp4 = tmp2 - tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = 256.0
tmp10 = tmp8 / tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16,
1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0),
out=buf0)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_per_fused_mse_loss_0[grid(1)](buf2, buf0, arg1_1, 1, 256,
num_warps=2, num_stages=1)
del arg1_1
del buf0
return buf2,
class gram_matrix(nn.Module):
def forward(self, input):
b, c, w, h = input.size()
F = input.view(b, c, h * w)
G = torch.bmm(F, F.transpose(1, 2))
G.div_(h * w)
return G
class gram_mse_lossNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
ipjessica/neural-style-transfer
|
gram_mse_loss
| false | 12,532 |
[
"MIT"
] | 0 |
ae0fc5e1e69d5d52997e5cab69e880085e04723b
|
https://github.com/ipjessica/neural-style-transfer/tree/ae0fc5e1e69d5d52997e5cab69e880085e04723b
|
ECB
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/2v/c2vp4wevd4mmk6p3qeilou7zqojjaarvm3pedrgkmrhhjbggkpqu.py
# Topologically Sorted Source Nodes: [rep_weight], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# rep_weight => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %permute, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/qv/cqvr6sl23upg6qmriv4ttfkwdalh2tm5o52kvelb4o7ra7lg6rli.py
# Topologically Sorted Source Nodes: [ones, rep_bias], Original ATen: [aten.ones, aten.mul]
# Source node to ATen node mapping:
# ones => full_default
# rep_bias => mul
# Graph fragment:
# %full_default : [num_users=4] = call_function[target=torch.ops.aten.full.default](args = ([1, 4, 3, 3], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %view), kwargs = {})
triton_poi_fused_mul_ones_1 = async_compile.triton('triton_poi_fused_mul_ones_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_ones_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_ones_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 36
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 9)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp1 * tmp0
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/xu/cxuj47chxotact4pqfiotmxhglblpldmsey7mo3ep7qmqeqz3prc.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %select_scatter_default_4 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_2, %select_23, 0, 2), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 36
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 9)
x0 = xindex % 9
x2 = xindex
tmp3 = tl.load(in_ptr0 + (2))
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp5 = tl.load(in_ptr1 + (18 + x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp12 = tl.load(in_ptr1 + (9 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (0))
tmp18 = tl.broadcast_to(tmp17, [XBLOCK])
tmp19 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp6 = tmp4 * tmp5
tmp7 = tl.full([1], 1, tl.int32)
tmp8 = tmp1 == tmp7
tmp9 = tmp0 == tmp7
tmp13 = tmp11 * tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = tmp7 == tmp14
tmp16 = tmp0 == tmp14
tmp20 = tmp18 * tmp19
tmp21 = 0.0
tmp22 = tl.where(tmp16, tmp20, tmp21)
tmp23 = tl.where(tmp15, tmp22, tmp21)
tmp24 = tl.where(tmp9, tmp13, tmp23)
tmp25 = tmp1 == tmp14
tmp26 = tl.where(tmp25, tmp22, tmp21)
tmp27 = tl.where(tmp8, tmp24, tmp26)
tmp28 = tl.where(tmp2, tmp6, tmp27)
tl.store(out_ptr0 + (x2), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/c7/cc7ihqsgq5rotyl756evxcxvtv6777phxmntrhx2c7rmoidrzynb.py
# Topologically Sorted Source Nodes: [k1], Original ATen: [aten.zeros]
# Source node to ATen node mapping:
# k1 => full_default_1
# Graph fragment:
# %full_default_1 : [num_users=7] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 3, 3], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %select_scatter_default : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int, %select_1, 0, 0), kwargs = {})
# %select_scatter_default_1 : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default_1, %select_scatter_default, 0, 0), kwargs = {})
# %select_scatter_default_2 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_1, %select_11, 0, 1), kwargs = {})
# %select_scatter_default_3 : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %select_scatter_default_2, 0, 1), kwargs = {})
# %select_scatter_default_4 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_2, %select_23, 0, 2), kwargs = {})
# %select_scatter_default_5 : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_3, %select_scatter_default_4, 0, 2), kwargs = {})
triton_poi_fused_zeros_3 = async_compile.triton('triton_poi_fused_zeros_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zeros_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 36)
x3 = xindex % 36
x1 = (xindex // 9) % 4
x0 = xindex % 9
x5 = xindex
tmp3 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (1))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp10 = tl.load(in_ptr2 + (9 + x0), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (0))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp17 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp0 = x2
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp4 = tl.full([1], 1, tl.int32)
tmp5 = tmp0 == tmp4
tmp6 = x1
tmp7 = tmp6 == tmp4
tmp11 = tmp9 * tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = tmp4 == tmp12
tmp14 = tmp6 == tmp12
tmp18 = tmp16 * tmp17
tmp19 = 0.0
tmp20 = tl.where(tmp14, tmp18, tmp19)
tmp21 = tl.where(tmp13, tmp20, tmp19)
tmp22 = tl.where(tmp7, tmp11, tmp21)
tmp23 = tmp0 == tmp12
tmp24 = tl.where(tmp23, tmp20, tmp19)
tmp25 = tl.where(tmp5, tmp22, tmp24)
tmp26 = tl.where(tmp2, tmp3, tmp25)
tl.store(out_ptr0 + (x5), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/5x/c5xceeeyore456ayu22cfnjvtsmgwjyflxey6ofmssylko3q6lfr.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %select_scatter_default_6 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_3, %select_35, 0, 3), kwargs = {})
# %select_scatter_default_7 : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_5, %select_scatter_default_6, 0, 3), kwargs = {})
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 36)
x1 = (xindex // 9) % 4
x0 = xindex % 9
x4 = xindex % 36
x5 = xindex
tmp5 = tl.load(in_ptr0 + (3))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp7 = tl.load(in_ptr1 + (27 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (108 + x4), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (x5), xmask)
tmp0 = x2
tmp1 = tl.full([1], 3, tl.int32)
tmp2 = tmp0 == tmp1
tmp3 = x1
tmp4 = tmp3 == tmp1
tmp8 = tmp6 * tmp7
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp12 = tl.where(tmp2, tmp10, tmp11)
tl.store(out_ptr0 + (x5), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ki/cki7wq63h3z7dozphgay3ajw62gsf4cu7vseimq4nhjx4q3z7wfq.py
# Topologically Sorted Source Nodes: [add_4, add_5, add_6, rep_weight_4], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_4 => add_4
# add_5 => add_5
# add_6 => add_6
# rep_weight_4 => add_7
# Graph fragment:
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %convolution), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %convolution_2), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %convolution_4), kwargs = {})
# %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %convolution_6), kwargs = {})
triton_poi_fused_add_5 = async_compile.triton('triton_poi_fused_add_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_out_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp5 = tl.load(in_ptr2 + (x0), xmask)
tmp7 = tl.load(in_ptr3 + (x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tl.store(in_out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/cf/ccfkblyhfc7n6sy4opvjgvuymz54pzopsbopwb5m37uo5c26imhp.py
# Topologically Sorted Source Nodes: [rep_bias_1, rep_bias_3, rep_bias_5, rep_bias_7, add_8, add_9, add_10, rep_bias_8], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_10 => add_10
# add_8 => add_8
# add_9 => add_9
# rep_bias_1 => add
# rep_bias_3 => add_1
# rep_bias_5 => add_2
# rep_bias_7 => add_3
# rep_bias_8 => add_11
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_6), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_10), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %primals_15), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_7, %primals_20), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %add), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %add_1), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, %add_2), kwargs = {})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %add_3), kwargs = {})
triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask)
tmp5 = tl.load(in_out_ptr0 + (x0), xmask)
tmp6 = tl.load(in_ptr3 + (x0), xmask)
tmp9 = tl.load(in_ptr4 + (x0), xmask)
tmp10 = tl.load(in_ptr5 + (x0), xmask)
tmp13 = tl.load(in_ptr6 + (x0), xmask)
tmp14 = tl.load(in_ptr7 + (x0), xmask)
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tmp11 = tmp9 + tmp10
tmp12 = tmp8 + tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp12 + tmp15
tl.store(in_out_ptr0 + (x0), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/5m/c5m2qu7dz2ebkep5znwbczbqsg4mko372sguwxrfwe3e75rq7lvp.py
# Topologically Sorted Source Nodes: [y, y_1], Original ATen: [aten.convolution, aten._prelu_kernel]
# Source node to ATen node mapping:
# y => convolution_8
# y_1 => gt, mul_7, where
# Graph fragment:
# %convolution_8 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_22, %add_7, %add_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_8, %convolution_8), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution_8, %mul_7), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_7 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_7(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp6 = tmp5 * tmp2
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_9, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_13, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_14, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_18, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_19, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_20, (4, ), (1, ))
assert_size_stride(primals_21, (4, ), (1, ))
assert_size_stride(primals_22, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_23, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [rep_weight], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_3, buf0, 4, 4, grid=grid(4, 4), stream=stream0)
# Topologically Sorted Source Nodes: [rep_weight], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 3, 3), (36, 9, 3, 1))
buf2 = empty_strided_cuda((1, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [ones, rep_bias], Original ATen: [aten.ones, aten.mul]
triton_poi_fused_mul_ones_1.run(primals_5, buf2, 36, grid=grid(36), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (1, 4, 1, 1), (4, 1, 1, 1))
buf4 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_8, primals_9, buf4, 36, grid=grid(36), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [k1], Original ATen: [aten.zeros]
triton_poi_fused_zeros_3.run(buf4, primals_8, primals_9, buf5, 144, grid=grid(144), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_8, primals_9, buf5, buf6, 144, grid=grid(144), stream=stream0)
del primals_8
buf7 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [rep_weight_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(primals_7, buf7, 4, 4, grid=grid(4, 4), stream=stream0)
# Topologically Sorted Source Nodes: [rep_weight_1], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, buf7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 3, 3), (36, 9, 3, 1))
buf9 = reinterpret_tensor(buf4, (1, 4, 3, 3), (36, 9, 3, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [ones, rep_bias_2], Original ATen: [aten.ones, aten.mul]
triton_poi_fused_mul_ones_1.run(primals_11, buf9, 36, grid=grid(36), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, buf6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (1, 4, 1, 1), (4, 1, 1, 1))
buf11 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_13, primals_14, buf11, 36, grid=grid(36), stream=stream0)
buf12 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [k1], Original ATen: [aten.zeros]
triton_poi_fused_zeros_3.run(buf11, primals_13, primals_14, buf12, 144, grid=grid(144), stream=stream0)
buf13 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_13, primals_14, buf12, buf13, 144, grid=grid(144), stream=stream0)
del primals_13
buf14 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [rep_weight_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(primals_12, buf14, 4, 4, grid=grid(4, 4), stream=stream0)
# Topologically Sorted Source Nodes: [rep_weight_2], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf13, buf14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 4, 3, 3), (36, 9, 3, 1))
buf16 = reinterpret_tensor(buf11, (1, 4, 3, 3), (36, 9, 3, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [ones, rep_bias_4], Original ATen: [aten.ones, aten.mul]
triton_poi_fused_mul_ones_1.run(primals_16, buf16, 36, grid=grid(36), stream=stream0)
del primals_16
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, buf13, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (1, 4, 1, 1), (4, 1, 1, 1))
buf18 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_18, primals_19, buf18, 36, grid=grid(36), stream=stream0)
buf19 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [k1], Original ATen: [aten.zeros]
triton_poi_fused_zeros_3.run(buf18, primals_18, primals_19, buf19, 144, grid=grid(144), stream=stream0)
buf20 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_18, primals_19, buf19, buf20, 144, grid=grid(144), stream=stream0)
del buf19
del primals_18
buf21 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [rep_weight_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(primals_17, buf21, 4, 4, grid=grid(4, 4), stream=stream0)
# Topologically Sorted Source Nodes: [rep_weight_3], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf20, buf21, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 4, 3, 3), (36, 9, 3, 1))
del buf21
buf23 = reinterpret_tensor(buf18, (1, 4, 3, 3), (36, 9, 3, 1), 0); del buf18 # reuse
# Topologically Sorted Source Nodes: [ones, rep_bias_6], Original ATen: [aten.ones, aten.mul]
triton_poi_fused_mul_ones_1.run(primals_21, buf23, 36, grid=grid(36), stream=stream0)
del primals_21
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf23, buf20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (1, 4, 1, 1), (4, 1, 1, 1))
buf25 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [add_4, add_5, add_6, rep_weight_4], Original ATen: [aten.add]
triton_poi_fused_add_5.run(buf25, primals_1, buf8, buf15, buf22, 144, grid=grid(144), stream=stream0)
del buf15
del buf22
del buf8
del primals_1
buf26 = reinterpret_tensor(buf10, (4, ), (1, ), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [rep_bias_1, rep_bias_3, rep_bias_5, rep_bias_7, add_8, add_9, add_10, rep_bias_8], Original ATen: [aten.add]
triton_poi_fused_add_6.run(buf26, primals_2, buf3, primals_6, primals_10, buf17, primals_15, buf24, primals_20, 4, grid=grid(4), stream=stream0)
del buf17
del buf24
del buf3
del primals_10
del primals_15
del primals_2
del primals_20
del primals_6
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf27 = extern_kernels.convolution(primals_22, buf25, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 4, 4, 4), (64, 16, 4, 1))
buf28 = buf27; del buf27 # reuse
buf29 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y, y_1], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_7.run(buf28, buf26, primals_23, buf29, 256, grid=grid(256), stream=stream0)
del buf26
return (buf29, primals_4, primals_9, primals_14, primals_19, primals_22, primals_23, reinterpret_tensor(primals_3, (4, 4, 1, 1), (1, 4, 1, 1), 0), buf2, buf6, reinterpret_tensor(primals_7, (4, 4, 1, 1), (1, 4, 1, 1), 0), buf9, buf13, reinterpret_tensor(primals_12, (4, 4, 1, 1), (1, 4, 1, 1), 0), buf16, buf20, reinterpret_tensor(primals_17, (4, 4, 1, 1), (1, 4, 1, 1), 0), buf23, buf25, buf28, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import init as init
from torchvision.models import vgg as vgg
import torch.utils.data
from torch.utils import data as data
from torch import autograd as autograd
class SeqConv3x3(nn.Module):
def __init__(self, seq_type, inp_planes, out_planes, depth_multiplier=1):
super(SeqConv3x3, self).__init__()
self.seq_type = seq_type
self.inp_planes = inp_planes
self.out_planes = out_planes
if self.seq_type == 'conv1x1-conv3x3':
self.mid_planes = int(out_planes * depth_multiplier)
conv0 = torch.nn.Conv2d(self.inp_planes, self.mid_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
conv1 = torch.nn.Conv2d(self.mid_planes, self.out_planes,
kernel_size=3)
self.k1 = conv1.weight
self.b1 = conv1.bias
elif self.seq_type == 'conv1x1-sobelx':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(scale)
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(bias)
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 1, 0] = 2.0
self.mask[i, 0, 2, 0] = 1.0
self.mask[i, 0, 0, 2] = -1.0
self.mask[i, 0, 1, 2] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.seq_type == 'conv1x1-sobely':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(torch.FloatTensor(scale))
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(torch.FloatTensor(bias))
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 0, 1] = 2.0
self.mask[i, 0, 0, 2] = 1.0
self.mask[i, 0, 2, 0] = -1.0
self.mask[i, 0, 2, 1] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.seq_type == 'conv1x1-laplacian':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(torch.FloatTensor(scale))
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(torch.FloatTensor(bias))
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 1] = 1.0
self.mask[i, 0, 1, 0] = 1.0
self.mask[i, 0, 1, 2] = 1.0
self.mask[i, 0, 2, 1] = 1.0
self.mask[i, 0, 1, 1] = -4.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
else:
raise ValueError('The type of seqconv is not supported!')
def forward(self, x):
if self.seq_type == 'conv1x1-conv3x3':
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
y1 = F.conv2d(input=y0, weight=self.k1, bias=self.b1, stride=1)
else:
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
y1 = F.conv2d(input=y0, weight=self.scale * self.mask, bias=
self.bias, stride=1, groups=self.out_planes)
return y1
def rep_params(self):
device = self.k0.get_device()
if device < 0:
device = None
if self.seq_type == 'conv1x1-conv3x3':
rep_weight = F.conv2d(input=self.k1, weight=self.k0.permute(1,
0, 2, 3))
rep_bias = torch.ones(1, self.mid_planes, 3, 3, device=device
) * self.b0.view(1, -1, 1, 1)
rep_bias = F.conv2d(input=rep_bias, weight=self.k1).view(-1
) + self.b1
else:
tmp = self.scale * self.mask
k1 = torch.zeros((self.out_planes, self.out_planes, 3, 3),
device=device)
for i in range(self.out_planes):
k1[i, i, :, :] = tmp[i, 0, :, :]
b1 = self.bias
rep_weight = F.conv2d(input=k1, weight=self.k0.permute(1, 0, 2, 3))
rep_bias = torch.ones(1, self.out_planes, 3, 3, device=device
) * self.b0.view(1, -1, 1, 1)
rep_bias = F.conv2d(input=rep_bias, weight=k1).view(-1) + b1
return rep_weight, rep_bias
class ECB(nn.Module):
def __init__(self, inp_planes, out_planes, depth_multiplier, act_type=
'prelu', with_idt=False):
super(ECB, self).__init__()
self.depth_multiplier = depth_multiplier
self.inp_planes = inp_planes
self.out_planes = out_planes
self.act_type = act_type
if with_idt and self.inp_planes == self.out_planes:
self.with_idt = True
else:
self.with_idt = False
self.conv3x3 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=3, padding=1)
self.conv1x1_3x3 = SeqConv3x3('conv1x1-conv3x3', self.inp_planes,
self.out_planes, self.depth_multiplier)
self.conv1x1_sbx = SeqConv3x3('conv1x1-sobelx', self.inp_planes,
self.out_planes)
self.conv1x1_sby = SeqConv3x3('conv1x1-sobely', self.inp_planes,
self.out_planes)
self.conv1x1_lpl = SeqConv3x3('conv1x1-laplacian', self.inp_planes,
self.out_planes)
if self.act_type == 'prelu':
self.act = nn.PReLU(num_parameters=self.out_planes)
elif self.act_type == 'relu':
self.act = nn.ReLU(inplace=True)
elif self.act_type == 'rrelu':
self.act = nn.RReLU(lower=-0.05, upper=0.05)
elif self.act_type == 'softplus':
self.act = nn.Softplus()
elif self.act_type == 'linear':
pass
else:
raise ValueError('The type of activation if not support!')
def forward(self, x):
if self.training:
y = self.conv3x3(x) + self.conv1x1_3x3(x) + self.conv1x1_sbx(x
) + self.conv1x1_sby(x) + self.conv1x1_lpl(x)
if self.with_idt:
y += x
else:
rep_weight, rep_bias = self.rep_params()
y = F.conv2d(input=x, weight=rep_weight, bias=rep_bias, stride=
1, padding=1)
if self.act_type != 'linear':
y = self.act(y)
return y
def rep_params(self):
weight0, bias0 = self.conv3x3.weight, self.conv3x3.bias
weight1, bias1 = self.conv1x1_3x3.rep_params()
weight2, bias2 = self.conv1x1_sbx.rep_params()
weight3, bias3 = self.conv1x1_sby.rep_params()
weight4, bias4 = self.conv1x1_lpl.rep_params()
rep_weight, rep_bias = (weight0 + weight1 + weight2 + weight3 +
weight4, bias0 + bias1 + bias2 + bias3 + bias4)
if self.with_idt:
device = rep_weight.get_device()
if device < 0:
device = None
weight_idt = torch.zeros(self.out_planes, self.out_planes, 3, 3,
device=device)
for i in range(self.out_planes):
weight_idt[i, i, 1, 1] = 1.0
bias_idt = 0.0
rep_weight, rep_bias = rep_weight + weight_idt, rep_bias + bias_idt
return rep_weight, rep_bias
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inp_planes': 4, 'out_planes': 4, 'depth_multiplier': 1}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import init as init
from torchvision.models import vgg as vgg
import torch.utils.data
from torch.utils import data as data
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_mul_ones_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 36
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 9
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp1 * tmp0
tl.store(out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 36
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 9
x0 = xindex % 9
x2 = xindex
tmp3 = tl.load(in_ptr0 + 2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp5 = tl.load(in_ptr1 + (18 + x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + 1)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp12 = tl.load(in_ptr1 + (9 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + 0)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK])
tmp19 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp6 = tmp4 * tmp5
tmp7 = tl.full([1], 1, tl.int32)
tmp8 = tmp1 == tmp7
tmp9 = tmp0 == tmp7
tmp13 = tmp11 * tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = tmp7 == tmp14
tmp16 = tmp0 == tmp14
tmp20 = tmp18 * tmp19
tmp21 = 0.0
tmp22 = tl.where(tmp16, tmp20, tmp21)
tmp23 = tl.where(tmp15, tmp22, tmp21)
tmp24 = tl.where(tmp9, tmp13, tmp23)
tmp25 = tmp1 == tmp14
tmp26 = tl.where(tmp25, tmp22, tmp21)
tmp27 = tl.where(tmp8, tmp24, tmp26)
tmp28 = tl.where(tmp2, tmp6, tmp27)
tl.store(out_ptr0 + x2, tmp28, xmask)
@triton.jit
def triton_poi_fused_zeros_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 36
x3 = xindex % 36
x1 = xindex // 9 % 4
x0 = xindex % 9
x5 = xindex
tmp3 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + 1)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp10 = tl.load(in_ptr2 + (9 + x0), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + 0)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp17 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp0 = x2
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp4 = tl.full([1], 1, tl.int32)
tmp5 = tmp0 == tmp4
tmp6 = x1
tmp7 = tmp6 == tmp4
tmp11 = tmp9 * tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = tmp4 == tmp12
tmp14 = tmp6 == tmp12
tmp18 = tmp16 * tmp17
tmp19 = 0.0
tmp20 = tl.where(tmp14, tmp18, tmp19)
tmp21 = tl.where(tmp13, tmp20, tmp19)
tmp22 = tl.where(tmp7, tmp11, tmp21)
tmp23 = tmp0 == tmp12
tmp24 = tl.where(tmp23, tmp20, tmp19)
tmp25 = tl.where(tmp5, tmp22, tmp24)
tmp26 = tl.where(tmp2, tmp3, tmp25)
tl.store(out_ptr0 + x5, tmp26, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 36
x1 = xindex // 9 % 4
x0 = xindex % 9
x4 = xindex % 36
x5 = xindex
tmp5 = tl.load(in_ptr0 + 3)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp7 = tl.load(in_ptr1 + (27 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (108 + x4), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + x5, xmask)
tmp0 = x2
tmp1 = tl.full([1], 3, tl.int32)
tmp2 = tmp0 == tmp1
tmp3 = x1
tmp4 = tmp3 == tmp1
tmp8 = tmp6 * tmp7
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp12 = tl.where(tmp2, tmp10, tmp11)
tl.store(out_ptr0 + x5, tmp12, xmask)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3,
xnumel, XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_out_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp5 = tl.load(in_ptr2 + x0, xmask)
tmp7 = tl.load(in_ptr3 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tl.store(in_out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask)
tmp5 = tl.load(in_out_ptr0 + x0, xmask)
tmp6 = tl.load(in_ptr3 + x0, xmask)
tmp9 = tl.load(in_ptr4 + x0, xmask)
tmp10 = tl.load(in_ptr5 + x0, xmask)
tmp13 = tl.load(in_ptr6 + x0, xmask)
tmp14 = tl.load(in_ptr7 + x0, xmask)
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tmp11 = tmp9 + tmp10
tmp12 = tmp8 + tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp12 + tmp15
tl.store(in_out_ptr0 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_7(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp6 = tmp5 * tmp2
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22, primals_23
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_9, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_13, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_14, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_18, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_19, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_20, (4,), (1,))
assert_size_stride(primals_21, (4,), (1,))
assert_size_stride(primals_22, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_23, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(4, 4)](primals_3, buf0, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 3, 3), (36, 9, 3, 1))
buf2 = empty_strided_cuda((1, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_mul_ones_1[grid(36)](primals_5, buf2, 36, XBLOCK=
64, num_warps=1, num_stages=1)
del primals_5
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (1, 4, 1, 1), (4, 1, 1, 1))
buf4 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
triton_poi_fused_2[grid(36)](primals_8, primals_9, buf4, 36, XBLOCK
=64, num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_zeros_3[grid(144)](buf4, primals_8, primals_9,
buf5, 144, XBLOCK=256, num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_4[grid(144)](primals_8, primals_9, buf5, buf6, 144,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_8
buf7 = buf0
del buf0
triton_poi_fused_convolution_0[grid(4, 4)](primals_7, buf7, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
buf8 = extern_kernels.convolution(buf6, buf7, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 3, 3), (36, 9, 3, 1))
buf9 = reinterpret_tensor(buf4, (1, 4, 3, 3), (36, 9, 3, 1), 0)
del buf4
triton_poi_fused_mul_ones_1[grid(36)](primals_11, buf9, 36, XBLOCK=
64, num_warps=1, num_stages=1)
del primals_11
buf10 = extern_kernels.convolution(buf9, buf6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (1, 4, 1, 1), (4, 1, 1, 1))
buf11 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
triton_poi_fused_2[grid(36)](primals_13, primals_14, buf11, 36,
XBLOCK=64, num_warps=1, num_stages=1)
buf12 = buf5
del buf5
triton_poi_fused_zeros_3[grid(144)](buf11, primals_13, primals_14,
buf12, 144, XBLOCK=256, num_warps=4, num_stages=1)
buf13 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_4[grid(144)](primals_13, primals_14, buf12, buf13,
144, XBLOCK=256, num_warps=4, num_stages=1)
del primals_13
buf14 = buf7
del buf7
triton_poi_fused_convolution_0[grid(4, 4)](primals_12, buf14, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
buf15 = extern_kernels.convolution(buf13, buf14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 4, 3, 3), (36, 9, 3, 1))
buf16 = reinterpret_tensor(buf11, (1, 4, 3, 3), (36, 9, 3, 1), 0)
del buf11
triton_poi_fused_mul_ones_1[grid(36)](primals_16, buf16, 36, XBLOCK
=64, num_warps=1, num_stages=1)
del primals_16
buf17 = extern_kernels.convolution(buf16, buf13, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (1, 4, 1, 1), (4, 1, 1, 1))
buf18 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
triton_poi_fused_2[grid(36)](primals_18, primals_19, buf18, 36,
XBLOCK=64, num_warps=1, num_stages=1)
buf19 = buf12
del buf12
triton_poi_fused_zeros_3[grid(144)](buf18, primals_18, primals_19,
buf19, 144, XBLOCK=256, num_warps=4, num_stages=1)
buf20 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_4[grid(144)](primals_18, primals_19, buf19, buf20,
144, XBLOCK=256, num_warps=4, num_stages=1)
del buf19
del primals_18
buf21 = buf14
del buf14
triton_poi_fused_convolution_0[grid(4, 4)](primals_17, buf21, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
buf22 = extern_kernels.convolution(buf20, buf21, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 4, 3, 3), (36, 9, 3, 1))
del buf21
buf23 = reinterpret_tensor(buf18, (1, 4, 3, 3), (36, 9, 3, 1), 0)
del buf18
triton_poi_fused_mul_ones_1[grid(36)](primals_21, buf23, 36, XBLOCK
=64, num_warps=1, num_stages=1)
del primals_21
buf24 = extern_kernels.convolution(buf23, buf20, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (1, 4, 1, 1), (4, 1, 1, 1))
buf25 = buf1
del buf1
triton_poi_fused_add_5[grid(144)](buf25, primals_1, buf8, buf15,
buf22, 144, XBLOCK=256, num_warps=4, num_stages=1)
del buf15
del buf22
del buf8
del primals_1
buf26 = reinterpret_tensor(buf10, (4,), (1,), 0)
del buf10
triton_poi_fused_add_6[grid(4)](buf26, primals_2, buf3, primals_6,
primals_10, buf17, primals_15, buf24, primals_20, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del buf17
del buf24
del buf3
del primals_10
del primals_15
del primals_2
del primals_20
del primals_6
buf27 = extern_kernels.convolution(primals_22, buf25, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 4, 4, 4), (64, 16, 4, 1))
buf28 = buf27
del buf27
buf29 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_7[grid(256)](buf28,
buf26, primals_23, buf29, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf26
return (buf29, primals_4, primals_9, primals_14, primals_19, primals_22,
primals_23, reinterpret_tensor(primals_3, (4, 4, 1, 1), (1, 4, 1, 1
), 0), buf2, buf6, reinterpret_tensor(primals_7, (4, 4, 1, 1), (1,
4, 1, 1), 0), buf9, buf13, reinterpret_tensor(primals_12, (4, 4, 1,
1), (1, 4, 1, 1), 0), buf16, buf20, reinterpret_tensor(primals_17,
(4, 4, 1, 1), (1, 4, 1, 1), 0), buf23, buf25, buf28)
class SeqConv3x3(nn.Module):
def __init__(self, seq_type, inp_planes, out_planes, depth_multiplier=1):
super(SeqConv3x3, self).__init__()
self.seq_type = seq_type
self.inp_planes = inp_planes
self.out_planes = out_planes
if self.seq_type == 'conv1x1-conv3x3':
self.mid_planes = int(out_planes * depth_multiplier)
conv0 = torch.nn.Conv2d(self.inp_planes, self.mid_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
conv1 = torch.nn.Conv2d(self.mid_planes, self.out_planes,
kernel_size=3)
self.k1 = conv1.weight
self.b1 = conv1.bias
elif self.seq_type == 'conv1x1-sobelx':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(scale)
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(bias)
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 1, 0] = 2.0
self.mask[i, 0, 2, 0] = 1.0
self.mask[i, 0, 0, 2] = -1.0
self.mask[i, 0, 1, 2] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.seq_type == 'conv1x1-sobely':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(torch.FloatTensor(scale))
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(torch.FloatTensor(bias))
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 0, 1] = 2.0
self.mask[i, 0, 0, 2] = 1.0
self.mask[i, 0, 2, 0] = -1.0
self.mask[i, 0, 2, 1] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.seq_type == 'conv1x1-laplacian':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(torch.FloatTensor(scale))
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(torch.FloatTensor(bias))
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 1] = 1.0
self.mask[i, 0, 1, 0] = 1.0
self.mask[i, 0, 1, 2] = 1.0
self.mask[i, 0, 2, 1] = 1.0
self.mask[i, 0, 1, 1] = -4.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
else:
raise ValueError('The type of seqconv is not supported!')
def forward(self, x):
if self.seq_type == 'conv1x1-conv3x3':
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
y1 = F.conv2d(input=y0, weight=self.k1, bias=self.b1, stride=1)
else:
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
y1 = F.conv2d(input=y0, weight=self.scale * self.mask, bias=
self.bias, stride=1, groups=self.out_planes)
return y1
def rep_params(self):
device = self.k0.get_device()
if device < 0:
device = None
if self.seq_type == 'conv1x1-conv3x3':
rep_weight = F.conv2d(input=self.k1, weight=self.k0.permute(1,
0, 2, 3))
rep_bias = torch.ones(1, self.mid_planes, 3, 3, device=device
) * self.b0.view(1, -1, 1, 1)
rep_bias = F.conv2d(input=rep_bias, weight=self.k1).view(-1
) + self.b1
else:
tmp = self.scale * self.mask
k1 = torch.zeros((self.out_planes, self.out_planes, 3, 3),
device=device)
for i in range(self.out_planes):
k1[i, i, :, :] = tmp[i, 0, :, :]
b1 = self.bias
rep_weight = F.conv2d(input=k1, weight=self.k0.permute(1, 0, 2, 3))
rep_bias = torch.ones(1, self.out_planes, 3, 3, device=device
) * self.b0.view(1, -1, 1, 1)
rep_bias = F.conv2d(input=rep_bias, weight=k1).view(-1) + b1
return rep_weight, rep_bias
class ECBNew(nn.Module):
def __init__(self, inp_planes, out_planes, depth_multiplier, act_type=
'prelu', with_idt=False):
super(ECBNew, self).__init__()
self.depth_multiplier = depth_multiplier
self.inp_planes = inp_planes
self.out_planes = out_planes
self.act_type = act_type
if with_idt and self.inp_planes == self.out_planes:
self.with_idt = True
else:
self.with_idt = False
self.conv3x3 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=3, padding=1)
self.conv1x1_3x3 = SeqConv3x3('conv1x1-conv3x3', self.inp_planes,
self.out_planes, self.depth_multiplier)
self.conv1x1_sbx = SeqConv3x3('conv1x1-sobelx', self.inp_planes,
self.out_planes)
self.conv1x1_sby = SeqConv3x3('conv1x1-sobely', self.inp_planes,
self.out_planes)
self.conv1x1_lpl = SeqConv3x3('conv1x1-laplacian', self.inp_planes,
self.out_planes)
if self.act_type == 'prelu':
self.act = nn.PReLU(num_parameters=self.out_planes)
elif self.act_type == 'relu':
self.act = nn.ReLU(inplace=True)
elif self.act_type == 'rrelu':
self.act = nn.RReLU(lower=-0.05, upper=0.05)
elif self.act_type == 'softplus':
self.act = nn.Softplus()
elif self.act_type == 'linear':
pass
else:
raise ValueError('The type of activation if not support!')
def rep_params(self):
weight0, bias0 = self.conv3x3.weight, self.conv3x3.bias
weight1, bias1 = self.conv1x1_3x3.rep_params()
weight2, bias2 = self.conv1x1_sbx.rep_params()
weight3, bias3 = self.conv1x1_sby.rep_params()
weight4, bias4 = self.conv1x1_lpl.rep_params()
rep_weight, rep_bias = (weight0 + weight1 + weight2 + weight3 +
weight4, bias0 + bias1 + bias2 + bias3 + bias4)
if self.with_idt:
device = rep_weight.get_device()
if device < 0:
device = None
weight_idt = torch.zeros(self.out_planes, self.out_planes, 3, 3,
device=device)
for i in range(self.out_planes):
weight_idt[i, i, 1, 1] = 1.0
bias_idt = 0.0
rep_weight, rep_bias = rep_weight + weight_idt, rep_bias + bias_idt
return rep_weight, rep_bias
def forward(self, input_0):
primals_1 = self.conv3x3.weight
primals_2 = self.conv3x3.bias
primals_3 = self.conv1x1_3x3.k0
primals_5 = self.conv1x1_3x3.b0
primals_4 = self.conv1x1_3x3.k1
primals_6 = self.conv1x1_3x3.b1
primals_7 = self.conv1x1_sbx.k0
primals_10 = self.conv1x1_sbx.b0
primals_8 = self.conv1x1_sbx.scale
primals_11 = self.conv1x1_sbx.bias
primals_9 = self.conv1x1_sbx.mask
primals_12 = self.conv1x1_sby.k0
primals_15 = self.conv1x1_sby.b0
primals_13 = self.conv1x1_sby.scale
primals_16 = self.conv1x1_sby.bias
primals_14 = self.conv1x1_sby.mask
primals_17 = self.conv1x1_lpl.k0
primals_20 = self.conv1x1_lpl.b0
primals_18 = self.conv1x1_lpl.scale
primals_21 = self.conv1x1_lpl.bias
primals_19 = self.conv1x1_lpl.mask
primals_23 = self.act.weight
primals_22 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23])
return output[0]
|
hyunobae/BasicSR
|
ECB
| false | 12,533 |
[
"Apache-2.0"
] | 0 |
f2c2fc6cf28933658816c808f55c95fa20b16483
|
https://github.com/hyunobae/BasicSR/tree/f2c2fc6cf28933658816c808f55c95fa20b16483
|
FullSelfAttn
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/sr/csrg6irduolxnaubd5v3tlh5eeuhw27sxkg3o56t4veh47sq6ce3.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 2
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ko/ckow7ci7f3mygm6ujdzdisip6tet25h4hj6uestesqalhkarwrrw.py
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/w5/cw5gytijzzkwnfpq2a2axdsj4pfxgxmwiuzizuyd4bw5uwnanzw7.py
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/j4/cj4f6qdb45emg4zrdv5vzxtw2vswpyt2rqyalr6mxgomzeyk55j5.py
# Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# out_2 => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_8, %view_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_1), kwargs = {})
triton_poi_fused_add_mul_3 = async_compile.triton('triton_poi_fused_add_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask)
tmp3 = tmp1 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (2, ), (1, ))
assert_size_stride(primals_4, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 128, grid=grid(128), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 2, 4, 4), (32, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 128, grid=grid(128), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [energy], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf1, (4, 16, 2), (32, 1, 16), 0), reinterpret_tensor(buf3, (4, 2, 16), (32, 16, 1), 0), out=buf4)
buf7 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
triton_per_fused__softmax_1.run(buf4, buf7, 64, 16, grid=grid(64), stream=stream0)
del buf4
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf9, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf9, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf7, (4, 16, 16), (256, 1, 16), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_3.run(primals_8, buf10, primals_1, buf11, 256, grid=grid(256), stream=stream0)
return (buf11, buf7, primals_1, primals_2, primals_4, primals_6, primals_8, buf7, buf10, reinterpret_tensor(buf9, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf1, (4, 2, 16), (32, 16, 1), 0), reinterpret_tensor(buf3, (4, 16, 2), (32, 1, 16), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.utils.data
class FullSelfAttn(nn.Module):
""" Self attention Layer"""
def __init__(self, in_dim):
super().__init__()
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim //
2, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim //
2, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim,
kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps( B * C * W * H)
returns :
out : self attention value + input feature
attention: B * N * N (N is Width*Height)
"""
m_batchsize, C, width, height = x.size()
proj_query = self.query_conv(x).view(m_batchsize, -1, width * height
).permute(0, 2, 1)
proj_key = self.key_conv(x).view(m_batchsize, -1, width * height)
energy = torch.bmm(proj_query, proj_key)
attention = self.softmax(energy)
proj_value = self.value_conv(x).view(m_batchsize, -1, width * height)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(m_batchsize, C, width, height)
out = self.gamma * out + x
return out, attention
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 2
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask)
tmp3 = tmp1 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (2,), (1,))
assert_size_stride(primals_4, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(128)](buf1, primals_3, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 2, 4, 4), (32, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(128)](buf3, primals_5, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf1, (4, 16, 2), (32, 1, 16),
0), reinterpret_tensor(buf3, (4, 2, 16), (32, 16, 1), 0), out=buf4)
buf7 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
triton_per_fused__softmax_1[grid(64)](buf4, buf7, 64, 16, XBLOCK=32,
num_warps=4, num_stages=1)
del buf4
buf8 = extern_kernels.convolution(primals_1, primals_6, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_2[grid(256)](buf9, primals_7, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf9, (4, 4, 16), (64, 16, 1),
0), reinterpret_tensor(buf7, (4, 16, 16), (256, 1, 16), 0), out
=buf10)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_3[grid(256)](primals_8, buf10, primals_1,
buf11, 256, XBLOCK=256, num_warps=4, num_stages=1)
return (buf11, buf7, primals_1, primals_2, primals_4, primals_6,
primals_8, buf7, buf10, reinterpret_tensor(buf9, (4, 16, 4), (64, 1,
16), 0), reinterpret_tensor(buf1, (4, 2, 16), (32, 16, 1), 0),
reinterpret_tensor(buf3, (4, 16, 2), (32, 1, 16), 0))
class FullSelfAttnNew(nn.Module):
""" Self attention Layer"""
def __init__(self, in_dim):
super().__init__()
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim //
2, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim //
2, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim,
kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, input_0):
primals_8 = self.gamma
primals_2 = self.query_conv.weight
primals_3 = self.query_conv.bias
primals_4 = self.key_conv.weight
primals_5 = self.key_conv.bias
primals_6 = self.value_conv.weight
primals_7 = self.value_conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0], output[1]
|
ilyak93/SinGanF2
|
FullSelfAttn
| false | 12,534 |
[
"MIT"
] | 0 |
fa6b135ef4699626ce450afd02ed3b269e4ca16d
|
https://github.com/ilyak93/SinGanF2/tree/fa6b135ef4699626ce450afd02ed3b269e4ca16d
|
gram_matrix
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/r5/cr52v5yotzudnablrrwmfpcsyvq37jz2x7fx3mcszdca66xahvgc.py
# Topologically Sorted Source Nodes: [div_], Original ATen: [aten.div]
# Source node to ATen node mapping:
# div_ => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm, 16), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = 0.0625
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [G], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0), out=buf0)
del arg0_1
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [div_], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(buf1, 64, grid=grid(64), stream=stream0)
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class gram_matrix(nn.Module):
def forward(self, input):
b, c, w, h = input.size()
F = input.view(b, c, h * w)
G = torch.bmm(F, F.transpose(1, 2))
G.div_(h * w)
return G
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = 0.0625
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16,
1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0),
out=buf0)
del arg0_1
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_div_0[grid(64)](buf1, 64, XBLOCK=64, num_warps=1,
num_stages=1)
return buf1,
class gram_matrixNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ipjessica/neural-style-transfer
|
gram_matrix
| false | 12,535 |
[
"MIT"
] | 0 |
ae0fc5e1e69d5d52997e5cab69e880085e04723b
|
https://github.com/ipjessica/neural-style-transfer/tree/ae0fc5e1e69d5d52997e5cab69e880085e04723b
|
GramMatrix
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/is/cisapkt44fpo5wqfnkix2in7s65orb7574hzyi6bjpkccirc7pcb.py
# Topologically Sorted Source Nodes: [div], Original ATen: [aten.div]
# Source node to ATen node mapping:
# div => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mm, 256), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = 0.00390625
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [G], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(arg0_1, (16, 16), (16, 1), 0), reinterpret_tensor(arg0_1, (16, 16), (1, 16), 0), out=buf0)
del arg0_1
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [div], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(buf1, 256, grid=grid(256), stream=stream0)
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class GramMatrix(nn.Module):
def forward(self, input):
a, b, c, d = input.size()
features = input.view(a * b, c * d)
G = torch.mm(features, features.t())
return G.div(a * b * c * d)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = 0.00390625
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(arg0_1, (16, 16), (16, 1), 0),
reinterpret_tensor(arg0_1, (16, 16), (1, 16), 0), out=buf0)
del arg0_1
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](buf1, 256, XBLOCK=128, num_warps=
4, num_stages=1)
return buf1,
class GramMatrixNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
invoker4zoo/pytorch_model
|
GramMatrix
| false | 12,536 |
[
"MIT"
] | 0 |
b74f005ba1be5e66fafaa2745fc7d1815979e91f
|
https://github.com/invoker4zoo/pytorch_model/tree/b74f005ba1be5e66fafaa2745fc7d1815979e91f
|
ChannelWiseLayerNorm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/sr/csrzlteph4svc746shxzwrfzfygp3ngujwxcrnvcusqhc43dtftf.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x_1 => add, clone, rsqrt, var_mean
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x2), tmp8, xmask)
tl.store(out_ptr1 + (x2), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/kr/ckrgsxswvgegsbqfoto5m7jeyj5kla75z75anayv7klydrtg2kle.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x_1 => add, add_1, clone, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y3), ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (y3), ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2 + (4*y3)), tmp8, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, 4, grid=grid(16, 4), stream=stream0)
del buf0
del buf1
del primals_2
del primals_3
return (reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class ChannelWiseLayerNorm(nn.LayerNorm):
"""
Channel wise layer normalization
"""
def __init__(self, *args, **kwargs):
super(ChannelWiseLayerNorm, self).__init__(*args, **kwargs)
def forward(self, x):
"""
x: BS x N x K
"""
if x.dim() != 3:
raise RuntimeError('{} accept 3D tensor as input'.format(self.
__name__))
x = torch.transpose(x, 1, 2)
x = super(ChannelWiseLayerNorm, self).forward(x)
x = torch.transpose(x, 1, 2)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'normalized_shape': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x2, tmp8, xmask)
tl.store(out_ptr1 + x2, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.
constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y3, ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + y3, ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2 + 4 * y3), tmp8, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(16)](primals_1, buf0,
buf1, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(16, 4)](primals_1, buf0,
buf1, primals_2, primals_3, buf2, 16, 4, XBLOCK=4, YBLOCK=16,
num_warps=1, num_stages=1)
del buf0
del buf1
del primals_2
del primals_3
return reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_1
class ChannelWiseLayerNormNew(nn.LayerNorm):
"""
Channel wise layer normalization
"""
def __init__(self, *args, **kwargs):
super(ChannelWiseLayerNormNew, self).__init__(*args, **kwargs)
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
intflow/FullSubNet
|
ChannelWiseLayerNorm
| false | 12,537 |
[
"MIT"
] | 0 |
193091acac4c747730db5ace33fd1b8870e7c735
|
https://github.com/intflow/FullSubNet/tree/193091acac4c747730db5ace33fd1b8870e7c735
|
CumulativeMagSpectralNorm
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/s4/cs4unwn7tzvk4mxiocfpzxeruj4qbvvcfop5wxj2b5hnk2v2blmx.py
# Topologically Sorted Source Nodes: [step_sum, mu], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mu => mean_1
# step_sum => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1]), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [-1]), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 / tmp7
tmp17 = tmp8 + tmp16
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 / tmp7
tmp26 = tmp17 + tmp25
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 / tmp7
tmp35 = tmp26 + tmp34
tmp36 = tmp35 / tmp7
tl.store(out_ptr0 + (x0), tmp36, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/jv/cjv3w2lgt7zitf6mnfv6uyizsr6rm46utkix4hkdwwe574z4p6xx.py
# Topologically Sorted Source Nodes: [add, input_normed], Original ATen: [aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# input_normed => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, %add), kwargs = {})
triton_poi_fused_add_div_1 = async_compile.triton('triton_poi_fused_add_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = 1e-06
tmp3 = tmp1 + tmp2
tmp4 = tmp0 / tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [step_sum, mu], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, input_normed], Original ATen: [aten.add, aten.div]
triton_poi_fused_add_div_1.run(arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
del buf0
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class CumulativeMagSpectralNorm(nn.Module):
def __init__(self, cumulative=False, use_mid_freq_mu=False):
"""
Args:
cumulative: 是否采用累积的方式计算 mu
use_mid_freq_mu: 仅采用中心频率的 mu 来代替全局 mu
Notes:
先算均值再累加 等同于 先累加再算均值
"""
super().__init__()
self.eps = 1e-06
self.cumulative = cumulative
self.use_mid_freq_mu = use_mid_freq_mu
def forward(self, input):
assert input.ndim == 4, f'{self.__name__} only support 4D input.'
batch_size, n_channels, n_freqs, n_frames = input.size()
device = input.device
data_type = input.dtype
input = input.reshape(batch_size * n_channels, n_freqs, n_frames)
if self.use_mid_freq_mu:
step_sum = input[:, int(n_freqs // 2 - 1), :]
else:
step_sum = torch.mean(input, dim=1)
if self.cumulative:
cumulative_sum = torch.cumsum(step_sum, dim=-1)
entry_count = torch.arange(1, n_frames + 1, dtype=data_type,
device=device)
entry_count = entry_count.reshape(1, n_frames)
entry_count = entry_count.expand_as(cumulative_sum)
mu = cumulative_sum / entry_count
mu = mu.reshape(batch_size * n_channels, 1, n_frames)
else:
mu = torch.mean(step_sum, dim=-1)
mu = mu.reshape(batch_size * n_channels, 1, 1)
input_normed = input / (mu + self.eps)
input_normed = input_normed.reshape(batch_size, n_channels, n_freqs,
n_frames)
return input_normed
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp10 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp18 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp30 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp32 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 / tmp7
tmp17 = tmp8 + tmp16
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 / tmp7
tmp26 = tmp17 + tmp25
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 / tmp7
tmp35 = tmp26 + tmp34
tmp36 = tmp35 / tmp7
tl.store(out_ptr0 + x0, tmp36, xmask)
@triton.jit
def triton_poi_fused_add_div_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = 1e-06
tmp3 = tmp1 + tmp2
tmp4 = tmp0 / tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_1[grid(256)](arg0_1, buf0, buf1, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del buf0
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0),
class CumulativeMagSpectralNormNew(nn.Module):
def __init__(self, cumulative=False, use_mid_freq_mu=False):
"""
Args:
cumulative: 是否采用累积的方式计算 mu
use_mid_freq_mu: 仅采用中心频率的 mu 来代替全局 mu
Notes:
先算均值再累加 等同于 先累加再算均值
"""
super().__init__()
self.eps = 1e-06
self.cumulative = cumulative
self.use_mid_freq_mu = use_mid_freq_mu
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
intflow/FullSubNet
|
CumulativeMagSpectralNorm
| false | 12,538 |
[
"MIT"
] | 0 |
193091acac4c747730db5ace33fd1b8870e7c735
|
https://github.com/intflow/FullSubNet/tree/193091acac4c747730db5ace33fd1b8870e7c735
|
GradientReversal
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/u5/cu56dhpcth43gy4shrd7mcexf4nfa6qetnnhwe4mno4v6ug76h6j.py
# Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# clone => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%arg0_1,), kwargs = {})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class GradientReversalFunction(torch.autograd.Function):
"""
Gradient Reversal Layer from:
Unsupervised Domain Adaptation by Backpropagation (Ganin & Lempitsky, 2015)
Forward pass is the identity function.
