entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|---|
ModulatedToRGB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/sr/csrvuu3ij7ffjialtfbzxloffj4ibh54xghkpxfw6spkwver6dc5.py
# Topologically Sorted Source Nodes: [sqrt, mul_1, weight], Original ATen: [aten.sqrt, aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# sqrt => full_default_1
# weight => mul_2
# Graph fragment:
# %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.5), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %full_default_1), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 1.0), kwargs = {})
triton_poi_fused_mul_sqrt_0 = async_compile.triton('triton_poi_fused_mul_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/bf/cbfu2sd3446jjdimn3bzgkb5uzjci2fpr7jzqru5ljty6r24kzjc.py
# Topologically Sorted Source Nodes: [sqrt, mul_4, weight_1], Original ATen: [aten.sqrt, aten.mul]
# Source node to ATen node mapping:
# mul_4 => mul_4
# sqrt => full_default_1
# weight_1 => mul_5
# Graph fragment:
# %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.5), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %full_default_1), kwargs = {})
# %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, 1.0), kwargs = {})
triton_poi_fused_mul_sqrt_1 = async_compile.triton('triton_poi_fused_mul_sqrt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sqrt_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/xh/cxhhbqk3s6iqrz6tqomrot2zckdii7iarr3pj5stdt3ds6rbfufc.py
# Topologically Sorted Source Nodes: [style, weight_2], Original ATen: [aten.add, aten.mul]
# Source node to ATen node mapping:
# style => add_1
# weight_2 => mul_7
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view, 0.0), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %add_1), kwargs = {})
triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tmp1 + tmp4
tmp6 = 0.0
tmp7 = tmp5 + tmp6
tmp8 = tmp0 * tmp7
tl.store(out_ptr0 + (x4), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/go/cgoav6av4bzem4wmdmkiowlmjpeiubwc67bqu6es4aivwlfpxzhh.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out => add_2
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [sqrt, mul_1, weight], Original ATen: [aten.sqrt, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sqrt_0.run(primals_1, buf0, 12, grid=grid(12), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sqrt, mul_4, weight_1], Original ATen: [aten.sqrt, aten.mul]
triton_poi_fused_mul_sqrt_1.run(primals_4, buf1, 16, grid=grid(16), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [style, weight_2], Original ATen: [aten.add, aten.mul]
triton_poi_fused_add_mul_2.run(buf0, buf2, primals_5, buf3, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf5, primals_6, 192, grid=grid(192), stream=stream0)
del primals_6
return (buf5, buf0, buf1, primals_3, primals_5, buf0, buf2, reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_2, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
from copy import deepcopy
import torch.nn as nn
from functools import partial
from torch.nn.init import _calculate_correct_fan
def upsample(in_tens, out_H=64):
"""Upsamples the input to the given size.
Args:
in_tens (Tensor): Tensor with shape [N, C, H, W].
out_H (int, optional): Output spatial size. Defaults to 64.
Returns:
Tensor: Output Tensor.
"""
in_H = in_tens.shape[2]
scale_factor = 1.0 * out_H / in_H
return nn.Upsample(scale_factor=scale_factor, mode='bilinear',
align_corners=False)(in_tens)
def equalized_lr(module, name='weight', gain=2 ** 0.5, mode='fan_in',
lr_mul=1.0):
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
EqualizedLR.apply(module, name, gain=gain, mode=mode, lr_mul=lr_mul)
return module
def _make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
class EqualizedLR:
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
"""
def __init__(self, name='weight', gain=2 ** 0.5, mode='fan_in', lr_mul=1.0
):
self.name = name
self.mode = mode
self.gain = gain
self.lr_mul = lr_mul
def compute_weight(self, module):
"""Compute weight with equalized learning rate.
Args:
module (nn.Module): A module that is wrapped with equalized lr.
Returns:
torch.Tensor: Updated weight.
"""
weight = getattr(module, self.name + '_orig')
if weight.ndim == 5:
fan = _calculate_correct_fan(weight[0], self.mode)
else:
assert weight.ndim <= 4
fan = _calculate_correct_fan(weight, self.mode)
weight = weight * torch.tensor(self.gain, device=weight.device
) * torch.sqrt(torch.tensor(1.0 / fan, device=weight.device)
) * self.lr_mul
return weight
def __call__(self, module, inputs):
"""Standard interface for forward pre hooks."""
setattr(module, self.name, self.compute_weight(module))
@staticmethod
def apply(module, name, gain=2 ** 0.5, mode='fan_in', lr_mul=1.0):
"""Apply function.
This function is to register an equalized learning rate hook in an
``nn.Module``.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
for _, hook in module._forward_pre_hooks.items():
if isinstance(hook, EqualizedLR):
raise RuntimeError(
f'Cannot register two equalized_lr hooks on the same parameter {name} in {module} module.'