In the backward pass,
the upstream gradients are multiplied by -lambda (i.e. gradient is reversed)
"""
@staticmethod
def forward(ctx, x, lambda_):
ctx.lambda_ = lambda_
return x.clone()
@staticmethod
def backward(ctx, grads):
lambda_ = ctx.lambda_
lambda_ = grads.new_tensor(lambda_)
dx = -lambda_ * grads
return dx, None
class GradientReversal(torch.nn.Module):
"""
Gradient Reversal Layer
Code from:
https://github.com/jvanvugt/pytorch-domain-adaptation/blob/master/utils.py
"""
def __init__(self, lambda_=1):
super(GradientReversal, self).__init__()
self.lambda_ = lambda_
def forward(self, x):
return GradientReversalFunction.apply(x, self.lambda_)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class GradientReversalFunction(torch.autograd.Function):
"""
Gradient Reversal Layer from:
Unsupervised Domain Adaptation by Backpropagation (Ganin & Lempitsky, 2015)
Forward pass is the identity function.
In the backward pass,
the upstream gradients are multiplied by -lambda (i.e. gradient is reversed)
"""
@staticmethod
def forward(ctx, x, lambda_):
ctx.lambda_ = lambda_
return x.clone()
@staticmethod
def backward(ctx, grads):
lambda_ = ctx.lambda_
lambda_ = grads.new_tensor(lambda_)
dx = -lambda_ * grads
return dx, None
class GradientReversalNew(torch.nn.Module):
"""
Gradient Reversal Layer
Code from:
https://github.com/jvanvugt/pytorch-domain-adaptation/blob/master/utils.py
"""
def __init__(self, lambda_=1):
super(GradientReversalNew, self).__init__()
self.lambda_ = lambda_
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ishine/CDFSE_FastSpeech2
|
GradientReversal
| false | 12,539 |
[
"MIT"
] | 0 |
f0facd077fa3e11b2704f2e8a1d1315bd1f4f493
|
https://github.com/ishine/CDFSE_FastSpeech2/tree/f0facd077fa3e11b2704f2e8a1d1315bd1f4f493
|
ConvLeaky
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ud/cudyzxnmfg4f3tctrw4y4j3pbwl55yw66d3vdzdxkxldjzcvtpic.py
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# out => convolution
# out_1 => gt, mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0)
del buf3
del primals_5
return (buf5, primals_1, primals_3, primals_4, buf1, buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import functional as F
class ConvLeaky(nn.Module):
def __init__(self, in_dim, out_dim):
super(ConvLeaky, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_dim, out_channels=out_dim,
kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=out_dim, out_channels=out_dim,
kernel_size=3, stride=1, padding=1)
def forward(self, input):
out = self.conv1(input)
out = F.leaky_relu(out, 0.2)
out = self.conv2(out)
out = F.leaky_relu(out, 0.2)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4, 'out_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf0,
primals_2, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = buf0
del buf0
triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf3,
primals_5, buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf3
del primals_5
return buf5, primals_1, primals_3, primals_4, buf1, buf2, buf4
class ConvLeakyNew(nn.Module):
def __init__(self, in_dim, out_dim):
super(ConvLeakyNew, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_dim, out_channels=out_dim,
kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=out_dim, out_channels=out_dim,
kernel_size=3, stride=1, padding=1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
ivan94fi/fast-sr-unet
|
ConvLeaky
| false | 12,540 |
[
"MIT"
] | 0 |
76ff5ee1ca87d8cdd06ce3ec406cfac533041d83
|
https://github.com/ivan94fi/fast-sr-unet/tree/76ff5ee1ca87d8cdd06ce3ec406cfac533041d83
|
ConvTemporalGraphical
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/xj/cxjbirxdocw4rjzcczqicrce6bgerlsg5kipjaxc7l4x4rplro2g.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x_2 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x5 = (xindex // 4) % 16
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (16, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 1, 4), (64, 4, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4, 1, 1), (64, 16, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_2, buf1, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
buf2 = empty_strided_cuda((1, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf1, (1, 16, 16), (0, 16, 1), 0), reinterpret_tensor(primals_4, (1, 16, 4), (64, 4, 1), 0), out=buf2)
del buf1
return (reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0), primals_1, primals_3, reinterpret_tensor(primals_4, (1, 4, 16), (64, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class ConvTemporalGraphical(nn.Module):
"""The basic module for applying a graph convolution.
Args:
in_channels (int): Number of channels in the input sequence data
out_channels (int): Number of channels produced by the convolution
A_channels (int): Number of channels in the spatial adjacency matrix
temporal_kernel_size (int): Size of temporal convolve kernel
temporal_stride (int, optional): Stride of the temporal convolution. Default: 1
temporal_padding (int, optional): Temporal zero-padding added to both sides of
the input. Default: 0
temporal_dilation (int, optional): Spacing between temporal kernel elements.
Default: 1
bias (bool, optional): If ``True``, adds a learnable bias to the output.
Default: ``True``
Shape:
- Input[0]: Input graph sequence in :math:`(N, in_channels, T_{in}, V)` format
- Input[1]: Input graph adjacency matrix in :math:`(K, V, V)` format
- Output[0]: Output graph sequence in :math:`(N, out_channels, T_{out}, V)` format
- Output[1]: Graph adjacency matrix for output data in :math:`(K, V, V)` format
where
:math:`N` is a batch size,
:math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]`,
:math:`T_{in}/T_{out}` is a length of input/output sequence,
:math:`V` is the number of graph nodes.
"""
def __init__(self, in_channels, out_channels, A_channels,
temporal_kernel_size, temporal_stride=1, temporal_padding=0,
temporal_dilation=1, bias=True):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels * A_channels,
kernel_size=(temporal_kernel_size, 1), padding=(
temporal_padding, 0), stride=(temporal_stride, 1), dilation=(
temporal_dilation, 1), bias=bias)
def forward(self, x, A):
x = self.conv(x)
n, kc, t, v = x.size()
x = x.view(n, A.size(0), kc // A.size(0), t, v)
x = torch.einsum('nkctv,kvw->nctw', (x, A))
return x.contiguous(), A
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'A_channels': 4,
'temporal_kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x5 = xindex // 4 % 16
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (16, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 1, 4), (64, 4, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4, 1, 1), (64, 16, 4, 1, 1, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](buf0, primals_2, buf1, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_2
buf2 = empty_strided_cuda((1, 16, 4), (64, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf1, (1, 16, 16), (0, 16, 1),
0), reinterpret_tensor(primals_4, (1, 16, 4), (64, 4, 1), 0),
out=buf2)
del buf1
return reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0
), primals_1, primals_3, reinterpret_tensor(primals_4, (1, 4, 16),
(64, 1, 4), 0)
class ConvTemporalGraphicalNew(nn.Module):
"""The basic module for applying a graph convolution.
Args:
in_channels (int): Number of channels in the input sequence data
out_channels (int): Number of channels produced by the convolution
A_channels (int): Number of channels in the spatial adjacency matrix
temporal_kernel_size (int): Size of temporal convolve kernel
temporal_stride (int, optional): Stride of the temporal convolution. Default: 1
temporal_padding (int, optional): Temporal zero-padding added to both sides of
the input. Default: 0
temporal_dilation (int, optional): Spacing between temporal kernel elements.
Default: 1
bias (bool, optional): If ``True``, adds a learnable bias to the output.
Default: ``True``
Shape:
- Input[0]: Input graph sequence in :math:`(N, in_channels, T_{in}, V)` format
- Input[1]: Input graph adjacency matrix in :math:`(K, V, V)` format
- Output[0]: Output graph sequence in :math:`(N, out_channels, T_{out}, V)` format
- Output[1]: Graph adjacency matrix for output data in :math:`(K, V, V)` format
where
:math:`N` is a batch size,
:math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]`,
:math:`T_{in}/T_{out}` is a length of input/output sequence,
:math:`V` is the number of graph nodes.
"""
def __init__(self, in_channels, out_channels, A_channels,
temporal_kernel_size, temporal_stride=1, temporal_padding=0,
temporal_dilation=1, bias=True):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels * A_channels,
kernel_size=(temporal_kernel_size, 1), padding=(
temporal_padding, 0), stride=(temporal_stride, 1), dilation=(
temporal_dilation, 1), bias=bias)
def forward(self, input_0, input_1):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0], output[1]
|
ishine/speech2affective_gestures
|
ConvTemporalGraphical
| false | 12,541 |
[
"MIT"
] | 0 |
ea99e3edd82b8ab50a6f63cff301618762b73187
|
https://github.com/ishine/speech2affective_gestures/tree/ea99e3edd82b8ab50a6f63cff301618762b73187
|
SACActorNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [features1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# features1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [features1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf6, 256, grid=grid(256), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [features2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.nn as nn
class SACActorNetwork(nn.Module):
def __init__(self, input_shape, output_shape, n_features, **kwargs):
super(SACActorNetwork, self).__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h1 = nn.Linear(n_input, n_features)
self._h2 = nn.Linear(n_features, n_features)
self._h3 = nn.Linear(n_features, n_output)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('linear'))
def forward(self, state):
features1 = F.relu(self._h1(torch.squeeze(state, 1).float()))
features2 = F.relu(self._h2(features1))
a = self._h3(features2)
return a
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_shape': [4, 4], 'output_shape': [4, 4],
'n_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_3, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3,
primals_5, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
buf3, (64, 4), (4, 1), 0), primals_6, buf5, primals_4, buf6
class SACActorNetworkNew(nn.Module):
def __init__(self, input_shape, output_shape, n_features, **kwargs):
super(SACActorNetworkNew, self).__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h1 = nn.Linear(n_input, n_features)
self._h2 = nn.Linear(n_features, n_features)
self._h3 = nn.Linear(n_features, n_output)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('linear'))
def forward(self, input_0):
primals_2 = self._h1.weight
primals_3 = self._h1.bias
primals_4 = self._h2.weight
primals_5 = self._h2.bias
primals_6 = self._h3.weight
primals_7 = self._h3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
jacarvalho/mushroom-rl-benchmark
|
SACActorNetwork
| false | 12,542 |
[
"MIT"
] | 0 |
5bc2e9b1a12be33827d6edcd5c5ad49571e11275
|
https://github.com/jacarvalho/mushroom-rl-benchmark/tree/5bc2e9b1a12be33827d6edcd5c5ad49571e11275
|
A2CNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py
# Topologically Sorted Source Nodes: [features1], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# features1 => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [features1], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [features2], Original ATen: [aten.tanh]
triton_poi_fused_tanh_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, buf3, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class A2CNetwork(nn.Module):
def __init__(self, input_shape, output_shape, n_features, **kwargs):
super(A2CNetwork, self).__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h1 = nn.Linear(n_input, n_features)
self._h2 = nn.Linear(n_features, n_features)
self._h3 = nn.Linear(n_features, n_output)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('tanh'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('tanh'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('linear'))
def forward(self, state, **kwargs):
features1 = torch.tanh(self._h1(torch.squeeze(state, 1).float()))
features2 = torch.tanh(self._h2(features1))
a = self._h3(features2)
return a
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_shape': [4, 4], 'output_shape': [4, 4],
'n_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(256)](buf1, primals_3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused_tanh_0[grid(256)](buf3, primals_5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), buf1, buf3, primals_6, primals_4
class A2CNetworkNew(nn.Module):
def __init__(self, input_shape, output_shape, n_features, **kwargs):
super(A2CNetworkNew, self).__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h1 = nn.Linear(n_input, n_features)
self._h2 = nn.Linear(n_features, n_features)
self._h3 = nn.Linear(n_features, n_output)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('tanh'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('tanh'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('linear'))
def forward(self, input_0):
primals_2 = self._h1.weight
primals_3 = self._h1.bias
primals_4 = self._h2.weight
primals_5 = self._h2.bias
primals_6 = self._h3.weight
primals_7 = self._h3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
jacarvalho/mushroom-rl-benchmark
|
A2CNetwork
| false | 12,543 |
[
"MIT"
] | 0 |
5bc2e9b1a12be33827d6edcd5c5ad49571e11275
|
https://github.com/jacarvalho/mushroom-rl-benchmark/tree/5bc2e9b1a12be33827d6edcd5c5ad49571e11275
|
DropConnect
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/l3/cl3vnmjb3nmcconi72goybyhbmj62vkayrvg74yhsgeml7kj4oo7.py
# Topologically Sorted Source Nodes: [truediv, random_tensor, binary_tensor, output], Original ATen: [aten.div, aten.add, aten.floor, aten.mul]
# Source node to ATen node mapping:
# binary_tensor => floor
# output => mul
# random_tensor => add
# truediv => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, -3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%rand, -3), kwargs = {})
# %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %floor), kwargs = {})
triton_poi_fused_add_div_floor_mul_0 = async_compile.triton('triton_poi_fused_add_div_floor_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_floor_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_floor_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp1 = -0.3333333333333333
tmp2 = tmp0 * tmp1
tmp4 = -3.0
tmp5 = tmp3 + tmp4
tmp6 = libdevice.floor(tmp5)
tmp7 = tmp2 * tmp6
tl.store(out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [rand], Original ATen: [aten.rand]
buf0 = torch.ops.aten.rand.default([4, 4, 1, 1], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv, random_tensor, binary_tensor, output], Original ATen: [aten.div, aten.add, aten.floor, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_floor_mul_0.run(arg0_1, buf1, buf2, 256, grid=grid(256), stream=stream0)
del arg0_1
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class DropConnect(torch.nn.Module):
def __init__(self, p):
super(DropConnect, self).__init__()
self.p = p
def forward(self, inputs):
batch_size = inputs.shape[0]
inputs.shape[2]
inputs.shape[3]
channel_size = inputs.shape[1]
keep_prob = 1 - self.p
random_tensor = keep_prob
random_tensor += torch.rand([batch_size, channel_size, 1, 1], dtype
=inputs.dtype, device=inputs.device)
binary_tensor = torch.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'p': 4}]
|
import torch
from torch import device
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_floor_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp1 = -0.3333333333333333
tmp2 = tmp0 * tmp1
tmp4 = -3.0
tmp5 = tmp3 + tmp4
tmp6 = libdevice.floor(tmp5)
tmp7 = tmp2 * tmp6
tl.store(out_ptr0 + x2, tmp7, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.rand.default([4, 4, 1, 1], dtype=torch.
float32, device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_floor_mul_0[grid(256)](arg0_1, buf1, buf2,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del buf1
return buf2,
class DropConnectNew(torch.nn.Module):
def __init__(self, p):
super(DropConnectNew, self).__init__()
self.p = p
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
jack-willturner/nas-without-training
|
DropConnect
| false | 12,544 |
[
"MIT"
] | 0 |
d5e915b5f391f51d902f33b1d4beedfe3b09d2e0
|
https://github.com/jack-willturner/nas-without-training/tree/d5e915b5f391f51d902f33b1d4beedfe3b09d2e0
|
MaxPool3x3
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/sf/csfwn4jjx3wjja53qogk34jyei2gmukxbwonjk7dxkt253ety24o.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => getitem
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-5) + x4), tmp10 & xmask, other=float("-inf"))
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4) + x4), tmp16 & xmask, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3) + x4), tmp23 & xmask, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-1) + x4), tmp30 & xmask, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x4), tmp33 & xmask, other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36 & xmask, other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + x4), tmp43 & xmask, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + x4), tmp46 & xmask, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + x4), tmp49 & xmask, other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tl.store(out_ptr0 + (x4), tmp51, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class MaxPool3x3(nn.Module):
"""3x3 max pool with no subsampling."""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1):
super(MaxPool3x3, self).__init__()
self.maxpool = nn.MaxPool2d(kernel_size, stride, padding)
def forward(self, x):
x = self.maxpool(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-5 + x4), tmp10 & xmask, other=float('-inf'))
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4 + x4), tmp16 & xmask, other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3 + x4), tmp23 & xmask, other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-1 + x4), tmp30 & xmask, other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + x4, tmp33 & xmask, other=float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36 & xmask, other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + x4), tmp43 & xmask, other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + x4), tmp46 & xmask, other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + x4), tmp49 & xmask, other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tl.store(out_ptr0 + x4, tmp51, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MaxPool3x3New(nn.Module):
"""3x3 max pool with no subsampling."""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1):
super(MaxPool3x3New, self).__init__()
self.maxpool = nn.MaxPool2d(kernel_size, stride, padding)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
jack-willturner/nas-without-training
|
MaxPool3x3
| false | 12,545 |
[
"MIT"
] | 0 |
d5e915b5f391f51d902f33b1d4beedfe3b09d2e0
|
https://github.com/jack-willturner/nas-without-training/tree/d5e915b5f391f51d902f33b1d4beedfe3b09d2e0
|
SimpleAndModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/vq/cvqibjhky7ckcngwo5vx6iwslb3qukduvryszxa4md2bb7f76fpd.py
# Topologically Sorted Source Nodes: [c, logical_and_1], Original ATen: [aten.logical_and]
# Source node to ATen node mapping:
# c => logical_and
# logical_and_1 => logical_and_1
# Graph fragment:
# %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%arg1_1, %arg0_1), kwargs = {})
# %logical_and_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%logical_and, %logical_and), kwargs = {})
triton_poi_fused_logical_and_0 = async_compile.triton('triton_poi_fused_logical_and_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_and_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_and_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp3 = (tmp2 != 0)
tmp4 = tmp1 & tmp3
tmp5 = tmp4 & tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [c, logical_and_1], Original ATen: [aten.logical_and]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_and_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleAndModule(torch.nn.Module):
def __init__(self):
super(SimpleAndModule, self).__init__()
def forward(self, a, b):
c = torch.logical_and(a, b)
return torch.logical_and(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_and_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp3 = tmp2 != 0
tmp4 = tmp1 & tmp3
tmp5 = tmp4 & tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_and_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleAndModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleAndModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleAndModule
| false | 12,546 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SACCriticNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ie/ciettq2a3562jfpgfe75iig4ki2hbm6pmbwujlvp6mw26i2odufm.py
# Topologically Sorted Source Nodes: [state_action], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# state_action => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/3t/c3tjeszzwqgrhf7jcnpd77ydommn4xb2ovjzbtjhx6uzjgshobyg.py
# Topologically Sorted Source Nodes: [features1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# features1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [state_action], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((128, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (128, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 8, 4, 4), (128, 16, 4, 1), 0); del buf1 # reuse
buf7 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [features1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_4, buf7, 512, grid=grid(512), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((128, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (128, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 8, 4, 4), (128, 16, 4, 1), 0); del buf3 # reuse
buf6 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [features2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf4, primals_6, buf6, 512, grid=grid(512), stream=stream0)
del primals_6
buf5 = empty_strided_cuda((128, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(buf4, (128, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_8
return (reinterpret_tensor(buf5, (4, 8, 4, 4), (128, 16, 4, 1), 0), reinterpret_tensor(buf0, (128, 4), (4, 1), 0), reinterpret_tensor(buf2, (128, 4), (4, 1), 0), reinterpret_tensor(buf4, (128, 4), (4, 1), 0), primals_7, buf6, primals_5, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.nn as nn
class SACCriticNetwork(nn.Module):
def __init__(self, input_shape, output_shape, n_features, **kwargs):
super().__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h1 = nn.Linear(n_input, n_features)
self._h2 = nn.Linear(n_features, n_features)
self._h3 = nn.Linear(n_features, n_output)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('linear'))
def forward(self, state, action):
state_action = torch.cat((state.float(), action.float()), dim=1)
features1 = F.relu(self._h1(state_action))
features2 = F.relu(self._h2(features1))
q = self._h3(features2)
return torch.squeeze(q)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_shape': [4, 4], 'output_shape': [4, 4],
'n_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((128, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (128, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 8, 4, 4), (128, 16, 4, 1), 0)
del buf1
buf7 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(512)](buf2,
primals_4, buf7, 512, XBLOCK=128, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((128, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (128, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 8, 4, 4), (128, 16, 4, 1), 0)
del buf3
buf6 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(512)](buf4,
primals_6, buf6, 512, XBLOCK=128, num_warps=4, num_stages=1)
del primals_6
buf5 = empty_strided_cuda((128, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(buf4, (128, 4),
(4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf5)
del primals_8
return reinterpret_tensor(buf5, (4, 8, 4, 4), (128, 16, 4, 1), 0
), reinterpret_tensor(buf0, (128, 4), (4, 1), 0), reinterpret_tensor(
buf2, (128, 4), (4, 1), 0), reinterpret_tensor(buf4, (128, 4), (4,
1), 0), primals_7, buf6, primals_5, buf7
class SACCriticNetworkNew(nn.Module):
def __init__(self, input_shape, output_shape, n_features, **kwargs):
super().__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h1 = nn.Linear(n_input, n_features)
self._h2 = nn.Linear(n_features, n_features)
self._h3 = nn.Linear(n_features, n_output)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('linear'))
def forward(self, input_0, input_1):
primals_3 = self._h1.weight
primals_4 = self._h1.bias
primals_5 = self._h2.weight
primals_6 = self._h2.bias
primals_7 = self._h3.weight
primals_8 = self._h3.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
jacarvalho/mushroom-rl-benchmark
|
SACCriticNetwork
| false | 12,547 |
[
"MIT"
] | 0 |
5bc2e9b1a12be33827d6edcd5c5ad49571e11275
|
https://github.com/jacarvalho/mushroom-rl-benchmark/tree/5bc2e9b1a12be33827d6edcd5c5ad49571e11275
|
MLPArchitecture
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/54/c546inlectt6zvbpgn5qhxi6h2mqgwz227jurnrzfeistnsnjut6.py
# Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 128), (128, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (4, 32), (32, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 8192, grid=grid(8192), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 32), (1, 128), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf5, 2048, grid=grid(2048), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(buf3, (64, 32), (32, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from collections.abc import Iterable
class MLPArchitecture(nn.Module):
def __init__(self, batch_size, n_outputs, state_size):
super(MLPArchitecture, self).__init__()
if isinstance(state_size, Iterable):
assert len(state_size) == 1
state_size = state_size[0]
self.batch_size = batch_size
self.n_outputs = n_outputs
self.relu = nn.ReLU()
self.fc1 = nn.Linear(state_size, 128)
self.fc2 = nn.Linear(128, 32)
self.fc3 = nn.Linear(32, n_outputs)
def forward(self, x):
h = self.relu(self.fc1(x))
h = self.relu(self.fc2(h))
out = self.fc3(h)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'batch_size': 4, 'n_outputs': 4, 'state_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from collections.abc import Iterable
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 128), (128, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (4, 32), (32, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1,
primals_2, buf6, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0),
reinterpret_tensor(primals_4, (128, 32), (1, 128), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(2048)](buf3,
primals_5, buf5, 2048, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32),
(32, 1), 0), reinterpret_tensor(primals_6, (32, 4), (1, 32), 0),
alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 128), (128, 1), 0
), reinterpret_tensor(buf3, (64, 32), (32, 1), 0
), primals_6, buf5, primals_4, buf6
class MLPArchitectureNew(nn.Module):
def __init__(self, batch_size, n_outputs, state_size):
super(MLPArchitectureNew, self).__init__()
if isinstance(state_size, Iterable):
assert len(state_size) == 1
state_size = state_size[0]
self.batch_size = batch_size
self.n_outputs = n_outputs
self.relu = nn.ReLU()
self.fc1 = nn.Linear(state_size, 128)
self.fc2 = nn.Linear(128, 32)
self.fc3 = nn.Linear(32, n_outputs)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
ivallesp/RL_Banana_Collector
|
MLPArchitecture
| false | 12,548 |
[
"MIT"
] | 0 |
cf09ffa9cff8015dd47592509ae482b99339a960
|
https://github.com/ivallesp/RL_Banana_Collector/tree/cf09ffa9cff8015dd47592509ae482b99339a960
|
OneTupleModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/sd/csdfq3pwxme6skykh2xidrwr6t4ujkpebegmshqc4a6ptefksvl7.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# y => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class OneTupleModule(torch.nn.Module):
def __init__(self):
super(OneTupleModule, self).__init__()
def forward(self, x):
y = 2 * x
return y,
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class OneTupleModuleNew(torch.nn.Module):
def __init__(self):
super(OneTupleModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
OneTupleModule
| false | 12,549 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleACosModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ku/ckuxvoxhmi6ercpm3zqehlfc3vctrl7fwhgkl4t7idy4tmzkn672.py
# Topologically Sorted Source Nodes: [add, acos], Original ATen: [aten.add, aten.acos]
# Source node to ATen node mapping:
# acos => acos
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %acos : [num_users=1] = call_function[target=torch.ops.aten.acos.default](args = (%add,), kwargs = {})
triton_poi_fused_acos_add_0 = async_compile.triton('triton_poi_fused_acos_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_acos_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_acos_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.acos(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, acos], Original ATen: [aten.add, aten.acos]
stream0 = get_raw_stream(0)
triton_poi_fused_acos_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleACosModule(torch.nn.Module):
def __init__(self):
super(SimpleACosModule, self).__init__()
def forward(self, a):
return torch.acos(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_acos_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.acos(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_acos_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleACosModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleACosModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleACosModule
| false | 12,550 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
DetachModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ng/cnggtmai2hzxc7e5creviqseyyf7qiy5pfpdjlp2pomqsserjuzj.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class DetachModel(torch.nn.Module):
def __init__(self):
super(DetachModel, self).__init__()
def forward(self, a):
b = a.detach()
return b + b
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class DetachModelNew(torch.nn.Module):
def __init__(self):
super(DetachModelNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
DetachModel
| false | 12,551 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
Net
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/up/cupulppb6gntt36vlwmxuai5yj6kvwpdqsf65wjj4wwaeiqznte5.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 96
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (75*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/7v/c7vnai5g7kosas43pwcrzxax5kz73s3xq6uf4ex3xbweovztuyzt.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 65536], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 59049
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (59049*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (177147*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/xs/cxsyq4kjzmygvpoxfzfw4hzamfkj5tnlg4txbrqbf7aatlejhfwx.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = (yindex // 32)
tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (32*x2) + (800*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/it/citnlbeayuz7soiacldzmw7qfgoyeahipzf6aoln3xkybopl5qmh.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/md/cmd6uxoj7vkg4y6dkpwgb74y3dyvezsu6l3bkfbbdav6au736de4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/by/cbyu3gk7mkzrs4m7uxhmfhoi4ftopaeckpodkycy6wc3dp23qvt3.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7558272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/72/c72xnljtelh66h6567tjgeil2eg7jurpzpei2cncvhtsgkrqqb4d.py
# Topologically Sorted Source Nodes: [max_pool2d, x], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
# Source node to ATen node mapping:
# max_pool2d => _low_memory_max_pool2d_with_offsets, getitem_1
# x => relu
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_relu_6 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_6(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1874048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 32
x1 = (xindex // 32) % 121
x2 = (xindex // 3872) % 121
x3 = (xindex // 468512)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1) + (15552*x2) + (1889568*x3)), xmask)
tmp1 = tl.load(in_ptr0 + (32 + x0 + (64*x1) + (15552*x2) + (1889568*x3)), xmask)
tmp7 = tl.load(in_ptr0 + (7776 + x0 + (64*x1) + (15552*x2) + (1889568*x3)), xmask)
tmp12 = tl.load(in_ptr0 + (7808 + x0 + (64*x1) + (15552*x2) + (1889568*x3)), xmask)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + (x4), tmp15, xmask)
tl.store(out_ptr1 + (x4), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/zk/czkhdpqtagogyylig2y3vuhy4hp2yxsu6wayafd6mh56bbk3eli3.py
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3748096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6y/c6y67svgj5awqtndnxjhifjxd25alsfkvpouswfnlic6ds5ehvgt.py
# Topologically Sorted Source Nodes: [max_pool2d_1, x_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
# Source node to ATen node mapping:
# max_pool2d_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# x_1 => relu_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_2,), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_relu_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 921600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 64
x1 = (xindex // 64) % 60
x2 = (xindex // 3840) % 60
x3 = (xindex // 230400)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (15488*x2) + (937024*x3)), None)
tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (15488*x2) + (937024*x3)), None)
tmp7 = tl.load(in_ptr0 + (7744 + x0 + (128*x1) + (15488*x2) + (937024*x3)), None)
tmp12 = tl.load(in_ptr0 + (7808 + x0 + (128*x1) + (15488*x2) + (937024*x3)), None)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + (x4), tmp15, None)
tl.store(out_ptr1 + (x4), tmp18, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ub/cubhboj4lr5bo5q7m2bijlupsmtqb7xtzzvygl4wqz2kibf2vzuh.py
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_9 = async_compile.triton('triton_poi_fused_convolution_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 921600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/fy/cfyfgb3qizriuspsywty6m3irjwb2ulnmgvret4ss2ecwm52xn3u.py
# Topologically Sorted Source Nodes: [max_pool2d_2, x_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
# Source node to ATen node mapping:
# max_pool2d_2 => _low_memory_max_pool2d_with_offsets_2, getitem_5
# x_2 => relu_2
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_2, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_4,), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_relu_10 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = (xindex // 64) % 30
x2 = (xindex // 1920)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (7680*x2)), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (7680*x2)), xmask)
tmp7 = tl.load(in_ptr0 + (3840 + x0 + (128*x1) + (7680*x2)), xmask)
tmp12 = tl.load(in_ptr0 + (3904 + x0 + (128*x1) + (7680*x2)), xmask)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + (x3), tmp15, xmask)
tl.store(out_ptr1 + (x3), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/nj/cnjdogqbzjmi5putn4uytlwp5zbknxajbr6rkimh62khi7uf6jrw.py
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_11 = async_compile.triton('triton_poi_fused_convolution_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/hd/chdvfzcke22mjfm6235v3uzqmspjihzyim6e6didbidapsxwfwmi.py
# Topologically Sorted Source Nodes: [max_pool2d_3, x_3], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
# Source node to ATen node mapping:
# max_pool2d_3 => _low_memory_max_pool2d_with_offsets_3, getitem_7
# x_3 => relu_3
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_3 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_3, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_6,), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_relu_12 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_12(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 57600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = (xindex // 64) % 15
x2 = (xindex // 960)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (3840*x2)), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (3840*x2)), xmask)
tmp7 = tl.load(in_ptr0 + (1920 + x0 + (128*x1) + (3840*x2)), xmask)
tmp12 = tl.load(in_ptr0 + (1984 + x0 + (128*x1) + (3840*x2)), xmask)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + (x3), tmp15, xmask)
tl.store(out_ptr1 + (x3), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/hq/chq72bxzkrr3xhsmttybnvtheejsaqixmoi5rvzjwt3vt3rfnzdq.py
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_13 = async_compile.triton('triton_poi_fused_convolution_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 115200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/d2/cd2olqxz47naqdsaebv3cq36rxpb7eofhp64jywdimym7xizozfm.py
# Topologically Sorted Source Nodes: [max_pool2d_4, x_4], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
# Source node to ATen node mapping:
# max_pool2d_4 => _low_memory_max_pool2d_with_offsets_4, getitem_9
# x_4 => relu_4
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_4 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_4, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_9 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_8,), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_relu_14 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256, 128], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_14(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 196
xnumel = 128
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x3 = xindex
y0 = yindex % 7
y1 = (yindex // 7) % 7
y2 = (yindex // 49)
y4 = yindex
y5 = yindex % 49
tmp0 = tl.load(in_ptr0 + (x3 + (256*y0) + (3840*y1) + (28800*y2)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (128 + x3 + (256*y0) + (3840*y1) + (28800*y2)), xmask & ymask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (1920 + x3 + (256*y0) + (3840*y1) + (28800*y2)), xmask & ymask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2048 + x3 + (256*y0) + (3840*y1) + (28800*y2)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1, 1], 1, tl.int8)
tmp4 = tl.full([1, 1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1, 1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1, 1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1, 1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + (x3 + (128*y4)), tmp15, xmask & ymask)
tl.store(out_ptr1 + (y5 + (49*x3) + (6272*y2)), tmp18, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ub/cubj5t45lkxmpitxlfaowa4doyoeot5qdp4qzsnl66sjxsgdeqk3.py
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_6 => relu_5
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_13), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_15 = async_compile.triton('triton_poi_fused_relu_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/rx/crx4t3w7cfohsk47lq2t2ygltwigjcefl4iwebjfdkt5ud6vkp5m.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, exp, log, sub, sub_1, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_per_fused__log_softmax_16 = async_compile.triton('triton_per_fused__log_softmax_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_16(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + (10*x0)), tmp12, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/7b/c7b5yyxash3tnhllrwvutxbikdsnwqmckpn7dxmin6lkgaefxrr4.py
# Topologically Sorted Source Nodes: [], Original ATen: [aten.threshold_backward]
# Source node to ATen node mapping:
# Graph fragment:
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_threshold_backward_17 = async_compile.triton('triton_poi_fused_threshold_backward_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_threshold_backward_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_threshold_backward_17(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 512
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask & ymask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + (y0 + (128*x2) + (6272*y1)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (32, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 3, 243, 243), (177147, 59049, 243, 1))
assert_size_stride(primals_4, (64, 32, 5, 5), (800, 25, 5, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (512, 6272), (6272, 1))
assert_size_stride(primals_13, (512, ), (1, ))
assert_size_stride(primals_14, (10, 512), (512, 1))
assert_size_stride(primals_15, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((32, 3, 5, 5), (75, 1, 15, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 96, 25, grid=grid(96, 25), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 3, 243, 243), (177147, 1, 729, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 12, 59049, grid=grid(12, 59049), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 32, 5, 5), (800, 1, 160, 32), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 2048, 25, grid=grid(2048, 25), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_6, buf3, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_8, buf4, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_8
buf5 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_10, buf5, 8192, 9, grid=grid(8192, 9), stream=stream0)
del primals_10
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 243, 243), (1889568, 1, 7776, 32))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf7, primals_2, 7558272, grid=grid(7558272), stream=stream0)
del primals_2
buf8 = empty_strided_cuda((4, 32, 121, 121), (468512, 1, 3872, 32), torch.int8)
buf9 = empty_strided_cuda((4, 32, 121, 121), (468512, 1, 3872, 32), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d, x], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
triton_poi_fused_max_pool2d_with_indices_relu_6.run(buf7, buf8, buf9, 1874048, grid=grid(1874048), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, buf2, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 121, 121), (937024, 1, 7744, 64))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf11, primals_5, 3748096, grid=grid(3748096), stream=stream0)
del primals_5
buf12 = empty_strided_cuda((4, 64, 60, 60), (230400, 1, 3840, 64), torch.int8)
buf13 = empty_strided_cuda((4, 64, 60, 60), (230400, 1, 3840, 64), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d_1, x_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
triton_poi_fused_max_pool2d_with_indices_relu_8.run(buf11, buf12, buf13, 921600, grid=grid(921600), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 64, 60, 60), (230400, 1, 3840, 64))
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_9.run(buf15, primals_7, 921600, grid=grid(921600), stream=stream0)
del primals_7
buf16 = empty_strided_cuda((4, 64, 30, 30), (57600, 1, 1920, 64), torch.int8)
buf17 = empty_strided_cuda((4, 64, 30, 30), (57600, 1, 1920, 64), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d_2, x_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
triton_poi_fused_max_pool2d_with_indices_relu_10.run(buf15, buf16, buf17, 230400, grid=grid(230400), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf18 = extern_kernels.convolution(buf17, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 64, 30, 30), (57600, 1, 1920, 64))
buf19 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_11.run(buf19, primals_9, 230400, grid=grid(230400), stream=stream0)
del primals_9
buf20 = empty_strided_cuda((4, 64, 15, 15), (14400, 1, 960, 64), torch.int8)
buf21 = empty_strided_cuda((4, 64, 15, 15), (14400, 1, 960, 64), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d_3, x_3], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
triton_poi_fused_max_pool2d_with_indices_relu_12.run(buf19, buf20, buf21, 57600, grid=grid(57600), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf21, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 128, 15, 15), (28800, 1, 1920, 128))
buf23 = buf22; del buf22 # reuse
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
triton_poi_fused_convolution_13.run(buf23, primals_11, 115200, grid=grid(115200), stream=stream0)
del primals_11
buf24 = empty_strided_cuda((4, 128, 7, 7), (6272, 1, 896, 128), torch.int8)
buf25 = empty_strided_cuda((4, 128, 7, 7), (6272, 49, 7, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d_4, x_4], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
triton_poi_fused_max_pool2d_with_indices_relu_14.run(buf23, buf24, buf25, 196, 128, grid=grid(196, 128), stream=stream0)
buf26 = empty_strided_cuda((4, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf25, (4, 6272), (6272, 1), 0), reinterpret_tensor(primals_12, (6272, 512), (1, 6272), 0), out=buf26)
buf27 = buf26; del buf26 # reuse
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu]
triton_poi_fused_relu_15.run(buf27, primals_13, 2048, grid=grid(2048), stream=stream0)
del primals_13
buf28 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_15, buf27, reinterpret_tensor(primals_14, (512, 10), (1, 512), 0), alpha=1, beta=1, out=buf28)
del primals_15
buf31 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_per_fused__log_softmax_16.run(buf28, buf31, 4, 10, grid=grid(4), stream=stream0)
del buf28
buf32 = empty_strided_cuda((4, 128, 7, 7), (6272, 1, 896, 128), torch.bool)
# Topologically Sorted Source Nodes: [], Original ATen: [aten.threshold_backward]
triton_poi_fused_threshold_backward_17.run(buf25, buf32, 512, 49, grid=grid(512, 49), stream=stream0)
return (buf31, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf11, buf12, buf13, buf15, buf16, buf17, buf19, buf20, buf21, buf23, buf24, reinterpret_tensor(buf25, (4, 6272), (6272, 1), 0), buf27, buf31, primals_14, primals_12, buf32, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 243, 243), (177147, 59049, 243, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((512, 6272), (6272, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((10, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=5, padding=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5, padding=2)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.conv4_drop = nn.Dropout2d()
self.conv5 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv5_drop = nn.Dropout2d()
self.fc1 = nn.Linear(7 * 7 * 128, 512)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), kernel_size=2, stride=2))
x = F.relu(F.max_pool2d(self.conv2(x), kernel_size=2, stride=2))
x = F.relu(F.max_pool2d(self.conv3(x), kernel_size=2, stride=2))
x = F.relu(F.max_pool2d(self.conv4_drop(self.conv4(x)), kernel_size
=2, stride=2))
x = F.relu(F.max_pool2d(self.conv5_drop(self.conv5(x)), kernel_size
=2, stride=2))
x = x.view(-1, 7 * 7 * 128)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
def get_inputs():
return [torch.rand([4, 3, 243, 243])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 96
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 75 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 12
xnumel = 59049
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 59049 * y3), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 177147 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 32 * x2 + 800 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 7558272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_6(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 1874048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 32
x1 = xindex // 32 % 121
x2 = xindex // 3872 % 121
x3 = xindex // 468512
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1 + 15552 * x2 + 1889568 * x3), xmask)
tmp1 = tl.load(in_ptr0 + (32 + x0 + 64 * x1 + 15552 * x2 + 1889568 * x3
), xmask)
tmp7 = tl.load(in_ptr0 + (7776 + x0 + 64 * x1 + 15552 * x2 + 1889568 *
x3), xmask)
tmp12 = tl.load(in_ptr0 + (7808 + x0 + 64 * x1 + 15552 * x2 + 1889568 *
x3), xmask)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + x4, tmp15, xmask)
tl.store(out_ptr1 + x4, tmp18, xmask)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 3748096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_8(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 64
x1 = xindex // 64 % 60
x2 = xindex // 3840 % 60
x3 = xindex // 230400
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 15488 * x2 + 937024 * x3), None)
tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 15488 * x2 + 937024 * x3
), None)
tmp7 = tl.load(in_ptr0 + (7744 + x0 + 128 * x1 + 15488 * x2 + 937024 *
x3), None)
tmp12 = tl.load(in_ptr0 + (7808 + x0 + 128 * x1 + 15488 * x2 + 937024 *
x3), None)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + x4, tmp15, None)
tl.store(out_ptr1 + x4, tmp18, None)
@triton.jit
def triton_poi_fused_convolution_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_10(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = xindex // 64 % 30
x2 = xindex // 1920
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 7680 * x2), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 7680 * x2), xmask)
tmp7 = tl.load(in_ptr0 + (3840 + x0 + 128 * x1 + 7680 * x2), xmask)
tmp12 = tl.load(in_ptr0 + (3904 + x0 + 128 * x1 + 7680 * x2), xmask)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + x3, tmp15, xmask)
tl.store(out_ptr1 + x3, tmp18, xmask)
@triton.jit
def triton_poi_fused_convolution_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_12(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 57600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = xindex // 64 % 15
x2 = xindex // 960
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 3840 * x2), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 3840 * x2), xmask)
tmp7 = tl.load(in_ptr0 + (1920 + x0 + 128 * x1 + 3840 * x2), xmask)
tmp12 = tl.load(in_ptr0 + (1984 + x0 + 128 * x1 + 3840 * x2), xmask)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + x3, tmp15, xmask)
tl.store(out_ptr1 + x3, tmp18, xmask)
@triton.jit
def triton_poi_fused_convolution_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 115200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_14(in_ptr0, out_ptr0,
out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 196
xnumel = 128
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x3 = xindex
y0 = yindex % 7
y1 = yindex // 7 % 7
y2 = yindex // 49
y4 = yindex
y5 = yindex % 49
tmp0 = tl.load(in_ptr0 + (x3 + 256 * y0 + 3840 * y1 + 28800 * y2),
xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (128 + x3 + 256 * y0 + 3840 * y1 + 28800 * y2),
xmask & ymask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (1920 + x3 + 256 * y0 + 3840 * y1 + 28800 * y2
), xmask & ymask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2048 + x3 + 256 * y0 + 3840 * y1 + 28800 *
y2), xmask & ymask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1, 1], 1, tl.int8)
tmp4 = tl.full([1, 1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1, 1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1, 1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1, 1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + (x3 + 128 * y4), tmp15, xmask & ymask)
tl.store(out_ptr1 + (y5 + 49 * x3 + 6272 * y2), tmp18, xmask & ymask)
@triton.jit
def triton_poi_fused_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_per_fused__log_softmax_16(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + 10 * x0), tmp12, rmask & xmask)
@triton.jit
def triton_poi_fused_threshold_backward_17(in_ptr0, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 512
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask & ymask, eviction_policy
='evict_last')
tmp1 = 0.0
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + (y0 + 128 * x2 + 6272 * y1), tmp2, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (32, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 3, 243, 243), (177147, 59049, 243, 1))
assert_size_stride(primals_4, (64, 32, 5, 5), (800, 25, 5, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (512, 6272), (6272, 1))
assert_size_stride(primals_13, (512,), (1,))
assert_size_stride(primals_14, (10, 512), (512, 1))
assert_size_stride(primals_15, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((32, 3, 5, 5), (75, 1, 15, 3), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(96, 25)](primals_1, buf0, 96, 25, XBLOCK=32,
YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 3, 243, 243), (177147, 1, 729, 3),
torch.float32)
triton_poi_fused_1[grid(12, 59049)](primals_3, buf1, 12, 59049,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 32, 5, 5), (800, 1, 160, 32), torch.
float32)
triton_poi_fused_2[grid(2048, 25)](primals_4, buf2, 2048, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.
float32)
triton_poi_fused_3[grid(4096, 9)](primals_6, buf3, 4096, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.
float32)
triton_poi_fused_3[grid(4096, 9)](primals_8, buf4, 4096, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_4[grid(8192, 9)](primals_10, buf5, 8192, 9, XBLOCK
=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_10
buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 243, 243), (1889568, 1, 7776, 32))
buf7 = buf6
del buf6
triton_poi_fused_convolution_5[grid(7558272)](buf7, primals_2,
7558272, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf8 = empty_strided_cuda((4, 32, 121, 121), (468512, 1, 3872, 32),
torch.int8)
buf9 = empty_strided_cuda((4, 32, 121, 121), (468512, 1, 3872, 32),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_relu_6[grid(1874048)](buf7,
buf8, buf9, 1874048, XBLOCK=512, num_warps=8, num_stages=1)
buf10 = extern_kernels.convolution(buf9, buf2, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 121, 121), (937024, 1, 7744, 64))
buf11 = buf10
del buf10
triton_poi_fused_convolution_7[grid(3748096)](buf11, primals_5,
3748096, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf12 = empty_strided_cuda((4, 64, 60, 60), (230400, 1, 3840, 64),
torch.int8)
buf13 = empty_strided_cuda((4, 64, 60, 60), (230400, 1, 3840, 64),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_relu_8[grid(921600)](buf11,
buf12, buf13, 921600, XBLOCK=512, num_warps=8, num_stages=1)
buf14 = extern_kernels.convolution(buf13, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 64, 60, 60), (230400, 1, 3840, 64))
buf15 = buf14
del buf14
triton_poi_fused_convolution_9[grid(921600)](buf15, primals_7,
921600, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf16 = empty_strided_cuda((4, 64, 30, 30), (57600, 1, 1920, 64),
torch.int8)
buf17 = empty_strided_cuda((4, 64, 30, 30), (57600, 1, 1920, 64),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_relu_10[grid(230400)](buf15,
buf16, buf17, 230400, XBLOCK=512, num_warps=8, num_stages=1)
buf18 = extern_kernels.convolution(buf17, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 64, 30, 30), (57600, 1, 1920, 64))
buf19 = buf18
del buf18
triton_poi_fused_convolution_11[grid(230400)](buf19, primals_9,
230400, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_9
buf20 = empty_strided_cuda((4, 64, 15, 15), (14400, 1, 960, 64),
torch.int8)
buf21 = empty_strided_cuda((4, 64, 15, 15), (14400, 1, 960, 64),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_relu_12[grid(57600)](buf19,
buf20, buf21, 57600, XBLOCK=512, num_warps=4, num_stages=1)
buf22 = extern_kernels.convolution(buf21, buf5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 128, 15, 15), (28800, 1, 1920, 128))
buf23 = buf22
del buf22
triton_poi_fused_convolution_13[grid(115200)](buf23, primals_11,
115200, XBLOCK=512, num_warps=8, num_stages=1)
del primals_11
buf24 = empty_strided_cuda((4, 128, 7, 7), (6272, 1, 896, 128),
torch.int8)
buf25 = empty_strided_cuda((4, 128, 7, 7), (6272, 49, 7, 1), torch.
float32)
triton_poi_fused_max_pool2d_with_indices_relu_14[grid(196, 128)](buf23,
buf24, buf25, 196, 128, XBLOCK=128, YBLOCK=2, num_warps=4,
num_stages=1)
buf26 = empty_strided_cuda((4, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf25, (4, 6272), (6272, 1), 0
), reinterpret_tensor(primals_12, (6272, 512), (1, 6272), 0),
out=buf26)
buf27 = buf26
del buf26
triton_poi_fused_relu_15[grid(2048)](buf27, primals_13, 2048,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_13
buf28 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_15, buf27, reinterpret_tensor(
primals_14, (512, 10), (1, 512), 0), alpha=1, beta=1, out=buf28)
del primals_15
buf31 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
triton_per_fused__log_softmax_16[grid(4)](buf28, buf31, 4, 10,
XBLOCK=1, num_warps=2, num_stages=1)
del buf28
buf32 = empty_strided_cuda((4, 128, 7, 7), (6272, 1, 896, 128),
torch.bool)
triton_poi_fused_threshold_backward_17[grid(512, 49)](buf25, buf32,
512, 49, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
return (buf31, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9,
buf11, buf12, buf13, buf15, buf16, buf17, buf19, buf20, buf21,
buf23, buf24, reinterpret_tensor(buf25, (4, 6272), (6272, 1), 0),
buf27, buf31, primals_14, primals_12, buf32)
class NetNew(nn.Module):
def __init__(self):
super(NetNew, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=5, padding=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5, padding=2)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.conv4_drop = nn.Dropout2d()
self.conv5 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv5_drop = nn.Dropout2d()
self.fc1 = nn.Linear(7 * 7 * 128, 512)
self.fc2 = nn.Linear(512, 10)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.conv5.weight
primals_11 = self.conv5.bias
primals_12 = self.fc1.weight
primals_13 = self.fc1.bias
primals_14 = self.fc2.weight
primals_15 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0]
|
inani47/Transfer_Learning
|
Net
| false | 12,552 |
[
"BSD-2-Clause"
] | 0 |
1e28614ceaa38a8034aa45c92b8265c79e64780a
|
https://github.com/inani47/Transfer_Learning/tree/1e28614ceaa38a8034aa45c92b8265c79e64780a
|
DQNFeatureNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/yg/cygigdediun32xqpnn2rvwqivcwityjlhmhcxprrpqarzdrxjcrc.py
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
# Source node to ATen node mapping:
# truediv => div
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, 255.0), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 331776
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = 0.00392156862745098
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/x3/cx3zumgw77e3igayg4xhlhbpdfk2ntbgunplp6t4wmspo7thr3v3.py
# Topologically Sorted Source Nodes: [conv2d, h], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# h => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%div, %primals_2, %primals_3, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 156800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 1225) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/oj/cojqknocmn4drzmdartfcdsvk3jhz65nil4x2gpmirq4cuh6g76u.py
# Topologically Sorted Source Nodes: [conv2d_1, h_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# h_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/75/c75ridkuvyesgf2ta27mnfilxkoj3q67qxicwr54tipezlr33wm2.py
# Topologically Sorted Source Nodes: [conv2d_2, h_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# h_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 196) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/us/cusah6qluldczk3fkqzo35txkcch23rpo7jnuiz562sl6427v3a2.py
# Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h_3 => relu_3
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 144, 144), (82944, 20736, 144, 1))
assert_size_stride(primals_2, (32, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_3, (32, ), (1, ))
assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (512, 3136), (3136, 1))
assert_size_stride(primals_9, (512, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 144, 144), (82944, 20736, 144, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(primals_1, buf0, 331776, grid=grid(331776), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 32, 35, 35), (39200, 1225, 35, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d, h], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 156800, grid=grid(156800), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 64, 16, 16), (16384, 256, 16, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, h_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf4, primals_5, 65536, grid=grid(65536), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 64, 14, 14), (12544, 196, 14, 1))
buf6 = buf5; del buf5 # reuse
buf10 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_2, h_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_3.run(buf6, primals_7, buf10, 50176, grid=grid(50176), stream=stream0)
del primals_7
buf7 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf6, (16, 3136), (3136, 1), 0), reinterpret_tensor(primals_8, (3136, 512), (1, 3136), 0), out=buf7)
buf8 = buf7; del buf7 # reuse
buf9 = empty_strided_cuda((16, 512), (512, 1), torch.bool)
# Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_4.run(buf8, primals_9, buf9, 8192, grid=grid(8192), stream=stream0)
del primals_9
return (buf8, primals_2, primals_4, primals_6, buf0, buf2, buf4, reinterpret_tensor(buf6, (16, 3136), (3136, 1), 0), buf9, primals_8, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 144, 144), (82944, 20736, 144, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 3136), (3136, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.nn as nn
class DQNFeatureNetwork(nn.Module):
def __init__(self, input_shape, output_shape, **kwargs):
super().__init__()
n_input = input_shape[0]
self._h1 = nn.Conv2d(n_input, 32, kernel_size=8, stride=4)
self._h2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
self._h3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
self._h4 = nn.Linear(3136, 512)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h4.weight, gain=nn.init.
calculate_gain('relu'))
def forward(self, state, action=None):
h = F.relu(self._h1(state.float() / 255.0))
h = F.relu(self._h2(h))
h = F.relu(self._h3(h))
h = F.relu(self._h4(h.view(-1, 3136)))
return h
def get_inputs():
return [torch.rand([4, 4, 144, 144])]
def get_init_inputs():
return [[], {'input_shape': [4, 4], 'output_shape': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 0.00392156862745098
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 156800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 1225 % 32
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 196 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 144, 144), (82944, 20736, 144, 1))
assert_size_stride(primals_2, (32, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_3, (32,), (1,))
assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (512, 3136), (3136, 1))
assert_size_stride(primals_9, (512,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 144, 144), (82944, 20736, 144, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(331776)](primals_1, buf0, 331776,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(4, 4),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 32, 35, 35), (39200, 1225, 35, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(156800)](buf2, primals_3,
156800, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 64, 16, 16), (16384, 256, 16, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_relu_2[grid(65536)](buf4, primals_5,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 64, 14, 14), (12544, 196, 14, 1))
buf6 = buf5
del buf5
buf10 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_3[grid(50176)](
buf6, primals_7, buf10, 50176, XBLOCK=512, num_warps=4,
num_stages=1)
del primals_7
buf7 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf6, (16, 3136), (3136, 1), 0
), reinterpret_tensor(primals_8, (3136, 512), (1, 3136), 0),
out=buf7)
buf8 = buf7
del buf7
buf9 = empty_strided_cuda((16, 512), (512, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_4[grid(8192)](buf8,
primals_9, buf9, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
return (buf8, primals_2, primals_4, primals_6, buf0, buf2, buf4,
reinterpret_tensor(buf6, (16, 3136), (3136, 1), 0), buf9, primals_8,
buf10)
class DQNFeatureNetworkNew(nn.Module):
def __init__(self, input_shape, output_shape, **kwargs):
super().__init__()
n_input = input_shape[0]
self._h1 = nn.Conv2d(n_input, 32, kernel_size=8, stride=4)
self._h2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
self._h3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
self._h4 = nn.Linear(3136, 512)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h4.weight, gain=nn.init.
calculate_gain('relu'))
def forward(self, input_0):
primals_2 = self._h1.weight
primals_3 = self._h1.bias
primals_4 = self._h2.weight
primals_5 = self._h2.bias
primals_6 = self._h3.weight
primals_7 = self._h3.bias
primals_8 = self._h4.weight
primals_9 = self._h4.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
jacarvalho/mushroom-rl-benchmark
|
DQNFeatureNetwork
| false | 12,553 |
[
"MIT"
] | 0 |
5bc2e9b1a12be33827d6edcd5c5ad49571e11275
|
https://github.com/jacarvalho/mushroom-rl-benchmark/tree/5bc2e9b1a12be33827d6edcd5c5ad49571e11275
|
SimpleBmmModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/h4/ch4e5ehu5tf4fxe3qcp5wtlsj4zjteppgjnu5d6xg564tkpvpxz6.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, bmm], Original ATen: [aten.add, aten.bmm]
extern_kernels.bmm(buf0, arg1_1, out=buf1)
del arg1_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleBmmModule(torch.nn.Module):
def forward(self, a, b):
return (a + a).bmm(b)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf0, arg1_1, out=buf1)
del arg1_1
del buf0
return buf1,
class SimpleBmmModuleNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleBmmModule
| false | 12,554 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
RepeatModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/px/cpximxrunnn7xlivxg7ckdm4rpo2iaqrxs5ifae2ywvsmxn5yuti.py
# Topologically Sorted Source Nodes: [tensor, repeat], Original ATen: [aten.add, aten.repeat]
# Source node to ATen node mapping:
# repeat => repeat
# tensor => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%add, [4]), kwargs = {})
triton_poi_fused_add_repeat_0 = async_compile.triton('triton_poi_fused_add_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [tensor, repeat], Original ATen: [aten.add, aten.repeat]
stream0 = get_raw_stream(0)
triton_poi_fused_add_repeat_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class RepeatModule(torch.nn.Module):
def __init__(self, repeats):
super(RepeatModule, self).__init__()
self.repeats = repeats
def forward(self, tensor):
tensor = tensor + tensor
return tensor.repeat(self.repeats)
def get_inputs():
return [torch.rand([4])]
def get_init_inputs():
return [[], {'repeats': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0 % 4, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_repeat_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class RepeatModuleNew(torch.nn.Module):
def __init__(self, repeats):
super(RepeatModuleNew, self).__init__()
self.repeats = repeats
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
RepeatModule
| false | 12,555 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleClampModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ym/cymkueyytwmyd6cqzabpgskqntypbctwgeke5274sffl2aogwlds.py
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 4), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 4), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = triton_helpers.minimum(tmp2, tmp1)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleClampModel(torch.nn.Module):
def __init__(self, min, max):
super(SimpleClampModel, self).__init__()
self.min = min
self.max = max
def forward(self, input):
return torch.clamp(input, self.min, self.max)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'min': 4, 'max': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = triton_helpers.minimum(tmp2, tmp1)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleClampModelNew(torch.nn.Module):
def __init__(self, min, max):
super(SimpleClampModelNew, self).__init__()
self.min = min
self.max = max
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleClampModel
| false | 12,556 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleATanModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ne/cnela3lyozhtiqn5hqe56wagkn5vzngrj3onlkngmltrgqlvhlwc.py
# Topologically Sorted Source Nodes: [add, atan], Original ATen: [aten.add, aten.atan]
# Source node to ATen node mapping:
# add => add
# atan => atan
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %atan : [num_users=1] = call_function[target=torch.ops.aten.atan.default](args = (%add,), kwargs = {})
triton_poi_fused_add_atan_0 = async_compile.triton('triton_poi_fused_add_atan_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_atan_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_atan_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.atan(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, atan], Original ATen: [aten.add, aten.atan]
stream0 = get_raw_stream(0)
triton_poi_fused_add_atan_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleATanModule(torch.nn.Module):
def __init__(self):
super(SimpleATanModule, self).__init__()
def forward(self, a):
return torch.atan(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_atan_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.atan(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_atan_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleATanModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleATanModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleATanModule
| false | 12,557 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleConvTranspose2dModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ud/cudtupp4xbsxvl5czwt3p2pj3cknjnhtp6x45zymsucnyg3xzdnf.py
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# convTranspose => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/kt/ckt6gbx6lb7bibkgo7yxy7qvikxdttfdrwxhv4n3kzjb445guwpa.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (196*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.full([1, 1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x2 + (49*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(arg1_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(arg0_1, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del arg0_1
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 7, 7), (196, 1, 28, 4))
del buf0
del buf1
buf3 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, buf3, 16, 49, grid=grid(16, 49), stream=stream0)
del buf2
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleConvTranspose2dModule(torch.nn.Module):
def __init__(self, stride=1, padding=0, output_padding=0, dilation=1,
groups=1):
super(SimpleConvTranspose2dModule, self).__init__()
self.stride = stride
self.padding = padding
self.output_padding = output_padding
self.groups = groups
self.dilation = dilation
def forward(self, inputs, filters, bias=None):
convTranspose = F.conv_transpose2d(inputs, filters, bias=bias,
stride=self.stride, padding=self.padding, output_padding=self.
output_padding, groups=self.groups, dilation=self.dilation)
return F.relu(convTranspose)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_relu_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 196 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.full([1, 1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x2 + 49 * y3), tmp2, xmask & ymask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 16)](arg1_1, buf0, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_convolution_0[grid(16, 16)](arg0_1, buf1, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg0_1
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 7, 7), (196, 1, 28, 4))
del buf0
del buf1
buf3 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
triton_poi_fused_relu_1[grid(16, 49)](buf2, buf3, 16, 49, XBLOCK=64,
YBLOCK=16, num_warps=4, num_stages=1)
del buf2
return buf3,
class SimpleConvTranspose2dModuleNew(torch.nn.Module):
def __init__(self, stride=1, padding=0, output_padding=0, dilation=1,
groups=1):
super(SimpleConvTranspose2dModuleNew, self).__init__()
self.stride = stride
self.padding = padding
self.output_padding = output_padding
self.groups = groups
self.dilation = dilation
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleConvTranspose2dModule
| false | 12,558 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleConv2dModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ud/cudtupp4xbsxvl5czwt3p2pj3cknjnhtp6x45zymsucnyg3xzdnf.py
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/p7/cp7mgrng2aoot3kokspvn2sifs3rykgl5mktnpxnmb7yc57vcvab.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(arg1_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(arg0_1, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del arg0_1
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 4, 4))
del buf0
del buf1
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, 16, grid=grid(16), stream=stream0)
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleConv2dModule(torch.nn.Module):
def __init__(self, stride=1, padding=0, dilation=1, groups=1):
super(SimpleConv2dModule, self).__init__()
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
def forward(self, inputs, filters, bias=None):
conv = F.conv2d(inputs, filters, bias=bias, stride=self.stride,
padding=self.padding, dilation=self.dilation, groups=self.groups)
return F.relu(conv)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 16)](arg1_1, buf0, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_convolution_0[grid(16, 16)](arg0_1, buf1, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg0_1
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 4, 4))
del buf0
del buf1
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf2
triton_poi_fused_relu_1[grid(16)](buf3, 16, XBLOCK=16, num_warps=1,
num_stages=1)
return buf3,
class SimpleConv2dModuleNew(torch.nn.Module):
def __init__(self, stride=1, padding=0, dilation=1, groups=1):
super(SimpleConv2dModuleNew, self).__init__()
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleConv2dModule
| false | 12,559 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleASinModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/po/cpoegfcicyuorm7m4kiifuei33mjylvd7jlimgcjbcyazqqbkuwv.py
# Topologically Sorted Source Nodes: [add, asin], Original ATen: [aten.add, aten.asin]
# Source node to ATen node mapping:
# add => add
# asin => asin
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %asin : [num_users=1] = call_function[target=torch.ops.aten.asin.default](args = (%add,), kwargs = {})
triton_poi_fused_add_asin_0 = async_compile.triton('triton_poi_fused_add_asin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_asin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_asin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.asin(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, asin], Original ATen: [aten.add, aten.asin]
stream0 = get_raw_stream(0)
triton_poi_fused_add_asin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleASinModule(torch.nn.Module):
def __init__(self):
super(SimpleASinModule, self).__init__()
def forward(self, a):
return torch.asin(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_asin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.asin(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_asin_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleASinModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleASinModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleASinModule
| false | 12,560 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleAvgPool1dModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/xk/cxkmworteiawp27uz6szuij56323prklcytmzy4oalfulieyhlxw.py
# Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# avg_pool1d => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%unsqueeze, [1, 4], [1, 4]), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 4, grid=grid(4), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 1), (1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleAvgPool1dModule(torch.nn.Module):
def __init__(self, kernel_size, stride=None, padding=0):
super(SimpleAvgPool1dModule, self).__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
def forward(self, inputs):
return F.avg_pool1d(inputs, self.kernel_size, padding=self.padding,
stride=self.stride)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(4)](arg0_1, buf0, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 1), (1, 1), 0),
class SimpleAvgPool1dModuleNew(torch.nn.Module):
def __init__(self, kernel_size, stride=None, padding=0):
super(SimpleAvgPool1dModuleNew, self).__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleAvgPool1dModule
| false | 12,561 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleAddMmModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ph/cphyvqksaznjc5f5gstivhj5vszkuncctuzvaegazln3taw555sz.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, addmm], Original ATen: [aten.add, aten.addmm]
extern_kernels.addmm(buf0, arg1_1, arg2_1, alpha=1, beta=1, out=buf1)
del arg1_1
del arg2_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleAddMmModule(torch.nn.Module):
def __init__(self, alpha=1, beta=1):
super(SimpleAddMmModule, self).__init__()
self.alpha = alpha
self.beta = beta
def forward(self, a, b, c):
return (a + a).addmm(b, c)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf0, arg1_1, arg2_1, alpha=1, beta=1, out=buf1)
del arg1_1
del arg2_1
del buf0
return buf1,
class SimpleAddMmModuleNew(torch.nn.Module):
def __init__(self, alpha=1, beta=1):
super(SimpleAddMmModuleNew, self).__init__()
self.alpha = alpha
self.beta = beta
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
briancoutinho/glow
|
SimpleAddMmModule
| false | 12,562 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
Qux
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/bj/cbjesanz52gunefusavp3qpbw4kokz2sx2jddma7ulw6vhss425c.py
# Topologically Sorted Source Nodes: [sub, sub_1], Original ATen: [aten.sub]
# Source node to ATen node mapping:
# sub => sub
# sub_1 => sub_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, 4), kwargs = {})
triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = 4.0
tmp4 = tmp2 - tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, sub_1], Original ATen: [aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class Qux(torch.nn.Module):
def __init__(self, x):
super(Qux, self).__init__()
self.x = x
def forward(self, a, b):
return a - b - self.x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'x': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tmp3 = 4.0
tmp4 = tmp2 - tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class QuxNew(torch.nn.Module):
def __init__(self, x):
super(QuxNew, self).__init__()
self.x = x
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
Qux
| false | 12,563 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleCosModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/vy/cvykguexawt5en6rd6un27jr5ssgrr5nfe4fek2lsqgpfda2qjl2.py
# Topologically Sorted Source Nodes: [add, cos], Original ATen: [aten.add, aten.cos]
# Source node to ATen node mapping:
# add => add
# cos => cos
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %cos : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%add,), kwargs = {})
triton_poi_fused_add_cos_0 = async_compile.triton('triton_poi_fused_add_cos_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_cos_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_cos_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.cos(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, cos], Original ATen: [aten.add, aten.cos]
stream0 = get_raw_stream(0)
triton_poi_fused_add_cos_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleCosModule(torch.nn.Module):
def __init__(self):
super(SimpleCosModule, self).__init__()
def forward(self, a):
return torch.cos(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_cos_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.cos(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_cos_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleCosModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleCosModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleCosModule
| false | 12,564 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleClampMinModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/gx/cgxeuyalbe255nl7kl2wupslogkj7sqz4dk77bpxwhn37372vatf.py
# Topologically Sorted Source Nodes: [clamp_min], Original ATen: [aten.clamp_min]
# Source node to ATen node mapping:
# clamp_min => clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_clamp_min_0 = async_compile.triton('triton_poi_fused_clamp_min_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_min_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp_min], Original ATen: [aten.clamp_min]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_min_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleClampMinModel(torch.nn.Module):
def __init__(self, min):
super(SimpleClampMinModel, self).__init__()
self.min = min
def forward(self, input):
return torch.clamp_min(input, self.min)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'min': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_min_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_min_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleClampMinModelNew(torch.nn.Module):
def __init__(self, min):
super(SimpleClampMinModelNew, self).__init__()
self.min = min
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleClampMinModel
| false | 12,565 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleExpModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/7g/c7gyxvpvdujjipzswxbu5tactwghjfb7nrevdzajpm4fzclaifhf.py
# Topologically Sorted Source Nodes: [other, exp_1], Original ATen: [aten.exp]
# Source node to ATen node mapping:
# exp_1 => exp_1
# other => exp
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%exp,), kwargs = {})
triton_poi_fused_exp_0 = async_compile.triton('triton_poi_fused_exp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.exp(tmp0)
tmp2 = tl_math.exp(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, exp_1], Original ATen: [aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_exp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleExpModule(torch.nn.Module):
def forward(self, input):
other = torch.exp(input)
return torch.exp(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.exp(tmp0)
tmp2 = tl_math.exp(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_exp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleExpModuleNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleExpModule
| false | 12,566 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
UNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/jo/cjolh7wy3losq75bea7heuxra52smjn2phczl4xzt2smarbxy3nj.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => gt, mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 32
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/o4/co4xz3bhphdn2kq3lke3433wpdtqt6r3irqbdr7hp46ou2slvxop.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x_1 => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [2, 2]), kwargs = {})
triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/b2/cb2heynzbbb2idhib26qs23x62rr3vu36ahp3tksyhjfahippc67.py
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_2 => gt_2, mul_2, where_2
# Graph fragment:
# %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_6, %primals_7, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.1), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {})
triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/xj/cxjbrfzbed7bo2iy4m5zuii5z5cssze6tfcgrk2jehpphz5b77jh.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x_4 => avg_pool2d_1
# Graph fragment:
# %avg_pool2d_1 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_3, [2, 2]), kwargs = {})
triton_poi_fused_avg_pool2d_3 = async_compile.triton('triton_poi_fused_avg_pool2d_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/le/cleento7jh4h7b7b25wgw4ax6qfmthojxlfqfgkaohjqgn6pqwco.py
# Topologically Sorted Source Nodes: [conv2d_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# x_5 => gt_4, mul_4, where_4
# Graph fragment:
# %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_1, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_4 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.1), kwargs = {})
# %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_4), kwargs = {})
triton_poi_fused_convolution_leaky_relu_4 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 128
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/s5/cs5zukgmdewmnpcrozw2m273bpclzrkypvc2xaub2gmoc5saabvv.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x_7 => avg_pool2d_2
# Graph fragment:
# %avg_pool2d_2 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_5, [2, 2]), kwargs = {})
triton_poi_fused_avg_pool2d_5 = async_compile.triton('triton_poi_fused_avg_pool2d_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/4u/c4urfqsk2wuyrkcnwy7b2uiwmecrugesubdiuadavwqtcisyhwz4.py
# Topologically Sorted Source Nodes: [conv2d_6, x_8], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_6 => convolution_6
# x_8 => gt_6, mul_6, where_6
# Graph fragment:
# %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_2, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_6 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.1), kwargs = {})
# %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_6, %mul_6), kwargs = {})
triton_poi_fused_convolution_leaky_relu_6 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 256
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/3z/c3zje6b5ccaz3n4winpmxo6y4niaoldocb7ilvkg5sorj2nqvjfa.py
# Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x_10 => avg_pool2d_3
# Graph fragment:
# %avg_pool2d_3 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_7, [2, 2]), kwargs = {})
triton_poi_fused_avg_pool2d_7 = async_compile.triton('triton_poi_fused_avg_pool2d_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (16*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (16*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (8 + (2*x0) + (16*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (9 + (2*x0) + (16*x1)), None, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/oy/coyjgpdjbipe737iasihk5ensjtmspgnzblyyy7mrlypqho5vuyg.py
# Topologically Sorted Source Nodes: [conv2d_8, x_11], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_8 => convolution_8
# x_11 => gt_8, mul_8, where_8
# Graph fragment:
# %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_3, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_8 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.1), kwargs = {})
# %where_8 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_8, %convolution_8, %mul_8), kwargs = {})
triton_poi_fused_convolution_leaky_relu_8 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 512
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/j6/cj6wkwoaluxhwqnux44qht6o5xye6n3bfqi54esxnpytd6m2qyjn.py
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x_13 => avg_pool2d_4
# Graph fragment:
# %avg_pool2d_4 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_9, [2, 2]), kwargs = {})
triton_poi_fused_avg_pool2d_9 = async_compile.triton('triton_poi_fused_avg_pool2d_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), None, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/i6/ci6sgepehwucwp2knnf7ujr55xjh7bis2i3kdyon6flrsjhhdhyi.py
# Topologically Sorted Source Nodes: [conv2d_10, x_14], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_10 => convolution_10
# x_14 => gt_10, mul_10, where_10
# Graph fragment:
# %convolution_10 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_4, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_10 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_10, 0), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_10, 0.1), kwargs = {})
# %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_10, %convolution_10, %mul_10), kwargs = {})
triton_poi_fused_convolution_leaky_relu_10 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4) % 512
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ep/cepxp5elnxw6qvzcibzdejr6ov2i7hn664ixt6w4vzlrorsdstiq.py
# Topologically Sorted Source Nodes: [conv2d_11, x_15], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_11 => convolution_11
# x_15 => gt_11
# Graph fragment:
# %convolution_11 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_10, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_11 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_11, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_11 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4) % 512
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/z3/cz3ht37gvzi3i6k2smz2s5w6na7atktusjodhozmtypvvm3esohv.py
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x_16 => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
triton_poi_fused__to_copy_12 = async_compile.triton('triton_poi_fused__to_copy_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.3333333333333333
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/nx/cnx7ll6yfypysv6t72fppt3l6rvj43nys56achmmuw56u5bxc5p3.py
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x_16 => add, clamp_max
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add, 1), kwargs = {})
triton_poi_fused_add_clamp_13 = async_compile.triton('triton_poi_fused_add_clamp_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.3333333333333333
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.minimum(tmp8, tmp7)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/5v/c5vyrf6ksbxxpxusicxdnvtwtuhwujad75p77f3vbazk2a2krg45.py
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# x_16 => clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_12, sub
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0.3333333333333333), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_12, 0.0), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_14 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.3333333333333333
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ar/carrwnezxoitom5qyzrwvxxe2xsarer32dfybfdk3w4gttj5i277.py
# Topologically Sorted Source Nodes: [conv2d_11, x_15, x_16], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# conv2d_11 => convolution_11
# x_15 => mul_11, where_11
# x_16 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, add_4, mul_14, mul_15, mul_16, sub_1, sub_2, sub_4
# Graph fragment:
# %convolution_11 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_10, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_11, 0.1), kwargs = {})
# %where_11 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_11, %convolution_11, %mul_11), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_14), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_15), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_16), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4) % 4
x0 = xindex % 4
x6 = (xindex // 16)
x2 = (xindex // 16) % 512
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 2, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.1
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tl.store(in_out_ptr1 + (x4), tmp49, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vm/cvmoqavquuan3erpml2tllmmlw2pfct5mokbplbbjboljuyvw7db.py
# Topologically Sorted Source Nodes: [conv2d_12, x_17], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_12 => convolution_12
# x_17 => gt_12
# Graph fragment:
# %convolution_12 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_4, %primals_26, %primals_27, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_12 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_12, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_16 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 512
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/zq/czqy62awvhrtl5r6fvvk4ufd5wffutbs7uz3a6rvpxyaj5tosmne.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_12, %where_9], 1), kwargs = {})
triton_poi_fused_cat_17 = async_compile.triton('triton_poi_fused_cat_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_17(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 16) % 1024
x0 = xindex % 16
x2 = (xindex // 16384)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 512, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (8192*x2)), tmp4, other=0.0).to(tl.int1)
tmp6 = tl.load(in_ptr1 + (x0 + (16*x1) + (8192*x2)), tmp4, other=0.0)
tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = 0.1
tmp10 = tmp8 * tmp9
tmp11 = tl.where(tmp5, tmp8, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 1024, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr3 + (x0 + (16*((-512) + x1)) + (8192*x2)), tmp14, other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + (x3), tmp18, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2s/c2sk6gzhf6uklpvjhoauccu4uvozyspandp2cn4bcyb3wki2xxhx.py
# Topologically Sorted Source Nodes: [x_19], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x_19 => convert_element_type_5
# Graph fragment:
# %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {})
triton_poi_fused__to_copy_18 = async_compile.triton('triton_poi_fused__to_copy_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_18(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.42857142857142855
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/fi/cfit25sue27q25nhhczsnbhwuwdlax6couegtz4uggk7di277ypq.py
# Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x_19 => add_5, clamp_max_4
# Graph fragment:
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {})
# %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_5, 3), kwargs = {})
triton_poi_fused_add_clamp_19 = async_compile.triton('triton_poi_fused_add_clamp_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_19(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.42857142857142855
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/q2/cq2kv4flgvx62fujb4moneobtf4ckbt36e2hksv7dpknuqq52fct.py
# Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# x_19 => clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_19, sub_5
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_4, 0.42857142857142855), kwargs = {})
# %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_19, 0.0), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {})
# %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {})
# %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_20 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_20(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.42857142857142855
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/qk/cqkzmxtnx34qktmz7vfilm2bzsfk2r5cxo3wx6pwurql3crkpejs.py
# Topologically Sorted Source Nodes: [conv2d_13, x_18, x_19], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# conv2d_13 => convolution_13
# x_18 => mul_18, where_13
# x_19 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_7, add_8, add_9, mul_21, mul_22, mul_23, sub_6, sub_7, sub_9
# Graph fragment:
# %convolution_13 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_28, %primals_29, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_13, 0.1), kwargs = {})
# %where_13 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_13, %convolution_13, %mul_18), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_6), kwargs = {})
# %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_21), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %clamp_max_6), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_22), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %add_7), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %clamp_max_7), kwargs = {})
# %add_9 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %mul_23), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 8) % 8
x0 = xindex % 8
x6 = (xindex // 64)
x2 = (xindex // 64) % 512
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.1
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tl.store(in_out_ptr1 + (x4), tmp49, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vn/cvntemv5weoouv65lvun2muyb6apyj7dkrnebouaithxvdyd4hl4.py
# Topologically Sorted Source Nodes: [conv2d_14, x_20], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_14 => convolution_14
# x_20 => gt_14
# Graph fragment:
# %convolution_14 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_9, %primals_30, %primals_31, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_14 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_14, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_22 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_22', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 256
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/3p/c3pazcbmhoubkrcj7s65glics5kpj5vv7x2zlnvymydp46fxyf2m.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_14, %where_7], 1), kwargs = {})
triton_poi_fused_cat_23 = async_compile.triton('triton_poi_fused_cat_23', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_23(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 64) % 512
x0 = xindex % 64
x2 = (xindex // 32768)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x1) + (16384*x2)), tmp4, other=0.0).to(tl.int1)
tmp6 = tl.load(in_ptr1 + (x0 + (64*x1) + (16384*x2)), tmp4, other=0.0)
tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = 0.1
tmp10 = tmp8 * tmp9
tmp11 = tl.where(tmp5, tmp8, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 512, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr3 + (x0 + (64*((-256) + x1)) + (16384*x2)), tmp14, other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + (x3), tmp18, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/xr/cxrfteqgujtzrgrqhr2priblhgju7j56bytouefknhre6qfrg7aq.py
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x_22 => convert_element_type_9
# Graph fragment:
# %convert_element_type_9 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {})
triton_poi_fused__to_copy_24 = async_compile.triton('triton_poi_fused__to_copy_24', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_24', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_24(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2o/c2ozop5o3vlib3raudpzjdjstnzhupl6lkp2p2jpvzczo4vwr4gn.py
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x_22 => add_10, clamp_max_8
# Graph fragment:
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_9, 1), kwargs = {})
# %clamp_max_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_10, 7), kwargs = {})
triton_poi_fused_add_clamp_25 = async_compile.triton('triton_poi_fused_add_clamp_25', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_25', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_25(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 7, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/nl/cnluenoskf3nmzw3m3eq5bq2vjjez3wdisusfcow3l4xmyf5u3wg.py
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# x_22 => clamp_max_10, clamp_min_10, clamp_min_8, convert_element_type_8, iota_4, mul_26, sub_10
# Graph fragment:
# %iota_4 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_4, torch.float32), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_8, 0.4666666666666667), kwargs = {})
# %clamp_min_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_26, 0.0), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_8, %convert_element_type_11), kwargs = {})
# %clamp_min_10 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_10, 0.0), kwargs = {})
# %clamp_max_10 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_10, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_26 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_26', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_26', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_26(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/qc/cqcxmomsd2pfozktj753ije5uupmwdotvhhglolxtdikeyegh5yz.py
# Topologically Sorted Source Nodes: [conv2d_15, x_21, x_22], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# conv2d_15 => convolution_15
# x_21 => mul_25, where_15
# x_22 => _unsafe_index_10, _unsafe_index_11, _unsafe_index_8, _unsafe_index_9, add_12, add_13, add_14, mul_28, mul_29, mul_30, sub_11, sub_12, sub_14
# Graph fragment:
# %convolution_15 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_32, %primals_33, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_15, 0.1), kwargs = {})
# %where_15 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_15, %convolution_15, %mul_25), kwargs = {})
# %_unsafe_index_8 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %convert_element_type_9, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_9 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %convert_element_type_9, %clamp_max_9]), kwargs = {})
# %_unsafe_index_10 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %clamp_max_8, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %clamp_max_8, %clamp_max_9]), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_9, %_unsafe_index_8), kwargs = {})
# %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_10), kwargs = {})
# %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_8, %mul_28), kwargs = {})
# %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_11, %_unsafe_index_10), kwargs = {})
# %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %clamp_max_10), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_10, %mul_29), kwargs = {})
# %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_13, %add_12), kwargs = {})
# %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %clamp_max_11), kwargs = {})
# %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %mul_30), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 16) % 16
x0 = xindex % 16
x6 = (xindex // 256)
x2 = (xindex // 256) % 256
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 8, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.1
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tl.store(in_out_ptr1 + (x4), tmp49, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2n/c2ncutq26bahxlgkdh4rlnvyr47bwimc4zzutvjxr5n6y6efndwb.py
# Topologically Sorted Source Nodes: [conv2d_16, x_23], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_16 => convolution_16
# x_23 => gt_16
# Graph fragment:
# %convolution_16 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_14, %primals_34, %primals_35, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_16 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_16, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_28 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_28', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_28(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 128
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/oe/coeffqdqijre65ihx7pvd5fl3wkvhaztzhmg43n5sxftyfhfnesu.py
# Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_2 => cat_2
# Graph fragment:
# %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_16, %where_5], 1), kwargs = {})
triton_poi_fused_cat_29 = async_compile.triton('triton_poi_fused_cat_29', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_29', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_29(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 256) % 256
x0 = xindex % 256
x2 = (xindex // 65536)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (256*x1) + (32768*x2)), tmp4, other=0.0).to(tl.int1)
tmp6 = tl.load(in_ptr1 + (x0 + (256*x1) + (32768*x2)), tmp4, other=0.0)
tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = 0.1
tmp10 = tmp8 * tmp9
tmp11 = tl.where(tmp5, tmp8, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 256, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr3 + (x0 + (256*((-128) + x1)) + (32768*x2)), tmp14, other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + (x3), tmp18, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/25/c25db6n6tbco6h7b6tsgk6dqhuqt66jivakppvpg57hq6wftcgdk.py
# Topologically Sorted Source Nodes: [x_25], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x_25 => convert_element_type_13
# Graph fragment:
# %convert_element_type_13 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {})
triton_poi_fused__to_copy_30 = async_compile.triton('triton_poi_fused__to_copy_30', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_30', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_30(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4838709677419355
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/gg/cggj5xwuzgrmsc3yy7bii3rhng6hbo2v5i6d3ktvdsayx6mesaap.py
# Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x_25 => add_15, clamp_max_12
# Graph fragment:
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_13, 1), kwargs = {})
# %clamp_max_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_15, 15), kwargs = {})
triton_poi_fused_add_clamp_31 = async_compile.triton('triton_poi_fused_add_clamp_31', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_31', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_31(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4838709677419355
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 15, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/iy/ciyonop35vmjqvcqpykjymxt3hgt3udytw6lrg7msrqkuz5fphlo.py
# Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# x_25 => clamp_max_14, clamp_min_12, clamp_min_14, convert_element_type_12, iota_6, mul_33, sub_15
# Graph fragment:
# %iota_6 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_6, torch.float32), kwargs = {})
# %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_12, 0.4838709677419355), kwargs = {})
# %clamp_min_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_33, 0.0), kwargs = {})
# %sub_15 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_12, %convert_element_type_15), kwargs = {})
# %clamp_min_14 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_15, 0.0), kwargs = {})
# %clamp_max_14 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_14, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_32 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_32', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_32', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_32(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4838709677419355
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/74/c74xhgb6wezra6e6cyzbt6yotgcl7i7n4p3es6nogdaczlcdlrl4.py
# Topologically Sorted Source Nodes: [conv2d_17, x_24, x_25], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# conv2d_17 => convolution_17
# x_24 => mul_32, where_17
# x_25 => _unsafe_index_12, _unsafe_index_13, _unsafe_index_14, _unsafe_index_15, add_17, add_18, add_19, mul_35, mul_36, mul_37, sub_16, sub_17, sub_19
# Graph fragment:
# %convolution_17 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_36, %primals_37, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_17, 0.1), kwargs = {})
# %where_17 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_17, %convolution_17, %mul_32), kwargs = {})
# %_unsafe_index_12 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %convert_element_type_13, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %convert_element_type_13, %clamp_max_13]), kwargs = {})
# %_unsafe_index_14 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %clamp_max_12, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_15 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %clamp_max_12, %clamp_max_13]), kwargs = {})
# %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_13, %_unsafe_index_12), kwargs = {})
# %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %clamp_max_14), kwargs = {})
# %add_17 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_12, %mul_35), kwargs = {})
# %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_15, %_unsafe_index_14), kwargs = {})
# %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %clamp_max_14), kwargs = {})
# %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_14, %mul_36), kwargs = {})
# %sub_19 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_18, %add_17), kwargs = {})
# %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, %clamp_max_15), kwargs = {})
# %add_19 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_17, %mul_37), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 32) % 32
x0 = xindex % 32
x6 = (xindex // 1024)
x2 = (xindex // 1024) % 128
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.1
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tl.store(in_out_ptr1 + (x4), tmp49, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/hu/chuh444ehiqujq3pobg3s6kf4jk3jfs66ff4yxzuqyv7z7gvdw4l.py
# Topologically Sorted Source Nodes: [conv2d_18, x_26], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_18 => convolution_18
# x_26 => gt_18
# Graph fragment:
# %convolution_18 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_19, %primals_38, %primals_39, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_18 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_18, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_34 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_34', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_34', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_34(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/wo/cwov5xjz2rgypru6odo5shttzkvjzbv2j5h765xadmngxefsg27w.py
# Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_3 => cat_3
# Graph fragment:
# %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_18, %where_3], 1), kwargs = {})
triton_poi_fused_cat_35 = async_compile.triton('triton_poi_fused_cat_35', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_35', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_35(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 1024) % 128
x0 = xindex % 1024
x2 = (xindex // 131072)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (1024*x1) + (65536*x2)), tmp4, other=0.0).to(tl.int1)
tmp6 = tl.load(in_ptr1 + (x0 + (1024*x1) + (65536*x2)), tmp4, other=0.0)
tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = 0.1
tmp10 = tmp8 * tmp9
tmp11 = tl.where(tmp5, tmp8, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 128, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr3 + (x0 + (1024*((-64) + x1)) + (65536*x2)), tmp14, other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + (x3), tmp18, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/5q/c5qi2efw2jm23srua2zmtpowt3wpunaydcrsuw4zxlo3khkvwmd2.py
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x_28 => convert_element_type_17
# Graph fragment:
# %convert_element_type_17 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_8, torch.int64), kwargs = {})
triton_poi_fused__to_copy_36 = async_compile.triton('triton_poi_fused__to_copy_36', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_36', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_36(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ju/cjuwyrat5abrygxxr2nvcr6hatdxctbhqdctnyuquopumyfm7qc4.py
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x_28 => add_20, clamp_max_16
# Graph fragment:
# %add_20 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_17, 1), kwargs = {})
# %clamp_max_16 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_20, 31), kwargs = {})
triton_poi_fused_add_clamp_37 = async_compile.triton('triton_poi_fused_add_clamp_37', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_37', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_37(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 31, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/w7/cw7buxwvmmgiolo37tttmidcze2dztgby4b7fvjz4sua3a35qgvp.py
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# x_28 => clamp_max_18, clamp_min_16, clamp_min_18, convert_element_type_16, iota_8, mul_40, sub_20
# Graph fragment:
# %iota_8 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_16 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_8, torch.float32), kwargs = {})
# %mul_40 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_16, 0.49206349206349204), kwargs = {})
# %clamp_min_16 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_40, 0.0), kwargs = {})
# %sub_20 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_16, %convert_element_type_19), kwargs = {})
# %clamp_min_18 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_20, 0.0), kwargs = {})
# %clamp_max_18 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_18, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_38 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_38', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_38', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_38(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/cj/ccjteqzvlszshm7xogphjn6lezrnhtguz6t2ft3y2qrajrcko2wk.py
# Topologically Sorted Source Nodes: [conv2d_19, x_27, x_28], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# conv2d_19 => convolution_19
# x_27 => mul_39, where_19
# x_28 => _unsafe_index_16, _unsafe_index_17, _unsafe_index_18, _unsafe_index_19, add_22, add_23, add_24, mul_42, mul_43, mul_44, sub_21, sub_22, sub_24
# Graph fragment:
# %convolution_19 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_3, %primals_40, %primals_41, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_19, 0.1), kwargs = {})
# %where_19 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_19, %convolution_19, %mul_39), kwargs = {})
# %_unsafe_index_16 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %convert_element_type_17, %convert_element_type_19]), kwargs = {})
# %_unsafe_index_17 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %convert_element_type_17, %clamp_max_17]), kwargs = {})
# %_unsafe_index_18 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %clamp_max_16, %convert_element_type_19]), kwargs = {})
# %_unsafe_index_19 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %clamp_max_16, %clamp_max_17]), kwargs = {})
# %sub_21 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_17, %_unsafe_index_16), kwargs = {})
# %mul_42 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_21, %clamp_max_18), kwargs = {})
# %add_22 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_16, %mul_42), kwargs = {})
# %sub_22 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_19, %_unsafe_index_18), kwargs = {})
# %mul_43 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_22, %clamp_max_18), kwargs = {})
# %add_23 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_18, %mul_43), kwargs = {})
# %sub_24 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_23, %add_22), kwargs = {})
# %mul_44 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_24, %clamp_max_19), kwargs = {})
# %add_24 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_22, %mul_44), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 64) % 64
x0 = xindex % 64
x6 = (xindex // 4096)
x2 = (xindex // 4096) % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.1
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tl.store(in_out_ptr1 + (x4), tmp49, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vz/cvzt4swwgye3zpxep4ligqcdlu5xxf7fecsvlec4qsz3qtn6tkxy.py
# Topologically Sorted Source Nodes: [conv2d_20, x_29], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_20 => convolution_20
# x_29 => gt_20
# Graph fragment:
# %convolution_20 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_24, %primals_42, %primals_43, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_20 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_20, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_40 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_40', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_40', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_40(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 32
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/rm/crmdmqyxav4fb4725fm2hhwf6m4yrxuhqmo2dbcjkiu6gomd2akp.py
# Topologically Sorted Source Nodes: [cat_4], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_4 => cat_4
# Graph fragment:
# %cat_4 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_20, %where_1], 1), kwargs = {})
triton_poi_fused_cat_41 = async_compile.triton('triton_poi_fused_cat_41', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_41', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_41(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 64
x0 = xindex % 4096
x2 = (xindex // 262144)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (131072*x2)), tmp4, other=0.0).to(tl.int1)
tmp6 = tl.load(in_ptr1 + (x0 + (4096*x1) + (131072*x2)), tmp4, other=0.0)
tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = 0.1
tmp10 = tmp8 * tmp9
tmp11 = tl.where(tmp5, tmp8, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 64, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr3 + (x0 + (4096*((-32) + x1)) + (131072*x2)), tmp14, other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + (x3), tmp18, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/p7/cp74qdkmdadhqce4dzechhvpihfuica6bbejv65ptme5otg3jhj3.py
# Topologically Sorted Source Nodes: [conv2d_22, x_31], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_22 => convolution_22
# x_31 => gt_22, mul_47, where_22
# Graph fragment:
# %convolution_22 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_21, %primals_46, %primals_47, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_22 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_22, 0), kwargs = {})
# %mul_47 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_22, 0.1), kwargs = {})
# %where_22 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_22, %convolution_22, %mul_47), kwargs = {})
triton_poi_fused_convolution_leaky_relu_42 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_42', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_42', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_42(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47 = args
args.clear()
assert_size_stride(primals_1, (32, 4, 7, 7), (196, 49, 7, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (32, 32, 7, 7), (1568, 49, 7, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 5, 5), (800, 25, 5, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 64, 5, 5), (1600, 25, 5, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (128, ), (1, ))
assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (256, ), (1, ))
assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (256, ), (1, ))
assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_19, (512, ), (1, ))
assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_21, (512, ), (1, ))
assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_23, (512, ), (1, ))
assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (512, ), (1, ))
assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (512, ), (1, ))
assert_size_stride(primals_28, (512, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_29, (512, ), (1, ))
assert_size_stride(primals_30, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_31, (256, ), (1, ))
assert_size_stride(primals_32, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_33, (256, ), (1, ))
assert_size_stride(primals_34, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_35, (128, ), (1, ))
assert_size_stride(primals_36, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_37, (128, ), (1, ))
assert_size_stride(primals_38, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_39, (64, ), (1, ))
assert_size_stride(primals_40, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_41, (64, ), (1, ))
assert_size_stride(primals_42, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_43, (32, ), (1, ))
assert_size_stride(primals_44, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_45, (32, ), (1, ))
assert_size_stride(primals_46, (4, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_47, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf1 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 524288, grid=grid(524288), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf4 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
buf5 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, s1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 524288, grid=grid(524288), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_1.run(buf5, buf6, 131072, grid=grid(131072), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf8 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool)
buf9 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf7, primals_7, buf8, buf9, 262144, grid=grid(262144), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf11 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool)
buf12 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf10, primals_9, buf11, buf12, 262144, grid=grid(262144), stream=stream0)
del primals_9
buf13 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_3.run(buf12, buf13, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 128, 16, 16), (32768, 256, 16, 1))
buf15 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool)
buf16 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_4.run(buf14, primals_11, buf15, buf16, 131072, grid=grid(131072), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 128, 16, 16), (32768, 256, 16, 1))
buf18 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool)
buf19 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, x_6], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_4.run(buf17, primals_13, buf18, buf19, 131072, grid=grid(131072), stream=stream0)
del primals_13
buf20 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_5.run(buf19, buf20, 32768, grid=grid(32768), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf21 = extern_kernels.convolution(buf20, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 256, 8, 8), (16384, 64, 8, 1))
buf22 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool)
buf23 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_6, x_8], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_6.run(buf21, primals_15, buf22, buf23, 65536, grid=grid(65536), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf23, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 256, 8, 8), (16384, 64, 8, 1))
buf25 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool)
buf26 = buf21; del buf21 # reuse
# Topologically Sorted Source Nodes: [conv2d_7, x_9], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_6.run(buf24, primals_17, buf25, buf26, 65536, grid=grid(65536), stream=stream0)
del primals_17
buf27 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_7.run(buf26, buf27, 16384, grid=grid(16384), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf28 = extern_kernels.convolution(buf27, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 512, 4, 4), (8192, 16, 4, 1))
buf29 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool)
buf30 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_8, x_11], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_8.run(buf28, primals_19, buf29, buf30, 32768, grid=grid(32768), stream=stream0)
del primals_19
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf31 = extern_kernels.convolution(buf30, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf31, (4, 512, 4, 4), (8192, 16, 4, 1))
buf32 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool)
buf33 = buf28; del buf28 # reuse
# Topologically Sorted Source Nodes: [conv2d_9, x_12], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_8.run(buf31, primals_21, buf32, buf33, 32768, grid=grid(32768), stream=stream0)
del primals_21
buf34 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_9.run(buf33, buf34, 8192, grid=grid(8192), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution]
buf35 = extern_kernels.convolution(buf34, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 512, 2, 2), (2048, 4, 2, 1))
buf36 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool)
buf37 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_10, x_14], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_10.run(buf35, primals_23, buf36, buf37, 8192, grid=grid(8192), stream=stream0)
del buf35
del primals_23
# Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution]
buf38 = extern_kernels.convolution(buf37, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 512, 2, 2), (2048, 4, 2, 1))
buf39 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_11, x_15], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_11.run(buf38, primals_25, buf39, 8192, grid=grid(8192), stream=stream0)
buf40 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_12.run(buf40, 4, grid=grid(4), stream=stream0)
buf41 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_13.run(buf41, 4, grid=grid(4), stream=stream0)
buf42 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_12.run(buf42, 4, grid=grid(4), stream=stream0)
buf43 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_13.run(buf43, 4, grid=grid(4), stream=stream0)
buf46 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_14.run(buf46, 4, grid=grid(4), stream=stream0)
buf48 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_14.run(buf48, 4, grid=grid(4), stream=stream0)
buf45 = buf31; del buf31 # reuse
buf49 = buf45; del buf45 # reuse
buf50 = buf49; del buf49 # reuse
# Topologically Sorted Source Nodes: [conv2d_11, x_15, x_16], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15.run(buf50, buf41, buf42, buf39, buf38, primals_25, buf40, buf43, buf46, buf48, 32768, grid=grid(32768), stream=stream0)
del buf38
del primals_25
# Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution]
buf51 = extern_kernels.convolution(buf50, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf51, (4, 512, 4, 4), (8192, 16, 4, 1))
buf52 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_12, x_17], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_16.run(buf51, primals_27, buf52, 32768, grid=grid(32768), stream=stream0)
buf53 = reinterpret_tensor(buf24, (4, 1024, 4, 4), (16384, 16, 4, 1), 0); del buf24 # reuse
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_17.run(buf52, buf51, primals_27, buf33, buf53, 65536, grid=grid(65536), stream=stream0)
del buf51
del primals_27
# Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution]
buf54 = extern_kernels.convolution(buf53, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf54, (4, 512, 4, 4), (8192, 16, 4, 1))
buf55 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_13, x_18], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_16.run(buf54, primals_29, buf55, 32768, grid=grid(32768), stream=stream0)
buf56 = empty_strided_cuda((8, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_19], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_18.run(buf56, 8, grid=grid(8), stream=stream0)
buf57 = empty_strided_cuda((8, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_19.run(buf57, 8, grid=grid(8), stream=stream0)
buf58 = empty_strided_cuda((8, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_18.run(buf58, 8, grid=grid(8), stream=stream0)
buf59 = empty_strided_cuda((8, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_19.run(buf59, 8, grid=grid(8), stream=stream0)
buf62 = empty_strided_cuda((8, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_20.run(buf62, 8, grid=grid(8), stream=stream0)
buf64 = empty_strided_cuda((8, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_20.run(buf64, 8, grid=grid(8), stream=stream0)
buf61 = reinterpret_tensor(buf17, (4, 512, 8, 8), (32768, 64, 8, 1), 0); del buf17 # reuse
buf65 = buf61; del buf61 # reuse
buf66 = buf65; del buf65 # reuse
# Topologically Sorted Source Nodes: [conv2d_13, x_18, x_19], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21.run(buf66, buf57, buf58, buf55, buf54, primals_29, buf56, buf59, buf62, buf64, 131072, grid=grid(131072), stream=stream0)
del buf54
del primals_29
# Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution]
buf67 = extern_kernels.convolution(buf66, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf67, (4, 256, 8, 8), (16384, 64, 8, 1))
buf68 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_14, x_20], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_22.run(buf67, primals_31, buf68, 65536, grid=grid(65536), stream=stream0)
buf69 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_23.run(buf68, buf67, primals_31, buf26, buf69, 131072, grid=grid(131072), stream=stream0)
del buf67
del primals_31
# Topologically Sorted Source Nodes: [conv2d_15], Original ATen: [aten.convolution]
buf70 = extern_kernels.convolution(buf69, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf70, (4, 256, 8, 8), (16384, 64, 8, 1))
buf71 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_15, x_21], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_22.run(buf70, primals_33, buf71, 65536, grid=grid(65536), stream=stream0)
buf72 = empty_strided_cuda((16, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_24.run(buf72, 16, grid=grid(16), stream=stream0)
buf73 = empty_strided_cuda((16, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_25.run(buf73, 16, grid=grid(16), stream=stream0)
buf74 = empty_strided_cuda((16, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_24.run(buf74, 16, grid=grid(16), stream=stream0)
buf75 = empty_strided_cuda((16, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_25.run(buf75, 16, grid=grid(16), stream=stream0)
buf78 = empty_strided_cuda((16, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_26.run(buf78, 16, grid=grid(16), stream=stream0)
buf80 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_26.run(buf80, 16, grid=grid(16), stream=stream0)
buf77 = reinterpret_tensor(buf10, (4, 256, 16, 16), (65536, 256, 16, 1), 0); del buf10 # reuse
buf81 = buf77; del buf77 # reuse
buf82 = buf81; del buf81 # reuse
# Topologically Sorted Source Nodes: [conv2d_15, x_21, x_22], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27.run(buf82, buf73, buf74, buf71, buf70, primals_33, buf72, buf75, buf78, buf80, 262144, grid=grid(262144), stream=stream0)
del primals_33
# Topologically Sorted Source Nodes: [conv2d_16], Original ATen: [aten.convolution]
buf83 = extern_kernels.convolution(buf82, primals_34, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf83, (4, 128, 16, 16), (32768, 256, 16, 1))
buf84 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_16, x_23], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_28.run(buf83, primals_35, buf84, 131072, grid=grid(131072), stream=stream0)
buf85 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat]
triton_poi_fused_cat_29.run(buf84, buf83, primals_35, buf19, buf85, 262144, grid=grid(262144), stream=stream0)
del buf83
del primals_35
# Topologically Sorted Source Nodes: [conv2d_17], Original ATen: [aten.convolution]
buf86 = extern_kernels.convolution(buf85, primals_36, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf86, (4, 128, 16, 16), (32768, 256, 16, 1))
buf87 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_17, x_24], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_28.run(buf86, primals_37, buf87, 131072, grid=grid(131072), stream=stream0)
buf88 = empty_strided_cuda((32, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_25], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_30.run(buf88, 32, grid=grid(32), stream=stream0)
buf89 = empty_strided_cuda((32, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_31.run(buf89, 32, grid=grid(32), stream=stream0)
buf90 = empty_strided_cuda((32, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_30.run(buf90, 32, grid=grid(32), stream=stream0)
buf91 = empty_strided_cuda((32, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_31.run(buf91, 32, grid=grid(32), stream=stream0)
buf94 = empty_strided_cuda((32, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_32.run(buf94, 32, grid=grid(32), stream=stream0)
buf96 = empty_strided_cuda((32, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_32.run(buf96, 32, grid=grid(32), stream=stream0)
buf93 = reinterpret_tensor(buf3, (4, 128, 32, 32), (131072, 1024, 32, 1), 0); del buf3 # reuse
buf97 = buf93; del buf93 # reuse
buf98 = buf97; del buf97 # reuse
# Topologically Sorted Source Nodes: [conv2d_17, x_24, x_25], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33.run(buf98, buf89, buf90, buf87, buf86, primals_37, buf88, buf91, buf94, buf96, 524288, grid=grid(524288), stream=stream0)
del buf86
del primals_37
# Topologically Sorted Source Nodes: [conv2d_18], Original ATen: [aten.convolution]
buf99 = extern_kernels.convolution(buf98, primals_38, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf99, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf100 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_18, x_26], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_34.run(buf99, primals_39, buf100, 262144, grid=grid(262144), stream=stream0)
buf101 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat]
triton_poi_fused_cat_35.run(buf100, buf99, primals_39, buf12, buf101, 524288, grid=grid(524288), stream=stream0)
del buf99
del primals_39
# Topologically Sorted Source Nodes: [conv2d_19], Original ATen: [aten.convolution]
buf102 = extern_kernels.convolution(buf101, primals_40, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf102, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf103 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_19, x_27], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_34.run(buf102, primals_41, buf103, 262144, grid=grid(262144), stream=stream0)
buf104 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_36.run(buf104, 64, grid=grid(64), stream=stream0)
buf105 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_37.run(buf105, 64, grid=grid(64), stream=stream0)
buf106 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_36.run(buf106, 64, grid=grid(64), stream=stream0)
buf107 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_37.run(buf107, 64, grid=grid(64), stream=stream0)
buf110 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_38.run(buf110, 64, grid=grid(64), stream=stream0)
buf112 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_38.run(buf112, 64, grid=grid(64), stream=stream0)
buf109 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32)
buf113 = buf109; del buf109 # reuse
buf114 = buf113; del buf113 # reuse
# Topologically Sorted Source Nodes: [conv2d_19, x_27, x_28], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39.run(buf114, buf105, buf106, buf103, buf102, primals_41, buf104, buf107, buf110, buf112, 1048576, grid=grid(1048576), stream=stream0)
del buf102
del primals_41
# Topologically Sorted Source Nodes: [conv2d_20], Original ATen: [aten.convolution]
buf115 = extern_kernels.convolution(buf114, primals_42, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf115, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf116 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_20, x_29], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_40.run(buf115, primals_43, buf116, 524288, grid=grid(524288), stream=stream0)
buf117 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_4], Original ATen: [aten.cat]
triton_poi_fused_cat_41.run(buf116, buf115, primals_43, buf5, buf117, 1048576, grid=grid(1048576), stream=stream0)
del primals_43
# Topologically Sorted Source Nodes: [conv2d_21], Original ATen: [aten.convolution]
buf118 = extern_kernels.convolution(buf117, primals_44, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf118, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf119 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
buf120 = buf115; del buf115 # reuse
# Topologically Sorted Source Nodes: [conv2d_21, x_30], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_0.run(buf118, primals_45, buf119, buf120, 524288, grid=grid(524288), stream=stream0)
del buf118
del primals_45
# Topologically Sorted Source Nodes: [conv2d_22], Original ATen: [aten.convolution]
buf121 = extern_kernels.convolution(buf120, primals_46, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf121, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf122 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.bool)
buf123 = reinterpret_tensor(buf70, (4, 4, 64, 64), (16384, 4096, 64, 1), 0); del buf70 # reuse
# Topologically Sorted Source Nodes: [conv2d_22, x_31], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_42.run(buf121, primals_47, buf122, buf123, 65536, grid=grid(65536), stream=stream0)
del buf121
del primals_47
return (buf123, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, primals_46, buf1, buf2, buf4, buf5, buf6, buf8, buf9, buf11, buf12, buf13, buf15, buf16, buf18, buf19, buf20, buf22, buf23, buf25, buf26, buf27, buf29, buf30, buf32, buf33, buf34, buf36, buf37, buf39, buf40, buf41, buf42, buf43, buf46, buf48, buf50, buf52, buf53, buf55, buf56, buf57, buf58, buf59, buf62, buf64, buf66, buf68, buf69, buf71, buf72, buf73, buf74, buf75, buf78, buf80, buf82, buf84, buf85, buf87, buf88, buf89, buf90, buf91, buf94, buf96, buf98, buf100, buf101, buf103, buf104, buf105, buf106, buf107, buf110, buf112, buf114, buf116, buf117, buf119, buf120, buf122, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 4, 7, 7), (196, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 32, 7, 7), (1568, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 64, 5, 5), (1600, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((512, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_36 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_37 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_38 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_39 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_40 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_41 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_42 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_43 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_44 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_45 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_46 = rand_strided((4, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_47 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class down(nn.Module):
"""
A class for creating neural network blocks containing layers:
Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU
This is used in the UNet Class to create a UNet like NN architecture.