)
fn = EqualizedLR(name, gain=gain, mode=mode, lr_mul=lr_mul)
weight = module._parameters[name]
delattr(module, name)
module.register_parameter(name + '_orig', weight)
setattr(module, name, weight.data)
module.register_forward_pre_hook(fn)
return fn
class EqualizedLRLinearModule(nn.Linear):
"""Equalized LR LinearModule.
In this module, we adopt equalized lr in ``nn.Linear``. The equalized
learning rate is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Note that, the initialization of ``self.weight`` will be overwritten as
:math:`\\mathcal{N}(0, 1)`.
Args:
equalized_lr_cfg (dict | None, optional): Config for ``EqualizedLR``.
If ``None``, equalized learning rate is ignored. Defaults to
dict(mode='fan_in').
"""
def __init__(self, *args, equalized_lr_cfg=dict(mode='fan_in'), **kwargs):
super().__init__(*args, **kwargs)
self.with_equalized_lr = equalized_lr_cfg is not None
if self.with_equalized_lr:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if self.with_equalized_lr:
equalized_lr(self, **equalized_lr_cfg)
self._init_linear_weights()
def _init_linear_weights(self):
"""Initialize linear weights as described in PGGAN."""
nn.init.normal_(self.weight, 0, 1.0 / self.lr_mul)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class EqualLinearActModule(nn.Module):
"""Equalized LR Linear Module with Activation Layer.
This module is modified from ``EqualizedLRLinearModule`` defined in PGGAN.
The major features updated in this module is adding support for activation
layers used in StyleGAN2.
Args:
equalized_lr_cfg (dict | None, optional): Config for equalized lr.
Defaults to dict(gain=1., lr_mul=1.).
bias (bool, optional): Whether to use bias item. Defaults to True.
bias_init (float, optional): The value for bias initialization.
Defaults to ``0.``.
act_cfg (dict | None, optional): Config for activation layer.
Defaults to None.
"""
def __init__(self, *args, equalized_lr_cfg=dict(gain=1.0, lr_mul=1.0),
bias=True, bias_init=0.0, act_cfg=None, **kwargs):
super().__init__()
self.with_activation = act_cfg is not None
self.linear = EqualizedLRLinearModule(*args, bias=False,
equalized_lr_cfg=equalized_lr_cfg, **kwargs)
if equalized_lr_cfg is not None:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if bias:
self.bias = nn.Parameter(torch.zeros(self.linear.out_features).
fill_(bias_init))
else:
self.bias = None
if self.with_activation:
act_cfg = deepcopy(act_cfg)
if act_cfg['type'] == 'fused_bias':
self.act_type = act_cfg.pop('type')
assert self.bias is not None
self.activate = partial(fused_bias_leakyrelu, **act_cfg)
else:
self.act_type = 'normal'
self.activate = build_activation_layer(act_cfg)
else:
self.act_type = None
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input feature map with shape of (N, C, ...).
Returns:
Tensor: Output feature map.
"""
if x.ndim >= 3:
x = x.reshape(x.size(0), -1)
x = self.linear(x)
if self.with_activation and self.act_type == 'fused_bias':
x = self.activate(x, self.bias * self.lr_mul)
elif self.bias is not None and self.with_activation:
x = self.activate(x + self.bias * self.lr_mul)
elif self.bias is not None:
x = x + self.bias * self.lr_mul
elif self.with_activation:
x = self.activate(x)
return x
class Blur(nn.Module):
"""Blur module.
This module is adopted rightly after upsampling operation in StyleGAN2.
Args:
kernel (Array): Blur kernel/filter used in UpFIRDn.
pad (list[int]): Padding for features.
upsample_factor (int, optional): Upsampling factor. Defaults to 1.
"""
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = _make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input feature map with shape of (N, C, H, W).
Returns:
Tensor: Output feature map.
"""
return upfirdn2d(x, self.kernel, pad=self.pad)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d in StyleGANv2.
This module implements the modulated convolution layers proposed in
StyleGAN2. Details can be found in Analyzing and Improving the Image
Quality of StyleGAN, CVPR2020.
Args:
in_channels (int): Input channels.
out_channels (int): Output channels.
kernel_size (int): Kernel size, same as :obj:`nn.Con2d`.
style_channels (int): Channels for the style codes.
demodulate (bool, optional): Whether to adopt demodulation.
Defaults to True.
upsample (bool, optional): Whether to adopt upsampling in features.
Defaults to False.
downsample (bool, optional): Whether to adopt downsampling in features.
Defaults to False.
blur_kernel (list[int], optional): Blurry kernel.
Defaults to [1, 3, 3, 1].
equalized_lr_cfg (dict | None, optional): Configs for equalized lr.
Defaults to dict(mode='fan_in', lr_mul=1., gain=1.).
style_mod_cfg (dict, optional): Configs for style modulation module.