...
Methods
-------
forward(x)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels, filterSize):
"""
Parameters
----------
inChannels : int
number of input channels for the first convolutional layer.
outChannels : int
number of output channels for the first convolutional layer.
This is also used as input and output channels for the
second convolutional layer.
filterSize : int
filter size for the convolution filter. input N would create
a N x N filter.
"""
super(down, self).__init__()
self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride=
1, padding=int((filterSize - 1) / 2))
self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride
=1, padding=int((filterSize - 1) / 2))
def forward(self, x):
"""
Returns output tensor after passing input `x` to the neural network
block.
Parameters
----------
x : tensor
input to the NN block.
Returns
-------
tensor
output of the NN block.
"""
x = F.avg_pool2d(x, 2)
x = F.leaky_relu(self.conv1(x), negative_slope=0.1)
x = F.leaky_relu(self.conv2(x), negative_slope=0.1)
return x
class up(nn.Module):
"""
A class for creating neural network blocks containing layers:
Bilinear interpolation --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU
This is used in the UNet Class to create a UNet like NN architecture.
...
Methods
-------
forward(x, skpCn)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels):
"""
Parameters
----------
inChannels : int
number of input channels for the first convolutional layer.
outChannels : int
number of output channels for the first convolutional layer.
This is also used for setting input and output channels for
the second convolutional layer.
"""
super(up, self).__init__()
self.conv1 = nn.Conv2d(inChannels, outChannels, 3, stride=1, padding=1)
self.conv2 = nn.Conv2d(2 * outChannels, outChannels, 3, stride=1,
padding=1)
def forward(self, x, skpCn):
"""
Returns output tensor after passing input `x` to the neural network
block.
Parameters
----------
x : tensor
input to the NN block.
skpCn : tensor
skip connection input to the NN block.
Returns
-------
tensor
output of the NN block.
"""
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners
=True)
x = F.leaky_relu(self.conv1(x), negative_slope=0.1)
x = F.leaky_relu(self.conv2(torch.cat((x, skpCn), 1)),
negative_slope=0.1)
return x
class UNet(nn.Module):
"""
A class for creating UNet like architecture as specified by the
Super SloMo paper.
...
Methods
-------
forward(x)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels):
"""
Parameters
----------
inChannels : int
number of input channels for the UNet.
outChannels : int
number of output channels for the UNet.
"""
super(UNet, self).__init__()
self.conv1 = nn.Conv2d(inChannels, 32, 7, stride=1, padding=3)
self.conv2 = nn.Conv2d(32, 32, 7, stride=1, padding=3)
self.down1 = down(32, 64, 5)
self.down2 = down(64, 128, 3)
self.down3 = down(128, 256, 3)
self.down4 = down(256, 512, 3)
self.down5 = down(512, 512, 3)
self.up1 = up(512, 512)
self.up2 = up(512, 256)
self.up3 = up(256, 128)
self.up4 = up(128, 64)
self.up5 = up(64, 32)
self.conv3 = nn.Conv2d(32, outChannels, 3, stride=1, padding=1)
def forward(self, x):
"""
Returns output tensor after passing input `x` to the neural network.
Parameters
----------
x : tensor
input to the UNet.
Returns
-------
tensor
output of the UNet.
"""
x = F.leaky_relu(self.conv1(x), negative_slope=0.1)
s1 = F.leaky_relu(self.conv2(x), negative_slope=0.1)
s2 = self.down1(s1)
s3 = self.down2(s2)
s4 = self.down3(s3)
s5 = self.down4(s4)
x = self.down5(s5)
x = self.up1(x, s5)
x = self.up2(x, s4)
x = self.up3(x, s3)
x = self.up4(x, s2)
x = self.up5(x, s1)
x = F.leaky_relu(self.conv3(x), negative_slope=0.1)
return x
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'inChannels': 4, 'outChannels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 32
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 128
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_avg_pool2d_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 256
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_avg_pool2d_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 16 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 16 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (8 + 2 * x0 + 16 * x1), None, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (9 + 2 * x0 + 16 * x1), None, eviction_policy=
'evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_8(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 512
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_avg_pool2d_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), None, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), None, eviction_policy=
'evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_10(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4 % 512
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_11(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4 % 512
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.3333333333333333
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.3333333333333333
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.minimum(tmp8, tmp7)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_14(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.3333333333333333
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15(
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4 % 4
x0 = xindex % 4
x6 = xindex // 16
x2 = xindex // 16 % 512
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 2, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 2 * tmp4 + 4 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + 2 * tmp4 + 4 * x6), None,
eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.1
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + 2 * tmp19 + 4 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + 2 * tmp19 + 4 * x6), None,
eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + 2 * tmp19 + 4 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + 2 * tmp19 + 4 * x6), None,
eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + 2 * tmp4 + 4 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + 2 * tmp4 + 4 * x6), None,
eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tl.store(in_out_ptr1 + x4, tmp49, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_16(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 512
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_cat_17(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 16 % 1024
x0 = xindex % 16
x2 = xindex // 16384
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 512, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 8192 * x2), tmp4, other=0.0).to(tl
.int1)
tmp6 = tl.load(in_ptr1 + (x0 + 16 * x1 + 8192 * x2), tmp4, other=0.0)
tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = 0.1
tmp10 = tmp8 * tmp9
tmp11 = tl.where(tmp5, tmp8, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 1024, tl.int64)
tmp17 = tl.load(in_ptr3 + (x0 + 16 * (-512 + x1) + 8192 * x2), tmp14,
other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + x3, tmp18, None)
@triton.jit
def triton_poi_fused__to_copy_18(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.42857142857142855
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_19(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.42857142857142855
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_20(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.42857142857142855
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21(
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 8 % 8
x0 = xindex % 8
x6 = xindex // 64
x2 = xindex // 64 % 512
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 4 * tmp4 + 16 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + 4 * tmp4 + 16 * x6), None,
eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.1
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + 4 * tmp19 + 16 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + 4 * tmp19 + 16 * x6), None,
eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + 4 * tmp19 + 16 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + 4 * tmp19 + 16 * x6), None,
eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + 4 * tmp4 + 16 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + 4 * tmp4 + 16 * x6), None,
eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tl.store(in_out_ptr1 + x4, tmp49, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_22(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 256
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_cat_23(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 64 % 512
x0 = xindex % 64
x2 = xindex // 32768
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x1 + 16384 * x2), tmp4, other=0.0).to(
tl.int1)
tmp6 = tl.load(in_ptr1 + (x0 + 64 * x1 + 16384 * x2), tmp4, other=0.0)
tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = 0.1
tmp10 = tmp8 * tmp9
tmp11 = tl.where(tmp5, tmp8, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 512, tl.int64)
tmp17 = tl.load(in_ptr3 + (x0 + 64 * (-256 + x1) + 16384 * x2), tmp14,
other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + x3, tmp18, None)
@triton.jit
def triton_poi_fused__to_copy_24(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_25(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 7, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_26(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27(
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 16 % 16
x0 = xindex % 16
x6 = xindex // 256
x2 = xindex // 256 % 256
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 8, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 8 * tmp4 + 64 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + 8 * tmp4 + 64 * x6), None,
eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.1
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + 8 * tmp19 + 64 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + 8 * tmp19 + 64 * x6), None,
eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + 8 * tmp19 + 64 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + 8 * tmp19 + 64 * x6), None,
eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + 8 * tmp4 + 64 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + 8 * tmp4 + 64 * x6), None,
eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tl.store(in_out_ptr1 + x4, tmp49, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_28(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 128
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_cat_29(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 256 % 256
x0 = xindex % 256
x2 = xindex // 65536
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 256 * x1 + 32768 * x2), tmp4, other=0.0).to(
tl.int1)
tmp6 = tl.load(in_ptr1 + (x0 + 256 * x1 + 32768 * x2), tmp4, other=0.0)
tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = 0.1
tmp10 = tmp8 * tmp9
tmp11 = tl.where(tmp5, tmp8, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 256, tl.int64)
tmp17 = tl.load(in_ptr3 + (x0 + 256 * (-128 + x1) + 32768 * x2), tmp14,
other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + x3, tmp18, None)
@triton.jit
def triton_poi_fused__to_copy_30(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4838709677419355
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_31(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4838709677419355
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 15, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_32(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4838709677419355
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33(
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 32 % 32
x0 = xindex % 32
x6 = xindex // 1024
x2 = xindex // 1024 % 128
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 16 * tmp4 + 256 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + 16 * tmp4 + 256 * x6), None,
eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.1
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + 16 * tmp19 + 256 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + 16 * tmp19 + 256 * x6), None,
eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + 16 * tmp19 + 256 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + 16 * tmp19 + 256 * x6), None,
eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + 16 * tmp4 + 256 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + 16 * tmp4 + 256 * x6), None,
eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tl.store(in_out_ptr1 + x4, tmp49, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_34(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_cat_35(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 1024 % 128
x0 = xindex % 1024
x2 = xindex // 131072
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 1024 * x1 + 65536 * x2), tmp4, other=0.0
).to(tl.int1)
tmp6 = tl.load(in_ptr1 + (x0 + 1024 * x1 + 65536 * x2), tmp4, other=0.0)
tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = 0.1
tmp10 = tmp8 * tmp9
tmp11 = tl.where(tmp5, tmp8, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 128, tl.int64)
tmp17 = tl.load(in_ptr3 + (x0 + 1024 * (-64 + x1) + 65536 * x2), tmp14,
other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + x3, tmp18, None)
@triton.jit
def triton_poi_fused__to_copy_36(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_37(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 31, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_38(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39(
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 64 % 64
x0 = xindex % 64
x6 = xindex // 4096
x2 = xindex // 4096 % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 32 * tmp4 + 1024 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + 32 * tmp4 + 1024 * x6), None,
eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.1
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + 32 * tmp19 + 1024 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + 32 * tmp19 + 1024 * x6), None,
eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + 32 * tmp19 + 1024 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + 32 * tmp19 + 1024 * x6), None,
eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + 32 * tmp4 + 1024 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + 32 * tmp4 + 1024 * x6), None,
eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tl.store(in_out_ptr1 + x4, tmp49, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_40(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 32
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_cat_41(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 64
x0 = xindex % 4096
x2 = xindex // 262144
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 131072 * x2), tmp4, other=0.0
).to(tl.int1)
tmp6 = tl.load(in_ptr1 + (x0 + 4096 * x1 + 131072 * x2), tmp4, other=0.0)
tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = 0.1
tmp10 = tmp8 * tmp9
tmp11 = tl.where(tmp5, tmp8, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 64, tl.int64)
tmp17 = tl.load(in_ptr3 + (x0 + 4096 * (-32 + x1) + 131072 * x2), tmp14,
other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + x3, tmp18, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_42(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35, primals_36, primals_37,
primals_38, primals_39, primals_40, primals_41, primals_42,
primals_43, primals_44, primals_45, primals_46, primals_47) = args
args.clear()
assert_size_stride(primals_1, (32, 4, 7, 7), (196, 49, 7, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (32, 32, 7, 7), (1568, 49, 7, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 5, 5), (800, 25, 5, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 64, 5, 5), (1600, 25, 5, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (128,), (1,))
assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (256,), (1,))
assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (256,), (1,))
assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_19, (512,), (1,))
assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_21, (512,), (1,))
assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_23, (512,), (1,))
assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (512,), (1,))
assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (512,), (1,))
assert_size_stride(primals_28, (512, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_29, (512,), (1,))
assert_size_stride(primals_30, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_31, (256,), (1,))
assert_size_stride(primals_32, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_33, (256,), (1,))
assert_size_stride(primals_34, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_35, (128,), (1,))
assert_size_stride(primals_36, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_37, (128,), (1,))
assert_size_stride(primals_38, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_39, (64,), (1,))
assert_size_stride(primals_40, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_41, (64,), (1,))
assert_size_stride(primals_42, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_43, (32,), (1,))
assert_size_stride(primals_44, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_45, (32,), (1,))
assert_size_stride(primals_46, (4, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_47, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf1 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf0,
primals_2, buf1, buf2, 524288, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf4 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
buf5 = buf0
del buf0
triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf3,
primals_5, buf4, buf5, 524288, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1),
torch.float32)
triton_poi_fused_avg_pool2d_1[grid(131072)](buf5, buf6, 131072,
XBLOCK=512, num_warps=8, num_stages=1)
buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf8 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.bool)
buf9 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.float32)
triton_poi_fused_convolution_leaky_relu_2[grid(262144)](buf7,
primals_7, buf8, buf9, 262144, XBLOCK=512, num_warps=8,
num_stages=1)
del primals_7
buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf11 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.bool)
buf12 = buf7
del buf7
triton_poi_fused_convolution_leaky_relu_2[grid(262144)](buf10,
primals_9, buf11, buf12, 262144, XBLOCK=512, num_warps=8,
num_stages=1)
del primals_9
buf13 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1),
torch.float32)
triton_poi_fused_avg_pool2d_3[grid(65536)](buf12, buf13, 65536,
XBLOCK=256, num_warps=4, num_stages=1)
buf14 = extern_kernels.convolution(buf13, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 128, 16, 16), (32768, 256, 16, 1))
buf15 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.bool)
buf16 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.float32)
triton_poi_fused_convolution_leaky_relu_4[grid(131072)](buf14,
primals_11, buf15, buf16, 131072, XBLOCK=512, num_warps=8,
num_stages=1)
del primals_11
buf17 = extern_kernels.convolution(buf16, primals_12, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 128, 16, 16), (32768, 256, 16, 1))
buf18 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.bool)
buf19 = buf14
del buf14
triton_poi_fused_convolution_leaky_relu_4[grid(131072)](buf17,
primals_13, buf18, buf19, 131072, XBLOCK=512, num_warps=8,
num_stages=1)
del primals_13
buf20 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.
float32)
triton_poi_fused_avg_pool2d_5[grid(32768)](buf19, buf20, 32768,
XBLOCK=128, num_warps=4, num_stages=1)
buf21 = extern_kernels.convolution(buf20, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 256, 8, 8), (16384, 64, 8, 1))
buf22 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch
.bool)
buf23 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch
.float32)
triton_poi_fused_convolution_leaky_relu_6[grid(65536)](buf21,
primals_15, buf22, buf23, 65536, XBLOCK=512, num_warps=4,
num_stages=1)
del primals_15
buf24 = extern_kernels.convolution(buf23, primals_16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 256, 8, 8), (16384, 64, 8, 1))
buf25 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch
.bool)
buf26 = buf21
del buf21
triton_poi_fused_convolution_leaky_relu_6[grid(65536)](buf24,
primals_17, buf25, buf26, 65536, XBLOCK=512, num_warps=4,
num_stages=1)
del primals_17
buf27 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.
float32)
triton_poi_fused_avg_pool2d_7[grid(16384)](buf26, buf27, 16384,
XBLOCK=256, num_warps=4, num_stages=1)
buf28 = extern_kernels.convolution(buf27, primals_18, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 512, 4, 4), (8192, 16, 4, 1))
buf29 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool
)
buf30 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.
float32)
triton_poi_fused_convolution_leaky_relu_8[grid(32768)](buf28,
primals_19, buf29, buf30, 32768, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_19
buf31 = extern_kernels.convolution(buf30, primals_20, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf31, (4, 512, 4, 4), (8192, 16, 4, 1))
buf32 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool
)
buf33 = buf28
del buf28
triton_poi_fused_convolution_leaky_relu_8[grid(32768)](buf31,
primals_21, buf32, buf33, 32768, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_21
buf34 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.
float32)
triton_poi_fused_avg_pool2d_9[grid(8192)](buf33, buf34, 8192,
XBLOCK=128, num_warps=4, num_stages=1)
buf35 = extern_kernels.convolution(buf34, primals_22, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 512, 2, 2), (2048, 4, 2, 1))
buf36 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool)
buf37 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.
float32)
triton_poi_fused_convolution_leaky_relu_10[grid(8192)](buf35,
primals_23, buf36, buf37, 8192, XBLOCK=128, num_warps=4,
num_stages=1)
del buf35
del primals_23
buf38 = extern_kernels.convolution(buf37, primals_24, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 512, 2, 2), (2048, 4, 2, 1))
buf39 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool)
triton_poi_fused_convolution_leaky_relu_11[grid(8192)](buf38,
primals_25, buf39, 8192, XBLOCK=128, num_warps=4, num_stages=1)
buf40 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_12[grid(4)](buf40, 4, XBLOCK=4, num_warps
=1, num_stages=1)
buf41 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_13[grid(4)](buf41, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf42 = empty_strided_cuda((4,), (1,), torch.int64)
triton_poi_fused__to_copy_12[grid(4)](buf42, 4, XBLOCK=4, num_warps
=1, num_stages=1)
buf43 = empty_strided_cuda((4,), (1,), torch.int64)
triton_poi_fused_add_clamp_13[grid(4)](buf43, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf46 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_14[grid(4)](buf46, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf48 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_14[grid(4)](buf48, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf45 = buf31
del buf31
buf49 = buf45
del buf45
buf50 = buf49
del buf49
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15[
grid(32768)](buf50, buf41, buf42, buf39, buf38, primals_25,
buf40, buf43, buf46, buf48, 32768, XBLOCK=128, num_warps=4,
num_stages=1)
del buf38
del primals_25
buf51 = extern_kernels.convolution(buf50, primals_26, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf51, (4, 512, 4, 4), (8192, 16, 4, 1))
buf52 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool
)
triton_poi_fused_convolution_leaky_relu_16[grid(32768)](buf51,
primals_27, buf52, 32768, XBLOCK=256, num_warps=4, num_stages=1)
buf53 = reinterpret_tensor(buf24, (4, 1024, 4, 4), (16384, 16, 4, 1), 0
)
del buf24
triton_poi_fused_cat_17[grid(65536)](buf52, buf51, primals_27,
buf33, buf53, 65536, XBLOCK=256, num_warps=4, num_stages=1)
del buf51
del primals_27
buf54 = extern_kernels.convolution(buf53, primals_28, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf54, (4, 512, 4, 4), (8192, 16, 4, 1))
buf55 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool
)
triton_poi_fused_convolution_leaky_relu_16[grid(32768)](buf54,
primals_29, buf55, 32768, XBLOCK=256, num_warps=4, num_stages=1)
buf56 = empty_strided_cuda((8, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_18[grid(8)](buf56, 8, XBLOCK=8, num_warps
=1, num_stages=1)
buf57 = empty_strided_cuda((8, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_19[grid(8)](buf57, 8, XBLOCK=8,
num_warps=1, num_stages=1)
buf58 = empty_strided_cuda((8,), (1,), torch.int64)
triton_poi_fused__to_copy_18[grid(8)](buf58, 8, XBLOCK=8, num_warps
=1, num_stages=1)
buf59 = empty_strided_cuda((8,), (1,), torch.int64)
triton_poi_fused_add_clamp_19[grid(8)](buf59, 8, XBLOCK=8,
num_warps=1, num_stages=1)
buf62 = empty_strided_cuda((8,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_20[grid(8)](buf62, 8,
XBLOCK=8, num_warps=1, num_stages=1)
buf64 = empty_strided_cuda((8, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_20[grid(8)](buf64, 8,
XBLOCK=8, num_warps=1, num_stages=1)
buf61 = reinterpret_tensor(buf17, (4, 512, 8, 8), (32768, 64, 8, 1), 0)
del buf17
buf65 = buf61
del buf61
buf66 = buf65
del buf65
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21[
grid(131072)](buf66, buf57, buf58, buf55, buf54, primals_29,
buf56, buf59, buf62, buf64, 131072, XBLOCK=512, num_warps=8,
num_stages=1)
del buf54
del primals_29
buf67 = extern_kernels.convolution(buf66, primals_30, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf67, (4, 256, 8, 8), (16384, 64, 8, 1))
buf68 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch
.bool)
triton_poi_fused_convolution_leaky_relu_22[grid(65536)](buf67,
primals_31, buf68, 65536, XBLOCK=256, num_warps=4, num_stages=1)
buf69 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch
.float32)
triton_poi_fused_cat_23[grid(131072)](buf68, buf67, primals_31,
buf26, buf69, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del buf67
del primals_31
buf70 = extern_kernels.convolution(buf69, primals_32, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf70, (4, 256, 8, 8), (16384, 64, 8, 1))
buf71 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch
.bool)
triton_poi_fused_convolution_leaky_relu_22[grid(65536)](buf70,
primals_33, buf71, 65536, XBLOCK=256, num_warps=4, num_stages=1)
buf72 = empty_strided_cuda((16, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_24[grid(16)](buf72, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf73 = empty_strided_cuda((16, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_25[grid(16)](buf73, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf74 = empty_strided_cuda((16,), (1,), torch.int64)
triton_poi_fused__to_copy_24[grid(16)](buf74, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf75 = empty_strided_cuda((16,), (1,), torch.int64)
triton_poi_fused_add_clamp_25[grid(16)](buf75, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf78 = empty_strided_cuda((16,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_26[grid(16)](buf78,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf80 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_26[grid(16)](buf80,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf77 = reinterpret_tensor(buf10, (4, 256, 16, 16), (65536, 256, 16,
1), 0)
del buf10
buf81 = buf77
del buf77
buf82 = buf81
del buf81
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27[
grid(262144)](buf82, buf73, buf74, buf71, buf70, primals_33,
buf72, buf75, buf78, buf80, 262144, XBLOCK=512, num_warps=8,
num_stages=1)
del primals_33
buf83 = extern_kernels.convolution(buf82, primals_34, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf83, (4, 128, 16, 16), (32768, 256, 16, 1))
buf84 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_28[grid(131072)](buf83,
primals_35, buf84, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
buf85 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1),
torch.float32)
triton_poi_fused_cat_29[grid(262144)](buf84, buf83, primals_35,
buf19, buf85, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del buf83
del primals_35
buf86 = extern_kernels.convolution(buf85, primals_36, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf86, (4, 128, 16, 16), (32768, 256, 16, 1))
buf87 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_28[grid(131072)](buf86,
primals_37, buf87, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
buf88 = empty_strided_cuda((32, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_30[grid(32)](buf88, 32, XBLOCK=32,
num_warps=1, num_stages=1)
buf89 = empty_strided_cuda((32, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_31[grid(32)](buf89, 32, XBLOCK=32,
num_warps=1, num_stages=1)
buf90 = empty_strided_cuda((32,), (1,), torch.int64)
triton_poi_fused__to_copy_30[grid(32)](buf90, 32, XBLOCK=32,
num_warps=1, num_stages=1)
buf91 = empty_strided_cuda((32,), (1,), torch.int64)
triton_poi_fused_add_clamp_31[grid(32)](buf91, 32, XBLOCK=32,
num_warps=1, num_stages=1)
buf94 = empty_strided_cuda((32,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_32[grid(32)](buf94,
32, XBLOCK=32, num_warps=1, num_stages=1)
buf96 = empty_strided_cuda((32, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_32[grid(32)](buf96,
32, XBLOCK=32, num_warps=1, num_stages=1)
buf93 = reinterpret_tensor(buf3, (4, 128, 32, 32), (131072, 1024,
32, 1), 0)
del buf3
buf97 = buf93
del buf93
buf98 = buf97
del buf97
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33[
grid(524288)](buf98, buf89, buf90, buf87, buf86, primals_37,
buf88, buf91, buf94, buf96, 524288, XBLOCK=512, num_warps=8,
num_stages=1)
del buf86
del primals_37
buf99 = extern_kernels.convolution(buf98, primals_38, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf99, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf100 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_34[grid(262144)](buf99,
primals_39, buf100, 262144, XBLOCK=1024, num_warps=4, num_stages=1)
buf101 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1),
torch.float32)
triton_poi_fused_cat_35[grid(524288)](buf100, buf99, primals_39,
buf12, buf101, 524288, XBLOCK=512, num_warps=8, num_stages=1)
del buf99
del primals_39
buf102 = extern_kernels.convolution(buf101, primals_40, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf102, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf103 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_34[grid(262144)](buf102,
primals_41, buf103, 262144, XBLOCK=1024, num_warps=4, num_stages=1)
buf104 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_36[grid(64)](buf104, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf105 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_37[grid(64)](buf105, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf106 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_36[grid(64)](buf106, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf107 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_37[grid(64)](buf107, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf110 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_38[grid(64)](buf110,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf112 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_38[grid(64)](buf112,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf109 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1),
torch.float32)
buf113 = buf109
del buf109
buf114 = buf113
del buf113
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39[
grid(1048576)](buf114, buf105, buf106, buf103, buf102,
primals_41, buf104, buf107, buf110, buf112, 1048576, XBLOCK=
1024, num_warps=4, num_stages=1)
del buf102
del primals_41
buf115 = extern_kernels.convolution(buf114, primals_42, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf115, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf116 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_40[grid(524288)](buf115,
primals_43, buf116, 524288, XBLOCK=512, num_warps=8, num_stages=1)
buf117 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_41[grid(1048576)](buf116, buf115, primals_43,
buf5, buf117, 1048576, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_43
buf118 = extern_kernels.convolution(buf117, primals_44, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf118, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf119 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
buf120 = buf115
del buf115
triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf118,
primals_45, buf119, buf120, 524288, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf118
del primals_45
buf121 = extern_kernels.convolution(buf120, primals_46, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf121, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf122 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.bool)
buf123 = reinterpret_tensor(buf70, (4, 4, 64, 64), (16384, 4096, 64,
1), 0)
del buf70
triton_poi_fused_convolution_leaky_relu_42[grid(65536)](buf121,
primals_47, buf122, buf123, 65536, XBLOCK=512, num_warps=4,
num_stages=1)
del buf121
del primals_47
return (buf123, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, primals_18,
primals_20, primals_22, primals_24, primals_26, primals_28,
primals_30, primals_32, primals_34, primals_36, primals_38,
primals_40, primals_42, primals_44, primals_46, buf1, buf2, buf4,
buf5, buf6, buf8, buf9, buf11, buf12, buf13, buf15, buf16, buf18,
buf19, buf20, buf22, buf23, buf25, buf26, buf27, buf29, buf30,
buf32, buf33, buf34, buf36, buf37, buf39, buf40, buf41, buf42,
buf43, buf46, buf48, buf50, buf52, buf53, buf55, buf56, buf57,
buf58, buf59, buf62, buf64, buf66, buf68, buf69, buf71, buf72,
buf73, buf74, buf75, buf78, buf80, buf82, buf84, buf85, buf87,
buf88, buf89, buf90, buf91, buf94, buf96, buf98, buf100, buf101,
buf103, buf104, buf105, buf106, buf107, buf110, buf112, buf114,
buf116, buf117, buf119, buf120, buf122)
class down(nn.Module):
"""
A class for creating neural network blocks containing layers:
Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU
This is used in the UNet Class to create a UNet like NN architecture.
...
Methods
-------
forward(x)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels, filterSize):
"""
Parameters
----------
inChannels : int
number of input channels for the first convolutional layer.
outChannels : int
number of output channels for the first convolutional layer.
This is also used as input and output channels for the
second convolutional layer.
filterSize : int
filter size for the convolution filter. input N would create
a N x N filter.
"""
super(down, self).__init__()
self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride=
1, padding=int((filterSize - 1) / 2))
self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride
=1, padding=int((filterSize - 1) / 2))
def forward(self, x):
"""
Returns output tensor after passing input `x` to the neural network
block.
Parameters
----------
x : tensor
input to the NN block.
Returns
-------
tensor
output of the NN block.
"""
x = F.avg_pool2d(x, 2)
x = F.leaky_relu(self.conv1(x), negative_slope=0.1)
x = F.leaky_relu(self.conv2(x), negative_slope=0.1)
return x
class up(nn.Module):
"""
A class for creating neural network blocks containing layers:
Bilinear interpolation --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU
This is used in the UNet Class to create a UNet like NN architecture.
...
Methods
-------
forward(x, skpCn)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels):
"""
Parameters
----------
inChannels : int
number of input channels for the first convolutional layer.
outChannels : int
number of output channels for the first convolutional layer.
This is also used for setting input and output channels for
the second convolutional layer.
"""
super(up, self).__init__()
self.conv1 = nn.Conv2d(inChannels, outChannels, 3, stride=1, padding=1)
self.conv2 = nn.Conv2d(2 * outChannels, outChannels, 3, stride=1,
padding=1)
def forward(self, x, skpCn):
"""
Returns output tensor after passing input `x` to the neural network
block.
Parameters
----------
x : tensor
input to the NN block.
skpCn : tensor
skip connection input to the NN block.
Returns
-------
tensor
output of the NN block.
"""
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners
=True)
x = F.leaky_relu(self.conv1(x), negative_slope=0.1)
x = F.leaky_relu(self.conv2(torch.cat((x, skpCn), 1)),
negative_slope=0.1)
return x
class UNetNew(nn.Module):
"""
A class for creating UNet like architecture as specified by the
Super SloMo paper.
...
Methods
-------
forward(x)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels):
"""
Parameters
----------
inChannels : int
number of input channels for the UNet.
outChannels : int
number of output channels for the UNet.
"""
super(UNetNew, self).__init__()
self.conv1 = nn.Conv2d(inChannels, 32, 7, stride=1, padding=3)
self.conv2 = nn.Conv2d(32, 32, 7, stride=1, padding=3)
self.down1 = down(32, 64, 5)
self.down2 = down(64, 128, 3)
self.down3 = down(128, 256, 3)
self.down4 = down(256, 512, 3)
self.down5 = down(512, 512, 3)
self.up1 = up(512, 512)
self.up2 = up(512, 256)
self.up3 = up(256, 128)
self.up4 = up(128, 64)
self.up5 = up(64, 32)
self.conv3 = nn.Conv2d(32, outChannels, 3, stride=1, padding=1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.down1.conv1.weight
primals_7 = self.down1.conv1.bias
primals_8 = self.down1.conv2.weight
primals_9 = self.down1.conv2.bias
primals_10 = self.down2.conv1.weight
primals_11 = self.down2.conv1.bias
primals_12 = self.down2.conv2.weight
primals_13 = self.down2.conv2.bias
primals_14 = self.down3.conv1.weight
primals_15 = self.down3.conv1.bias
primals_16 = self.down3.conv2.weight
primals_17 = self.down3.conv2.bias
primals_18 = self.down4.conv1.weight
primals_19 = self.down4.conv1.bias
primals_20 = self.down4.conv2.weight
primals_21 = self.down4.conv2.bias
primals_22 = self.down5.conv1.weight
primals_23 = self.down5.conv1.bias
primals_24 = self.down5.conv2.weight
primals_25 = self.down5.conv2.bias
primals_26 = self.up1.conv1.weight
primals_27 = self.up1.conv1.bias
primals_28 = self.up1.conv2.weight
primals_29 = self.up1.conv2.bias
primals_30 = self.up2.conv1.weight
primals_31 = self.up2.conv1.bias
primals_32 = self.up2.conv2.weight
primals_33 = self.up2.conv2.bias
primals_34 = self.up3.conv1.weight
primals_35 = self.up3.conv1.bias
primals_36 = self.up3.conv2.weight
primals_37 = self.up3.conv2.bias
primals_38 = self.up4.conv1.weight
primals_39 = self.up4.conv1.bias
primals_40 = self.up4.conv2.weight
primals_41 = self.up4.conv2.bias
primals_42 = self.up5.conv1.weight
primals_43 = self.up5.conv1.bias
primals_44 = self.up5.conv2.weight
primals_45 = self.up5.conv2.bias
primals_46 = self.conv3.weight
primals_47 = self.conv3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35, primals_36, primals_37, primals_38, primals_39,
primals_40, primals_41, primals_42, primals_43, primals_44,
primals_45, primals_46, primals_47])
return output[0]
|
guilindner/Super-SloMo
|
UNet
| false | 12,567 |
[
"MIT"
] | 0 |
251200f907581b31d41ccb1abeb7504e377cf4fb
|
https://github.com/guilindner/Super-SloMo/tree/251200f907581b31d41ccb1abeb7504e377cf4fb
|
SimpleCeilModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ga/cgacbgfdnfffemaen3ot3b3225mehdgkmdv6g4yho2qdlicpwwlu.py
# Topologically Sorted Source Nodes: [c, ceil], Original ATen: [aten.add, aten.ceil]
# Source node to ATen node mapping:
# c => add
# ceil => ceil
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %ceil : [num_users=1] = call_function[target=torch.ops.aten.ceil.default](args = (%add,), kwargs = {})
triton_poi_fused_add_ceil_0 = async_compile.triton('triton_poi_fused_add_ceil_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_ceil_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_ceil_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 + tmp1
tmp3 = libdevice.ceil(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [c, ceil], Original ATen: [aten.add, aten.ceil]
stream0 = get_raw_stream(0)
triton_poi_fused_add_ceil_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleCeilModule(torch.nn.Module):
def forward(self, a, b):
c = a + b
return torch.ceil(c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_ceil_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = libdevice.ceil(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_ceil_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleCeilModuleNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleCeilModule
| false | 12,568 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleAbsModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/f4/cf4pkmxbqyp3rqsgl3bdbzsxemrohluent2vyggztgix67lsa757.py
# Topologically Sorted Source Nodes: [add, abs_1], Original ATen: [aten.add, aten.abs]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%add,), kwargs = {})
triton_poi_fused_abs_add_0 = async_compile.triton('triton_poi_fused_abs_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.abs(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, abs_1], Original ATen: [aten.add, aten.abs]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleAbsModule(torch.nn.Module):
def __init__(self):
super(SimpleAbsModule, self).__init__()
def forward(self, a):
return torch.abs(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.abs(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleAbsModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleAbsModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleAbsModule
| false | 12,569 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleCumSumModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/3c/c3cpu3wz3bo3cso4qi4ii34iyrr3niuqsvkxdjr6hbwpvju6c4oe.py
# Topologically Sorted Source Nodes: [cumsum], Original ATen: [aten.cumsum]
# Source node to ATen node mapping:
# cumsum => cumsum
# Graph fragment:
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%arg0_1, 4), kwargs = {})
triton_per_fused_cumsum_0 = async_compile.triton('triton_per_fused_cumsum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[256, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cumsum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cumsum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0)
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + (4*x0)), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cumsum], Original ATen: [aten.cumsum]
stream0 = get_raw_stream(0)
triton_per_fused_cumsum_0.run(arg0_1, buf0, 256, 4, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleCumSumModule(torch.nn.Module):
def __init__(self, dim):
super(SimpleCumSumModule, self).__init__()
self.dim = dim
def forward(self, tensor):
return torch.cumsum(tensor, self.dim)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused_cumsum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl
.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0)
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + 4 * x0), tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_per_fused_cumsum_0[grid(256)](arg0_1, buf0, 256, 4, XBLOCK=
32, num_warps=2, num_stages=1)
del arg0_1
return buf0,
class SimpleCumSumModuleNew(torch.nn.Module):
def __init__(self, dim):
super(SimpleCumSumModuleNew, self).__init__()
self.dim = dim
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleCumSumModule
| false | 12,570 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleNotModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/cd/ccdsblr3257brbmhrvhdeqget7q2gbkwwz35ze4s55arhkureuea.py
# Topologically Sorted Source Nodes: [b, logical_not_1], Original ATen: [aten.logical_not]
# Source node to ATen node mapping:
# b => logical_not
# logical_not_1 => logical_not_1
# Graph fragment:
# %logical_not : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%arg0_1,), kwargs = {})
# %logical_not_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%logical_not,), kwargs = {})
triton_poi_fused_logical_not_0 = async_compile.triton('triton_poi_fused_logical_not_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_not_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_not_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp2 = tmp1 == 0
tmp3 = tmp2 == 0
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [b, logical_not_1], Original ATen: [aten.logical_not]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_not_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleNotModule(torch.nn.Module):
def __init__(self):
super(SimpleNotModule, self).__init__()
def forward(self, a):
b = torch.logical_not(a)
return torch.logical_not(b)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_not_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 != 0
tmp2 = tmp1 == 0
tmp3 = tmp2 == 0
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_not_0[grid(256)](arg0_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleNotModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleNotModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleNotModule
| false | 12,571 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleFloorModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/j6/cj6yrxveidc7xf7aw2sd5chrhx3pw3r5egsdoorepnl2ey2ejho7.py
# Topologically Sorted Source Nodes: [c, floor], Original ATen: [aten.add, aten.floor]
# Source node to ATen node mapping:
# c => add
# floor => floor
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%add,), kwargs = {})
triton_poi_fused_add_floor_0 = async_compile.triton('triton_poi_fused_add_floor_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_floor_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_floor_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 + tmp1
tmp3 = libdevice.floor(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [c, floor], Original ATen: [aten.add, aten.floor]
stream0 = get_raw_stream(0)
triton_poi_fused_add_floor_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleFloorModule(torch.nn.Module):
def forward(self, a, b):
c = a + b
return torch.floor(c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_floor_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = libdevice.floor(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_floor_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleFloorModuleNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleFloorModule
| false | 12,572 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
Foo
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/qp/cqp7ueqlgbxahbgap5at7kbdkd7h2xxgbchrupcpkji4bdn4nejg.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 92256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3844) % 6
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/rv/crvxf6xnscpjmln6astlfsozus7rnqpbhexgiojxcqezrzslczlf.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# y => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3600) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (6, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (6, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (16, 6, 3, 3), (54, 9, 3, 1))
assert_size_stride(primals_5, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 62, 62), (23064, 3844, 62, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 92256, grid=grid(92256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 60, 60), (57600, 3600, 60, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 230400, grid=grid(230400), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((6, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 6, 3, 3), (54, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class Foo(torch.nn.Module):
def __init__(self):
super(Foo, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 6, 3)
self.relu = torch.nn.ReLU()
self.conv2 = torch.nn.Conv2d(6, 16, 3)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
y = self.conv2(x)
return y
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 92256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3844 % 6
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3600 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (6, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (6,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (16, 6, 3, 3), (54, 9, 3, 1))
assert_size_stride(primals_5, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 62, 62), (23064, 3844, 62, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(92256)](buf1, primals_2,
92256, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 60, 60), (57600, 3600, 60, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(230400)](buf3, primals_5,
230400, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1
class FooNew(torch.nn.Module):
def __init__(self):
super(FooNew, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 6, 3)
self.relu = torch.nn.ReLU()
self.conv2 = torch.nn.Conv2d(6, 16, 3)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
briancoutinho/glow
|
Foo
| false | 12,573 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleGeluModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/cz/cczz2aaz3xffbl7w5gnijw32l5h4gkl36ofwyvf646samygcfe5i.py
# Topologically Sorted Source Nodes: [add, gelu], Original ATen: [aten.add, aten.gelu]
# Source node to ATen node mapping:
# add => add
# gelu => add_1, erf, mul, mul_1, mul_2
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {})
triton_poi_fused_add_gelu_0 = async_compile.triton('triton_poi_fused_add_gelu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_gelu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = 0.7071067811865476
tmp5 = tmp1 * tmp4
tmp6 = libdevice.erf(tmp5)
tmp7 = 1.0
tmp8 = tmp6 + tmp7
tmp9 = tmp3 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, gelu], Original ATen: [aten.add, aten.gelu]
stream0 = get_raw_stream(0)
triton_poi_fused_add_gelu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleGeluModule(torch.nn.Module):
def forward(self, tensor):
return F.gelu(tensor + tensor)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = 0.7071067811865476
tmp5 = tmp1 * tmp4
tmp6 = libdevice.erf(tmp5)
tmp7 = 1.0
tmp8 = tmp6 + tmp7
tmp9 = tmp3 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_gelu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleGeluModuleNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleGeluModule
| false | 12,574 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleReciprocalModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/mb/cmb22rikzfzsbog4swdz4yuwqyxobyyc7jycz5a5bbxu4fvunisq.py
# Topologically Sorted Source Nodes: [other, reciprocal], Original ATen: [aten.add, aten.reciprocal]
# Source node to ATen node mapping:
# other => add
# reciprocal => reciprocal
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {})
triton_poi_fused_add_reciprocal_0 = async_compile.triton('triton_poi_fused_add_reciprocal_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_reciprocal_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl.full([1], 1, tl.int32)
tmp3 = tmp2 / tmp1
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, reciprocal], Original ATen: [aten.add, aten.reciprocal]
stream0 = get_raw_stream(0)
triton_poi_fused_add_reciprocal_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleReciprocalModel(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReciprocalModel, self).__init__()
self.inplace = inplace
def forward(self, tensor):
other = tensor + tensor
return other.reciprocal_() if self.inplace else torch.reciprocal(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl.full([1], 1, tl.int32)
tmp3 = tmp2 / tmp1
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_reciprocal_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleReciprocalModelNew(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReciprocalModelNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleReciprocalModel
| false | 12,575 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleLogSoftmaxModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/xe/cxeq77gbpevhf6jov7fs3c25pvswzi43xn2bxfthg2nvsuurswra.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [4], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/nj/cnjj3kjcokm5rrbv6azeg2i2dkelsepqzurxngdhwjbc5vp6wfpj.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [4], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleLogSoftmaxModel(torch.nn.Module):
def __init__(self, dimension):
super(SimpleLogSoftmaxModel, self).__init__()
self.dimension = dimension
def forward(self, tensor):
return F.log_softmax(tensor, self.dimension)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dimension': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(1024)](arg0_1, buf0, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused__log_softmax_1[grid(1024)](buf0, buf1, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del buf0
return buf1,
class SimpleLogSoftmaxModelNew(torch.nn.Module):
def __init__(self, dimension):
super(SimpleLogSoftmaxModelNew, self).__init__()
self.dimension = dimension
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleLogSoftmaxModel
| false | 12,576 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleMatmulModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ng/cnggtmai2hzxc7e5creviqseyyf7qiy5pfpdjlp2pomqsserjuzj.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %arg1_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out=buf1)
del arg0_1
del buf0
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMatmulModule(torch.nn.Module):
def __init__(self):
super(SimpleMatmulModule, self).__init__()
def forward(self, a, b):
return a.matmul(b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg1_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1
), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out
=buf1)
del arg0_1
del buf0
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0),
class SimpleMatmulModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMatmulModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleMatmulModule
| false | 12,577 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleMaxModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/6l/c6lid7didg6rn4ppoifz2te7odbgr6ljaae2lzzsff3c2lylgtyg.py
# Topologically Sorted Source Nodes: [add, add_1, max_1], Original ATen: [aten.add, aten.maximum]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# max_1 => maximum
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %arg1_1), kwargs = {})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%add, %add_1), kwargs = {})
triton_poi_fused_add_maximum_0 = async_compile.triton('triton_poi_fused_add_maximum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_maximum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.maximum(tmp1, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, max_1], Original ATen: [aten.add, aten.maximum]
stream0 = get_raw_stream(0)
triton_poi_fused_add_maximum_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMaxModule(torch.nn.Module):
def __init__(self):
super(SimpleMaxModule, self).__init__()
def forward(self, a, b):
return torch.max(a + a, b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_maximum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.maximum(tmp1, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_maximum_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleMaxModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMaxModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleMaxModule
| false | 12,578 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleReluModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ll/cll4cjpzu6vsmy2t6yfmvdki2efgptzlcycbgoibjk65mj7ireqn.py
# Topologically Sorted Source Nodes: [other, relu_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# other => relu
# relu_1 => relu_1
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%relu,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, relu_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleReluModel(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReluModel, self).__init__()
self.inplace = inplace
def forward(self, tensor):
other = F.relu(tensor, inplace=self.inplace)
return F.relu(other, inplace=self.inplace)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleReluModelNew(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReluModelNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleReluModel
| false | 12,579 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleLinearModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ph/cphyvqksaznjc5f5gstivhj5vszkuncctuzvaegazln3taw555sz.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, linear], Original ATen: [aten.add, aten.mm]
extern_kernels.mm(buf0, reinterpret_tensor(arg1_1, (4, 4), (1, 4), 0), out=buf1)
del arg1_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleLinearModule(torch.nn.Module):
def __init__(self):
super(SimpleLinearModule, self).__init__()
def forward(self, input, weight, bias=None):
return F.linear(input + input, weight, bias)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(arg1_1, (4, 4), (1, 4),
0), out=buf1)
del arg1_1
del buf0
return buf1,
class SimpleLinearModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleLinearModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleLinearModule
| false | 12,580 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleFmodModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/iu/ciuedv4oj5epb6bq36sca4tmg3x777o3yghi7exu4n6otp7lp34w.py
# Topologically Sorted Source Nodes: [c, fmod_1], Original ATen: [aten.fmod]
# Source node to ATen node mapping:
# c => fmod
# fmod_1 => fmod_1
# Graph fragment:
# %fmod : [num_users=1] = call_function[target=torch.ops.aten.fmod.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %fmod_1 : [num_users=1] = call_function[target=torch.ops.aten.fmod.Scalar](args = (%fmod, 1.0), kwargs = {})
triton_poi_fused_fmod_0 = async_compile.triton('triton_poi_fused_fmod_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fmod_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_fmod_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = libdevice.fmod(tmp0, tmp1)
tmp3 = 1.0
tmp4 = libdevice.fmod(tmp2, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [c, fmod_1], Original ATen: [aten.fmod]
stream0 = get_raw_stream(0)
triton_poi_fused_fmod_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleFmodModule(torch.nn.Module):
def __init__(self):
super(SimpleFmodModule, self).__init__()
def forward(self, a, b):
if b.size() == torch.Size([]):
c = a.fmod(b.item())
else:
c = a.fmod(b)
return c.fmod(1.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_fmod_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = libdevice.fmod(tmp0, tmp1)
tmp3 = 1.0
tmp4 = libdevice.fmod(tmp2, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_fmod_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleFmodModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleFmodModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleFmodModule
| false | 12,581 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleMinModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/is/cisvhtrbgx7geszywb4tws4xgixibtohmtf6243rcq7k7rvlgexs.py
# Topologically Sorted Source Nodes: [add, add_1, min_1], Original ATen: [aten.add, aten.minimum]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# min_1 => minimum
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %arg1_1), kwargs = {})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%add, %add_1), kwargs = {})
triton_poi_fused_add_minimum_0 = async_compile.triton('triton_poi_fused_add_minimum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_minimum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_minimum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.minimum(tmp1, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, min_1], Original ATen: [aten.add, aten.minimum]
stream0 = get_raw_stream(0)
triton_poi_fused_add_minimum_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMinModule(torch.nn.Module):
def __init__(self):
super(SimpleMinModule, self).__init__()
def forward(self, a, b):
return torch.min(a + a, b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_minimum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.minimum(tmp1, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_minimum_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleMinModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMinModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleMinModule
| false | 12,582 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleReshapeModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/2j/c2ju6nxawlrauguem6bximg5swv34phnnk2hdvtnx2xovvh5goee.py
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.add]
# Source node to ATen node mapping:
# combined => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 4, grid=grid(4), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleReshapeModel(torch.nn.Module):
def __init__(self, shape):
super(SimpleReshapeModel, self).__init__()
self.shape = shape
def forward(self, tensor):
combined = tensor + tensor
return combined.reshape(self.shape)
def get_inputs():
return [torch.rand([4])]
def get_init_inputs():
return [[], {'shape': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(4)](arg0_1, buf0, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class SimpleReshapeModelNew(torch.nn.Module):
def __init__(self, shape):
super(SimpleReshapeModelNew, self).__init__()
self.shape = shape
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleReshapeModel
| false | 12,583 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleOrModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/el/cel6bpplfk6uwqmcfj3bzthez5xrkrefn3chlle2rnmbe23xgscv.py
# Topologically Sorted Source Nodes: [c, logical_or_1], Original ATen: [aten.logical_or]
# Source node to ATen node mapping:
# c => logical_or
# logical_or_1 => logical_or_1
# Graph fragment:
# %logical_or : [num_users=1] = call_function[target=torch.ops.aten.logical_or.default](args = (%arg1_1, %arg0_1), kwargs = {})
# %logical_or_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_or.default](args = (%logical_or, %logical_or), kwargs = {})
triton_poi_fused_logical_or_0 = async_compile.triton('triton_poi_fused_logical_or_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_or_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_or_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp3 = (tmp2 != 0)
tmp4 = tmp1 | tmp3
tmp5 = tmp4 | tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [c, logical_or_1], Original ATen: [aten.logical_or]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_or_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleOrModule(torch.nn.Module):
def __init__(self):
super(SimpleOrModule, self).__init__()
def forward(self, a, b):
c = torch.logical_or(a, b)
return torch.logical_or(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_or_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp3 = tmp2 != 0
tmp4 = tmp1 | tmp3
tmp5 = tmp4 | tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_or_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleOrModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleOrModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleOrModule
| false | 12,584 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimplePowModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/th/cthfcnqcrhqllimklewhtwlw3kynsejtajhc7eunrob3gyhbmsze.py
# Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow]
# Source node to ATen node mapping:
# pow_1 => pow_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_pow_0 = async_compile.triton('triton_poi_fused_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 * tmp0
tmp2 = tmp1 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow]
stream0 = get_raw_stream(0)
triton_poi_fused_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimplePowModule(torch.nn.Module):
def __init__(self, power):
super(SimplePowModule, self).__init__()
self.power = power
def forward(self, tensor):
return torch.pow(tensor, self.power)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'power': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 * tmp0
tmp2 = tmp1 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimplePowModuleNew(torch.nn.Module):
def __init__(self, power):
super(SimplePowModuleNew, self).__init__()
self.power = power
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimplePowModule
| false | 12,585 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleLogModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/xc/cxcdfiik5xgk7a7m5pmyyveyug5a3vuczvqoixbtd5nchlbaz5qr.py
# Topologically Sorted Source Nodes: [b, log_1], Original ATen: [aten.log]
# Source node to ATen node mapping:
# b => log
# log_1 => log_1
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%log,), kwargs = {})
triton_poi_fused_log_0 = async_compile.triton('triton_poi_fused_log_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_log_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_log_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.log(tmp0)
tmp2 = tl_math.log(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [b, log_1], Original ATen: [aten.log]
stream0 = get_raw_stream(0)
triton_poi_fused_log_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleLogModule(torch.nn.Module):
def __init__(self, *dimensions):
super(SimpleLogModule, self).__init__()
def forward(self, a):
b = torch.log(a)
return torch.log(b)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_log_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.log(tmp0)
tmp2 = tl_math.log(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_log_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleLogModuleNew(torch.nn.Module):
def __init__(self, *dimensions):
super(SimpleLogModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleLogModule
| false | 12,586 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleXorModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/2t/c2t7awkb47lv4n57sfx4u7jomyzx3q7qvtzhxrgvtwk3vcwxkfhp.py
# Topologically Sorted Source Nodes: [c, logical_xor_1], Original ATen: [aten.logical_xor]
# Source node to ATen node mapping:
# c => logical_xor
# logical_xor_1 => logical_xor_1
# Graph fragment:
# %logical_xor : [num_users=1] = call_function[target=torch.ops.aten.logical_xor.default](args = (%arg1_1, %arg0_1), kwargs = {})
# %logical_xor_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_xor.default](args = (%logical_xor, %logical_xor), kwargs = {})
triton_poi_fused_logical_xor_0 = async_compile.triton('triton_poi_fused_logical_xor_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_xor_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_xor_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp3 = (tmp2 != 0)
tmp4 = (tmp1 ^ tmp3)
tmp5 = (tmp4 ^ tmp4)
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [c, logical_xor_1], Original ATen: [aten.logical_xor]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_xor_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleXorModule(torch.nn.Module):
def __init__(self):
super(SimpleXorModule, self).__init__()
def forward(self, a, b):
c = torch.logical_xor(a, b)
return torch.logical_xor(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_xor_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp3 = tmp2 != 0
tmp4 = tmp1 ^ tmp3
tmp5 = tmp4 ^ tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_xor_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleXorModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleXorModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleXorModule
| false | 12,587 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleMulModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/us/cusp54q34go4owlw52vntqwnfud2kj3mzyijjppr27wa7benuz7r.py
# Topologically Sorted Source Nodes: [other, mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# other => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %mul), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMulModule(torch.nn.Module):
def __init__(self):
super(SimpleMulModule, self).__init__()
def forward(self, left, right):
other = left.mul(right.item() if right.size() == torch.Size([]) else
right)
return other.mul(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleMulModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMulModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleMulModule
| false | 12,588 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleSinModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/um/cumfo6xlwcf7gajmq7aavjn4b3q6favglcetyv2n73qurfxutgrk.py
# Topologically Sorted Source Nodes: [add, sin], Original ATen: [aten.add, aten.sin]
# Source node to ATen node mapping:
# add => add
# sin => sin
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%add,), kwargs = {})
triton_poi_fused_add_sin_0 = async_compile.triton('triton_poi_fused_add_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.sin(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, sin], Original ATen: [aten.add, aten.sin]
stream0 = get_raw_stream(0)
triton_poi_fused_add_sin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleSinModule(torch.nn.Module):
def __init__(self):
super(SimpleSinModule, self).__init__()
def forward(self, a):
return torch.sin(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.sin(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_sin_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleSinModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleSinModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleSinModule
| false | 12,589 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleStackModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/r2/cr2ft4qgpkoihvmquzfvb2qj2z7n5lsy5sfodvtjb5ijcg3hxzff.py
# Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# stack => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1], 4), kwargs = {})
triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x1), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tmp9 + tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp6, tmp10, tmp11)
tmp13 = tl.where(tmp4, tmp5, tmp12)
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack]
stream0 = get_raw_stream(0)
triton_poi_fused_stack_0.run(arg1_1, arg0_1, buf0, 512, grid=grid(512), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleStackModel(torch.nn.Module):
def __init__(self, dim):
super(SimpleStackModel, self).__init__()
self.dim = dim
def forward(self, a, b):
c = b + b
return torch.stack((a, c), dim=self.dim)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_stack_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp9 = tl.load(in_ptr1 + x1, tmp6 & xmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tmp9 + tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp6, tmp10, tmp11)
tmp13 = tl.where(tmp4, tmp5, tmp12)
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_stack_0[grid(512)](arg1_1, arg0_1, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleStackModelNew(torch.nn.Module):
def __init__(self, dim):
super(SimpleStackModelNew, self).__init__()
self.dim = dim
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
briancoutinho/glow
|
SimpleStackModel
| false | 12,590 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleSoftmaxModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ef/cef5jl2dffibrzdgvry2syqh3nv4y45hqkgzbp7rs7to3eijjxsa.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [4], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/wx/cwx2kruo4gzyioj66hb76yw4vgc4lxjk7wwvv5hwx3fp7vkj4o6n.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [4], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleSoftmaxModel(torch.nn.Module):
def __init__(self, dimension):
super(SimpleSoftmaxModel, self).__init__()
self.dimension = dimension
def forward(self, tensor):
return F.softmax(tensor, self.dimension)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dimension': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused__softmax_1[grid(1024)](buf0, buf1, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del buf0
return buf1,
class SimpleSoftmaxModelNew(torch.nn.Module):
def __init__(self, dimension):
super(SimpleSoftmaxModelNew, self).__init__()
self.dimension = dimension
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleSoftmaxModel
| false | 12,591 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
AffineTransform
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/74/c74yuox45avk3dyefqdkvkdygfzym6suwnjtqzkgr6lapmzwsqve.py
# Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_3
return (buf0, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class AffineTransform(nn.Module):
def __init__(self, num_features):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, 1, num_features))
self.beta = nn.Parameter(torch.zeros(1, 1, num_features))
def forward(self, x):
return self.alpha * x + self.beta
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(256)](primals_1, primals_2,
primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_3
return buf0, primals_2
class AffineTransformNew(nn.Module):
def __init__(self, num_features):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, 1, num_features))
self.beta = nn.Parameter(torch.zeros(1, 1, num_features))
def forward(self, input_0):
primals_1 = self.alpha
primals_3 = self.beta
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
jaketae/res-mlp
|
AffineTransform
| false | 12,592 |
[
"MIT"
] | 0 |
6c957e4fe67a2f13d9b4fd3fa36b7eddcf5323fd
|
https://github.com/jaketae/res-mlp/tree/6c957e4fe67a2f13d9b4fd3fa36b7eddcf5323fd
|
SimpleSumModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/rt/crtaa7jk7byqntpikbqibiqclpj3ph3k3g4gm3y22pcpf5wsrsn3.py
# Topologically Sorted Source Nodes: [b, sum_1], Original ATen: [aten.add, aten.sum]
# Source node to ATen node mapping:
# b => add
# sum_1 => sum_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add,), kwargs = {})
triton_per_fused_add_sum_0 = async_compile.triton('triton_per_fused_add_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_sum_0(in_ptr0, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tmp0 + tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [b, sum_1], Original ATen: [aten.add, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_add_sum_0.run(arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleSumModule(torch.nn.Module):
def __init__(self, dtype=None):
super(SimpleSumModule, self).__init__()
self.dtype = dtype
def forward(self, a):
b = a + a
return torch.sum(b, dtype=self.dtype)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_sum_0(in_ptr0, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tmp0 + tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp4, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_sum_0[grid(1)](arg0_1, buf0, 1, 256, num_warps
=2, num_stages=1)
del arg0_1
return buf0,
class SimpleSumModuleNew(torch.nn.Module):
def __init__(self, dtype=None):
super(SimpleSumModuleNew, self).__init__()
self.dtype = dtype
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleSumModule
| false | 12,593 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleTanhModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/bv/cbvw7afmr2daqq3xv6rtsmbu5jcnt46e5lw3xedxgr4bybwozsyg.py
# Topologically Sorted Source Nodes: [tensor, tanh], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# tensor => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.tanh(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tensor, tanh], Original ATen: [aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleTanhModel(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleTanhModel, self).__init__()
self.inplace = inplace
def forward(self, tensor):
tensor = tensor + tensor
return tensor.tanh_() if self.inplace else tensor.tanh()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.tanh(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleTanhModelNew(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleTanhModelNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleTanhModel
| false | 12,594 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
SimpleTypeasModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/oo/coo6fior4gtmedodyysb4cm6xgshrmes4qlz3fctq5hnz2fimegz.py
# Topologically Sorted Source Nodes: [tensor, add_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_1 => add_1
# tensor => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %add), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tmp1 + tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tensor, add_1], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleTypeasModel(torch.nn.Module):
def __init__(self):
super(SimpleTypeasModel, self).__init__()
def forward(self, tensor, other=None):
other = tensor if other is None else other
if tensor.dtype != torch.bool:
tensor = tensor + tensor
typed = tensor.type_as(other)
return typed + typed
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tmp1 + tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleTypeasModelNew(torch.nn.Module):
def __init__(self):
super(SimpleTypeasModelNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
briancoutinho/glow
|
SimpleTypeasModel
| false | 12,595 |
[
"Apache-2.0"
] | 0 |
4c919d60b3c33296c4109aec8020a1733c98f5b5
|
https://github.com/briancoutinho/glow/tree/4c919d60b3c33296c4109aec8020a1733c98f5b5
|
AddAndNorm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/gi/cgi45knaonkz7f2ymhhwdszxotrkx3bl6ehavmfo5zp3bzzio3zk.py
# Topologically Sorted Source Nodes: [add, layer_norm], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add => add
# layer_norm => var_mean
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_0 = async_compile.triton('triton_poi_fused_add_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/nh/cnhbjzi35eshrjhk7tjj644pcpxhgyi7ajxmdjzgjtdqbnbek7qt.py
# Topologically Sorted Source Nodes: [add, layer_norm], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add => add
# layer_norm => add_1, add_2, mul, mul_1, rsqrt, sub
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_4), kwargs = {})
triton_poi_fused_add_native_layer_norm_1 = async_compile.triton('triton_poi_fused_add_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp9, xmask)
tl.store(out_ptr1 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [add, layer_norm], Original ATen: [aten.add, aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_add_native_layer_norm_0.run(primals_2, primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, layer_norm], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_1.run(primals_2, primals_1, buf0, buf1, primals_3, primals_4, buf2, buf3, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
del primals_1
del primals_2
del primals_3
del primals_4
return (buf3, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class AddAndNorm(nn.Module):
def __init__(self, d_model, p_drop):
super(AddAndNorm, self).__init__()
self.layer_norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(p_drop)
def forward(self, inputs, x):
return self.layer_norm(inputs + self.dropout(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'p_drop': 0.5}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_native_layer_norm_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp9, xmask)
tl.store(out_ptr1 + x2, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_native_layer_norm_0[grid(64)](primals_2,
primals_1, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_1[grid(256)](primals_2,
primals_1, buf0, buf1, primals_3, primals_4, buf2, buf3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del buf1
del primals_1
del primals_2
del primals_3
del primals_4
return buf3, buf2
class AddAndNormNew(nn.Module):
def __init__(self, d_model, p_drop):
super(AddAndNormNew, self).__init__()
self.layer_norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(p_drop)
def forward(self, input_0, input_1):
primals_3 = self.layer_norm.weight
primals_4 = self.layer_norm.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
jaehyek/attention-is-all-you-need
|
AddAndNorm
| false | 12,596 |
[
"MIT"
] | 0 |
9b421f7c98414aeb9f397c5195e3a6a9080a4669
|
https://github.com/jaehyek/attention-is-all-you-need/tree/9b421f7c98414aeb9f397c5195e3a6a9080a4669
|
ResMLPLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/uk/cuk35autjzo2qplqvsmz7vwqr5uupb2zjg5klder2mhg3wlu3hsr.py
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# linear => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/37/c37qykiajtrekb3dbqmbdu7g2eoz5wt5ootv72uckq376ect45br.py
# Topologically Sorted Source Nodes: [mul, x, mul_1, x_2, out], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# out => add_3
# x => add
# x_2 => add_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_6, %permute_2), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_7), kwargs = {})
# %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add), kwargs = {})
triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = xindex
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x4), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr5 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tmp10 = tl.load(in_ptr6 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 * tmp3
tmp6 = tmp4 + tmp5
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tmp12 = tmp6 + tmp11
tl.store(out_ptr0 + (x4), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/z5/cz5ftw3jjdcl7kf3rjnx3ukf3ssp6cwhcagtkza76pvoehzvmo6f.py
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.add, aten.gelu]
# Source node to ATen node mapping:
# x_4 => add_5
# x_5 => add_6, erf, mul_3, mul_4, mul_5
# Graph fragment:
# %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_11), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_4,), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %add_6), kwargs = {})
triton_poi_fused_add_gelu_2 = async_compile.triton('triton_poi_fused_add_gelu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_gelu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_gelu_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = 0.7071067811865476
tmp6 = tmp2 * tmp5
tmp7 = libdevice.erf(tmp6)
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ot/cot4aiklxwtlsyuwrgqsvqh6tsngy2xjvcrzl7x6alvbldmdmo6d.py
# Topologically Sorted Source Nodes: [mul_2, x_3, mul_3, x_7, out_1], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul_2 => mul_2
# mul_3 => mul_6
# out_1 => add_8
# x_3 => add_4
# x_7 => add_7
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_8, %add_3), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_9), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_14, %view_5), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_6, %primals_15), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %add_4), kwargs = {})
triton_poi_fused_add_mul_3 = async_compile.triton('triton_poi_fused_add_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = xindex
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x4), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tmp8 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp7 = tmp5 * tmp6
tmp9 = tmp7 + tmp8
tmp10 = tmp4 + tmp9
tl.store(out_ptr0 + (x4), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_7, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_8, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_9, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_10, (16, 4), (4, 1))
assert_size_stride(primals_11, (16, ), (1, ))
assert_size_stride(primals_12, (4, 16), (16, 1))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_15, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, x, mul_1, x_2, out], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_1.run(primals_6, buf1, primals_5, primals_7, primals_1, primals_2, primals_3, buf2, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_3
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, x_3, x_4], Original ATen: [aten.mul, aten.add, aten.clone]
triton_poi_fused_clone_0.run(primals_8, buf2, primals_9, buf3, 256, grid=grid(256), stream=stream0)
buf4 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 16), (1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.add, aten.gelu]
triton_poi_fused_add_gelu_2.run(buf4, primals_11, buf5, 1024, grid=grid(1024), stream=stream0)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_13, reinterpret_tensor(buf5, (64, 16), (16, 1), 0), reinterpret_tensor(primals_12, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf6)
del primals_13
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, x_3, mul_3, x_7, out_1], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_3.run(primals_14, buf6, primals_15, primals_8, buf2, primals_9, buf7, 256, grid=grid(256), stream=stream0)
del primals_15
del primals_9
return (buf7, primals_2, primals_5, primals_6, primals_8, primals_11, primals_14, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, buf2, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf5, (64, 16), (16, 1), 0), buf6, primals_12, primals_10, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import functional as F
class AffineTransform(nn.Module):
def __init__(self, num_features):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, 1, num_features))
self.beta = nn.Parameter(torch.zeros(1, 1, num_features))
def forward(self, x):
return self.alpha * x + self.beta
class CommunicationLayer(nn.Module):
def __init__(self, num_features, num_patches):
super().__init__()
self.aff1 = AffineTransform(num_features)
self.fc1 = nn.Linear(num_patches, num_patches)
self.aff2 = AffineTransform(num_features)
def forward(self, x):
x = self.aff1(x)
residual = x
x = self.fc1(x.transpose(1, 2)).transpose(1, 2)
x = self.aff2(x)
out = x + residual
return out
class FeedForward(nn.Module):
def __init__(self, num_features, expansion_factor):
super().__init__()
num_hidden = num_features * expansion_factor
self.aff1 = AffineTransform(num_features)
self.fc1 = nn.Linear(num_features, num_hidden)
self.fc2 = nn.Linear(num_hidden, num_features)
self.aff2 = AffineTransform(num_features)
def forward(self, x):
x = self.aff1(x)
residual = x
x = self.fc1(x)
x = F.gelu(x)
x = self.fc2(x)
x = self.aff2(x)
out = x + residual
return out
class ResMLPLayer(nn.Module):
def __init__(self, num_features, num_patches, expansion_factor):
super().__init__()
self.cl = CommunicationLayer(num_features, num_patches)
self.ff = FeedForward(num_features, expansion_factor)
def forward(self, x):
x = self.cl(x)
out = self.ff(x)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4, 'num_patches': 4, 'expansion_factor': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = xindex
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x4, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr5 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tmp10 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 * tmp3
tmp6 = tmp4 + tmp5
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tmp12 = tmp6 + tmp11
tl.store(out_ptr0 + x4, tmp12, xmask)
@triton.jit
def triton_poi_fused_add_gelu_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = 0.7071067811865476
tmp6 = tmp2 * tmp5
tmp7 = libdevice.erf(tmp6)
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = xindex
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x4, xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tmp8 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp7 = tmp5 * tmp6
tmp9 = tmp7 + tmp8
tmp10 = tmp4 + tmp9
tl.store(out_ptr0 + x4, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_7, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_8, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_9, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_10, (16, 4), (4, 1))
assert_size_stride(primals_11, (16,), (1,))
assert_size_stride(primals_12, (4, 16), (16, 1))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_15, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](primals_1, primals_2, primals_3,
buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 4, 16, 1), torch.float32)
triton_poi_fused_add_mul_1[grid(256)](primals_6, buf1, primals_5,
primals_7, primals_1, primals_2, primals_3, buf2, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_1
del primals_3
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_0[grid(256)](primals_8, buf2, primals_9,
buf3, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_10, (4, 16), (1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.
float32)
triton_poi_fused_add_gelu_2[grid(1024)](buf4, primals_11, buf5,
1024, XBLOCK=128, num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_13, reinterpret_tensor(buf5, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_12, (16, 4), (1, 16), 0
), alpha=1, beta=1, out=buf6)
del primals_13
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_3[grid(256)](primals_14, buf6, primals_15,
primals_8, buf2, primals_9, buf7, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_15
del primals_9
return (buf7, primals_2, primals_5, primals_6, primals_8, primals_11,
primals_14, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1,
buf2, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf4,
reinterpret_tensor(buf5, (64, 16), (16, 1), 0), buf6, primals_12,
primals_10, primals_4)
class AffineTransform(nn.Module):
def __init__(self, num_features):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, 1, num_features))
self.beta = nn.Parameter(torch.zeros(1, 1, num_features))
def forward(self, x):
return self.alpha * x + self.beta
class CommunicationLayer(nn.Module):
def __init__(self, num_features, num_patches):
super().__init__()
self.aff1 = AffineTransform(num_features)
self.fc1 = nn.Linear(num_patches, num_patches)
self.aff2 = AffineTransform(num_features)
def forward(self, x):
x = self.aff1(x)
residual = x
x = self.fc1(x.transpose(1, 2)).transpose(1, 2)
x = self.aff2(x)
out = x + residual
return out
class FeedForward(nn.Module):
def __init__(self, num_features, expansion_factor):
super().__init__()
num_hidden = num_features * expansion_factor
self.aff1 = AffineTransform(num_features)
self.fc1 = nn.Linear(num_features, num_hidden)
self.fc2 = nn.Linear(num_hidden, num_features)
self.aff2 = AffineTransform(num_features)
def forward(self, x):
x = self.aff1(x)
residual = x
x = self.fc1(x)
x = F.gelu(x)
x = self.fc2(x)
x = self.aff2(x)
out = x + residual
return out
class ResMLPLayerNew(nn.Module):
def __init__(self, num_features, num_patches, expansion_factor):
super().__init__()
self.cl = CommunicationLayer(num_features, num_patches)
self.ff = FeedForward(num_features, expansion_factor)
def forward(self, input_0):
primals_1 = self.cl.aff1.alpha
primals_3 = self.cl.aff1.beta
primals_4 = self.cl.fc1.weight
primals_5 = self.cl.fc1.bias
primals_6 = self.cl.aff2.alpha
primals_7 = self.cl.aff2.beta
primals_8 = self.ff.aff1.alpha
primals_9 = self.ff.aff1.beta
primals_10 = self.ff.fc1.weight
primals_11 = self.ff.fc1.bias
primals_12 = self.ff.fc2.weight
primals_13 = self.ff.fc2.bias
primals_14 = self.ff.aff2.alpha
primals_15 = self.ff.aff2.beta
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0]
|
jaketae/res-mlp
|
ResMLPLayer
| false | 12,597 |
[
"MIT"
] | 0 |
6c957e4fe67a2f13d9b4fd3fa36b7eddcf5323fd
|
https://github.com/jaketae/res-mlp/tree/6c957e4fe67a2f13d9b4fd3fa36b7eddcf5323fd
|
TSAFusion
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/g4/cg4ol27qewbsblsqindyqcoqjbv3ocrgpr3ueqortiqfpei53c5z.py
# Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# clone => clone
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 1024
x1 = (xindex // 1024)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2048 + x0 + (5120*x1)), None)
tl.store(out_ptr0 + (x2), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vl/cvlmoerlrbmnehdmef3bbge55w43r7yeghhzhrdh2czvthybjclb.py
# Topologically Sorted Source Nodes: [embedding_ref], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# embedding_ref => convolution
# Graph fragment:
# %convolution : [num_users=6] = call_function[target=torch.ops.aten.convolution.default](args = (%clone, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/in/cinfzueyyyniakvywqmnsv3rq6nal3xyzxhsxtrblzrtqg3xc4w6.py
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# embedding => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6g/c6g5w2xfkgqh3jcdcbb55u57ppgqo3xomq7ralymlbohawjrlbf7.py
# Topologically Sorted Source Nodes: [mul, corr, mul_1, corr_1, mul_2, corr_2, mul_3, corr_3, mul_4, corr_4, cat], Original ATen: [aten.mul, aten.sum, aten.cat]
# Source node to ATen node mapping:
# cat => cat
# corr => sum_1
# corr_1 => sum_2
# corr_2 => sum_3
# corr_3 => sum_4
# corr_4 => sum_5
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %convolution), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %convolution), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %convolution), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_4, %convolution), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %convolution), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {})
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3, %unsqueeze_4], 1), kwargs = {})
triton_per_fused_cat_mul_sum_3 = async_compile.triton('triton_per_fused_cat_mul_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 64],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 5, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cat_mul_sum_3(in_ptr0, in_ptr1, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (x0 + (16*r2) + (1024*x1)), xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + (1024 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp13 = tl.load(in_ptr0 + (2048 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp19 = tl.load(in_ptr0 + (3072 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp25 = tl.load(in_ptr0 + (4096 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp8 = tmp7 * tmp1
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tmp14 = tmp13 * tmp1
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp20 = tmp19 * tmp1
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp23 = tl.where(xmask, tmp21, 0)
tmp24 = tl.sum(tmp23, 1)[:, None]
tmp26 = tmp25 * tmp1
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.where(xmask, tmp27, 0)
tmp30 = tl.sum(tmp29, 1)[:, None]
tl.store(out_ptr5 + (x0 + (80*x1)), tmp6, xmask)
tl.store(out_ptr6 + (x0 + (80*x1)), tmp12, xmask)
tl.store(out_ptr7 + (x0 + (80*x1)), tmp18, xmask)
tl.store(out_ptr8 + (x0 + (80*x1)), tmp24, xmask)
tl.store(out_ptr9 + (x0 + (80*x1)), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/fh/cfhd3pv6oq22djbxa5tx4y42vjmwgldrhgaichhekhdwb5ize252.py
# Topologically Sorted Source Nodes: [aligned_feat], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# aligned_feat => mul_5
# Graph fragment:
# %mul_5 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %view_2), kwargs = {})
triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 16
x1 = (xindex // 16) % 320
x2 = (xindex // 5120)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (16*(x1 // 64)) + (80*x2)), None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x3), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/zr/czrki3u23zsgaiiexnna7jtzoedroempx47tvzii26xeuavvtgad.py
# Topologically Sorted Source Nodes: [conv2d_3, attn], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# attn => gt_1, mul_7, where_1
# conv2d_3 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.1), kwargs = {})
# %where_1 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_3, %mul_7), kwargs = {})
triton_poi_fused_convolution_leaky_relu_5 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/pk/cpk3fygaseyui7qdpy3xpxqkvxk3hgw7slvnar3gxlbr74q67zf5.py
# Topologically Sorted Source Nodes: [attn_max, attn_avg], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
# Source node to ATen node mapping:
# attn_avg => avg_pool2d
# attn_max => _low_memory_max_pool2d_with_offsets, getitem_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_1, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [3, 3], [2, 2], [1, 1]), kwargs = {})
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6 = async_compile.triton('triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 2
x0 = xindex % 2
x5 = (xindex // 2)
x3 = (xindex // 256)
x6 = xindex % 256
x7 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x0)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x5)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp12 = 2*x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x5)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x0)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x5)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x5)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + ((2*x0) + (8*x5)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x5)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + (2*x1)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x5)), tmp43 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x5)), tmp46 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x5)), tmp49 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x5)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp78 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x5)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp79 = tmp78 + tmp77
tmp80 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x5)), tmp23 & xmask, eviction_policy='evict_last', other=0.0)
tmp81 = tmp80 + tmp79
tmp82 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x5)), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp83 = tmp82 + tmp81
tmp84 = tl.load(in_ptr0 + ((2*x0) + (8*x5)), tmp33 & xmask, eviction_policy='evict_last', other=0.0)
tmp85 = tmp84 + tmp83
tmp86 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x5)), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp87 = tmp86 + tmp85
tmp88 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x5)), tmp43 & xmask, eviction_policy='evict_last', other=0.0)
tmp89 = tmp88 + tmp87
tmp90 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x5)), tmp46 & xmask, eviction_policy='evict_last', other=0.0)
tmp91 = tmp90 + tmp89
tmp92 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x5)), tmp49 & xmask, eviction_policy='evict_last', other=0.0)
tmp93 = tmp92 + tmp91
tmp94 = 1 + ((-2)*x0) + ((-2)*x1) + (((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x0*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x1*((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))) + (4*x0*x1) + ((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5))) + ((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))
tmp95 = tmp93 / tmp94
tl.store(out_ptr0 + (x6 + (512*x3)), tmp51, xmask)
tl.store(out_ptr1 + (x7), tmp76, xmask)
tl.store(out_ptr2 + (x6 + (512*x3)), tmp95, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ku/ckudte3yk3k5yua5cn4wgvpz6fzasnpftrdhrse4k2pj5bssbxy3.py
# Topologically Sorted Source Nodes: [conv2d_4, attn_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# attn_1 => gt_2, mul_8, where_2
# conv2d_4 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.1), kwargs = {})
# %where_2 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_4, %mul_8), kwargs = {})
triton_poi_fused_convolution_leaky_relu_7 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/sg/csgczegfowupuwjczr4ywjw7hwfokovqexu34tu4cf2odny25h7r.py
# Topologically Sorted Source Nodes: [attn_max_1, attn_avg_1], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
# Source node to ATen node mapping:
# attn_avg_1 => avg_pool2d_1
# attn_max_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_3, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
# %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_3, [3, 3], [2, 2], [1, 1]), kwargs = {})
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = (xindex // 64)
tmp0 = tl.full([1], -1, tl.int64)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tmp5 & tmp5
tmp7 = tl.load(in_ptr0 + ((-3) + (4*x2)), tmp6 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp8 = tmp1 >= tmp1
tmp9 = tmp1 < tmp3
tmp10 = tmp8 & tmp9
tmp11 = tmp5 & tmp10
tmp12 = tl.load(in_ptr0 + ((-2) + (4*x2)), tmp11 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp13 = triton_helpers.maximum(tmp12, tmp7)
tmp14 = tl.full([1], 1, tl.int64)
tmp15 = tmp14 >= tmp1
tmp16 = tmp14 < tmp3
tmp17 = tmp15 & tmp16
tmp18 = tmp5 & tmp17
tmp19 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp18 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp20 = triton_helpers.maximum(tmp19, tmp13)
tmp21 = tmp10 & tmp5
tmp22 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp21 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp23 = triton_helpers.maximum(tmp22, tmp20)
tmp24 = tmp10 & tmp10
tmp25 = tl.load(in_ptr0 + (4*x2), tmp24 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp26 = triton_helpers.maximum(tmp25, tmp23)
tmp27 = tmp10 & tmp17
tmp28 = tl.load(in_ptr0 + (1 + (4*x2)), tmp27 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp29 = triton_helpers.maximum(tmp28, tmp26)
tmp30 = tmp17 & tmp5
tmp31 = tl.load(in_ptr0 + (1 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp29)
tmp33 = tmp17 & tmp10
tmp34 = tl.load(in_ptr0 + (2 + (4*x2)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp17 & tmp17
tmp37 = tl.load(in_ptr0 + (3 + (4*x2)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = tmp12 > tmp7
tmp40 = tl.full([1], 1, tl.int8)
tmp41 = tl.full([1], 0, tl.int8)
tmp42 = tl.where(tmp39, tmp40, tmp41)
tmp43 = tmp19 > tmp13
tmp44 = tl.full([1], 2, tl.int8)
tmp45 = tl.where(tmp43, tmp44, tmp42)
tmp46 = tmp22 > tmp20
tmp47 = tl.full([1], 3, tl.int8)
tmp48 = tl.where(tmp46, tmp47, tmp45)
tmp49 = tmp25 > tmp23
tmp50 = tl.full([1], 4, tl.int8)
tmp51 = tl.where(tmp49, tmp50, tmp48)
tmp52 = tmp28 > tmp26
tmp53 = tl.full([1], 5, tl.int8)
tmp54 = tl.where(tmp52, tmp53, tmp51)
tmp55 = tmp31 > tmp29
tmp56 = tl.full([1], 6, tl.int8)
tmp57 = tl.where(tmp55, tmp56, tmp54)
tmp58 = tmp34 > tmp32
tmp59 = tl.full([1], 7, tl.int8)
tmp60 = tl.where(tmp58, tmp59, tmp57)
tmp61 = tmp37 > tmp35
tmp62 = tl.full([1], 8, tl.int8)
tmp63 = tl.where(tmp61, tmp62, tmp60)
tmp64 = tl.load(in_ptr0 + ((-3) + (4*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.load(in_ptr0 + ((-2) + (4*x2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp66 = tmp65 + tmp64
tmp67 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp68 = tmp67 + tmp66
tmp69 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp21 & xmask, eviction_policy='evict_last', other=0.0)
tmp70 = tmp69 + tmp68
tmp71 = tl.load(in_ptr0 + (4*x2), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp72 = tmp71 + tmp70
tmp73 = tl.load(in_ptr0 + (1 + (4*x2)), tmp27 & xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tmp73 + tmp72
tmp75 = tl.load(in_ptr0 + (1 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp76 = tmp75 + tmp74
tmp77 = tl.load(in_ptr0 + (2 + (4*x2)), tmp33 & xmask, eviction_policy='evict_last', other=0.0)
tmp78 = tmp77 + tmp76
tmp79 = tl.load(in_ptr0 + (3 + (4*x2)), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp80 = tmp79 + tmp78
tmp81 = tl.full([1], 9, tl.int32)
tmp82 = tmp80 / tmp81
tl.store(out_ptr0 + (x0 + (128*x1)), tmp38, xmask)
tl.store(out_ptr1 + (x2), tmp63, xmask)
tl.store(out_ptr2 + (x0 + (128*x1)), tmp82, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/wq/cwqagsj5ls25hrcw6hxsayqci33xusemulwfozklrduzjqzpvbdb.py
# Topologically Sorted Source Nodes: [conv2d_6, attn_level_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# attn_level_1 => gt_4, mul_10, where_4
# conv2d_6 => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.1), kwargs = {})
# %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_6, %mul_10), kwargs = {})
triton_poi_fused_convolution_leaky_relu_9 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/l4/cl4vcjd4z7lumtxc5zcpws7ce6eexgpl5gregarvkbnjzwfii7gk.py
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# attn_level_3 => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {})
triton_poi_fused__to_copy_10 = async_compile.triton('triton_poi_fused__to_copy_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vi/cvixasqvjpzhra4mkzvqpwqtena4rblcmdqim6ofp3nmxkli5cho.py
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# attn_level_3 => add_1, clamp_max
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 0), kwargs = {})
triton_poi_fused_add_clamp_11 = async_compile.triton('triton_poi_fused_add_clamp_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 0, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/dw/cdwvjjvjx5yjaylq4q7psjgmnhvskuynevkz7t3bpyhxzjigsatv.py
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# attn_level_3 => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_12, sub, sub_2
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (2,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_12, 0.5), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/g7/cg7hwas3ulxmdn6h36bo5ewdukiqxglk6whwhnhy37eovq7koydc.py
# Topologically Sorted Source Nodes: [conv2d_7, attn_level_2, attn_level_3, conv2d_8, leaky_relu_6, attn_2], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# attn_2 => add_7
# attn_level_2 => gt_5, mul_11, where_5
# attn_level_3 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_4, add_5, add_6, mul_14, mul_15, mul_16, sub_3, sub_4, sub_6
# conv2d_7 => convolution_7
# conv2d_8 => convolution_8
# leaky_relu_6 => gt_6, mul_17, where_6
# Graph fragment:
# %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 0.1), kwargs = {})
# %where_5 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_7, %mul_11), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_14), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_15), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_16), kwargs = {})
# %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.1), kwargs = {})
# %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_8, %mul_17), kwargs = {})
# %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_6, %add_6), kwargs = {})
# %gt_11 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_6, 0), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*i64', 10: '*fp32', 11: '*i1', 12: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 2
x0 = xindex % 2
x5 = (xindex // 4)
x2 = (xindex // 4) % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x6), xmask)
tmp26 = tl.load(in_ptr7 + (x2), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr8 + (x1), xmask, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr9 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 1, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tmp20 = tl.where(tmp19, tmp18, tmp17)
tmp21 = tmp16 - tmp16
tmp23 = tmp21 * tmp22
tmp24 = tmp16 + tmp23
tmp27 = tmp25 + tmp26
tmp28 = tmp27 > tmp12
tmp29 = tmp27 * tmp14
tmp30 = tl.where(tmp28, tmp27, tmp29)
tmp32 = tmp31 + tmp1
tmp33 = tmp31 < 0
tmp34 = tl.where(tmp33, tmp32, tmp31)
tmp35 = tmp24 - tmp24
tmp37 = tmp35 * tmp36
tmp38 = tmp24 + tmp37
tmp39 = tmp30 + tmp38
tmp40 = tmp30 > tmp12
tl.store(in_out_ptr0 + (x6), tmp39, xmask)
tl.store(out_ptr0 + (x6), tmp40, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/qh/cqhre475mhrzai26fnzznz5at2t325ucwdj2hqvrn3rxtfvbapzo.py
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# attn_4 => convert_element_type_5
# Graph fragment:
# %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {})
triton_poi_fused__to_copy_14 = async_compile.triton('triton_poi_fused__to_copy_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/5f/c5fjkguhvjg5ryun7wopg6renfax5rp23vfbg6nzsu7akebanlci.py
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# attn_4 => add_9, clamp_max_4
# Graph fragment:
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {})
# %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_9, 1), kwargs = {})
triton_poi_fused_add_clamp_15 = async_compile.triton('triton_poi_fused_add_clamp_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = triton_helpers.minimum(tmp10, tmp9)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ae/caebye2u374vhzlpesqh72pu5msuyvgx2qnngs7zftzquvm3h3mg.py
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# attn_4 => add_8, clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_19, sub_7, sub_9
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.5), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_8, 0.5), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_19, 0.5), kwargs = {})
# %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_7, 0.0), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {})
# %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_9, 0.0), kwargs = {})
# %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/5d/c5digbxcc3yvdlkmff5azrziozddchj6yb3sq5xkpjinfocpzrk4.py
# Topologically Sorted Source Nodes: [conv2d_9, attn_3, attn_4], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# attn_3 => gt_7, mul_18, where_7
# attn_4 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_12, add_13, add_14, mul_21, mul_22, mul_23, sub_10, sub_11, sub_13
# conv2d_9 => convolution_9
# Graph fragment:
# %convolution_9 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_7, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_9, 0), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_9, 0.1), kwargs = {})
# %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %convolution_9, %mul_18), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %clamp_max_6), kwargs = {})
# %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_21), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_6), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_22), kwargs = {})
# %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_13, %add_12), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %clamp_max_7), kwargs = {})
# %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %mul_23), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*i64', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4) % 4
x0 = xindex % 4
x6 = (xindex // 16)
x2 = (xindex // 16) % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 2, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tmp20 = tl.where(tmp19, tmp18, tmp17)
tmp21 = tl.load(in_ptr2 + (tmp20 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last')
tmp22 = tmp21 + tmp10
tmp23 = tmp22 > tmp12
tmp24 = tmp22 * tmp14
tmp25 = tl.where(tmp23, tmp22, tmp24)
tmp26 = tmp25 - tmp16
tmp28 = tmp26 * tmp27
tmp29 = tmp16 + tmp28
tmp31 = tmp30 + tmp1
tmp32 = tmp30 < 0
tmp33 = tl.where(tmp32, tmp31, tmp30)
tmp34 = tl.load(in_ptr2 + (tmp8 + (2*tmp33) + (4*x6)), None, eviction_policy='evict_last')
tmp35 = tmp34 + tmp10
tmp36 = tmp35 > tmp12
tmp37 = tmp35 * tmp14
tmp38 = tl.where(tmp36, tmp35, tmp37)
tmp39 = tl.load(in_ptr2 + (tmp20 + (2*tmp33) + (4*x6)), None, eviction_policy='evict_last')
tmp40 = tmp39 + tmp10
tmp41 = tmp40 > tmp12
tmp42 = tmp40 * tmp14
tmp43 = tl.where(tmp41, tmp40, tmp42)
tmp44 = tmp43 - tmp38
tmp45 = tmp44 * tmp27
tmp46 = tmp38 + tmp45
tmp47 = tmp46 - tmp29
tmp49 = tmp47 * tmp48
tmp50 = tmp29 + tmp49
tl.store(in_out_ptr0 + (x4), tmp50, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/cu/ccuvxkf5qhj2jvrsbb3ffhmjd2jtqb6hmsyda6rq3u6bfora32rr.py
# Topologically Sorted Source Nodes: [conv2d_2, feat, attn_add, attn_6, mul_6, mul_7, feat_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul, aten.add]
# Source node to ATen node mapping:
# attn_6 => sigmoid_1
# attn_add => convolution_12
# conv2d_2 => convolution_2
# feat => gt, mul_6, where
# feat_1 => add_15
# mul_6 => mul_25
# mul_7 => mul_26
# Graph fragment:
# %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution_2, %mul_6), kwargs = {})
# %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_8, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_10,), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sigmoid_1), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_25, 2), kwargs = {})
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, %convolution_12), kwargs = {})
triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (x3), None)
tmp13 = tl.load(in_out_ptr1 + (x3), None)
tmp14 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp7 * tmp9
tmp11 = 2.0
tmp12 = tmp10 * tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp12 + tmp15
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(in_out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/74/c744ryizhtwhrucrt6eo7euxmid6gpfdi3fhwvvcyslcqrxawzy3.py
# Topologically Sorted Source Nodes: [conv2d_9, attn_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# attn_3 => gt_7, mul_18, where_7
# conv2d_9 => convolution_9
# Graph fragment:
# %convolution_9 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_7, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_9, 0), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_9, 0.1), kwargs = {})
# %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %convolution_9, %mul_18), kwargs = {})
# %gt_10 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_7, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 64
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ey/ceyyqukhyyygq34vtv7g5xckv5mooqbd7qwq2qatahqa4c2so7gc.py
# Topologically Sorted Source Nodes: [conv2d_7, attn_level_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# attn_level_2 => gt_5, mul_11, where_5
# conv2d_7 => convolution_7
# Graph fragment:
# %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 0.1), kwargs = {})
# %where_5 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_7, %mul_11), kwargs = {})
# %gt_12 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_5, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args
args.clear()
assert_size_stride(primals_1, (4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_11, (64, ), (1, ))
assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_13, (64, ), (1, ))
assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (64, ), (1, ))
assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_17, (64, ), (1, ))
assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_19, (64, ), (1, ))
assert_size_stride(primals_20, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_21, (64, ), (1, ))
assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_23, (64, ), (1, ))
assert_size_stride(primals_24, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_25, (64, ), (1, ))
assert_size_stride(primals_26, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_27, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 4096, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [embedding_ref], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [embedding_ref], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 4096, grid=grid(4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (20, 64, 4, 4), (1024, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (20, 64, 4, 4), (1024, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf4, primals_5, 20480, grid=grid(20480), stream=stream0)
del primals_5
buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf10 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0) # alias
buf11 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 16) # alias
buf12 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 32) # alias
buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 48) # alias
buf14 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias
# Topologically Sorted Source Nodes: [mul, corr, mul_1, corr_1, mul_2, corr_2, mul_3, corr_3, mul_4, corr_4, cat], Original ATen: [aten.mul, aten.sum, aten.cat]
triton_per_fused_cat_mul_sum_3.run(buf4, buf2, buf10, buf11, buf12, buf13, buf14, 64, 64, grid=grid(64), stream=stream0)
buf16 = empty_strided_cuda((4, 320, 4, 4), (5120, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [aligned_feat], Original ATen: [aten.mul]
triton_poi_fused_mul_4.run(primals_1, buf15, buf16, 20480, grid=grid(20480), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 4, 4), (1024, 16, 4, 1))
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 64, 4, 4), (1024, 16, 4, 1))
buf20 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, attn], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_5.run(buf20, primals_9, 4096, grid=grid(4096), stream=stream0)
del primals_9
buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 4, 2, 1), torch.float32)
buf21 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 0) # alias
buf22 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.int8)
buf23 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 256) # alias
# Topologically Sorted Source Nodes: [attn_max, attn_avg], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6.run(buf20, buf21, buf22, buf23, 1024, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf25 = extern_kernels.convolution(buf24, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 64, 2, 2), (256, 4, 2, 1))
buf26 = buf25; del buf25 # reuse
# Topologically Sorted Source Nodes: [conv2d_4, attn_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_7.run(buf26, primals_11, 1024, grid=grid(1024), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 64, 2, 2), (256, 4, 2, 1))
buf28 = buf27; del buf27 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, attn_level], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_7.run(buf28, primals_13, 1024, grid=grid(1024), stream=stream0)
del primals_13
buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.float32)
buf29 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 0) # alias
buf30 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8)
buf31 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 64) # alias
# Topologically Sorted Source Nodes: [attn_max_1, attn_avg_1], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8.run(buf28, buf29, buf30, buf31, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf33 = extern_kernels.convolution(buf32, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 64, 1, 1), (64, 1, 1, 1))
buf34 = buf33; del buf33 # reuse
# Topologically Sorted Source Nodes: [conv2d_6, attn_level_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_9.run(buf34, primals_15, 256, grid=grid(256), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 64, 1, 1), (64, 1, 1, 1))
buf36 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_10.run(buf36, 2, grid=grid(2), stream=stream0)
buf37 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_11.run(buf37, 2, grid=grid(2), stream=stream0)
buf38 = empty_strided_cuda((2, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_10.run(buf38, 2, grid=grid(2), stream=stream0)
buf39 = empty_strided_cuda((2, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_11.run(buf39, 2, grid=grid(2), stream=stream0)
buf40 = empty_strided_cuda((2, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf40, 2, grid=grid(2), stream=stream0)
buf42 = empty_strided_cuda((2, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf42, 2, grid=grid(2), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf43 = extern_kernels.convolution(buf26, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 64, 2, 2), (256, 4, 2, 1))
buf41 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.float32)
buf44 = buf41; del buf41 # reuse
buf62 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_7, attn_level_2, attn_level_3, conv2d_8, leaky_relu_6, attn_2], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add, aten.leaky_relu_backward]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13.run(buf44, buf36, buf38, buf35, primals_17, buf39, buf40, buf43, primals_19, buf37, buf42, buf62, 1024, grid=grid(1024), stream=stream0)
del buf43
del primals_19
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf45 = extern_kernels.convolution(buf44, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 64, 2, 2), (256, 4, 2, 1))
buf46 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_14.run(buf46, 4, grid=grid(4), stream=stream0)
buf47 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_15.run(buf47, 4, grid=grid(4), stream=stream0)
buf48 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_14.run(buf48, 4, grid=grid(4), stream=stream0)
buf49 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_15.run(buf49, 4, grid=grid(4), stream=stream0)
buf50 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16.run(buf50, 4, grid=grid(4), stream=stream0)
buf52 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16.run(buf52, 4, grid=grid(4), stream=stream0)
buf53 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32)
buf54 = buf53; del buf53 # reuse
# Topologically Sorted Source Nodes: [conv2d_9, attn_3, attn_4], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17.run(buf54, buf46, buf48, buf45, primals_21, buf49, buf50, buf47, buf52, 4096, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [attn_5], Original ATen: [aten.convolution]
buf55 = extern_kernels.convolution(buf54, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf55, (4, 64, 4, 4), (1024, 16, 4, 1))
buf56 = buf55; del buf55 # reuse
# Topologically Sorted Source Nodes: [attn_5], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf56, primals_23, 4096, grid=grid(4096), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution]
buf57 = extern_kernels.convolution(buf56, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf57, (4, 64, 4, 4), (1024, 16, 4, 1))
buf58 = buf57; del buf57 # reuse
# Topologically Sorted Source Nodes: [conv2d_11, leaky_relu_8], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_5.run(buf58, primals_25, 4096, grid=grid(4096), stream=stream0)
del primals_25
# Topologically Sorted Source Nodes: [attn_add], Original ATen: [aten.convolution]
buf59 = extern_kernels.convolution(buf58, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf59, (4, 64, 4, 4), (1024, 16, 4, 1))
buf18 = buf17; del buf17 # reuse
buf60 = buf59; del buf59 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, feat, attn_add, attn_6, mul_6, mul_7, feat_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul, aten.add]
triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18.run(buf18, buf60, primals_7, buf56, primals_27, 4096, grid=grid(4096), stream=stream0)
del primals_27
del primals_7
buf61 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_9, attn_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19.run(buf45, primals_21, buf61, 1024, grid=grid(1024), stream=stream0)
del buf45
del primals_21
buf63 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_7, attn_level_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20.run(buf35, primals_17, buf63, 256, grid=grid(256), stream=stream0)
del buf35
del primals_17
return (buf60, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 0), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 1024), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 2048), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 3072), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 4096), buf15, buf16, buf18, buf20, buf22, buf24, buf26, buf28, buf30, buf32, buf34, buf36, buf37, buf38, buf39, buf40, buf42, buf44, buf46, buf47, buf48, buf49, buf50, buf52, buf54, buf56, buf58, buf61, buf62, buf63, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 320, 1, 1), (320, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 320, 1, 1), (320, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
import torch.utils.data
from torch.utils import data as data
from torch import autograd as autograd
class TSAFusion(nn.Module):
"""Temporal Spatial Attention (TSA) fusion module.