Defaults to dict(bias_init=1.).
style_bias (float, optional): Bias value for style code.
Defaults to 0..
eps (float, optional): Epsilon value to avoid computation error.
Defaults to 1e-8.
"""
def __init__(self, in_channels, out_channels, kernel_size,
style_channels, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1], equalized_lr_cfg=dict(mode='fan_in',
lr_mul=1.0, gain=1.0), style_mod_cfg=dict(bias_init=1.0),
style_bias=0.0, eps=1e-08):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.style_channels = style_channels
self.demodulate = demodulate
assert isinstance(self.kernel_size, int) and (self.kernel_size >= 1 and
self.kernel_size % 2 == 1)
self.upsample = upsample
self.downsample = downsample
self.style_bias = style_bias
self.eps = eps
style_mod_cfg = dict() if style_mod_cfg is None else style_mod_cfg
self.style_modulation = EqualLinearActModule(style_channels,
in_channels, **style_mod_cfg)
lr_mul_ = 1.0
if equalized_lr_cfg is not None:
lr_mul_ = equalized_lr_cfg.get('lr_mul', 1.0)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size).div_(lr_mul_))
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, (pad0, pad1), upsample_factor=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
if equalized_lr_cfg is not None:
equalized_lr(self, **equalized_lr_cfg)
self.padding = kernel_size // 2
def forward(self, x, style):
n, c, h, w = x.shape
style = self.style_modulation(style).view(n, 1, c, 1, 1
) + self.style_bias
weight = self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(n, self.out_channels, 1, 1, 1)
weight = weight.view(n * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.upsample:
x = x.reshape(1, n * c, h, w)
weight = weight.view(n, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(n * c, self.
out_channels, self.kernel_size, self.kernel_size)
x = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=n)
x = x.reshape(n, self.out_channels, *x.shape[-2:])
x = self.blur(x)
elif self.downsample:
x = self.blur(x)
x = x.view(1, n * self.in_channels, *x.shape[-2:])
x = F.conv2d(x, weight, stride=2, padding=0, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
else:
x = x.view(1, n * c, h, w)
x = F.conv2d(x, weight, stride=1, padding=self.padding, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
return x
class UpsampleUpFIRDn(nn.Module):
"""UpFIRDn for Upsampling.
This module is used in the ``to_rgb`` layers in StyleGAN2 for upsampling
the images.
Args:
kernel (Array): Blur kernel/filter used in UpFIRDn.
factor (int, optional): Upsampling factor. Defaults to 2.
"""
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = _make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input feature map with shape of (N, C, H, W).
Returns:
Tensor: Output feature map.
"""
out = upfirdn2d(x, self.kernel, up=self.factor, down=1, pad=self.pad)
return out
class ModulatedToRGB(nn.Module):
"""To RGB layer.
This module is designed to output image tensor in StyleGAN2.
Args:
in_channels (int): Input channels.
style_channels (int): Channels for the style codes.
out_channels (int, optional): Output channels. Defaults to 3.
upsample (bool, optional): Whether to adopt upsampling in features.
Defaults to False.
blur_kernel (list[int], optional): Blurry kernel.
Defaults to [1, 3, 3, 1].
style_mod_cfg (dict, optional): Configs for style modulation module.
Defaults to dict(bias_init=1.).
style_bias (float, optional): Bias value for style code.
Defaults to 0..
"""
def __init__(self, in_channels, style_channels, out_channels=3,
upsample=True, blur_kernel=[1, 3, 3, 1], style_mod_cfg=dict(
bias_init=1.0), style_bias=0.0):
super().__init__()
if upsample:
self.upsample = UpsampleUpFIRDn(blur_kernel)
self.conv = ModulatedConv2d(in_channels, out_channels=out_channels,
kernel_size=1, style_channels=style_channels, demodulate=False,
style_mod_cfg=style_mod_cfg, style_bias=style_bias)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, x, style, skip=None):
"""Forward Function.
Args:
x ([Tensor): Input features with shape of (N, C, H, W).
style (Tensor): Style latent with shape of (N, C).
skip (Tensor, optional): Tensor for skip link. Defaults to None.