Temporal: Calculate the correlation between center frame and
neighboring frames;
Spatial: It has 3 pyramid levels, the attention is similar to SFT.
(SFT: Recovering realistic texture in image super-resolution by deep
spatial feature transform.)
Args:
num_feat (int): Channel number of middle features. Default: 64.
num_frame (int): Number of frames. Default: 5.
center_frame_idx (int): The index of center frame. Default: 2.
"""
def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2):
super(TSAFusion, self).__init__()
self.center_frame_idx = center_frame_idx
self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
self.max_pool = nn.MaxPool2d(3, stride=2, padding=1)
self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)
self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1)
self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1)
self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear',
align_corners=False)
def forward(self, aligned_feat):
"""
Args:
aligned_feat (Tensor): Aligned features with shape (b, t, c, h, w).
Returns:
Tensor: Features after TSA with the shape (b, c, h, w).
"""
b, t, c, h, w = aligned_feat.size()
embedding_ref = self.temporal_attn1(aligned_feat[:, self.
center_frame_idx, :, :, :].clone())
embedding = self.temporal_attn2(aligned_feat.view(-1, c, h, w))
embedding = embedding.view(b, t, -1, h, w)
corr_l = []
for i in range(t):
emb_neighbor = embedding[:, i, :, :, :]
corr = torch.sum(emb_neighbor * embedding_ref, 1)
corr_l.append(corr.unsqueeze(1))
corr_prob = torch.sigmoid(torch.cat(corr_l, dim=1))
corr_prob = corr_prob.unsqueeze(2).expand(b, t, c, h, w)
corr_prob = corr_prob.contiguous().view(b, -1, h, w)
aligned_feat = aligned_feat.view(b, -1, h, w) * corr_prob
feat = self.lrelu(self.feat_fusion(aligned_feat))
attn = self.lrelu(self.spatial_attn1(aligned_feat))
attn_max = self.max_pool(attn)
attn_avg = self.avg_pool(attn)
attn = self.lrelu(self.spatial_attn2(torch.cat([attn_max, attn_avg],
dim=1)))
attn_level = self.lrelu(self.spatial_attn_l1(attn))
attn_max = self.max_pool(attn_level)
attn_avg = self.avg_pool(attn_level)
attn_level = self.lrelu(self.spatial_attn_l2(torch.cat([attn_max,
attn_avg], dim=1)))
attn_level = self.lrelu(self.spatial_attn_l3(attn_level))
attn_level = self.upsample(attn_level)
attn = self.lrelu(self.spatial_attn3(attn)) + attn_level
attn = self.lrelu(self.spatial_attn4(attn))
attn = self.upsample(attn)
attn = self.spatial_attn5(attn)
attn_add = self.spatial_attn_add2(self.lrelu(self.spatial_attn_add1
(attn)))
attn = torch.sigmoid(attn)
feat = feat * attn * 2 + attn_add
return feat
def get_inputs():
return [torch.rand([4, 5, 64, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
import torch.utils.data
from torch.utils import data as data
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 1024
x1 = xindex // 1024
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2048 + x0 + 5120 * x1), None)
tl.store(out_ptr0 + x2, tmp0, None)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_per_fused_cat_mul_sum_3(in_ptr0, in_ptr1, out_ptr5, out_ptr6,
out_ptr7, out_ptr8, out_ptr9, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 5120 * x1), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * r2 + 1024 * x1), xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + (1024 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp13 = tl.load(in_ptr0 + (2048 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp19 = tl.load(in_ptr0 + (3072 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp25 = tl.load(in_ptr0 + (4096 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp8 = tmp7 * tmp1
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tmp14 = tmp13 * tmp1
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp20 = tmp19 * tmp1
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp23 = tl.where(xmask, tmp21, 0)
tmp24 = tl.sum(tmp23, 1)[:, None]
tmp26 = tmp25 * tmp1
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.where(xmask, tmp27, 0)
tmp30 = tl.sum(tmp29, 1)[:, None]
tl.store(out_ptr5 + (x0 + 80 * x1), tmp6, xmask)
tl.store(out_ptr6 + (x0 + 80 * x1), tmp12, xmask)
tl.store(out_ptr7 + (x0 + 80 * x1), tmp18, xmask)
tl.store(out_ptr8 + (x0 + 80 * x1), tmp24, xmask)
tl.store(out_ptr9 + (x0 + 80 * x1), tmp30, xmask)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 16
x1 = xindex // 16 % 320
x2 = xindex // 5120
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * (x1 // 64) + 80 * x2), None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x3, tmp3, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6(in_ptr0, out_ptr0,
out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 2
x0 = xindex % 2
x5 = xindex // 2
x3 = xindex // 256
x6 = xindex % 256
x7 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x5), tmp10 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp12 = 2 * x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x5), tmp16 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x5), tmp23 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x5), tmp30 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (2 * x0 + 8 * x5), tmp33 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x5), tmp36 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + 2 * x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x5), tmp43 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x5), tmp46 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x5), tmp49 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x5), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp78 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x5), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp79 = tmp78 + tmp77
tmp80 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x5), tmp23 & xmask,
eviction_policy='evict_last', other=0.0)
tmp81 = tmp80 + tmp79
tmp82 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x5), tmp30 & xmask,
eviction_policy='evict_last', other=0.0)
tmp83 = tmp82 + tmp81
tmp84 = tl.load(in_ptr0 + (2 * x0 + 8 * x5), tmp33 & xmask,
eviction_policy='evict_last', other=0.0)
tmp85 = tmp84 + tmp83
tmp86 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x5), tmp36 & xmask,
eviction_policy='evict_last', other=0.0)
tmp87 = tmp86 + tmp85
tmp88 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x5), tmp43 & xmask,
eviction_policy='evict_last', other=0.0)
tmp89 = tmp88 + tmp87
tmp90 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x5), tmp46 & xmask,
eviction_policy='evict_last', other=0.0)
tmp91 = tmp90 + tmp89
tmp92 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x5), tmp49 & xmask,
eviction_policy='evict_last', other=0.0)
tmp93 = tmp92 + tmp91
tmp94 = 1 + -2 * x0 + -2 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) *
(2 + 2 * x0 < 5)) * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 *
x1 < 5)) + -2 * x0 * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 *
x1 < 5)) + -2 * x1 * (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 *
x0 < 5)) + 4 * x0 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 +
2 * x0 < 5)) + (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)
)
tmp95 = tmp93 / tmp94
tl.store(out_ptr0 + (x6 + 512 * x3), tmp51, xmask)
tl.store(out_ptr1 + x7, tmp76, xmask)
tl.store(out_ptr2 + (x6 + 512 * x3), tmp95, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8(in_ptr0, out_ptr0,
out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = xindex // 64
tmp0 = tl.full([1], -1, tl.int64)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tmp5 & tmp5
tmp7 = tl.load(in_ptr0 + (-3 + 4 * x2), tmp6 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp8 = tmp1 >= tmp1
tmp9 = tmp1 < tmp3
tmp10 = tmp8 & tmp9
tmp11 = tmp5 & tmp10
tmp12 = tl.load(in_ptr0 + (-2 + 4 * x2), tmp11 & xmask, eviction_policy
='evict_last', other=float('-inf'))
tmp13 = triton_helpers.maximum(tmp12, tmp7)
tmp14 = tl.full([1], 1, tl.int64)
tmp15 = tmp14 >= tmp1
tmp16 = tmp14 < tmp3
tmp17 = tmp15 & tmp16
tmp18 = tmp5 & tmp17
tmp19 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp18 & xmask, eviction_policy
='evict_last', other=float('-inf'))
tmp20 = triton_helpers.maximum(tmp19, tmp13)
tmp21 = tmp10 & tmp5
tmp22 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp21 & xmask, eviction_policy
='evict_last', other=float('-inf'))
tmp23 = triton_helpers.maximum(tmp22, tmp20)
tmp24 = tmp10 & tmp10
tmp25 = tl.load(in_ptr0 + 4 * x2, tmp24 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp26 = triton_helpers.maximum(tmp25, tmp23)
tmp27 = tmp10 & tmp17
tmp28 = tl.load(in_ptr0 + (1 + 4 * x2), tmp27 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp29 = triton_helpers.maximum(tmp28, tmp26)
tmp30 = tmp17 & tmp5
tmp31 = tl.load(in_ptr0 + (1 + 4 * x2), tmp30 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp29)
tmp33 = tmp17 & tmp10
tmp34 = tl.load(in_ptr0 + (2 + 4 * x2), tmp33 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp17 & tmp17
tmp37 = tl.load(in_ptr0 + (3 + 4 * x2), tmp36 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = tmp12 > tmp7
tmp40 = tl.full([1], 1, tl.int8)
tmp41 = tl.full([1], 0, tl.int8)
tmp42 = tl.where(tmp39, tmp40, tmp41)
tmp43 = tmp19 > tmp13
tmp44 = tl.full([1], 2, tl.int8)
tmp45 = tl.where(tmp43, tmp44, tmp42)
tmp46 = tmp22 > tmp20
tmp47 = tl.full([1], 3, tl.int8)
tmp48 = tl.where(tmp46, tmp47, tmp45)
tmp49 = tmp25 > tmp23
tmp50 = tl.full([1], 4, tl.int8)
tmp51 = tl.where(tmp49, tmp50, tmp48)
tmp52 = tmp28 > tmp26
tmp53 = tl.full([1], 5, tl.int8)
tmp54 = tl.where(tmp52, tmp53, tmp51)
tmp55 = tmp31 > tmp29
tmp56 = tl.full([1], 6, tl.int8)
tmp57 = tl.where(tmp55, tmp56, tmp54)
tmp58 = tmp34 > tmp32
tmp59 = tl.full([1], 7, tl.int8)
tmp60 = tl.where(tmp58, tmp59, tmp57)
tmp61 = tmp37 > tmp35
tmp62 = tl.full([1], 8, tl.int8)
tmp63 = tl.where(tmp61, tmp62, tmp60)
tmp64 = tl.load(in_ptr0 + (-3 + 4 * x2), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp65 = tl.load(in_ptr0 + (-2 + 4 * x2), tmp11 & xmask, eviction_policy
='evict_last', other=0.0)
tmp66 = tmp65 + tmp64
tmp67 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp18 & xmask, eviction_policy
='evict_last', other=0.0)
tmp68 = tmp67 + tmp66
tmp69 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp21 & xmask, eviction_policy
='evict_last', other=0.0)
tmp70 = tmp69 + tmp68
tmp71 = tl.load(in_ptr0 + 4 * x2, tmp24 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp72 = tmp71 + tmp70
tmp73 = tl.load(in_ptr0 + (1 + 4 * x2), tmp27 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp74 = tmp73 + tmp72
tmp75 = tl.load(in_ptr0 + (1 + 4 * x2), tmp30 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp76 = tmp75 + tmp74
tmp77 = tl.load(in_ptr0 + (2 + 4 * x2), tmp33 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp78 = tmp77 + tmp76
tmp79 = tl.load(in_ptr0 + (3 + 4 * x2), tmp36 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp80 = tmp79 + tmp78
tmp81 = tl.full([1], 9, tl.int32)
tmp82 = tmp80 / tmp81
tl.store(out_ptr0 + (x0 + 128 * x1), tmp38, xmask)
tl.store(out_ptr1 + x2, tmp63, xmask)
tl.store(out_ptr2 + (x0 + 128 * x1), tmp82, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_9(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 0, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + x0, tmp12, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 2
x0 = xindex % 2
x5 = xindex // 4
x2 = xindex // 4 % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x6, xmask)
tmp26 = tl.load(in_ptr7 + x2, xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr8 + x1, xmask, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr9 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 1, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tl.where(tmp7, tmp6, tmp5)
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tl.where(tmp19, tmp18, tmp17)
tmp21 = tmp16 - tmp16
tmp23 = tmp21 * tmp22
tmp24 = tmp16 + tmp23
tmp27 = tmp25 + tmp26
tmp28 = tmp27 > tmp12
tmp29 = tmp27 * tmp14
tmp30 = tl.where(tmp28, tmp27, tmp29)
tmp32 = tmp31 + tmp1
tmp33 = tmp31 < 0
tl.where(tmp33, tmp32, tmp31)
tmp35 = tmp24 - tmp24
tmp37 = tmp35 * tmp36
tmp38 = tmp24 + tmp37
tmp39 = tmp30 + tmp38
tmp40 = tmp30 > tmp12
tl.store(in_out_ptr0 + x6, tmp39, xmask)
tl.store(out_ptr0 + x6, tmp40, xmask)
@triton.jit
def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = triton_helpers.minimum(tmp10, tmp9)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4 % 4
x0 = xindex % 4
x6 = xindex // 16
x2 = xindex // 16 % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 2, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 2 * tmp4 + 4 * x6), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tmp20 = tl.where(tmp19, tmp18, tmp17)
tmp21 = tl.load(in_ptr2 + (tmp20 + 2 * tmp4 + 4 * x6), None,
eviction_policy='evict_last')
tmp22 = tmp21 + tmp10
tmp23 = tmp22 > tmp12
tmp24 = tmp22 * tmp14
tmp25 = tl.where(tmp23, tmp22, tmp24)
tmp26 = tmp25 - tmp16
tmp28 = tmp26 * tmp27
tmp29 = tmp16 + tmp28
tmp31 = tmp30 + tmp1
tmp32 = tmp30 < 0
tmp33 = tl.where(tmp32, tmp31, tmp30)
tmp34 = tl.load(in_ptr2 + (tmp8 + 2 * tmp33 + 4 * x6), None,
eviction_policy='evict_last')
tmp35 = tmp34 + tmp10
tmp36 = tmp35 > tmp12
tmp37 = tmp35 * tmp14
tmp38 = tl.where(tmp36, tmp35, tmp37)
tmp39 = tl.load(in_ptr2 + (tmp20 + 2 * tmp33 + 4 * x6), None,
eviction_policy='evict_last')
tmp40 = tmp39 + tmp10
tmp41 = tmp40 > tmp12
tmp42 = tmp40 * tmp14
tmp43 = tl.where(tmp41, tmp40, tmp42)
tmp44 = tmp43 - tmp38
tmp45 = tmp44 * tmp27
tmp46 = tmp38 + tmp45
tmp47 = tmp46 - tmp29
tmp49 = tmp47 * tmp48
tmp50 = tmp29 + tmp49
tl.store(in_out_ptr0 + x4, tmp50, None)
@triton.jit
def triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + x3, None)
tmp13 = tl.load(in_out_ptr1 + x3, None)
tmp14 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp7 * tmp9
tmp11 = 2.0
tmp12 = tmp10 * tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp12 + tmp15
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(in_out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27) = args
args.clear()
assert_size_stride(primals_1, (4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_11, (64,), (1,))
assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_13, (64,), (1,))
assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (64,), (1,))
assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_17, (64,), (1,))
assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_19, (64,), (1,))
assert_size_stride(primals_20, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_21, (64,), (1,))
assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_23, (64,), (1,))
assert_size_stride(primals_24, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_25, (64,), (1,))
assert_size_stride(primals_26, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_27, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(4096)](primals_1, buf0, 4096, XBLOCK=
128, num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(4096)](buf2, primals_3, 4096,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (20,
64, 4, 4), (1024, 16, 4, 1), 0), primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (20, 64, 4, 4), (1024, 16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_2[grid(20480)](buf4, primals_5, 20480,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf10 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0)
buf11 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 16)
buf12 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 32)
buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 48)
buf14 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 64)
triton_per_fused_cat_mul_sum_3[grid(64)](buf4, buf2, buf10, buf11,
buf12, buf13, buf14, 64, 64, XBLOCK=32, num_warps=8, num_stages=1)
buf16 = empty_strided_cuda((4, 320, 4, 4), (5120, 16, 4, 1), torch.
float32)
triton_poi_fused_mul_4[grid(20480)](primals_1, buf15, buf16, 20480,
XBLOCK=128, num_warps=4, num_stages=1)
buf17 = extern_kernels.convolution(buf16, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 4, 4), (1024, 16, 4, 1))
buf19 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 64, 4, 4), (1024, 16, 4, 1))
buf20 = buf19
del buf19
triton_poi_fused_convolution_leaky_relu_5[grid(4096)](buf20,
primals_9, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 4, 2, 1), torch.
float32)
buf21 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 0)
buf22 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.int8)
buf23 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 256)
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6[grid(1024)](buf20
, buf21, buf22, buf23, 1024, XBLOCK=128, num_warps=4, num_stages=1)
buf25 = extern_kernels.convolution(buf24, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 64, 2, 2), (256, 4, 2, 1))
buf26 = buf25
del buf25
triton_poi_fused_convolution_leaky_relu_7[grid(1024)](buf26,
primals_11, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_11
buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 64, 2, 2), (256, 4, 2, 1))
buf28 = buf27
del buf27
triton_poi_fused_convolution_leaky_relu_7[grid(1024)](buf28,
primals_13, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_13
buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.
float32)
buf29 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 0)
buf30 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8)
buf31 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 64)
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8[grid(256)](buf28,
buf29, buf30, buf31, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf33 = extern_kernels.convolution(buf32, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 64, 1, 1), (64, 1, 1, 1))
buf34 = buf33
del buf33
triton_poi_fused_convolution_leaky_relu_9[grid(256)](buf34,
primals_15, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_15
buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 64, 1, 1), (64, 1, 1, 1))
buf36 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_10[grid(2)](buf36, 2, XBLOCK=2, num_warps
=1, num_stages=1)
buf37 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_11[grid(2)](buf37, 2, XBLOCK=2,
num_warps=1, num_stages=1)
buf38 = empty_strided_cuda((2,), (1,), torch.int64)
triton_poi_fused__to_copy_10[grid(2)](buf38, 2, XBLOCK=2, num_warps
=1, num_stages=1)
buf39 = empty_strided_cuda((2,), (1,), torch.int64)
triton_poi_fused_add_clamp_11[grid(2)](buf39, 2, XBLOCK=2,
num_warps=1, num_stages=1)
buf40 = empty_strided_cuda((2,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(2)](buf40,
2, XBLOCK=2, num_warps=1, num_stages=1)
buf42 = empty_strided_cuda((2, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(2)](buf42,
2, XBLOCK=2, num_warps=1, num_stages=1)
buf43 = extern_kernels.convolution(buf26, primals_18, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 64, 2, 2), (256, 4, 2, 1))
buf41 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.float32
)
buf44 = buf41
del buf41
buf62 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13[
grid(1024)](buf44, buf36, buf38, buf35, primals_17, buf39,
buf40, buf43, primals_19, buf37, buf42, buf62, 1024, XBLOCK=256,
num_warps=4, num_stages=1)
del buf43
del primals_19
buf45 = extern_kernels.convolution(buf44, primals_20, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 64, 2, 2), (256, 4, 2, 1))
buf46 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_14[grid(4)](buf46, 4, XBLOCK=4, num_warps
=1, num_stages=1)
buf47 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_15[grid(4)](buf47, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf48 = empty_strided_cuda((4,), (1,), torch.int64)
triton_poi_fused__to_copy_14[grid(4)](buf48, 4, XBLOCK=4, num_warps
=1, num_stages=1)
buf49 = empty_strided_cuda((4,), (1,), torch.int64)
triton_poi_fused_add_clamp_15[grid(4)](buf49, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf50 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16[grid(4)](buf50,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf52 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16[grid(4)](buf52,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf53 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.
float32)
buf54 = buf53
del buf53
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17[
grid(4096)](buf54, buf46, buf48, buf45, primals_21, buf49,
buf50, buf47, buf52, 4096, XBLOCK=256, num_warps=4, num_stages=1)
buf55 = extern_kernels.convolution(buf54, primals_22, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf55, (4, 64, 4, 4), (1024, 16, 4, 1))
buf56 = buf55
del buf55
triton_poi_fused_convolution_1[grid(4096)](buf56, primals_23, 4096,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_23
buf57 = extern_kernels.convolution(buf56, primals_24, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf57, (4, 64, 4, 4), (1024, 16, 4, 1))
buf58 = buf57
del buf57
triton_poi_fused_convolution_leaky_relu_5[grid(4096)](buf58,
primals_25, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_25
buf59 = extern_kernels.convolution(buf58, primals_26, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf59, (4, 64, 4, 4), (1024, 16, 4, 1))
buf18 = buf17
del buf17
buf60 = buf59
del buf59
triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18[grid(4096)](
buf18, buf60, primals_7, buf56, primals_27, 4096, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_27
del primals_7
buf61 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19[grid
(1024)](buf45, primals_21, buf61, 1024, XBLOCK=128, num_warps=4,
num_stages=1)
del buf45
del primals_21
buf63 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20[grid
(256)](buf35, primals_17, buf63, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf35
del primals_17
return (buf60, primals_1, primals_2, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, primals_18,
primals_20, primals_22, primals_24, primals_26, buf0, buf2,
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 0),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 1024),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 2048),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 3072),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 4096),
buf15, buf16, buf18, buf20, buf22, buf24, buf26, buf28, buf30,
buf32, buf34, buf36, buf37, buf38, buf39, buf40, buf42, buf44,
buf46, buf47, buf48, buf49, buf50, buf52, buf54, buf56, buf58,
buf61, buf62, buf63)
class TSAFusionNew(nn.Module):
"""Temporal Spatial Attention (TSA) fusion module.
Temporal: Calculate the correlation between center frame and
neighboring frames;
Spatial: It has 3 pyramid levels, the attention is similar to SFT.
(SFT: Recovering realistic texture in image super-resolution by deep
spatial feature transform.)
Args:
num_feat (int): Channel number of middle features. Default: 64.
num_frame (int): Number of frames. Default: 5.
center_frame_idx (int): The index of center frame. Default: 2.
"""
def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2):
super(TSAFusionNew, self).__init__()
self.center_frame_idx = center_frame_idx
self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
self.max_pool = nn.MaxPool2d(3, stride=2, padding=1)
self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)
self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1)
self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1)
self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear',
align_corners=False)
def forward(self, input_0):
primals_2 = self.temporal_attn1.weight
primals_3 = self.temporal_attn1.bias
primals_4 = self.temporal_attn2.weight
primals_5 = self.temporal_attn2.bias
primals_6 = self.feat_fusion.weight
primals_7 = self.feat_fusion.bias
primals_8 = self.spatial_attn1.weight
primals_9 = self.spatial_attn1.bias
primals_10 = self.spatial_attn2.weight
primals_11 = self.spatial_attn2.bias
primals_16 = self.spatial_attn3.weight
primals_13 = self.spatial_attn3.bias
primals_12 = self.spatial_attn4.weight
primals_15 = self.spatial_attn4.bias
primals_18 = self.spatial_attn5.weight
primals_17 = self.spatial_attn5.bias
primals_20 = self.spatial_attn_l1.weight
primals_19 = self.spatial_attn_l1.bias
primals_14 = self.spatial_attn_l2.weight
primals_21 = self.spatial_attn_l2.bias
primals_22 = self.spatial_attn_l3.weight
primals_23 = self.spatial_attn_l3.bias
primals_24 = self.spatial_attn_add1.weight
primals_25 = self.spatial_attn_add1.bias
primals_26 = self.spatial_attn_add2.weight
primals_27 = self.spatial_attn_add2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27])
return output[0]
|
hyunobae/BasicSR
|
TSAFusion
| false | 12,598 |
[
"Apache-2.0"
] | 0 |
f2c2fc6cf28933658816c808f55c95fa20b16483
|
https://github.com/hyunobae/BasicSR/tree/f2c2fc6cf28933658816c808f55c95fa20b16483
|
CommunicationLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/uk/cuk35autjzo2qplqvsmz7vwqr5uupb2zjg5klder2mhg3wlu3hsr.py
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# linear => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/37/c37qykiajtrekb3dbqmbdu7g2eoz5wt5ootv72uckq376ect45br.py
# Topologically Sorted Source Nodes: [mul, x, mul_1, x_2, out], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# out => add_3
# x => add
# x_2 => add_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_6, %permute_2), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_7), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add), kwargs = {})
triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = xindex
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x4), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr5 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tmp10 = tl.load(in_ptr6 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 * tmp3
tmp6 = tmp4 + tmp5
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tmp12 = tmp6 + tmp11
tl.store(out_ptr0 + (x4), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_7, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, x, mul_1, x_2, out], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_1.run(primals_6, buf1, primals_5, primals_7, primals_1, primals_2, primals_3, buf2, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_3
del primals_7
return (buf2, primals_2, primals_5, primals_6, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class AffineTransform(nn.Module):
def __init__(self, num_features):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, 1, num_features))
self.beta = nn.Parameter(torch.zeros(1, 1, num_features))
def forward(self, x):
return self.alpha * x + self.beta
class CommunicationLayer(nn.Module):
def __init__(self, num_features, num_patches):
super().__init__()
self.aff1 = AffineTransform(num_features)
self.fc1 = nn.Linear(num_patches, num_patches)
self.aff2 = AffineTransform(num_features)
def forward(self, x):
x = self.aff1(x)
residual = x
x = self.fc1(x.transpose(1, 2)).transpose(1, 2)
x = self.aff2(x)
out = x + residual
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4, 'num_patches': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = xindex
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x4, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr5 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tmp10 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 * tmp3
tmp6 = tmp4 + tmp5
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tmp12 = tmp6 + tmp11
tl.store(out_ptr0 + x4, tmp12, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_7, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](primals_1, primals_2, primals_3,
buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 4, 16, 1), torch.float32)
triton_poi_fused_add_mul_1[grid(256)](primals_6, buf1, primals_5,
primals_7, primals_1, primals_2, primals_3, buf2, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_1
del primals_3
del primals_7
return buf2, primals_2, primals_5, primals_6, reinterpret_tensor(buf0,
(64, 4), (4, 1), 0), buf1, primals_4
class AffineTransform(nn.Module):
def __init__(self, num_features):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, 1, num_features))
self.beta = nn.Parameter(torch.zeros(1, 1, num_features))
def forward(self, x):
return self.alpha * x + self.beta
class CommunicationLayerNew(nn.Module):
def __init__(self, num_features, num_patches):
super().__init__()
self.aff1 = AffineTransform(num_features)
self.fc1 = nn.Linear(num_patches, num_patches)
self.aff2 = AffineTransform(num_features)
def forward(self, input_0):
primals_1 = self.aff1.alpha
primals_3 = self.aff1.beta
primals_4 = self.fc1.weight
primals_5 = self.fc1.bias
primals_6 = self.aff2.alpha
primals_7 = self.aff2.beta
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
jaketae/res-mlp
|
CommunicationLayer
| false | 12,599 |
[
"MIT"
] | 0 |
6c957e4fe67a2f13d9b4fd3fa36b7eddcf5323fd
|
https://github.com/jaketae/res-mlp/tree/6c957e4fe67a2f13d9b4fd3fa36b7eddcf5323fd
|
FeedForward
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/74/c74yuox45avk3dyefqdkvkdygfzym6suwnjtqzkgr6lapmzwsqve.py
# Topologically Sorted Source Nodes: [mul, x], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# x => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/3h/c3hfqjrg75nmeiuwqha4tuqjmzjzlxuuyjrswd6qyox3j2hxdux6.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.gelu]
# Source node to ATen node mapping:
# x_2 => add_1, erf, mul_1, mul_2, mul_3
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_2,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %add_1), kwargs = {})
triton_poi_fused_gelu_1 = async_compile.triton('triton_poi_fused_gelu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gelu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ev/cevyeo33ukgcf6qtsas62vvq4rki5jcu6c4fawbf7ck5fysn6c4r.py
# Topologically Sorted Source Nodes: [mul_1, x_4, out], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul_1 => mul_4
# out => add_3
# x_4 => add_2
# Graph fragment:
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_8, %view_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add), kwargs = {})
triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x2), xmask)
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_4, (16, 4), (4, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_9, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, x], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_3
buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.gelu]
triton_poi_fused_gelu_1.run(buf1, buf2, 1024, grid=grid(1024), stream=stream0)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf2, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1, x_4, out], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_2.run(primals_8, buf3, primals_9, buf0, buf4, 256, grid=grid(256), stream=stream0)
del primals_9
return (buf4, primals_2, primals_8, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 16), (16, 1), 0), buf3, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import functional as F
class AffineTransform(nn.Module):
def __init__(self, num_features):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, 1, num_features))
self.beta = nn.Parameter(torch.zeros(1, 1, num_features))
def forward(self, x):
return self.alpha * x + self.beta
class FeedForward(nn.Module):
def __init__(self, num_features, expansion_factor):
super().__init__()
num_hidden = num_features * expansion_factor
self.aff1 = AffineTransform(num_features)
self.fc1 = nn.Linear(num_features, num_hidden)
self.fc2 = nn.Linear(num_hidden, num_features)
self.aff2 = AffineTransform(num_features)
def forward(self, x):
x = self.aff1(x)
residual = x
x = self.fc1(x)
x = F.gelu(x)
x = self.fc2(x)
x = self.aff2(x)
out = x + residual
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4, 'expansion_factor': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_gelu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x2, xmask)
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_4, (16, 4), (4, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_9, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(256)](primals_1, primals_2,
primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_3
buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf0, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.
float32)
triton_poi_fused_gelu_1[grid(1024)](buf1, buf2, 1024, XBLOCK=128,
num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf2, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0),
alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_2[grid(256)](primals_8, buf3, primals_9,
buf0, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_9
return buf4, primals_2, primals_8, reinterpret_tensor(buf0, (64, 4), (4,
1), 0), buf1, reinterpret_tensor(buf2, (64, 16), (16, 1), 0
), buf3, primals_6, primals_4
class AffineTransform(nn.Module):
def __init__(self, num_features):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, 1, num_features))
self.beta = nn.Parameter(torch.zeros(1, 1, num_features))
def forward(self, x):
return self.alpha * x + self.beta
class FeedForwardNew(nn.Module):
def __init__(self, num_features, expansion_factor):
super().__init__()
num_hidden = num_features * expansion_factor
self.aff1 = AffineTransform(num_features)
self.fc1 = nn.Linear(num_features, num_hidden)
self.fc2 = nn.Linear(num_hidden, num_features)
self.aff2 = AffineTransform(num_features)
def forward(self, input_0):
primals_1 = self.aff1.alpha
primals_3 = self.aff1.beta
primals_4 = self.fc1.weight
primals_5 = self.fc1.bias
primals_6 = self.fc2.weight
primals_7 = self.fc2.bias
primals_8 = self.aff2.alpha
primals_9 = self.aff2.beta
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
jaketae/res-mlp
|
FeedForward
| false | 12,600 |
[
"MIT"
] | 0 |
6c957e4fe67a2f13d9b4fd3fa36b7eddcf5323fd
|
https://github.com/jaketae/res-mlp/tree/6c957e4fe67a2f13d9b4fd3fa36b7eddcf5323fd
|
DilatedResidualLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/xq/cxqkhhst3jbs43bo4t4kdglqlksdycss3wdyjycgxemnfciwj463.py
# Topologically Sorted Source Nodes: [conv1d, out], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv1d => convolution
# out => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1], [1], [1], False, [0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ow/cow52txq46qcfpwvz6pxnvnpna6ee6inpfl3tu3be3jak6yqdvz2.py
# Topologically Sorted Source Nodes: [out_1, add, mul], Original ATen: [aten.convolution, aten.add, aten.mul]
# Source node to ATen node mapping:
# add => add
# mul => mul
# out_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %convolution_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %slice_2), kwargs = {})
triton_poi_fused_add_convolution_mul_1 = async_compile.triton('triton_poi_fused_add_convolution_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_out_ptr0 + (x3), xmask)
tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp6 = tmp4 * tmp5
tl.store(in_out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3), (12, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4), (16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv1d, out], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out_1, add, mul], Original ATen: [aten.convolution, aten.add, aten.mul]
triton_poi_fused_add_convolution_mul_1.run(buf3, primals_3, primals_5, primals_6, 64, grid=grid(64), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, reinterpret_tensor(primals_6, (4, 1, 4), (16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class DilatedResidualLayer(nn.Module):
def __init__(self, dilation, in_channels, out_channels):
super(DilatedResidualLayer, self).__init__()
self.conv_dilated = nn.Conv1d(in_channels, out_channels, 3, padding
=dilation, dilation=dilation)
self.conv_1x1 = nn.Conv1d(out_channels, out_channels, 1)
self.dropout = nn.Dropout()
def forward(self, x, mask):
out = F.relu(self.conv_dilated(x))
out = self.conv_1x1(out)
out = self.dropout(out)
return (x + out) * mask[:, 0:1, :]
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dilation': 1, 'in_channels': 4, 'out_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp6 = tmp4 * tmp5
tl.store(in_out_ptr0 + x3, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3), (12, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,),
padding=(1,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4), (16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(64)](buf1, primals_2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_add_convolution_mul_1[grid(64)](buf3, primals_3,
primals_5, primals_6, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1, reinterpret_tensor(
primals_6, (4, 1, 4), (16, 4, 1), 0)
class DilatedResidualLayerNew(nn.Module):
def __init__(self, dilation, in_channels, out_channels):
super(DilatedResidualLayerNew, self).__init__()
self.conv_dilated = nn.Conv1d(in_channels, out_channels, 3, padding
=dilation, dilation=dilation)
self.conv_1x1 = nn.Conv1d(out_channels, out_channels, 1)
self.dropout = nn.Dropout()
def forward(self, input_0, input_1):
primals_1 = self.conv_dilated.weight
primals_2 = self.conv_dilated.bias
primals_4 = self.conv_1x1.weight
primals_5 = self.conv_1x1.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
jeanq1/sign-segmentation
|
DilatedResidualLayer
| false | 12,601 |
[
"MIT"
] | 0 |
cbf1203b06e82e75e06b96a430dab08da3a46f7b
|
https://github.com/jeanq1/sign-segmentation/tree/cbf1203b06e82e75e06b96a430dab08da3a46f7b
|
MainClassifier
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# x => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (100, 4), (4, 1))
assert_size_stride(primals_3, (100, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
del primals_1
buf2 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 100), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
return (buf2, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class MainClassifier(nn.Module):
def __init__(self, channel, num_classes=100):
super(MainClassifier, self).__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(channel, num_classes)
def forward(self, x):
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channel': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (100, 4), (4, 1))
assert_size_stride(primals_3, (100,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf1, (4, 4), (4,
1), 0), reinterpret_tensor(primals_2, (4, 100), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
return buf2, reinterpret_tensor(buf1, (4, 4), (4, 1), 0)
class MainClassifierNew(nn.Module):
def __init__(self, channel, num_classes=100):
super(MainClassifierNew, self).__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(channel, num_classes)
def forward(self, input_0):
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
janhenriklambrechts/Task-Oriented-Feature-Distillation
|
MainClassifier
| false | 12,602 |
[
"MIT"
] | 0 |
87ab75677b02441bce045e76e96afb078e9df2ea
|
https://github.com/janhenriklambrechts/Task-Oriented-Feature-Distillation/tree/87ab75677b02441bce045e76e96afb078e9df2ea
|
Net
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/gz/cgznr3qgnyojkdkveucdth3sydtsi43z53jq2nupgz42hlrwsuyw.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => _low_memory_max_pool2d_with_offsets
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%primals_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (48*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (48*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (24 + (2*x0) + (48*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (25 + (2*x0) + (48*x1)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/qe/cqeuu5racneble5emk43stl6lkmbdjnfzavylshz4e3afjrinccv.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_2 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 24, 24), (2304, 576, 24, 1))
assert_size_stride(primals_2, (64, 768), (768, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (10, 64), (64, 1))
assert_size_stride(primals_5, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(primals_1, buf0, 2304, grid=grid(2304), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((3, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (3, 768), (768, 1), 0), reinterpret_tensor(primals_2, (768, 64), (1, 768), 0), out=buf1)
del primals_2
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_3, 192, grid=grid(192), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((3, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (64, 10), (1, 64), 0), alpha=1, beta=1, out=buf3)
del primals_5
return (buf3, reinterpret_tensor(buf0, (3, 768), (768, 1), 0), buf2, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 24, 24), (2304, 576, 24, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 768), (768, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((10, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = torch.nn.Linear(3 * 16 * 16, 64)
self.fc2 = torch.nn.Linear(64, 10)
def forward(self, x):
x = self.pool(x)
x = x.view(-1, 3 * 16 * 16)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 24, 24])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 48 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 48 * x1), xmask, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (24 + 2 * x0 + 48 * x1), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (25 + 2 * x0 + 48 * x1), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 24, 24), (2304, 576, 24, 1))
assert_size_stride(primals_2, (64, 768), (768, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (10, 64), (64, 1))
assert_size_stride(primals_5, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(2304)](primals_1,
buf0, 2304, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((3, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (3, 768), (768, 1), 0),
reinterpret_tensor(primals_2, (768, 64), (1, 768), 0), out=buf1)
del primals_2
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(192)](buf2, primals_3, 192, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((3, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4,
(64, 10), (1, 64), 0), alpha=1, beta=1, out=buf3)
del primals_5
return buf3, reinterpret_tensor(buf0, (3, 768), (768, 1), 0
), buf2, primals_4
class NetNew(nn.Module):
def __init__(self):
super(NetNew, self).__init__()
self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = torch.nn.Linear(3 * 16 * 16, 64)
self.fc2 = torch.nn.Linear(64, 10)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
jcolekaplan/computer_vision
|
Net
| false | 12,603 |
[
"MIT"
] | 0 |
48d39b081a7b6b699019052eeae36ab703bb34eb
|
https://github.com/jcolekaplan/computer_vision/tree/48d39b081a7b6b699019052eeae36ab703bb34eb
|
MultiHeadAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ay/caylcn737p2wwjm32cacv462xdgdut6ho32ptwxfu34t3i2tr75z.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ri/cricgdtr5c24l63g746gjtdd45qor3pkzmi7qmyygyd24ejrijb7.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/7n/c7nhob3voygbzg73wacfq2bbcquxe5ozjclkx7uda5hunwppje36.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 0.5), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 16), (16, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, buf4, 64, 4, grid=grid(64, 4), stream=stream0)
buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0)
buf8 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, buf8, 256, grid=grid(256), stream=stream0)
buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf9, buf10, 256, grid=grid(256), stream=stream0)
del buf9
buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf10, (16, 16), (16, 1), 0), reinterpret_tensor(primals_7, (16, 4), (1, 16), 0), out=buf11)
return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0), primals_7, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class ScaledDotProductAttention(nn.Module):
def __init__(self, d_k):
super(ScaledDotProductAttention, self).__init__()
self.scale = d_k ** -0.5
def forward(self, q, k, v, mask):
x = torch.matmul(q, k.transpose(-2, -1))
x = x if mask is None else x.masked_fill(mask, float('-inf'))
x = torch.matmul(torch.softmax(self.scale * x, dim=-1), v)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, d_k, d_v, h):
super(MultiHeadAttention, self).__init__()
self.h = h
self.d_k = d_k
self.d_v = d_v
self.w_q = nn.Linear(d_model, h * d_k, bias=False)
self.w_k = nn.Linear(d_model, h * d_k, bias=False)
self.w_v = nn.Linear(d_model, h * d_v, bias=False)
self.w_o = nn.Linear(h * d_v, d_model, bias=False)
self.attention = ScaledDotProductAttention(d_k)
def _split_into_heads(self, *xs):
return [x.view(x.size(0), x.size(1), self.h, -1).transpose(1, 2) for
x in xs]
def forward(self, q, k, v, mask=None):
q, k, v = self.w_q(q), self.w_k(k), self.w_v(v)
q, k, v = self._split_into_heads(q, k, v)
x = self.attention(q, k, v, mask)
x = x.transpose(1, 2).reshape(x.size(0), x.size(2), -1)
x = self.w_o(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'d_model': 4, 'd_k': 4, 'd_v': 4, 'h': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 16), (16, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](buf0, buf3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused_clone_1[grid(64, 4)](buf1, buf4, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf8 = buf6
del buf6
triton_poi_fused_clone_0[grid(256)](buf2, buf8, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_0[grid(256)](buf9, buf10, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf9
buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf10, (16, 16), (16, 1), 0),
reinterpret_tensor(primals_7, (16, 4), (1, 16), 0), out=buf11)
return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0
), primals_7, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0)
class ScaledDotProductAttention(nn.Module):
def __init__(self, d_k):
super(ScaledDotProductAttention, self).__init__()
self.scale = d_k ** -0.5
def forward(self, q, k, v, mask):
x = torch.matmul(q, k.transpose(-2, -1))
x = x if mask is None else x.masked_fill(mask, float('-inf'))
x = torch.matmul(torch.softmax(self.scale * x, dim=-1), v)
return x
class MultiHeadAttentionNew(nn.Module):
def __init__(self, d_model, d_k, d_v, h):
super(MultiHeadAttentionNew, self).__init__()
self.h = h
self.d_k = d_k
self.d_v = d_v
self.w_q = nn.Linear(d_model, h * d_k, bias=False)
self.w_k = nn.Linear(d_model, h * d_k, bias=False)
self.w_v = nn.Linear(d_model, h * d_v, bias=False)
self.w_o = nn.Linear(h * d_v, d_model, bias=False)
self.attention = ScaledDotProductAttention(d_k)
def _split_into_heads(self, *xs):
return [x.view(x.size(0), x.size(1), self.h, -1).transpose(1, 2) for
x in xs]
def forward(self, input_0, input_1, input_2):
primals_1 = self.w_q.weight
primals_3 = self.w_k.weight
primals_5 = self.w_v.weight
primals_7 = self.w_o.weight
primals_2 = input_0
primals_4 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
jaehyek/attention-is-all-you-need
|
MultiHeadAttention
| false | 12,604 |
[
"MIT"
] | 0 |
9b421f7c98414aeb9f397c5195e3a6a9080a4669
|
https://github.com/jaehyek/attention-is-all-you-need/tree/9b421f7c98414aeb9f397c5195e3a6a9080a4669
|
PositionwiseFeedForward
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/3v/c3vxisrcvpivjiljyrwifud4ef5ufg6hhb5foeewz3z7exlpvh2b.py
# Topologically Sorted Source Nodes: [relu, contiguous_1], Original ATen: [aten.relu, aten.clone, aten.threshold_backward]
# Source node to ATen node mapping:
# contiguous_1 => clone_1
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_clone_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_clone_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_relu_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_relu_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu, contiguous_1], Original ATen: [aten.relu, aten.clone, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_relu_threshold_backward_0.run(buf0, primals_2, buf1, buf3, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class PositionwiseFeedForward(nn.Module):
"""Implements FFN equation."""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.norm = nn.Sequential()
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = None
def forward(self, x):
return self.w_2(self.norm(F.relu(self.w_1(x)).transpose(2, 1).
contiguous()).transpose(2, 1).contiguous())
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'd_ff': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_relu_threshold_backward_0(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_clone_relu_threshold_backward_0[grid(256)](buf0,
primals_2, buf1, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = buf0
del buf0
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf3
class PositionwiseFeedForwardNew(nn.Module):
"""Implements FFN equation."""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForwardNew, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.norm = nn.Sequential()
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = None
def forward(self, input_0):
primals_1 = self.w_1.weight
primals_2 = self.w_1.bias
primals_4 = self.w_2.weight
primals_5 = self.w_2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
jetd1/dcp
|
PositionwiseFeedForward
| false | 12,605 |
[
"MIT"
] | 0 |
2fe7256a14bf382f1ea0a9e1df6d52ff21a99a4d
|
https://github.com/jetd1/dcp/tree/2fe7256a14bf382f1ea0a9e1df6d52ff21a99a4d
|
Tanh
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/zz/czz54ut75scrtht33wfs25yho3nmankwisvydcauscn44sw62gdt.py
# Topologically Sorted Source Nodes: [tanh, sub, mul, softplus, add, g], Original ATen: [aten.tanh, aten.sub, aten.mul, aten.softplus, aten.add]
# Source node to ATen node mapping:
# add => add
# g => mul_1
# mul => mul
# softplus => exp, gt, log1p, where
# sub => sub
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 0.6931471805599453), kwargs = {})
# %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, -2), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 20), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %log1p), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %where), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, -2), kwargs = {})
triton_poi_fused_add_mul_softplus_sub_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_softplus_sub_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_softplus_sub_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_softplus_sub_tanh_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 0.6931471805599453
tmp3 = tmp0 - tmp2
tmp4 = -2.0
tmp5 = tmp0 * tmp4
tmp6 = 20.0
tmp7 = tmp5 > tmp6
tmp8 = tl_math.exp(tmp5)
tmp9 = libdevice.log1p(tmp8)
tmp10 = tl.where(tmp7, tmp5, tmp9)
tmp11 = tmp3 + tmp10
tmp12 = tmp11 * tmp4
tl.store(out_ptr0 + (x0), tmp1, xmask)
tl.store(out_ptr1 + (x0), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh, sub, mul, softplus, add, g], Original ATen: [aten.tanh, aten.sub, aten.mul, aten.softplus, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_softplus_sub_tanh_0.run(arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
class Tanh(torch.nn.Tanh):
"""
Class that extends ``torch.nn.Tanh`` additionally computing the log diagonal
blocks of the Jacobian.
"""
def forward(self, inputs, grad: 'torch.Tensor'=None):
"""
Parameters
----------
inputs : ``torch.Tensor``, required.
The input tensor.
grad : ``torch.Tensor``, optional (default = None).
The log diagonal blocks of the partial Jacobian of previous transformations.
Returns
-------
The output tensor and the log diagonal blocks of the partial log-Jacobian of previous
transformations combined with this transformation.
"""
g = -2 * (inputs - math.log(2) + torch.nn.functional.softplus(-2 *
inputs))
return torch.tanh(inputs), g.view(grad.shape
) + grad if grad is not None else g
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_softplus_sub_tanh_0(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 0.6931471805599453
tmp3 = tmp0 - tmp2
tmp4 = -2.0
tmp5 = tmp0 * tmp4
tmp6 = 20.0
tmp7 = tmp5 > tmp6
tmp8 = tl_math.exp(tmp5)
tmp9 = libdevice.log1p(tmp8)
tmp10 = tl.where(tmp7, tmp5, tmp9)
tmp11 = tmp3 + tmp10
tmp12 = tmp11 * tmp4
tl.store(out_ptr0 + x0, tmp1, xmask)
tl.store(out_ptr1 + x0, tmp12, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_softplus_sub_tanh_0[grid(256)](arg0_1,
buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0, buf1
class TanhNew(torch.nn.Tanh):
"""
Class that extends ``torch.nn.Tanh`` additionally computing the log diagonal
blocks of the Jacobian.
"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0], output[1]
|
gndctrl2mjrtm/BNAF
|
Tanh
| false | 12,606 |
[
"MIT"
] | 0 |
a8ecaa2844b5338f9091e58dd571fdc6a598e2f1
|
https://github.com/gndctrl2mjrtm/BNAF/tree/a8ecaa2844b5338f9091e58dd571fdc6a598e2f1
|
Model
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/f3/cf3wjo3codglmel3mdjaodbq3s3viwdoc74iaz5e3kntwsnjtjqi.py
# Topologically Sorted Source Nodes: [y_pred], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# y_pred => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [y_pred], Original ATen: [aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0)
del primals_2
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, n_input_features):
super(Model, self).__init__()
self.linear = nn.Linear(n_input_features, 1)
def forward(self, x):
y_pred = torch.sigmoid(self.linear(x))
return y_pred
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_input_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_sigmoid_0[grid(64)](buf1, primals_2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_2
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1
class ModelNew(nn.Module):
def __init__(self, n_input_features):
super(ModelNew, self).__init__()
self.linear = nn.Linear(n_input_features, 1)
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
jaykasundra2/pytorchTutorial
|
Model
| false | 12,607 |
[
"MIT"
] | 0 |
954a96797353d463cb96c66596272e180c602134
|
https://github.com/jaykasundra2/pytorchTutorial/tree/954a96797353d463cb96c66596272e180c602134
|
NeuralNet1
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/7z/c7zsuucunqdovb2xa6tywxjxwmolzjzdk72ratro7fi3qvgyqb7c.py
# Topologically Sorted Source Nodes: [y_pred], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# y_pred => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [y_pred], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf3, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf3, primals_4, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class NeuralNet1(nn.Module):
def __init__(self, input_size, hidden_size):
super(NeuralNet1, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(hidden_size, 1)
def forward(self, x):
out = self.linear1(x)
out = self.relu(out)
out = self.linear2(out)
y_pred = torch.sigmoid(out)
return y_pred
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf2
triton_poi_fused_sigmoid_1[grid(64)](buf3, primals_5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_5
return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf3, primals_4, buf4
class NeuralNet1New(nn.Module):
def __init__(self, input_size, hidden_size):
super(NeuralNet1New, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(hidden_size, 1)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
jaykasundra2/pytorchTutorial
|
NeuralNet1
| false | 12,608 |
[
"MIT"
] | 0 |
954a96797353d463cb96c66596272e180c602134
|
https://github.com/jaykasundra2/pytorchTutorial/tree/954a96797353d463cb96c66596272e180c602134
|
ModMBStddevLayer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/mi/cmi24qb25fs7ygfa5sk324jr6btb27kyh56k3h4duigwphd56khs.py
# Topologically Sorted Source Nodes: [y_1, add, y_2, mean, y_4], Original ATen: [aten.var, aten.add, aten.sqrt, aten.mean, aten.repeat]
# Source node to ATen node mapping:
# add => add
# mean => mean
# y_1 => var
# y_2 => sqrt
# y_4 => repeat
# Graph fragment:
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [0]), kwargs = {correction: 0})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-08), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sqrt, [2, 3, 4], True), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%squeeze, [4, 1, 4, 4]), kwargs = {})
triton_per_fused_add_mean_repeat_sqrt_var_0 = async_compile.triton('triton_per_fused_add_mean_repeat_sqrt_var_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_repeat_sqrt_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_repeat_sqrt_var_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr0 + (64 + r0), None)
tmp3 = tl.load(in_ptr0 + (128 + r0), None)
tmp5 = tl.load(in_ptr0 + (192 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = 64.0
tmp28 = tmp26 / tmp27
tl.store(out_ptr1 + (tl.broadcast_to(r1 + (80*r2), [XBLOCK, RBLOCK])), tmp28, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/yi/cyidf2yj3fms5jdxlfe7fdijzfj6p5a5q2qxo4llkuxnpqh6fj5o.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %repeat], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (80*x1)), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias
# Topologically Sorted Source Nodes: [y_1, add, y_2, mean, y_4], Original ATen: [aten.var, aten.add, aten.sqrt, aten.mean, aten.repeat]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_repeat_sqrt_var_0.run(arg0_1, buf2, 1, 64, grid=grid(1), stream=stream0)
buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(arg0_1, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.autograd as autograd
class AllGatherLayer(autograd.Function):
"""All gather layer with backward propagation path.
Indeed, this module is to make ``dist.all_gather()`` in the backward graph.
Such kind of operation has been widely used in Moco and other contrastive
learning algorithms.
"""
@staticmethod
def forward(ctx, x):
"""Forward function."""
ctx.save_for_backward(x)
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
dist.all_gather(output, x)
return tuple(output)
@staticmethod
def backward(ctx, *grad_outputs):
"""Backward function."""
x, = ctx.saved_tensors
grad_out = torch.zeros_like(x)
grad_out = grad_outputs[dist.get_rank()]
return grad_out
class ModMBStddevLayer(nn.Module):
"""Modified MiniBatch Stddev Layer.
This layer is modified from ``MiniBatchStddevLayer`` used in PGGAN. In
StyleGAN2, the authors add a new feature, `channel_groups`, into this
layer.
Note that to accelerate the training procedure, we also add a new feature
of ``sync_std`` to achieve multi-nodes/machine training. This feature is
still in beta version and we have tested it on 256 scales.
Args:
group_size (int, optional): The size of groups in batch dimension.
Defaults to 4.
channel_groups (int, optional): The size of groups in channel
dimension. Defaults to 1.
sync_std (bool, optional): Whether to use synchronized std feature.
Defaults to False.
sync_groups (int | None, optional): The size of groups in node
dimension. Defaults to None.
eps (float, optional): Epsilon value to avoid computation error.
Defaults to 1e-8.
"""
def __init__(self, group_size=4, channel_groups=1, sync_std=False,
sync_groups=None, eps=1e-08):
super().__init__()
self.group_size = group_size
self.eps = eps
self.channel_groups = channel_groups
self.sync_std = sync_std
self.sync_groups = group_size if sync_groups is None else sync_groups
if self.sync_std:
assert torch.distributed.is_initialized(
), 'Only in distributed training can the sync_std be activated.'
mmcv.print_log('Adopt synced minibatch stddev layer', 'mmgen')
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input feature map with shape of (N, C, H, W).
Returns:
Tensor: Output feature map with shape of (N, C+1, H, W).
"""
if self.sync_std:
all_features = torch.cat(AllGatherLayer.apply(x), dim=0)
rank, ws = get_dist_info()
local_bs = all_features.shape[0] // ws
start_idx = local_bs * rank
if start_idx + self.sync_groups > all_features.shape[0]:
start_idx = all_features.shape[0] - self.sync_groups
end_idx = min(local_bs * rank + self.sync_groups, all_features.
shape[0])
x = all_features[start_idx:end_idx]
assert x.shape[0] <= self.group_size or x.shape[0
] % self.group_size == 0, f'Batch size be smaller than or equal to group size. Otherwise, batch size should be divisible by the group size.But got batch size {x.shape[0]}, group size {self.group_size}'
assert x.shape[1
] % self.channel_groups == 0, f'"channel_groups" must be divided by the feature channels. channel_groups: {self.channel_groups}, feature channels: {x.shape[1]}'
n, c, h, w = x.shape
group_size = min(n, self.group_size)
y = torch.reshape(x, (group_size, -1, self.channel_groups, c //
self.channel_groups, h, w))
y = torch.var(y, dim=0, unbiased=False)
y = torch.sqrt(y + self.eps)
y = y.mean(dim=(2, 3, 4), keepdim=True).squeeze(2)
y = y.repeat(group_size, 1, h, w)
return torch.cat([x, y], dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.distributed as dist
import torch.autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_mean_repeat_sqrt_var_0(in_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = rindex // 16
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr0 + (64 + r0), None)
tmp3 = tl.load(in_ptr0 + (128 + r0), None)
tmp5 = tl.load(in_ptr0 + (192 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = 64.0
tmp28 = tmp26 / tmp27
tl.store(out_ptr1 + tl.broadcast_to(r1 + 80 * r2, [XBLOCK, RBLOCK]),
tmp28, None)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = xindex // 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 80 * x1), tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64)
get_raw_stream(0)
triton_per_fused_add_mean_repeat_sqrt_var_0[grid(1)](arg0_1, buf2,
1, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0)
triton_poi_fused_cat_1[grid(256)](arg0_1, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf3,
class AllGatherLayer(autograd.Function):
"""All gather layer with backward propagation path.
Indeed, this module is to make ``dist.all_gather()`` in the backward graph.
Such kind of operation has been widely used in Moco and other contrastive
learning algorithms.
"""
@staticmethod
def forward(ctx, x):
"""Forward function."""
ctx.save_for_backward(x)
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
dist.all_gather(output, x)
return tuple(output)
@staticmethod
def backward(ctx, *grad_outputs):
"""Backward function."""
x, = ctx.saved_tensors
grad_out = torch.zeros_like(x)
grad_out = grad_outputs[dist.get_rank()]
return grad_out
class ModMBStddevLayerNew(nn.Module):
"""Modified MiniBatch Stddev Layer.
This layer is modified from ``MiniBatchStddevLayer`` used in PGGAN. In
StyleGAN2, the authors add a new feature, `channel_groups`, into this
layer.
Note that to accelerate the training procedure, we also add a new feature
of ``sync_std`` to achieve multi-nodes/machine training. This feature is
still in beta version and we have tested it on 256 scales.
Args:
group_size (int, optional): The size of groups in batch dimension.
Defaults to 4.
channel_groups (int, optional): The size of groups in channel
dimension. Defaults to 1.
sync_std (bool, optional): Whether to use synchronized std feature.
Defaults to False.
sync_groups (int | None, optional): The size of groups in node
dimension. Defaults to None.
eps (float, optional): Epsilon value to avoid computation error.
Defaults to 1e-8.
"""
def __init__(self, group_size=4, channel_groups=1, sync_std=False,
sync_groups=None, eps=1e-08):
super().__init__()
self.group_size = group_size
self.eps = eps
self.channel_groups = channel_groups
self.sync_std = sync_std
self.sync_groups = group_size if sync_groups is None else sync_groups
if self.sync_std:
assert torch.distributed.is_initialized(
), 'Only in distributed training can the sync_std be activated.'
mmcv.print_log('Adopt synced minibatch stddev layer', 'mmgen')
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
jiangwenj02/mmgeneration
|
ModMBStddevLayer
| false | 12,609 |
[
"Apache-2.0"
] | 0 |
da9ad377ae19260467fc332ddb88f505c38a915a
|
https://github.com/jiangwenj02/mmgeneration/tree/da9ad377ae19260467fc332ddb88f505c38a915a
|
MiniBatchStddevLayer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/64/c64ilbvzmdnnrmalq32ejoehyuog4qhx7ikcg5kbwgjcv6pvdhit.py
# Topologically Sorted Source Nodes: [mean, y_1, pow_1, y_2, add, y_3, y_4, y_5], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.repeat]
# Source node to ATen node mapping:
# add => add
# mean => mean
# pow_1 => pow_1
# y_1 => sub
# y_2 => mean_1
# y_3 => sqrt
# y_4 => mean_2
# y_5 => repeat
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %mean), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [0]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-08), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sqrt, [1, 2, 3], True), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%mean_2, [4, 1, 4, 4]), kwargs = {})
triton_per_fused_add_mean_pow_repeat_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_mean_pow_repeat_sqrt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_pow_repeat_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_pow_repeat_sqrt_sub_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr0 + (64 + r0), None)
tmp3 = tl.load(in_ptr0 + (128 + r0), None)
tmp5 = tl.load(in_ptr0 + (192 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = 64.0
tmp28 = tmp26 / tmp27
tl.store(out_ptr1 + (tl.broadcast_to(r1 + (80*r2), [XBLOCK, RBLOCK])), tmp28, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/yi/cyidf2yj3fms5jdxlfe7fdijzfj6p5a5q2qxo4llkuxnpqh6fj5o.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %repeat], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (80*x1)), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias
# Topologically Sorted Source Nodes: [mean, y_1, pow_1, y_2, add, y_3, y_4, y_5], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.repeat]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_pow_repeat_sqrt_sub_0.run(arg0_1, buf2, 1, 64, grid=grid(1), stream=stream0)
buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(arg0_1, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.autograd as autograd
class AllGatherLayer(autograd.Function):
"""All gather layer with backward propagation path.
Indeed, this module is to make ``dist.all_gather()`` in the backward graph.
Such kind of operation has been widely used in Moco and other contrastive
learning algorithms.
"""
@staticmethod
def forward(ctx, x):
"""Forward function."""
ctx.save_for_backward(x)
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
dist.all_gather(output, x)
return tuple(output)
@staticmethod
def backward(ctx, *grad_outputs):
"""Backward function."""
x, = ctx.saved_tensors
grad_out = torch.zeros_like(x)
grad_out = grad_outputs[dist.get_rank()]
return grad_out
class MiniBatchStddevLayer(nn.Module):
"""Minibatch standard deviation.
Args:
group_size (int, optional): The size of groups in batch dimension.
Defaults to 4.
eps (float, optional): Epsilon value to avoid computation error.
Defaults to 1e-8.
gather_all_batch (bool, optional): Whether gather batch from all GPUs.
Defaults to False.
"""
def __init__(self, group_size=4, eps=1e-08, gather_all_batch=False):
super().__init__()
self.group_size = group_size
self.eps = eps
self.gather_all_batch = gather_all_batch
if self.gather_all_batch:
assert torch.distributed.is_initialized(
), 'Only in distributed training can the tensors be all gathered.'
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input tensor with shape (n, c, h, w).
Returns:
Tensor: Forward results.
"""
if self.gather_all_batch:
x = torch.cat(AllGatherLayer.apply(x), dim=0)
assert x.shape[0] <= self.group_size or x.shape[0
] % self.group_size == 0, f'Batch size be smaller than or equal to group size. Otherwise, batch size should be divisible by the group size.But got batch size {x.shape[0]}, group size {self.group_size}'
n, c, h, w = x.shape
group_size = min(n, self.group_size)
y = torch.reshape(x, (group_size, -1, c, h, w))
y = y - y.mean(dim=0, keepdim=True)
y = y.pow(2).mean(dim=0, keepdim=False)
y = torch.sqrt(y + self.eps)
y = y.mean(dim=(1, 2, 3), keepdim=True)
y = y.repeat(group_size, 1, h, w)
return torch.cat([x, y], dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.distributed as dist
import torch.autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_mean_pow_repeat_sqrt_sub_0(in_ptr0, out_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = rindex // 16
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr0 + (64 + r0), None)
tmp3 = tl.load(in_ptr0 + (128 + r0), None)
tmp5 = tl.load(in_ptr0 + (192 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = 64.0
tmp28 = tmp26 / tmp27
tl.store(out_ptr1 + tl.broadcast_to(r1 + 80 * r2, [XBLOCK, RBLOCK]),
tmp28, None)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = xindex // 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 80 * x1), tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64)
get_raw_stream(0)
triton_per_fused_add_mean_pow_repeat_sqrt_sub_0[grid(1)](arg0_1,
buf2, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0)
triton_poi_fused_cat_1[grid(256)](arg0_1, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf3,
class AllGatherLayer(autograd.Function):
"""All gather layer with backward propagation path.
Indeed, this module is to make ``dist.all_gather()`` in the backward graph.
Such kind of operation has been widely used in Moco and other contrastive
learning algorithms.
"""
@staticmethod
def forward(ctx, x):
"""Forward function."""
ctx.save_for_backward(x)
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
dist.all_gather(output, x)
return tuple(output)
@staticmethod
def backward(ctx, *grad_outputs):
"""Backward function."""
x, = ctx.saved_tensors
grad_out = torch.zeros_like(x)
grad_out = grad_outputs[dist.get_rank()]
return grad_out
class MiniBatchStddevLayerNew(nn.Module):
"""Minibatch standard deviation.
Args:
group_size (int, optional): The size of groups in batch dimension.
Defaults to 4.
eps (float, optional): Epsilon value to avoid computation error.
Defaults to 1e-8.
gather_all_batch (bool, optional): Whether gather batch from all GPUs.
Defaults to False.
"""
def __init__(self, group_size=4, eps=1e-08, gather_all_batch=False):
super().__init__()
self.group_size = group_size
self.eps = eps
self.gather_all_batch = gather_all_batch
if self.gather_all_batch:
assert torch.distributed.is_initialized(
), 'Only in distributed training can the tensors be all gathered.'
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
jiangwenj02/mmgeneration
|
MiniBatchStddevLayer
| false | 12,610 |
[
"Apache-2.0"
] | 0 |
da9ad377ae19260467fc332ddb88f505c38a915a
|
https://github.com/jiangwenj02/mmgeneration/tree/da9ad377ae19260467fc332ddb88f505c38a915a
|
PixelNorm
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/uq/cuqlfvqfeznifrvz7odrw3ezlfid2vgqb7wezw6nc6yrrg5447bi.py
# Topologically Sorted Source Nodes: [norm, sqrt, norm_1, add, truediv_1], Original ATen: [aten.linalg_vector_norm, aten.sqrt, aten.div, aten.add]
# Source node to ATen node mapping:
# add => add
# norm => pow_1, pow_2, sum_1
# norm_1 => div
# sqrt => full_default
# truediv_1 => div_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 2.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_2, %full_default), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 1e-06), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %add), kwargs = {})
triton_poi_fused_add_div_linalg_vector_norm_sqrt_0 = async_compile.triton('triton_poi_fused_add_div_linalg_vector_norm_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_linalg_vector_norm_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 0.5
tmp14 = tmp12 * tmp13
tmp15 = 1e-06
tmp16 = tmp14 + tmp15
tmp17 = tmp0 / tmp16
tl.store(out_ptr0 + (x3), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm, sqrt, norm_1, add, truediv_1], Original ATen: [aten.linalg_vector_norm, aten.sqrt, aten.div, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_linalg_vector_norm_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
def pixel_norm(x, eps=1e-06):
"""Pixel Normalization.
This normalization is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Args:
x (torch.Tensor): Tensor to be normalized.
eps (float, optional): Epsilon to avoid dividing zero.
Defaults to 1e-6.
Returns:
torch.Tensor: Normalized tensor.
"""
if torch.__version__ >= '1.7.0':
norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True)
else:
norm = torch.norm(x, p=2, dim=1, keepdim=True)
norm = norm / torch.sqrt(torch.tensor(x.shape[1]))
return x / (norm + eps)
class PixelNorm(nn.Module):
"""Pixel Normalization.
This module is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Args:
eps (float, optional): Epsilon value. Defaults to 1e-6.
"""
_abbr_ = 'pn'
def __init__(self, in_channels=None, eps=1e-06):
super().__init__()
self.eps = eps
def forward(self, x):
"""Forward function.
Args:
x (torch.Tensor): Tensor to be normalized.
Returns:
torch.Tensor: Normalized tensor.
"""
return pixel_norm(x, self.eps)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_sqrt_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 0.5
tmp14 = tmp12 * tmp13
tmp15 = 1e-06
tmp16 = tmp14 + tmp15
tmp17 = tmp0 / tmp16
tl.store(out_ptr0 + x3, tmp17, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_linalg_vector_norm_sqrt_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def pixel_norm(x, eps=1e-06):
"""Pixel Normalization.
This normalization is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Args:
x (torch.Tensor): Tensor to be normalized.
eps (float, optional): Epsilon to avoid dividing zero.
Defaults to 1e-6.
Returns:
torch.Tensor: Normalized tensor.
"""
if torch.__version__ >= '1.7.0':
norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True)
else:
norm = torch.norm(x, p=2, dim=1, keepdim=True)
norm = norm / torch.sqrt(torch.tensor(x.shape[1]))
return x / (norm + eps)
class PixelNormNew(nn.Module):
"""Pixel Normalization.
This module is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Args:
eps (float, optional): Epsilon value. Defaults to 1e-6.
"""
_abbr_ = 'pn'
def __init__(self, in_channels=None, eps=1e-06):
super().__init__()
self.eps = eps
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
jiangwenj02/mmgeneration
|
PixelNorm
| false | 12,611 |
[
"Apache-2.0"
] | 0 |
da9ad377ae19260467fc332ddb88f505c38a915a
|
https://github.com/jiangwenj02/mmgeneration/tree/da9ad377ae19260467fc332ddb88f505c38a915a
|
AuxiliaryConvolutions
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/k3/ck32qkbu76goin6gngorb46frxtcgido7u4gqqjikn6bs3l76qke.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 1024
y1 = (yindex // 1024)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None)
tl.store(out_ptr0 + (y0 + (1024*x2) + (4194304*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/iw/ciw5fne4c4ykscbegdmm3uvzowo3xwefv4ro2tovkicwghjx4kku.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 131072
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/qn/cqnvlz36e5n74qbwjehi6cgr4dntmtxxsduqflrrittcgu3yf256.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32768
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/dt/cdtzy2sk4ud45h7rfcart7sv7jm567awlymms4zgeznths2wtsqv.py
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# out => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4194304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ge/cgeoavt4hzgtf4m2q7qssqlp3nld2sgotuhmnrsgchg7mbqmoq6z.py
# Topologically Sorted Source Nodes: [conv2d_1, out_1, conv2d_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# conv2d_2 => convolution_2
# out_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 1024], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 1024
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 512
y1 = (yindex // 512)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (512*x2) + (524288*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + (1024*y3)), tmp4, xmask)
tl.store(out_ptr1 + (y0 + (512*x2) + (524288*y1)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/7j/c7jq3fq7s3nff7zmqw3tkclugp3t4n7gtljlodonzl7vtd77ccv6.py
# Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# out_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/bx/cbx47x2dxzsrue4u24vxstww4bfmxqkborergbnxsewnl2ohqpcj.py
# Topologically Sorted Source Nodes: [conv2d_3, out_3, conv2d_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# conv2d_4 => convolution_4
# out_3 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = (yindex // 256)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (65536*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + (256*y3)), tmp4, xmask)
tl.store(out_ptr1 + (y0 + (256*x2) + (65536*y1)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/hx/chxoq3xxsaciy3qpsdg7bzm7yh45vwcakjrprs74f5aqhz23ftak.py
# Topologically Sorted Source Nodes: [conv2d_4, out_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# out_4 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/o4/co4poaxsi3ynmtrayjqpbklkdqtnt7ufei7tynzfqeyxnr34djrs.py
# Topologically Sorted Source Nodes: [conv2d_5, out_5, conv2d_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_5 => convolution_5
# conv2d_6 => convolution_6
# out_5 => relu_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {})
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 196
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = (yindex // 256)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (50176*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + (196*y3)), tmp4, xmask)
tl.store(out_ptr1 + (y0 + (256*x2) + (50176*y1)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/e3/ce3s664utrz3vjali3f3qxxqtzcxam23vzxcz5kt5uaqjjtawb7h.py
# Topologically Sorted Source Nodes: [conv2d_6, out_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_6 => convolution_6
# out_6 => relu_6
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {})
triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 100352
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6t/c6tucgktlc6hbc3e47hpkzjzo3jk4qfiy427zrqtws2iag7p6avh.py
# Topologically Sorted Source Nodes: [conv2d_7, conv11_2_feats], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv11_2_feats => relu_7
# conv2d_7 => convolution_7
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 144
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = (yindex // 256)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (36864*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + (144*y3)), tmp4, xmask)
tl.store(out_ptr1 + (y0 + (256*x2) + (36864*y1)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args
args.clear()
assert_size_stride(primals_1, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_4, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (512, ), (1, ))
assert_size_stride(primals_6, (128, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (256, ), (1, ))
assert_size_stride(primals_14, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_15, (128, ), (1, ))
assert_size_stride(primals_16, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_17, (256, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536, 1024), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 4096, 4096, grid=grid(4096, 4096), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_4, buf1, 131072, 9, grid=grid(131072, 9), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_8, buf2, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_8
buf3 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_12, buf3, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_12
buf4 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_16, buf4, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_16
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf6, primals_2, 4194304, grid=grid(4194304), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, buf1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 512, 32, 32), (524288, 1, 16384, 512))
buf8 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.float32)
buf9 = empty_strided_cuda((4, 512, 32, 32), (524288, 1, 16384, 512), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, out_1, conv2d_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf7, primals_5, buf8, buf9, 2048, 1024, grid=grid(2048, 1024), stream=stream0)
del buf7
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 128, 32, 32), (131072, 1, 4096, 128))
del buf9
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_5.run(buf11, primals_7, 524288, grid=grid(524288), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, buf2, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf13 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.float32)
buf14 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_3, out_3, conv2d_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf12, primals_9, buf13, buf14, 1024, 256, grid=grid(1024, 256), stream=stream0)
del buf12
del primals_9
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf14, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 128, 16, 16), (32768, 1, 2048, 128))
del buf14
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [conv2d_4, out_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_7.run(buf16, primals_11, 131072, grid=grid(131072), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 256, 14, 14), (50176, 1, 3584, 256))
buf18 = empty_strided_cuda((4, 256, 14, 14), (50176, 196, 14, 1), torch.float32)
buf19 = empty_strided_cuda((4, 256, 14, 14), (50176, 1, 3584, 256), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_5, out_5, conv2d_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_8.run(buf17, primals_13, buf18, buf19, 1024, 196, grid=grid(1024, 196), stream=stream0)
del buf17
del primals_13
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf20 = extern_kernels.convolution(buf19, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 14, 14), (25088, 1, 1792, 128))
del buf19
buf21 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [conv2d_6, out_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_9.run(buf21, primals_15, 100352, grid=grid(100352), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf21, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 256, 12, 12), (36864, 1, 3072, 256))
buf23 = empty_strided_cuda((4, 256, 12, 12), (36864, 144, 12, 1), torch.float32)
buf24 = empty_strided_cuda((4, 256, 12, 12), (36864, 1, 3072, 256), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_7, conv11_2_feats], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_10.run(buf22, primals_17, buf23, buf24, 1024, 144, grid=grid(1024, 144), stream=stream0)
del buf22
del primals_17
return (buf8, buf13, buf18, buf23, primals_1, buf0, buf1, primals_6, buf2, primals_10, buf3, primals_14, buf4, buf6, buf8, buf11, buf13, buf16, buf18, buf21, buf24, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1024, 64, 64), (4194304, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.functional as F
from itertools import product as product
import torch.optim
import torch.utils.data
class AuxiliaryConvolutions(nn.Module):
"""
Additional convolutions to produce higher-level feature maps.
"""
def __init__(self):
super(AuxiliaryConvolutions, self).__init__()
self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0)
self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0)
self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, conv7_feats):
"""
Forward propagation.
:param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19)
:return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2
"""
out = F.relu(self.conv8_1(conv7_feats))
out = F.relu(self.conv8_2(out))
conv8_2_feats = out
out = F.relu(self.conv9_1(out))
out = F.relu(self.conv9_2(out))
conv9_2_feats = out
out = F.relu(self.conv10_1(out))
out = F.relu(self.conv10_2(out))
conv10_2_feats = out
out = F.relu(self.conv11_1(out))
conv11_2_feats = F.relu(self.conv11_2(out))
return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats
def get_inputs():
return [torch.rand([4, 1024, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
from itertools import product as product
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 1024
y1 = yindex // 1024
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None)
tl.store(out_ptr0 + (y0 + 1024 * x2 + 4194304 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 1024
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 512
y1 = yindex // 512
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 512 * x2 + 524288 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + 1024 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 512 * x2 + 524288 * y1), tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 65536 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + 256 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 256 * x2 + 65536 * y1), tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 196
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 50176 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + 196 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 256 * x2 + 50176 * y1), tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
xnumel = 144
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 36864 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + 144 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 256 * x2 + 36864 * y1), tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17) = args
args.clear()
assert_size_stride(primals_1, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_4, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (512,), (1,))
assert_size_stride(primals_6, (128, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (256,), (1,))
assert_size_stride(primals_14, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_15, (128,), (1,))
assert_size_stride(primals_16, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_17, (256,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536,
1024), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(4096, 4096)](primals_3, buf0, 4096, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_1[grid(131072, 9)](primals_4, buf1, 131072, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(32768, 9)](primals_8, buf2, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf3 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(32768, 9)](primals_12, buf3, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_12
buf4 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(32768, 9)](primals_16, buf4, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_16
buf5 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf6 = buf5
del buf5
triton_poi_fused_convolution_relu_3[grid(4194304)](buf6, primals_2,
4194304, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf7 = extern_kernels.convolution(buf6, buf1, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 512, 32, 32), (524288, 1, 16384, 512))
buf8 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1),
torch.float32)
buf9 = empty_strided_cuda((4, 512, 32, 32), (524288, 1, 16384, 512),
torch.float32)
triton_poi_fused_convolution_relu_4[grid(2048, 1024)](buf7,
primals_5, buf8, buf9, 2048, 1024, XBLOCK=64, YBLOCK=64,
num_warps=8, num_stages=1)
del buf7
del primals_5
buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 128, 32, 32), (131072, 1, 4096, 128))
del buf9
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_5[grid(524288)](buf11, primals_7,
524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf12 = extern_kernels.convolution(buf11, buf2, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf13 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1),
torch.float32)
buf14 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused_convolution_relu_6[grid(1024, 256)](buf12,
primals_9, buf13, buf14, 1024, 256, XBLOCK=32, YBLOCK=32,
num_warps=4, num_stages=1)
del buf12
del primals_9
buf15 = extern_kernels.convolution(buf14, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 128, 16, 16), (32768, 1, 2048, 128))
del buf14
buf16 = buf15
del buf15
triton_poi_fused_convolution_relu_7[grid(131072)](buf16, primals_11,
131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_11
buf17 = extern_kernels.convolution(buf16, buf3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 256, 14, 14), (50176, 1, 3584, 256))
buf18 = empty_strided_cuda((4, 256, 14, 14), (50176, 196, 14, 1),
torch.float32)
buf19 = empty_strided_cuda((4, 256, 14, 14), (50176, 1, 3584, 256),
torch.float32)
triton_poi_fused_convolution_relu_8[grid(1024, 196)](buf17,
primals_13, buf18, buf19, 1024, 196, XBLOCK=32, YBLOCK=32,
num_warps=4, num_stages=1)
del buf17
del primals_13
buf20 = extern_kernels.convolution(buf19, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 14, 14), (25088, 1, 1792, 128))
del buf19
buf21 = buf20
del buf20
triton_poi_fused_convolution_relu_9[grid(100352)](buf21, primals_15,
100352, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_15
buf22 = extern_kernels.convolution(buf21, buf4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 256, 12, 12), (36864, 1, 3072, 256))
buf23 = empty_strided_cuda((4, 256, 12, 12), (36864, 144, 12, 1),
torch.float32)
buf24 = empty_strided_cuda((4, 256, 12, 12), (36864, 1, 3072, 256),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_10[grid(1024, 144)
](buf22, primals_17, buf23, buf24, 1024, 144, XBLOCK=32, YBLOCK
=32, num_warps=4, num_stages=1)
del buf22
del primals_17
return (buf8, buf13, buf18, buf23, primals_1, buf0, buf1, primals_6,
buf2, primals_10, buf3, primals_14, buf4, buf6, buf8, buf11, buf13,
buf16, buf18, buf21, buf24)
class AuxiliaryConvolutionsNew(nn.Module):
"""
Additional convolutions to produce higher-level feature maps.
"""
def __init__(self):
super(AuxiliaryConvolutionsNew, self).__init__()
self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0)
self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0)
self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, input_0):
primals_1 = self.conv8_1.weight
primals_2 = self.conv8_1.bias
primals_4 = self.conv8_2.weight
primals_5 = self.conv8_2.bias
primals_6 = self.conv9_1.weight
primals_7 = self.conv9_1.bias
primals_8 = self.conv9_2.weight
primals_9 = self.conv9_2.bias
primals_10 = self.conv10_1.weight
primals_11 = self.conv10_1.bias
primals_12 = self.conv10_2.weight
primals_13 = self.conv10_2.bias
primals_14 = self.conv11_1.weight
primals_15 = self.conv11_1.bias
primals_16 = self.conv11_2.weight
primals_17 = self.conv11_2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17])
return output[0], output[1], output[2], output[3]
|
gigajet/ICDAR-2019-SROIE
|
AuxiliaryConvolutions
| false | 12,612 |
[
"MIT"
] | 0 |
62dd3ecc90600c0bdf8ceece796fc4e555d3bd16
|
https://github.com/gigajet/ICDAR-2019-SROIE/tree/62dd3ecc90600c0bdf8ceece796fc4e555d3bd16
|
CAM_Module
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/3m/c3mxgkf4weymbmbgydi4j4i6eycdz2flzbf3jce3eapte2aqyfta.py
# Topologically Sorted Source Nodes: [energy_new], Original ATen: [aten.sub]
# Source node to ATen node mapping:
# energy_new => sub
# Graph fragment:
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %bmm), kwargs = {})
triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (x2), xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = tmp6 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention => amax, exp, sub_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sub, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/zw/czwjwtakpcfgtyxx5njjga5knmour5u5jtxktupbb7aieu4bhnrg.py
# Topologically Sorted Source Nodes: [mean, out_2, mul, out_3], Original ATen: [aten.mean, aten.div, aten.mul, aten.add]
# Source node to ATen node mapping:
# mean => mean
# mul => mul
# out_2 => div_1
# out_3 => add
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.default](args = (%view_3,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_3, %mean), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_1), kwargs = {})
triton_per_fused_add_div_mean_mul_3 = async_compile.triton('triton_per_fused_add_div_mean_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp6 = tl.load(in_ptr1 + (0))
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp10 = tl.load(in_ptr2 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 256.0
tmp5 = tmp3 / tmp4
tmp8 = tmp0 / tmp5
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp5, None)
tl.store(out_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp11, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [energy], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_1, (4, 16, 4), (64, 1, 16), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [energy_new], Original ATen: [aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_sub_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0)
del buf2
buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention, out], Original ATen: [aten._softmax, aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), out=buf4)
del buf3
buf5 = empty_strided_cuda((), (), torch.float32)
buf6 = buf5; del buf5 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, out_2, mul, out_3], Original ATen: [aten.mean, aten.div, aten.mul, aten.add]
triton_per_fused_add_div_mean_mul_3.run(buf6, buf4, primals_2, primals_1, buf7, 1, 256, grid=grid(1), stream=stream0)
del primals_1
del primals_2
return (buf7, buf4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from torch.nn import Module
import torch
from torch.nn import Parameter
from torch.nn import Softmax
class CAM_Module(Module):
""" Channel attention module"""
def __init__(self, in_dim):
super(CAM_Module, self).__init__()
self.chanel_in = in_dim
self.gamma = Parameter(torch.zeros(1))
self.softmax = Softmax(dim=-1)
def forward(self, x):
"""
Calcuate attetion between channels
Args:
x: input feature maps (B * C * H * W)
Returns:
out: attention value + input feature (B * C * H * W)
attention: B * C * C
"""
m_batchsize, C, height, wight = x.size()
proj_query = x.view(m_batchsize, C, -1)
proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1)
proj_value = x.view(m_batchsize, C, -1)
energy = torch.bmm(proj_query, proj_key)
energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy
) - energy
attention = self.softmax(energy_new)
out = torch.bmm(attention, proj_value)
out = out.view(m_batchsize, C, height, wight)
mean = torch.mean(out)
out = out / mean
out = self.gamma * out + x
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
from torch.nn import Parameter
from torch.nn import Softmax
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + x2, xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = tmp6 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_per_fused_add_div_mean_mul_3(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp6 = tl.load(in_ptr1 + 0)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp10 = tl.load(in_ptr2 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 256.0
tmp5 = tmp3 / tmp4
tmp8 = tmp0 / tmp5
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp5, None)
tl.store(out_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp11, None)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 4, 16), (64,
16, 1), 0), reinterpret_tensor(primals_1, (4, 16, 4), (64, 1,
16), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sub_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
triton_poi_fused__softmax_2[grid(64)](buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf2
buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(primals_1, (4, 4, 16),
(64, 16, 1), 0), out=buf4)
del buf3
buf5 = empty_strided_cuda((), (), torch.float32)
buf6 = buf5
del buf5
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused_add_div_mean_mul_3[grid(1)](buf6, buf4, primals_2,
primals_1, buf7, 1, 256, num_warps=2, num_stages=1)
del primals_1
del primals_2
return buf7, buf4, buf6
class CAM_ModuleNew(Module):
""" Channel attention module"""
def __init__(self, in_dim):
super(CAM_ModuleNew, self).__init__()
self.chanel_in = in_dim
self.gamma = Parameter(torch.zeros(1))
self.softmax = Softmax(dim=-1)
def forward(self, input_0):
primals_2 = self.gamma
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
jiaxu0017/Segmentation_attention_mainfold-Pytorch
|
CAM_Module
| false | 12,613 |
[
"MIT"
] | 0 |
ff42168b5e77618221dc3bc6887765aa14530e8e
|
https://github.com/jiaxu0017/Segmentation_attention_mainfold-Pytorch/tree/ff42168b5e77618221dc3bc6887765aa14530e8e
|
EqualLinearActModule
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/4q/c4qwjg3oiykrck3lufgrneimjnjyzxvb3c3h6obmpachvwty6igj.py
# Topologically Sorted Source Nodes: [sqrt, mul_1, weight], Original ATen: [aten.sqrt, aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# sqrt => full_default_1
# weight => mul_2
# Graph fragment:
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.5), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %full_default_1), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 1.0), kwargs = {})
triton_poi_fused_mul_sqrt_0 = async_compile.triton('triton_poi_fused_mul_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [mul_3], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_3 => mul_3
# Graph fragment:
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 1.0), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sqrt, mul_1, weight], Original ATen: [aten.sqrt, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sqrt_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul_3], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_3, buf1, 4, grid=grid(4), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_3], Original ATen: [aten.mul]
extern_kernels.addmm(buf1, primals_1, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
return (buf2, buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from copy import deepcopy
import torch.nn as nn
from functools import partial
from torch.nn.init import _calculate_correct_fan
def equalized_lr(module, name='weight', gain=2 ** 0.5, mode='fan_in',
lr_mul=1.0):
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
EqualizedLR.apply(module, name, gain=gain, mode=mode, lr_mul=lr_mul)
return module
class EqualizedLR:
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
"""
def __init__(self, name='weight', gain=2 ** 0.5, mode='fan_in', lr_mul=1.0
):
self.name = name
self.mode = mode
self.gain = gain
self.lr_mul = lr_mul
def compute_weight(self, module):
"""Compute weight with equalized learning rate.
Args:
module (nn.Module): A module that is wrapped with equalized lr.
Returns:
torch.Tensor: Updated weight.
"""
weight = getattr(module, self.name + '_orig')
if weight.ndim == 5:
fan = _calculate_correct_fan(weight[0], self.mode)
else:
assert weight.ndim <= 4
fan = _calculate_correct_fan(weight, self.mode)
weight = weight * torch.tensor(self.gain, device=weight.device
) * torch.sqrt(torch.tensor(1.0 / fan, device=weight.device)
) * self.lr_mul
return weight
def __call__(self, module, inputs):
"""Standard interface for forward pre hooks."""
setattr(module, self.name, self.compute_weight(module))
@staticmethod
def apply(module, name, gain=2 ** 0.5, mode='fan_in', lr_mul=1.0):
"""Apply function.
This function is to register an equalized learning rate hook in an
``nn.Module``.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
for _, hook in module._forward_pre_hooks.items():
if isinstance(hook, EqualizedLR):
raise RuntimeError(
f'Cannot register two equalized_lr hooks on the same parameter {name} in {module} module.'
)
fn = EqualizedLR(name, gain=gain, mode=mode, lr_mul=lr_mul)
weight = module._parameters[name]
delattr(module, name)
module.register_parameter(name + '_orig', weight)
setattr(module, name, weight.data)
module.register_forward_pre_hook(fn)
return fn
class EqualizedLRLinearModule(nn.Linear):
"""Equalized LR LinearModule.
In this module, we adopt equalized lr in ``nn.Linear``. The equalized
learning rate is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Note that, the initialization of ``self.weight`` will be overwritten as
:math:`\\mathcal{N}(0, 1)`.
Args:
equalized_lr_cfg (dict | None, optional): Config for ``EqualizedLR``.
If ``None``, equalized learning rate is ignored. Defaults to
dict(mode='fan_in').
"""
def __init__(self, *args, equalized_lr_cfg=dict(mode='fan_in'), **kwargs):
super().__init__(*args, **kwargs)
self.with_equalized_lr = equalized_lr_cfg is not None
if self.with_equalized_lr:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if self.with_equalized_lr:
equalized_lr(self, **equalized_lr_cfg)
self._init_linear_weights()
def _init_linear_weights(self):
"""Initialize linear weights as described in PGGAN."""
nn.init.normal_(self.weight, 0, 1.0 / self.lr_mul)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class EqualLinearActModule(nn.Module):
"""Equalized LR Linear Module with Activation Layer.
This module is modified from ``EqualizedLRLinearModule`` defined in PGGAN.
The major features updated in this module is adding support for activation
layers used in StyleGAN2.
Args:
equalized_lr_cfg (dict | None, optional): Config for equalized lr.
Defaults to dict(gain=1., lr_mul=1.).
bias (bool, optional): Whether to use bias item. Defaults to True.
bias_init (float, optional): The value for bias initialization.
Defaults to ``0.``.
act_cfg (dict | None, optional): Config for activation layer.
Defaults to None.
"""
def __init__(self, *args, equalized_lr_cfg=dict(gain=1.0, lr_mul=1.0),
bias=True, bias_init=0.0, act_cfg=None, **kwargs):
super().__init__()
self.with_activation = act_cfg is not None
self.linear = EqualizedLRLinearModule(*args, bias=False,
equalized_lr_cfg=equalized_lr_cfg, **kwargs)
if equalized_lr_cfg is not None:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if bias:
self.bias = nn.Parameter(torch.zeros(self.linear.out_features).
fill_(bias_init))
else:
self.bias = None
if self.with_activation:
act_cfg = deepcopy(act_cfg)
if act_cfg['type'] == 'fused_bias':
self.act_type = act_cfg.pop('type')
assert self.bias is not None
self.activate = partial(fused_bias_leakyrelu, **act_cfg)
else:
self.act_type = 'normal'
self.activate = build_activation_layer(act_cfg)
else:
self.act_type = None
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input feature map with shape of (N, C, ...).
Returns:
Tensor: Output feature map.
"""
if x.ndim >= 3:
x = x.reshape(x.size(0), -1)
x = self.linear(x)
if self.with_activation and self.act_type == 'fused_bias':
x = self.activate(x, self.bias * self.lr_mul)
elif self.bias is not None and self.with_activation:
x = self.activate(x + self.bias * self.lr_mul)
elif self.bias is not None:
x = x + self.bias * self.lr_mul
elif self.with_activation:
x = self.activate(x)
return x
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from copy import deepcopy
import torch.nn as nn
from functools import partial
from torch.nn.init import _calculate_correct_fan
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sqrt_0[grid(16)](primals_2, buf0, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_3, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_1, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
return buf2, buf0, primals_1
def equalized_lr(module, name='weight', gain=2 ** 0.5, mode='fan_in',
lr_mul=1.0):
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
EqualizedLR.apply(module, name, gain=gain, mode=mode, lr_mul=lr_mul)
return module
class EqualizedLR:
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
"""
def __init__(self, name='weight', gain=2 ** 0.5, mode='fan_in', lr_mul=1.0
):
self.name = name
self.mode = mode
self.gain = gain
self.lr_mul = lr_mul
def compute_weight(self, module):
"""Compute weight with equalized learning rate.
Args:
module (nn.Module): A module that is wrapped with equalized lr.
Returns:
torch.Tensor: Updated weight.
"""
weight = getattr(module, self.name + '_orig')
if weight.ndim == 5:
fan = _calculate_correct_fan(weight[0], self.mode)
else:
assert weight.ndim <= 4
fan = _calculate_correct_fan(weight, self.mode)
weight = weight * torch.tensor(self.gain, device=weight.device
) * torch.sqrt(torch.tensor(1.0 / fan, device=weight.device)
) * self.lr_mul
return weight
def __call__(self, module, inputs):
"""Standard interface for forward pre hooks."""
setattr(module, self.name, self.compute_weight(module))
@staticmethod
def apply(module, name, gain=2 ** 0.5, mode='fan_in', lr_mul=1.0):
"""Apply function.
This function is to register an equalized learning rate hook in an
``nn.Module``.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
for _, hook in module._forward_pre_hooks.items():
if isinstance(hook, EqualizedLR):
raise RuntimeError(
f'Cannot register two equalized_lr hooks on the same parameter {name} in {module} module.'
)
fn = EqualizedLR(name, gain=gain, mode=mode, lr_mul=lr_mul)
weight = module._parameters[name]
delattr(module, name)
module.register_parameter(name + '_orig', weight)
setattr(module, name, weight.data)
module.register_forward_pre_hook(fn)
return fn
class EqualizedLRLinearModule(nn.Linear):
"""Equalized LR LinearModule.
In this module, we adopt equalized lr in ``nn.Linear``. The equalized
learning rate is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Note that, the initialization of ``self.weight`` will be overwritten as
:math:`\\mathcal{N}(0, 1)`.
Args:
equalized_lr_cfg (dict | None, optional): Config for ``EqualizedLR``.
If ``None``, equalized learning rate is ignored. Defaults to
dict(mode='fan_in').
"""
def __init__(self, *args, equalized_lr_cfg=dict(mode='fan_in'), **kwargs):
super().__init__(*args, **kwargs)
self.with_equalized_lr = equalized_lr_cfg is not None
if self.with_equalized_lr:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if self.with_equalized_lr:
equalized_lr(self, **equalized_lr_cfg)
self._init_linear_weights()
def _init_linear_weights(self):
"""Initialize linear weights as described in PGGAN."""
nn.init.normal_(self.weight, 0, 1.0 / self.lr_mul)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class EqualLinearActModuleNew(nn.Module):
"""Equalized LR Linear Module with Activation Layer.
This module is modified from ``EqualizedLRLinearModule`` defined in PGGAN.
The major features updated in this module is adding support for activation
layers used in StyleGAN2.
Args:
equalized_lr_cfg (dict | None, optional): Config for equalized lr.
Defaults to dict(gain=1., lr_mul=1.).
bias (bool, optional): Whether to use bias item. Defaults to True.
bias_init (float, optional): The value for bias initialization.
Defaults to ``0.``.
act_cfg (dict | None, optional): Config for activation layer.
Defaults to None.
"""
def __init__(self, *args, equalized_lr_cfg=dict(gain=1.0, lr_mul=1.0),
bias=True, bias_init=0.0, act_cfg=None, **kwargs):
super().__init__()
self.with_activation = act_cfg is not None
self.linear = EqualizedLRLinearModule(*args, bias=False,
equalized_lr_cfg=equalized_lr_cfg, **kwargs)
if equalized_lr_cfg is not None:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if bias:
self.bias = nn.Parameter(torch.zeros(self.linear.out_features).
fill_(bias_init))
else:
self.bias = None
if self.with_activation:
act_cfg = deepcopy(act_cfg)
if act_cfg['type'] == 'fused_bias':
self.act_type = act_cfg.pop('type')
assert self.bias is not None
self.activate = partial(fused_bias_leakyrelu, **act_cfg)
else:
self.act_type = 'normal'
self.activate = build_activation_layer(act_cfg)
else:
self.act_type = None
def forward(self, input_0):
primals_3 = self.bias
primals_1 = self.linear.weight_orig
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
jiangwenj02/mmgeneration
|
EqualLinearActModule
| false | 12,614 |
[
"Apache-2.0"
] | 0 |
da9ad377ae19260467fc332ddb88f505c38a915a
|
https://github.com/jiangwenj02/mmgeneration/tree/da9ad377ae19260467fc332ddb88f505c38a915a
|
AdaptiveInstanceNorm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/or/corr3tkjnigsk2o6euqdjngfns555swzfvqhbtbmyxsccgvul5e6.py
# Topologically Sorted Source Nodes: [tensor, mul, sqrt, mul_1, weight], Original ATen: [aten.lift_fresh, aten.mul, aten.sqrt]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# sqrt => full_default_1
# tensor => full_default
# weight => mul_2
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.4142135381698608), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %full_default), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.5), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %full_default_1), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 1.0), kwargs = {})
triton_poi_fused_lift_fresh_mul_sqrt_0 = async_compile.triton('triton_poi_fused_lift_fresh_mul_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_lift_fresh_mul_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_lift_fresh_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.4142135381698608
tmp2 = tmp0 * tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/jo/cjo3wxmtawsvu7opemz2xwvsknw4nxv74xivifhgb7csue6qqjbi.py
# Topologically Sorted Source Nodes: [out, mul_3, out_1], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add]
# Source node to ATen node mapping:
# mul_3 => mul_4
# out => add, rsqrt, var_mean
# out_1 => add_1
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %view_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %getitem_1), kwargs = {})
triton_per_fused__native_batch_norm_legit_add_mul_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp22 = tl.load(in_ptr1 + (x2 + (8*x3)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (4 + x2 + (8*x3)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 16.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp24 = tmp22 + tmp23
tmp25 = tmp0 - tmp10
tmp26 = tmp25 * tmp21
tmp27 = tmp24 * tmp26
tmp30 = tmp28 + tmp29
tmp31 = tmp27 + tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp21, xmask)
tl.store(out_ptr1 + (r1 + (16*x0)), tmp31, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (8, 4), (4, 1))
assert_size_stride(primals_2, (8, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tensor, mul, sqrt, mul_1, weight], Original ATen: [aten.lift_fresh, aten.mul, aten.sqrt]
stream0 = get_raw_stream(0)
triton_poi_fused_lift_fresh_mul_sqrt_0.run(primals_1, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(buf0, (4, 8), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf5 = reinterpret_tensor(buf3, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf3 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, mul_3, out_1], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add]
triton_per_fused__native_batch_norm_legit_add_mul_1.run(buf5, primals_4, buf1, primals_2, buf2, buf6, 16, 16, grid=grid(16), stream=stream0)
del buf1
del primals_2
return (buf6, buf0, primals_3, primals_4, buf2, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from torch.nn.init import _calculate_correct_fan
def equalized_lr(module, name='weight', gain=2 ** 0.5, mode='fan_in',
lr_mul=1.0):
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
EqualizedLR.apply(module, name, gain=gain, mode=mode, lr_mul=lr_mul)
return module
class EqualizedLR:
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
"""
def __init__(self, name='weight', gain=2 ** 0.5, mode='fan_in', lr_mul=1.0
):
self.name = name
self.mode = mode
self.gain = gain
self.lr_mul = lr_mul
def compute_weight(self, module):
"""Compute weight with equalized learning rate.
Args:
module (nn.Module): A module that is wrapped with equalized lr.
Returns:
torch.Tensor: Updated weight.
"""
weight = getattr(module, self.name + '_orig')
if weight.ndim == 5:
fan = _calculate_correct_fan(weight[0], self.mode)
else:
assert weight.ndim <= 4
fan = _calculate_correct_fan(weight, self.mode)
weight = weight * torch.tensor(self.gain, device=weight.device
) * torch.sqrt(torch.tensor(1.0 / fan, device=weight.device)
) * self.lr_mul
return weight
def __call__(self, module, inputs):
"""Standard interface for forward pre hooks."""
setattr(module, self.name, self.compute_weight(module))
@staticmethod
def apply(module, name, gain=2 ** 0.5, mode='fan_in', lr_mul=1.0):
"""Apply function.
This function is to register an equalized learning rate hook in an
``nn.Module``.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
for _, hook in module._forward_pre_hooks.items():
if isinstance(hook, EqualizedLR):
raise RuntimeError(
f'Cannot register two equalized_lr hooks on the same parameter {name} in {module} module.'
)
fn = EqualizedLR(name, gain=gain, mode=mode, lr_mul=lr_mul)
weight = module._parameters[name]
delattr(module, name)
module.register_parameter(name + '_orig', weight)
setattr(module, name, weight.data)
module.register_forward_pre_hook(fn)
return fn
class EqualizedLRLinearModule(nn.Linear):
"""Equalized LR LinearModule.
In this module, we adopt equalized lr in ``nn.Linear``. The equalized
learning rate is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Note that, the initialization of ``self.weight`` will be overwritten as
:math:`\\mathcal{N}(0, 1)`.
Args:
equalized_lr_cfg (dict | None, optional): Config for ``EqualizedLR``.
If ``None``, equalized learning rate is ignored. Defaults to
dict(mode='fan_in').
"""
def __init__(self, *args, equalized_lr_cfg=dict(mode='fan_in'), **kwargs):
super().__init__(*args, **kwargs)
self.with_equalized_lr = equalized_lr_cfg is not None
if self.with_equalized_lr:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if self.with_equalized_lr:
equalized_lr(self, **equalized_lr_cfg)
self._init_linear_weights()
def _init_linear_weights(self):
"""Initialize linear weights as described in PGGAN."""
nn.init.normal_(self.weight, 0, 1.0 / self.lr_mul)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class AdaptiveInstanceNorm(nn.Module):
"""Adaptive Instance Normalization Module.
Ref: https://github.com/rosinality/style-based-gan-pytorch/blob/master/model.py # noqa
Args:
in_channel (int): The number of input's channel.
style_dim (int): Style latent dimension.
"""
def __init__(self, in_channel, style_dim):
super().__init__()
self.norm = nn.InstanceNorm2d(in_channel)
self.affine = EqualizedLRLinearModule(style_dim, in_channel * 2)
self.affine.bias.data[:in_channel] = 1
self.affine.bias.data[in_channel:] = 0
def forward(self, input, style):
"""Forward function.
Args:
input (Tensor): Input tensor with shape (n, c, h, w).
style (Tensor): Input style tensor with shape (n, c).
Returns:
Tensor: Forward results.
"""
style = self.affine(style).unsqueeze(2).unsqueeze(3)
gamma, beta = style.chunk(2, 1)
out = self.norm(input)
out = gamma * out + beta
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'style_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn.init import _calculate_correct_fan
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_lift_fresh_mul_sqrt_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.4142135381698608
tmp2 = tmp0 * tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_mul_1(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp22 = tl.load(in_ptr1 + (x2 + 8 * x3), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (4 + x2 + 8 * x3), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 16.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp24 = tmp22 + tmp23
tmp25 = tmp0 - tmp10
tmp26 = tmp25 * tmp21
tmp27 = tmp24 * tmp26
tmp30 = tmp28 + tmp29
tmp31 = tmp27 + tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp21, xmask)
tl.store(out_ptr1 + (r1 + 16 * x0), tmp31, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (8, 4), (4, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_lift_fresh_mul_sqrt_0[grid(32)](primals_1, buf0,
32, XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(buf0, (4, 8), (1, 4
), 0), out=buf1)
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf5 = reinterpret_tensor(buf3, (1, 16, 1, 1), (16, 1, 1, 1), 0)
del buf3
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused__native_batch_norm_legit_add_mul_1[grid(16)](buf5,
primals_4, buf1, primals_2, buf2, buf6, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del buf1
del primals_2
return buf6, buf0, primals_3, primals_4, buf2, buf5
def equalized_lr(module, name='weight', gain=2 ** 0.5, mode='fan_in',
lr_mul=1.0):
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
EqualizedLR.apply(module, name, gain=gain, mode=mode, lr_mul=lr_mul)
return module
class EqualizedLR:
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
"""
def __init__(self, name='weight', gain=2 ** 0.5, mode='fan_in', lr_mul=1.0
):
self.name = name
self.mode = mode
self.gain = gain
self.lr_mul = lr_mul
def compute_weight(self, module):
"""Compute weight with equalized learning rate.
Args:
module (nn.Module): A module that is wrapped with equalized lr.
Returns:
torch.Tensor: Updated weight.
"""
weight = getattr(module, self.name + '_orig')
if weight.ndim == 5:
fan = _calculate_correct_fan(weight[0], self.mode)
else:
assert weight.ndim <= 4
fan = _calculate_correct_fan(weight, self.mode)
weight = weight * torch.tensor(self.gain, device=weight.device
) * torch.sqrt(torch.tensor(1.0 / fan, device=weight.device)
) * self.lr_mul
return weight
def __call__(self, module, inputs):
"""Standard interface for forward pre hooks."""
setattr(module, self.name, self.compute_weight(module))
@staticmethod
def apply(module, name, gain=2 ** 0.5, mode='fan_in', lr_mul=1.0):
"""Apply function.
This function is to register an equalized learning rate hook in an
``nn.Module``.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
for _, hook in module._forward_pre_hooks.items():
if isinstance(hook, EqualizedLR):
raise RuntimeError(
f'Cannot register two equalized_lr hooks on the same parameter {name} in {module} module.'
)
fn = EqualizedLR(name, gain=gain, mode=mode, lr_mul=lr_mul)
weight = module._parameters[name]
delattr(module, name)
module.register_parameter(name + '_orig', weight)
setattr(module, name, weight.data)
module.register_forward_pre_hook(fn)
return fn
class EqualizedLRLinearModule(nn.Linear):
"""Equalized LR LinearModule.
In this module, we adopt equalized lr in ``nn.Linear``. The equalized
learning rate is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Note that, the initialization of ``self.weight`` will be overwritten as
:math:`\\mathcal{N}(0, 1)`.
Args:
equalized_lr_cfg (dict | None, optional): Config for ``EqualizedLR``.
If ``None``, equalized learning rate is ignored. Defaults to
dict(mode='fan_in').
"""
def __init__(self, *args, equalized_lr_cfg=dict(mode='fan_in'), **kwargs):
super().__init__(*args, **kwargs)
self.with_equalized_lr = equalized_lr_cfg is not None
if self.with_equalized_lr:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if self.with_equalized_lr:
equalized_lr(self, **equalized_lr_cfg)
self._init_linear_weights()
def _init_linear_weights(self):
"""Initialize linear weights as described in PGGAN."""
nn.init.normal_(self.weight, 0, 1.0 / self.lr_mul)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class AdaptiveInstanceNormNew(nn.Module):
"""Adaptive Instance Normalization Module.
Ref: https://github.com/rosinality/style-based-gan-pytorch/blob/master/model.py # noqa
Args:
in_channel (int): The number of input's channel.
style_dim (int): Style latent dimension.
"""
def __init__(self, in_channel, style_dim):
super().__init__()
self.norm = nn.InstanceNorm2d(in_channel)
self.affine = EqualizedLRLinearModule(style_dim, in_channel * 2)
self.affine.bias.data[:in_channel] = 1
self.affine.bias.data[in_channel:] = 0
def forward(self, input_0, input_1):
primals_2 = self.affine.bias
primals_1 = self.affine.weight_orig
primals_4 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
jiangwenj02/mmgeneration
|
AdaptiveInstanceNorm
| false | 12,615 |
[
"Apache-2.0"
] | 0 |
da9ad377ae19260467fc332ddb88f505c38a915a
|
https://github.com/jiangwenj02/mmgeneration/tree/da9ad377ae19260467fc332ddb88f505c38a915a
|
Critic
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# xu => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ac/cacdwifxdru2eihx3n66wqfym5hjpdo6yxk3gsol5t54xroplkwv.py
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x1 => relu
# Graph fragment:
# %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 400
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vp/cvpyw2bjgo55x2ne47dmpi2vmqu5t4eb3wcvjgjcnove3xyj7bcr.py
# Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x1_1 => relu_1
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_6), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 300
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (400, 8), (8, 1))
assert_size_stride(primals_4, (400, ), (1, ))
assert_size_stride(primals_5, (300, 400), (400, 1))
assert_size_stride(primals_6, (300, ), (1, ))
assert_size_stride(primals_7, (1, 300), (300, 1))
assert_size_stride(primals_8, (1, ), (1, ))
assert_size_stride(primals_9, (400, 8), (8, 1))
assert_size_stride(primals_10, (400, ), (1, ))
assert_size_stride(primals_11, (300, 400), (400, 1))
assert_size_stride(primals_12, (300, ), (1, ))
assert_size_stride(primals_13, (1, 300), (300, 1))
assert_size_stride(primals_14, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 400), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_4, 1600, grid=grid(1600), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 300), (300, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (400, 300), (1, 400), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.relu]
triton_poi_fused_relu_2.run(buf4, primals_6, 1200, grid=grid(1200), stream=stream0)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (300, 1), (1, 300), 0), alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 400), (1, 8), 0), out=buf7)
del primals_9
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf8, primals_10, 1600, grid=grid(1600), stream=stream0)
del primals_10
buf9 = empty_strided_cuda((4, 300), (300, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (400, 300), (1, 400), 0), out=buf9)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.relu]
triton_poi_fused_relu_2.run(buf10, primals_12, 1200, grid=grid(1200), stream=stream0)
del primals_12
buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x2_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_14, buf10, reinterpret_tensor(primals_13, (300, 1), (1, 300), 0), alpha=1, beta=1, out=buf12)
del primals_14
return (buf6, buf12, buf0, buf2, buf4, buf8, buf10, primals_13, primals_11, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((400, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((300, 400), (400, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 300), (300, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((400, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((300, 400), (400, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, 300), (300, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, 1)
self.l4 = nn.Linear(state_dim + action_dim, 400)
self.l5 = nn.Linear(400, 300)
self.l6 = nn.Linear(300, 1)
def forward(self, x, u):
xu = torch.cat([x, u], 1)
x1 = F.relu(self.l1(xu))
x1 = F.relu(self.l2(x1))
x1 = self.l3(x1)
x2 = F.relu(self.l4(xu))
x2 = F.relu(self.l5(x2))
x2 = self.l6(x2)
return x1, x2
def Q1(self, x, u):
xu = torch.cat([x, u], 1)
x1 = F.relu(self.l1(xu))
x1 = F.relu(self.l2(x1))
x1 = self.l3(x1)
return x1
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 400
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 300
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (400, 8), (8, 1))
assert_size_stride(primals_4, (400,), (1,))
assert_size_stride(primals_5, (300, 400), (400, 1))
assert_size_stride(primals_6, (300,), (1,))
assert_size_stride(primals_7, (1, 300), (300, 1))
assert_size_stride(primals_8, (1,), (1,))
assert_size_stride(primals_9, (400, 8), (8, 1))
assert_size_stride(primals_10, (400,), (1,))
assert_size_stride(primals_11, (300, 400), (400, 1))
assert_size_stride(primals_12, (300,), (1,))
assert_size_stride(primals_13, (1, 300), (300, 1))
assert_size_stride(primals_14, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 400), (1,
8), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(1600)](buf2, primals_4, 1600, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 300), (300, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (400, 300), (
1, 400), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_2[grid(1200)](buf4, primals_6, 1200, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7,
(300, 1), (1, 300), 0), alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 400), (1,
8), 0), out=buf7)
del primals_9
buf8 = buf7
del buf7
triton_poi_fused_relu_1[grid(1600)](buf8, primals_10, 1600, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_10
buf9 = empty_strided_cuda((4, 300), (300, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (400, 300),
(1, 400), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_relu_2[grid(1200)](buf10, primals_12, 1200, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_12
buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_14, buf10, reinterpret_tensor(
primals_13, (300, 1), (1, 300), 0), alpha=1, beta=1, out=buf12)
del primals_14
return (buf6, buf12, buf0, buf2, buf4, buf8, buf10, primals_13,
primals_11, primals_7, primals_5)
class CriticNew(nn.Module):
def __init__(self, state_dim, action_dim):
super(CriticNew, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, 1)
self.l4 = nn.Linear(state_dim + action_dim, 400)
self.l5 = nn.Linear(400, 300)
self.l6 = nn.Linear(300, 1)
def Q1(self, x, u):
xu = torch.cat([x, u], 1)
x1 = F.relu(self.l1(xu))
x1 = F.relu(self.l2(x1))
x1 = self.l3(x1)
return x1
def forward(self, input_0, input_1):
primals_3 = self.l1.weight
primals_4 = self.l1.bias
primals_5 = self.l2.weight
primals_6 = self.l2.bias
primals_7 = self.l3.weight
primals_8 = self.l3.bias
primals_9 = self.l4.weight
primals_10 = self.l4.bias
primals_11 = self.l5.weight
primals_12 = self.l5.bias
primals_13 = self.l6.weight
primals_14 = self.l6.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14])
return output[0], output[1]
|
jinPrelude/ksp-ai
|
Critic
| false | 12,616 |
[
"MIT"
] | 0 |
d8b235d1ef77afe413fbff2e859e1210330bde37
|
https://github.com/jinPrelude/ksp-ai/tree/d8b235d1ef77afe413fbff2e859e1210330bde37
|
LinearDeepQNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py
# Topologically Sorted Source Nodes: [layer1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# layer1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 128), (128, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse
buf3 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [layer1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 8192, grid=grid(8192), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [actions], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), primals_4, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch as T
class LinearDeepQNetwork(nn.Module):
def __init__(self, lr, input, n_actions):
super(LinearDeepQNetwork, self).__init__()
self.fc1 = nn.Linear(input, 128)
self.fc2 = nn.Linear(128, n_actions)
self.optimizer = optim.Adam(self.parameters(), lr=lr)
self.loss = nn.MSELoss()
self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
self
def forward(self, state):
layer1 = F.relu(self.fc1(state))
actions = self.fc2(layer1)
return actions
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'lr': 4, 'input': 4, 'n_actions': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.optim as optim
import torch as T
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 128), (128, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf0
buf3 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1,
primals_2, buf3, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_4, (128, 4), (1, 128),
0), alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), primals_4, buf3
class LinearDeepQNetworkNew(nn.Module):
def __init__(self, lr, input, n_actions):
super(LinearDeepQNetworkNew, self).__init__()
self.fc1 = nn.Linear(input, 128)
self.fc2 = nn.Linear(128, n_actions)
self.optimizer = optim.Adam(self.parameters(), lr=lr)
self.loss = nn.MSELoss()
self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
self
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
joaomanojr/tecprog
|
LinearDeepQNetwork
| false | 12,617 |
[
"MIT"
] | 0 |
825ae3dd9f2ddd0bce2d410af7deae8eb5ba3d21
|
https://github.com/joaomanojr/tecprog/tree/825ae3dd9f2ddd0bce2d410af7deae8eb5ba3d21
|
GCN
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/47/c47kgnmzb4xys3ygx3ihx2nam6zjmvjlvjhb5e7ewbfprulwexea.py
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# add => add
# x => relu
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_add_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/sl/csle755d3ndemyhso6pu64pay65wsehdd6pgsllesbiyf77nsgbq.py
# Topologically Sorted Source Nodes: [x_2, log_softmax], Original ATen: [aten.add, aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, exp, log, sub, sum_1
# x_2 => add_1
# Graph fragment:
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %primals_6), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
triton_poi_fused__log_softmax_add_1 = async_compile.triton('triton_poi_fused__log_softmax_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_add_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_add_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 16)
x3 = xindex % 16
x0 = xindex % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (64*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x3 + (64*x2)), xmask)
tmp6 = tl.load(in_ptr0 + (32 + x3 + (64*x2)), xmask)
tmp9 = tl.load(in_ptr0 + (48 + x3 + (64*x2)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = triton_helpers.maximum(tmp2, tmp4)
tmp7 = tmp6 + tmp1
tmp8 = triton_helpers.maximum(tmp5, tmp7)
tmp10 = tmp9 + tmp1
tmp11 = triton_helpers.maximum(tmp8, tmp10)
tmp12 = tmp2 - tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp4 - tmp11
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp7 - tmp11
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp10 - tmp11
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tl_math.log(tmp22)
tl.store(out_ptr0 + (x4), tmp11, xmask)
tl.store(out_ptr1 + (x4), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/3r/c3rshwreypbxikkfm73t4s76557uz646oq4nh3c7gbiy6fgjqjz3.py
# Topologically Sorted Source Nodes: [x_2, log_softmax], Original ATen: [aten.add, aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, exp, log, sub, sub_1, sum_1
# x_2 => add_1
# Graph fragment:
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %primals_6), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_add_2 = async_compile.triton('triton_poi_fused__log_softmax_add_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_add_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x3 = (xindex // 64)
x5 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x5 + (16*x3)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x5 + (16*x3)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = tmp4 - tmp5
tl.store(in_out_ptr0 + (x4), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out=buf1)
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_add_relu_threshold_backward_0.run(buf2, primals_4, buf8, 256, grid=grid(256), stream=stream0)
del primals_4
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_5, out=buf3)
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf4)
del buf3
buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2, log_softmax], Original ATen: [aten.add, aten._log_softmax]
triton_poi_fused__log_softmax_add_1.run(buf4, primals_6, buf5, buf6, 64, grid=grid(64), stream=stream0)
buf7 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [x_2, log_softmax], Original ATen: [aten.add, aten._log_softmax]
triton_poi_fused__log_softmax_add_2.run(buf7, primals_6, buf5, buf6, 256, grid=grid(256), stream=stream0)
del buf5
del buf6
del primals_6
return (buf7, buf7, reinterpret_tensor(primals_3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf2, (4, 64), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), buf8, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from torch.nn import Module
import math
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
import torch.nn.functional as F
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.matmul(input, self.weight)
output = torch.matmul(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GCN(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, adj)
return F.log_softmax(x, dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
import math
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__log_softmax_add_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 16
x3 = xindex % 16
x0 = xindex % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 64 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x3 + 64 * x2), xmask)
tmp6 = tl.load(in_ptr0 + (32 + x3 + 64 * x2), xmask)
tmp9 = tl.load(in_ptr0 + (48 + x3 + 64 * x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = triton_helpers.maximum(tmp2, tmp4)
tmp7 = tmp6 + tmp1
tmp8 = triton_helpers.maximum(tmp5, tmp7)
tmp10 = tmp9 + tmp1
tmp11 = triton_helpers.maximum(tmp8, tmp10)
tmp12 = tmp2 - tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp4 - tmp11
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp7 - tmp11
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp10 - tmp11
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tl_math.log(tmp22)
tl.store(out_ptr0 + x4, tmp11, xmask)
tl.store(out_ptr1 + x4, tmp23, xmask)
@triton.jit
def triton_poi_fused__log_softmax_add_2(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x3 = xindex // 64
x5 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x5 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr2 + (x5 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = tmp4 - tmp5
tl.store(in_out_ptr0 + x4, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_3, (16, 4, 4), (16, 4,
1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0),
out=buf1)
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_add_relu_threshold_backward_0[grid(256)](buf2,
primals_4, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf3 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
primals_5, out=buf3)
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_3, (16, 4, 4), (16, 4,
1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0),
out=buf4)
del buf3
buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
triton_poi_fused__log_softmax_add_1[grid(64)](buf4, primals_6, buf5,
buf6, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf7 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
triton_poi_fused__log_softmax_add_2[grid(256)](buf7, primals_6,
buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf5
del buf6
del primals_6
return buf7, buf7, reinterpret_tensor(primals_3, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf2, (4, 64), (1, 4), 0), reinterpret_tensor(
primals_5, (4, 4), (1, 4), 0), buf8, reinterpret_tensor(primals_2,
(4, 64), (1, 4), 0)
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.matmul(input, self.weight)
output = torch.matmul(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GCNNew(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCNNew, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
def forward(self, input_0, input_1):
primals_1 = self.gc1.weight
primals_4 = self.gc1.bias
primals_5 = self.gc2.weight
primals_6 = self.gc2.bias
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
jindl465/pygcn
|
GCN
| false | 12,618 |
[
"MIT"
] | 0 |
bbbedc2278d1b1bc260e138f98cf27733995914d
|
https://github.com/jindl465/pygcn/tree/bbbedc2278d1b1bc260e138f98cf27733995914d
|
CSNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/po/cpofbjwismtieecyelepq7daqswlyzicspjj2g7old7iuau2nloa.py
# Topologically Sorted Source Nodes: [measurement], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# measurement => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [20, 20], [20, 20], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 12
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/3e/c3edbzh743q3xhw3ktqyenrlthyvpcovizmdsse65527yfccj6ut.py
# Topologically Sorted Source Nodes: [y0], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# y0 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [20, 20], [20, 20], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 43200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3600) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/tq/ctqfgpcbuimgovdnhnziny3xfskx4dydcyxehphq4kidhgx6yzho.py
# Topologically Sorted Source Nodes: [conv2d_1, y], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_2
# y => relu
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_1, %primals_6, %primals_7, [1, 1], [5, 5], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 921600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 3600) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2l/c2lqmkilviqubxbjl33e22kqmv56acpsrsxtkmah5jzval33mwka.py
# Topologically Sorted Source Nodes: [conv2d_2, y_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_3
# y_1 => relu_1
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 460800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 3600) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/on/conyzgb6ossnafj5y7egywbmrkxldir6dt3bvont45krehxfcgme.py
# Topologically Sorted Source Nodes: [conv2d_3, y1], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# conv2d_3 => convolution_4
# y1 => add
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_10, %primals_11, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %convolution_4), kwargs = {})
triton_poi_fused_add_convolution_4 = async_compile.triton('triton_poi_fused_add_convolution_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 43200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3600) % 3
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_out_ptr0 + (x3), xmask)
tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 = args
args.clear()
assert_size_stride(primals_1, (12, 3, 40, 40), (4800, 1600, 40, 1))
assert_size_stride(primals_2, (12, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (12, 3, 40, 40), (4800, 1600, 40, 1))
assert_size_stride(primals_5, (3, ), (1, ))
assert_size_stride(primals_6, (64, 3, 11, 11), (363, 121, 11, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (32, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_9, (32, ), (1, ))
assert_size_stride(primals_10, (3, 32, 7, 7), (1568, 49, 7, 1))
assert_size_stride(primals_11, (3, ), (1, ))
assert_size_stride(primals_12, (64, 3, 11, 11), (363, 121, 11, 1))
assert_size_stride(primals_13, (64, ), (1, ))
assert_size_stride(primals_14, (32, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_15, (32, ), (1, ))
assert_size_stride(primals_16, (3, 32, 7, 7), (1568, 49, 7, 1))
assert_size_stride(primals_17, (3, ), (1, ))
assert_size_stride(primals_18, (64, 3, 11, 11), (363, 121, 11, 1))
assert_size_stride(primals_19, (64, ), (1, ))
assert_size_stride(primals_20, (32, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_21, (32, ), (1, ))
assert_size_stride(primals_22, (3, 32, 7, 7), (1568, 49, 7, 1))
assert_size_stride(primals_23, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [measurement], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(20, 20), padding=(20, 20), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 12, 4, 4), (192, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [measurement], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 768, grid=grid(768), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [y0], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(20, 20), padding=(20, 20), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 3, 60, 60), (10800, 3600, 60, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [y0], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 43200, grid=grid(43200), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(5, 5), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 60, 60), (230400, 3600, 60, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, y], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 921600, grid=grid(921600), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 60, 60), (115200, 3600, 60, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, y_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf7, primals_9, 460800, grid=grid(460800), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 3, 60, 60), (10800, 3600, 60, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, y1], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_4.run(buf9, buf3, primals_11, 43200, grid=grid(43200), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(5, 5), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 60, 60), (230400, 3600, 60, 1))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [conv2d_4, y_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf11, primals_13, 921600, grid=grid(921600), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 32, 60, 60), (115200, 3600, 60, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, y_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf13, primals_15, 460800, grid=grid(460800), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, primals_16, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 3, 60, 60), (10800, 3600, 60, 1))
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [conv2d_6, y2], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_4.run(buf15, buf9, primals_17, 43200, grid=grid(43200), stream=stream0)
del primals_17
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf15, primals_18, stride=(1, 1), padding=(5, 5), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 64, 60, 60), (230400, 3600, 60, 1))
buf17 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [conv2d_7, y_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf17, primals_19, 921600, grid=grid(921600), stream=stream0)
del primals_19
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf18 = extern_kernels.convolution(buf17, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 32, 60, 60), (115200, 3600, 60, 1))
buf19 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [conv2d_8, y_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf19, primals_21, 460800, grid=grid(460800), stream=stream0)
del primals_21
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf20 = extern_kernels.convolution(buf19, primals_22, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 3, 60, 60), (10800, 3600, 60, 1))
buf21 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [conv2d_9, y_6], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_4.run(buf21, buf15, primals_23, 43200, grid=grid(43200), stream=stream0)
del primals_23
return (buf1, buf21, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, buf1, buf3, buf5, buf7, buf9, buf11, buf13, buf15, buf17, buf19, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((12, 3, 40, 40), (4800, 1600, 40, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, 3, 40, 40), (4800, 1600, 40, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 3, 11, 11), (363, 121, 11, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((32, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((3, 32, 7, 7), (1568, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((64, 3, 11, 11), (363, 121, 11, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((32, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((3, 32, 7, 7), (1568, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((64, 3, 11, 11), (363, 121, 11, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((32, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((3, 32, 7, 7), (1568, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class CSNet(torch.nn.Module):
def __init__(self):
super(CSNet, self).__init__()
k_stride = 20
color_channel = 3
mr = 12
self.conv0 = torch.nn.Conv2d(in_channels=color_channel,
out_channels=mr, kernel_size=2 * k_stride, stride=k_stride,
padding=k_stride)
self.deconv0 = torch.nn.ConvTranspose2d(in_channels=mr,
out_channels=color_channel, kernel_size=2 * k_stride, stride=
k_stride, padding=k_stride)
self.conv1_1 = torch.nn.Conv2d(in_channels=color_channel,
out_channels=64, kernel_size=11, stride=1, padding=5)
self.conv1_2 = torch.nn.Conv2d(in_channels=64, out_channels=32,
kernel_size=1, stride=1, padding=0)
self.conv1_3 = torch.nn.Conv2d(in_channels=32, out_channels=
color_channel, kernel_size=7, stride=1, padding=3)
self.conv2_1 = torch.nn.Conv2d(in_channels=color_channel,
out_channels=64, kernel_size=11, stride=1, padding=5)
self.conv2_2 = torch.nn.Conv2d(in_channels=64, out_channels=32,
kernel_size=1, stride=1, padding=0)
self.conv2_3 = torch.nn.Conv2d(in_channels=32, out_channels=
color_channel, kernel_size=7, stride=1, padding=3)
self.conv3_1 = torch.nn.Conv2d(in_channels=color_channel,
out_channels=64, kernel_size=11, stride=1, padding=5)
self.conv3_2 = torch.nn.Conv2d(in_channels=64, out_channels=32,
kernel_size=1, stride=1, padding=0)
self.conv3_3 = torch.nn.Conv2d(in_channels=32, out_channels=
color_channel, kernel_size=7, stride=1, padding=3)
def forward(self, x):
measurement = self.conv0(x)
y0 = self.deconv0(measurement)
y = torch.nn.functional.relu(self.conv1_1(y0))
y = torch.nn.functional.relu(self.conv1_2(y))
y1 = y0 + self.conv1_3(y)
y = torch.nn.functional.relu(self.conv2_1(y1))
y = torch.nn.functional.relu(self.conv2_2(y))
y2 = y1 + self.conv2_3(y)
y = torch.nn.functional.relu(self.conv3_1(y2))
y = torch.nn.functional.relu(self.conv3_2(y))
y = y2 + self.conv3_3(y)
return measurement, y
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 12
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 43200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3600 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 3600 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 3600 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_add_convolution_4(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 43200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3600 % 3
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22, primals_23
) = args
args.clear()
assert_size_stride(primals_1, (12, 3, 40, 40), (4800, 1600, 40, 1))
assert_size_stride(primals_2, (12,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (12, 3, 40, 40), (4800, 1600, 40, 1))
assert_size_stride(primals_5, (3,), (1,))
assert_size_stride(primals_6, (64, 3, 11, 11), (363, 121, 11, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (32, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_9, (32,), (1,))
assert_size_stride(primals_10, (3, 32, 7, 7), (1568, 49, 7, 1))
assert_size_stride(primals_11, (3,), (1,))
assert_size_stride(primals_12, (64, 3, 11, 11), (363, 121, 11, 1))
assert_size_stride(primals_13, (64,), (1,))
assert_size_stride(primals_14, (32, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_15, (32,), (1,))
assert_size_stride(primals_16, (3, 32, 7, 7), (1568, 49, 7, 1))
assert_size_stride(primals_17, (3,), (1,))
assert_size_stride(primals_18, (64, 3, 11, 11), (363, 121, 11, 1))
assert_size_stride(primals_19, (64,), (1,))
assert_size_stride(primals_20, (32, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_21, (32,), (1,))
assert_size_stride(primals_22, (3, 32, 7, 7), (1568, 49, 7, 1))
assert_size_stride(primals_23, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(20,
20), padding=(20, 20), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 12, 4, 4), (192, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(768)](buf1, primals_2, 768,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(20, 20),
padding=(20, 20), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 3, 60, 60), (10800, 3600, 60, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(43200)](buf3, primals_5, 43200,
XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(5, 5), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 60, 60), (230400, 3600, 60, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(921600)](buf5, primals_7,
921600, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 60, 60), (115200, 3600, 60, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_3[grid(460800)](buf7, primals_9,
460800, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 3, 60, 60), (10800, 3600, 60, 1))
buf9 = buf8
del buf8
triton_poi_fused_add_convolution_4[grid(43200)](buf9, buf3,
primals_11, 43200, XBLOCK=512, num_warps=4, num_stages=1)
del primals_11
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1),
padding=(5, 5), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 60, 60), (230400, 3600, 60, 1))
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_2[grid(921600)](buf11, primals_13,
921600, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_13
buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 32, 60, 60), (115200, 3600, 60, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_relu_3[grid(460800)](buf13, primals_15,
460800, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_15
buf14 = extern_kernels.convolution(buf13, primals_16, stride=(1, 1),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 3, 60, 60), (10800, 3600, 60, 1))
buf15 = buf14
del buf14
triton_poi_fused_add_convolution_4[grid(43200)](buf15, buf9,
primals_17, 43200, XBLOCK=512, num_warps=4, num_stages=1)
del primals_17
buf16 = extern_kernels.convolution(buf15, primals_18, stride=(1, 1),
padding=(5, 5), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 64, 60, 60), (230400, 3600, 60, 1))
buf17 = buf16
del buf16
triton_poi_fused_convolution_relu_2[grid(921600)](buf17, primals_19,
921600, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_19
buf18 = extern_kernels.convolution(buf17, primals_20, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 32, 60, 60), (115200, 3600, 60, 1))
buf19 = buf18
del buf18
triton_poi_fused_convolution_relu_3[grid(460800)](buf19, primals_21,
460800, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_21
buf20 = extern_kernels.convolution(buf19, primals_22, stride=(1, 1),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 3, 60, 60), (10800, 3600, 60, 1))
buf21 = buf20
del buf20
triton_poi_fused_add_convolution_4[grid(43200)](buf21, buf15,
primals_23, 43200, XBLOCK=512, num_warps=4, num_stages=1)
del primals_23
return (buf1, buf21, primals_1, primals_3, primals_4, primals_6,
primals_8, primals_10, primals_12, primals_14, primals_16,
primals_18, primals_20, primals_22, buf1, buf3, buf5, buf7, buf9,
buf11, buf13, buf15, buf17, buf19)
class CSNetNew(torch.nn.Module):
def __init__(self):
super(CSNetNew, self).__init__()
k_stride = 20
color_channel = 3
mr = 12
self.conv0 = torch.nn.Conv2d(in_channels=color_channel,
out_channels=mr, kernel_size=2 * k_stride, stride=k_stride,
padding=k_stride)
self.deconv0 = torch.nn.ConvTranspose2d(in_channels=mr,
out_channels=color_channel, kernel_size=2 * k_stride, stride=
k_stride, padding=k_stride)
self.conv1_1 = torch.nn.Conv2d(in_channels=color_channel,
out_channels=64, kernel_size=11, stride=1, padding=5)
self.conv1_2 = torch.nn.Conv2d(in_channels=64, out_channels=32,
kernel_size=1, stride=1, padding=0)
self.conv1_3 = torch.nn.Conv2d(in_channels=32, out_channels=
color_channel, kernel_size=7, stride=1, padding=3)
self.conv2_1 = torch.nn.Conv2d(in_channels=color_channel,
out_channels=64, kernel_size=11, stride=1, padding=5)
self.conv2_2 = torch.nn.Conv2d(in_channels=64, out_channels=32,
kernel_size=1, stride=1, padding=0)
self.conv2_3 = torch.nn.Conv2d(in_channels=32, out_channels=
color_channel, kernel_size=7, stride=1, padding=3)
self.conv3_1 = torch.nn.Conv2d(in_channels=color_channel,
out_channels=64, kernel_size=11, stride=1, padding=5)
self.conv3_2 = torch.nn.Conv2d(in_channels=64, out_channels=32,
kernel_size=1, stride=1, padding=0)
self.conv3_3 = torch.nn.Conv2d(in_channels=32, out_channels=
color_channel, kernel_size=7, stride=1, padding=3)
def forward(self, input_0):
primals_1 = self.conv0.weight
primals_2 = self.conv0.bias
primals_4 = self.deconv0.weight
primals_5 = self.deconv0.bias
primals_6 = self.conv1_1.weight
primals_7 = self.conv1_1.bias
primals_8 = self.conv1_2.weight
primals_9 = self.conv1_2.bias
primals_10 = self.conv1_3.weight
primals_11 = self.conv1_3.bias
primals_12 = self.conv2_1.weight
primals_13 = self.conv2_1.bias
primals_14 = self.conv2_2.weight
primals_15 = self.conv2_2.bias
primals_16 = self.conv2_3.weight
primals_17 = self.conv2_3.bias
primals_18 = self.conv3_1.weight
primals_19 = self.conv3_1.bias
primals_20 = self.conv3_2.weight
primals_21 = self.conv3_2.bias
primals_22 = self.conv3_3.weight
primals_23 = self.conv3_3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23])
return output[0], output[1]
|
jiang-du/Multi-rate-VCS
|
CSNet
| false | 12,619 |
[
"MIT"
] | 0 |
18457a7e0be76cad8b78b7dee32f8f6704d2f7e0
|
https://github.com/jiang-du/Multi-rate-VCS/tree/18457a7e0be76cad8b78b7dee32f8f6704d2f7e0
|
Net
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/cy/ccy75molnj4pqcxpogtedljmbw6x3iqcylupg4qp2msv7iy3fvjt.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 18816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 784) % 6
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/v7/cv7qi7gg3bpfwb3hj7zgy5jlgh7x7wdgqsfsodkjsoverxdjlf6z.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4704
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x3 = (xindex // 14)
x2 = (xindex // 1176)
x4 = xindex % 1176
tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + (1184*x2)), tmp6, xmask)
tl.store(out_ptr1 + (x4 + (1280*x2)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/fd/cfd3q6x464cl7vept5hkzz2av6ogtk5up7qocwljfaq5nbponjso.py
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 100) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/tn/ctnw4tbgfy47ppke77vu7rtiz7dl5o3ahickx4p64n7c5rmrrix6.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (10 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (11 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x2), tmp15, xmask)
tl.store(out_ptr1 + (x2), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (6, ), (1, ))
assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1))
assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (120, 400), (400, 1))
assert_size_stride(primals_7, (120, ), (1, ))
assert_size_stride(primals_8, (84, 120), (120, 1))
assert_size_stride(primals_9, (84, ), (1, ))
assert_size_stride(primals_10, (10, 84), (84, 1))
assert_size_stride(primals_11, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 18816, grid=grid(18816), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch.float32)
buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch.int8)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 4704, grid=grid(4704), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_5, 6400, grid=grid(6400), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8)
buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 1600, grid=grid(1600), stream=stream0)
buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), alpha=1, beta=1, out=buf8)
del primals_7
buf9 = empty_strided_cuda((4, 84), (84, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), alpha=1, beta=1, out=buf9)
del primals_9
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, buf9, reinterpret_tensor(primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf10)
del primals_11
return (buf10, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf8, buf9, primals_10, primals_8, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((6, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 32, 32), (3072, 1024, 32, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 6, 5, 5), (150, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((120, 400), (400, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((120, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((84, 120), (120, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((84, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((10, 84), (84, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as tnn
class Net(tnn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = tnn.Conv2d(3, 6, 5)
self.pool = tnn.MaxPool2d(2, 2)
self.conv2 = tnn.Conv2d(6, 16, 5)
self.fc1 = tnn.Linear(16 * 5 * 5, 120)
self.fc2 = tnn.Linear(120, 84)
self.fc3 = tnn.Linear(84, 10)
def forward(self, x):
x = self.pool(self.conv1(x))
x = self.pool(self.conv2(x))
x = x.view(-1, 16 * 5 * 5)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
def get_inputs():
return [torch.rand([4, 3, 32, 32])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as tnn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 18816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 784 % 6
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4704
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x3 = xindex // 14
x2 = xindex // 1176
x4 = xindex % 1176
tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask)
tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 100 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy
='evict_last')
tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask,
eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x2, tmp15, xmask)
tl.store(out_ptr1 + x2, tmp16, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (6,), (1,))
assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1))
assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (120, 400), (400, 1))
assert_size_stride(primals_7, (120,), (1,))
assert_size_stride(primals_8, (84, 120), (120, 1))
assert_size_stride(primals_9, (84,), (1,))
assert_size_stride(primals_10, (10, 84), (84, 1))
assert_size_stride(primals_11, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(18816)](buf1, primals_2, 18816,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch
.float32)
buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch
.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2,
buf3, 4704, XBLOCK=256, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(6400)](buf5, primals_5, 6400,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8)
buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32
)
triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6,
buf7, 1600, XBLOCK=256, num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf7, (4, 400),
(400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400
), 0), alpha=1, beta=1, out=buf8)
del primals_7
buf9 = empty_strided_cuda((4, 84), (84, 1), torch.float32)
extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8,
(120, 84), (1, 120), 0), alpha=1, beta=1, out=buf9)
del primals_9
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_11, buf9, reinterpret_tensor(
primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf10)
del primals_11
return (buf10, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5,
buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf8, buf9,
primals_10, primals_8, primals_6)
class NetNew(tnn.Module):
def __init__(self):
super(NetNew, self).__init__()
self.conv1 = tnn.Conv2d(3, 6, 5)
self.pool = tnn.MaxPool2d(2, 2)
self.conv2 = tnn.Conv2d(6, 16, 5)
self.fc1 = tnn.Linear(16 * 5 * 5, 120)
self.fc2 = tnn.Linear(120, 84)
self.fc3 = tnn.Linear(84, 10)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.fc1.weight
primals_7 = self.fc1.bias
primals_8 = self.fc2.weight
primals_9 = self.fc2.bias
primals_10 = self.fc3.weight
primals_11 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
jittor-online-first/jittor
|
Net
| false | 12,620 |
[
"Apache-2.0"
] | 0 |
4217359f86cbcf174fab27c3b723487a8d78b729
|
https://github.com/jittor-online-first/jittor/tree/4217359f86cbcf174fab27c3b723487a8d78b729
|
BahdanauAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/2x/c2x66b6sza3svon43c774fqn45xzpdlajk7fj3gf6dzmp6nxl7jx.py
# Topologically Sorted Source Nodes: [add, atten_tan], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# atten_tan => tanh
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x0 = xindex % 4
x3 = (xindex // 256)
x5 = xindex % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x5 + (64*x3)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(out_ptr0 + (x6), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py
# Topologically Sorted Source Nodes: [atten_weight], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# atten_weight => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py
# Topologically Sorted Source Nodes: [atten_weight], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# atten_weight => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/gt/cgt6ickymkk3j6ootc4hsb2blqews2n64wmaey7kzqk6e3v2rb4u.py
# Topologically Sorted Source Nodes: [mul, context], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# context => sum_2
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_4), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
triton_poi_fused_mul_sum_3 = async_compile.triton('triton_poi_fused_mul_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 16
x2 = (xindex // 64)
x3 = xindex % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (64 + x3), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (32 + x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (128 + x3), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (192 + x3), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x4), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, atten_tan], Original ATen: [aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_tanh_0.run(buf0, primals_3, buf1, primals_6, buf2, 1024, grid=grid(1024), stream=stream0)
del primals_3
del primals_6
buf4 = reinterpret_tensor(buf1, (256, 1), (1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [atten_score], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_8
buf5 = reinterpret_tensor(buf0, (4, 4, 4, 4, 1), (64, 16, 4, 1, 256), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [atten_weight], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [atten_weight], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [mul, context], Original ATen: [aten.mul, aten.sum]
triton_poi_fused_mul_sum_3.run(buf6, primals_4, buf7, 256, grid=grid(256), stream=stream0)
return (buf7, buf6, primals_4, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf2, buf6, primals_7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class BahdanauAttention(nn.Module):
""" Class performs Additive Bahdanau Attention.
Source: https://arxiv.org/pdf/1409.0473.pdf
"""
def __init__(self, num_features, hidden_dim, output_dim=1):
super(BahdanauAttention, self).__init__()
self.num_features = num_features
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.W_a = nn.Linear(self.num_features, self.hidden_dim)
self.U_a = nn.Linear(self.hidden_dim, self.hidden_dim)
self.v_a = nn.Linear(self.hidden_dim, self.output_dim)
def forward(self, features, decoder_hidden):
"""
Arguments:
----------
- features - features returned from Encoder
- decoder_hidden - hidden state output from Decoder
Returns:
---------
- context - context vector with a size of (1,2048)
- atten_weight - probabilities, express the feature relevance
"""
decoder_hidden = decoder_hidden.unsqueeze(1)
atten_1 = self.W_a(features)
atten_2 = self.U_a(decoder_hidden)
atten_tan = torch.tanh(atten_1 + atten_2)
atten_score = self.v_a(atten_tan)
atten_weight = F.softmax(atten_score, dim=1)
context = torch.sum(atten_weight * features, dim=1)
atten_weight = atten_weight.squeeze(dim=2)
return context, atten_weight
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4, 'hidden_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x0 = xindex % 4
x3 = xindex // 256
x5 = xindex % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x5 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(out_ptr0 + x6, tmp7, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 16
x2 = xindex // 64
x3 = xindex % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr1 + (64 + x3), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (32 + x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr1 + (128 + x3), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr1 + (192 + x3), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x4, tmp14, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(1024)](buf0, primals_3, buf1,
primals_6, buf2, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
del primals_6
buf4 = reinterpret_tensor(buf1, (256, 1), (1, 1), 0)
del buf1
extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 4),
(4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_8
buf5 = reinterpret_tensor(buf0, (4, 4, 4, 4, 1), (64, 16, 4, 1, 256), 0
)
del buf0
triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0)
del buf4
triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused_mul_sum_3[grid(256)](buf6, primals_4, buf7, 256,
XBLOCK=256, num_warps=4, num_stages=1)
return buf7, buf6, primals_4, reinterpret_tensor(primals_1, (64, 4), (4,
1), 0), buf2, buf6, primals_7
class BahdanauAttentionNew(nn.Module):
""" Class performs Additive Bahdanau Attention.
Source: https://arxiv.org/pdf/1409.0473.pdf
"""
def __init__(self, num_features, hidden_dim, output_dim=1):
super(BahdanauAttentionNew, self).__init__()
self.num_features = num_features
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.W_a = nn.Linear(self.num_features, self.hidden_dim)
self.U_a = nn.Linear(self.hidden_dim, self.hidden_dim)
self.v_a = nn.Linear(self.hidden_dim, self.output_dim)
def forward(self, input_0, input_1):
primals_2 = self.W_a.weight
primals_3 = self.W_a.bias
primals_5 = self.U_a.weight
primals_6 = self.U_a.bias
primals_7 = self.v_a.weight
primals_8 = self.v_a.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0], output[1]
|
joao-d-oliveira/CV-Image_Captioning
|
BahdanauAttention
| false | 12,621 |
[
"MIT"
] | 0 |
76186c326e4fc44a60da401f4ec71176cba42e87
|
https://github.com/joao-d-oliveira/CV-Image_Captioning/tree/76186c326e4fc44a60da401f4ec71176cba42e87
|
RegressionModel
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/au/caug6nesiygukdpkrndsclkfho3dygoeotjtbnihl4wlyyiuddug.py
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# out => convolution
# out_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/bb/cbbrr4wxprcpdkasoq3o4j6br7co5k6jvto5jitkqxzsg5yl6mec.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 8], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 8
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (128*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (8*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (8, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 256, 4, 4), (4096, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 16384, grid=grid(16384), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 4, 4), (4096, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 16384, grid=grid(16384), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 4, 4), (4096, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf5, primals_7, 16384, grid=grid(16384), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 16, 4, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [out_6, out_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf7, primals_9, 16384, grid=grid(16384), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 8, 4, 4), (128, 16, 4, 1))
buf9 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf8, primals_11, buf9, 64, 8, grid=grid(64, 8), stream=stream0)
del buf8
del primals_11
return (reinterpret_tensor(buf9, (4, 16, 8), (128, 8, 1), 0), primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((8, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class RegressionModel(nn.Module):
def __init__(self, num_features_in, num_anchors=1, feature_size=256):
super(RegressionModel, self).__init__()
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3,
padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchors * 8, kernel_size=
3, padding=1)
def forward(self, x):
out = self.conv1(x)
out = self.act1(out)
out = self.conv2(out)
out = self.act2(out)
out = self.conv3(out)
out = self.act3(out)
out = self.conv4(out)
out = self.act4(out)
out = self.output(out)
out = out.permute(0, 2, 3, 1)
return out.contiguous().view(out.shape[0], -1, 8)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features_in': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 8
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 128 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 8 * y3), tmp2, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (8, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 256, 4, 4), (4096, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(16384)](buf1, primals_2,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 4, 4), (4096, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_0[grid(16384)](buf3, primals_5,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 4, 4), (4096, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_0[grid(16384)](buf5, primals_7,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 16, 4, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_0[grid(16384)](buf7, primals_9,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 8, 4, 4), (128, 16, 4, 1))
buf9 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
triton_poi_fused_clone_1[grid(64, 8)](buf8, primals_11, buf9, 64, 8,
XBLOCK=8, YBLOCK=32, num_warps=4, num_stages=1)
del buf8
del primals_11
return (reinterpret_tensor(buf9, (4, 16, 8), (128, 8, 1), 0), primals_1,
primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3,
buf5, buf7)
class RegressionModelNew(nn.Module):
def __init__(self, num_features_in, num_anchors=1, feature_size=256):
super(RegressionModelNew, self).__init__()
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3,
padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchors * 8, kernel_size=
3, padding=1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.output.weight
primals_11 = self.output.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
fmrdev/ctracker
|
RegressionModel
| false | 12,622 |
[
"Apache-2.0"
] | 0 |
6f5a88d569d0132a9f844cd1e55e60032d32bcba
|
https://github.com/fmrdev/ctracker/tree/6f5a88d569d0132a9f844cd1e55e60032d32bcba
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.