Returns:
Tensor: Output features with shape of (N, C, H, W)
"""
out = self.conv(x, style)
out = out + self.bias
if skip is not None:
skip = self.upsample(skip)
out = out + skip
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'style_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.functional as F
from copy import deepcopy
import torch.nn as nn
from functools import partial
from torch.nn.init import _calculate_correct_fan
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_mul_sqrt_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tmp1 + tmp4
tmp6 = 0.0
tmp7 = tmp5 + tmp6
tmp8 = tmp0 * tmp7
tl.store(out_ptr0 + x4, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_mul_sqrt_0[grid(12)](primals_1, buf0, 12, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_sqrt_1[grid(16)](primals_4, buf1, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(buf1, (4, 4), (1, 4
), 0), out=buf2)
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
triton_poi_fused_add_mul_2[grid(48)](buf0, buf2, primals_5, buf3,
48, XBLOCK=64, num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4,
1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf4
triton_poi_fused_add_3[grid(192)](buf5, primals_6, 192, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_6
return (buf5, buf0, buf1, primals_3, primals_5, buf0, buf2,
reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0),
reinterpret_tensor(primals_2, (1, 16, 4, 4), (256, 16, 4, 1), 0))
def upsample(in_tens, out_H=64):
"""Upsamples the input to the given size.
Args:
in_tens (Tensor): Tensor with shape [N, C, H, W].
out_H (int, optional): Output spatial size. Defaults to 64.
Returns:
Tensor: Output Tensor.
"""
in_H = in_tens.shape[2]
scale_factor = 1.0 * out_H / in_H
return nn.Upsample(scale_factor=scale_factor, mode='bilinear',
align_corners=False)(in_tens)
def equalized_lr(module, name='weight', gain=2 ** 0.5, mode='fan_in',
lr_mul=1.0):
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
EqualizedLR.apply(module, name, gain=gain, mode=mode, lr_mul=lr_mul)
return module
def _make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
class EqualizedLR:
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
"""
def __init__(self, name='weight', gain=2 ** 0.5, mode='fan_in', lr_mul=1.0
):
self.name = name
self.mode = mode
self.gain = gain
self.lr_mul = lr_mul
def compute_weight(self, module):
"""Compute weight with equalized learning rate.
Args:
module (nn.Module): A module that is wrapped with equalized lr.
Returns:
torch.Tensor: Updated weight.
"""
weight = getattr(module, self.name + '_orig')
if weight.ndim == 5:
fan = _calculate_correct_fan(weight[0], self.mode)
else:
assert weight.ndim <= 4
fan = _calculate_correct_fan(weight, self.mode)
weight = weight * torch.tensor(self.gain, device=weight.device
) * torch.sqrt(torch.tensor(1.0 / fan, device=weight.device)
) * self.lr_mul
return weight
def __call__(self, module, inputs):
"""Standard interface for forward pre hooks."""
setattr(module, self.name, self.compute_weight(module))
@staticmethod
def apply(module, name, gain=2 ** 0.5, mode='fan_in', lr_mul=1.0):
"""Apply function.
This function is to register an equalized learning rate hook in an
``nn.Module``.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
for _, hook in module._forward_pre_hooks.items():
if isinstance(hook, EqualizedLR):
raise RuntimeError(
f'Cannot register two equalized_lr hooks on the same parameter {name} in {module} module.'
)
fn = EqualizedLR(name, gain=gain, mode=mode, lr_mul=lr_mul)
weight = module._parameters[name]
delattr(module, name)
module.register_parameter(name + '_orig', weight)
setattr(module, name, weight.data)
module.register_forward_pre_hook(fn)
return fn
class EqualizedLRLinearModule(nn.Linear):
"""Equalized LR LinearModule.
In this module, we adopt equalized lr in ``nn.Linear``. The equalized
learning rate is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Note that, the initialization of ``self.weight`` will be overwritten as
:math:`\\mathcal{N}(0, 1)`.
Args:
equalized_lr_cfg (dict | None, optional): Config for ``EqualizedLR``.
If ``None``, equalized learning rate is ignored. Defaults to
dict(mode='fan_in').
"""
def __init__(self, *args, equalized_lr_cfg=dict(mode='fan_in'), **kwargs):
super().__init__(*args, **kwargs)
self.with_equalized_lr = equalized_lr_cfg is not None
if self.with_equalized_lr:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if self.with_equalized_lr:
equalized_lr(self, **equalized_lr_cfg)
self._init_linear_weights()
def _init_linear_weights(self):
"""Initialize linear weights as described in PGGAN."""
nn.init.normal_(self.weight, 0, 1.0 / self.lr_mul)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class EqualLinearActModule(nn.Module):
"""Equalized LR Linear Module with Activation Layer.
This module is modified from ``EqualizedLRLinearModule`` defined in PGGAN.
The major features updated in this module is adding support for activation
layers used in StyleGAN2.
Args:
equalized_lr_cfg (dict | None, optional): Config for equalized lr.
Defaults to dict(gain=1., lr_mul=1.).
bias (bool, optional): Whether to use bias item. Defaults to True.
bias_init (float, optional): The value for bias initialization.
Defaults to ``0.``.
act_cfg (dict | None, optional): Config for activation layer.
Defaults to None.
"""
def __init__(self, *args, equalized_lr_cfg=dict(gain=1.0, lr_mul=1.0),
bias=True, bias_init=0.0, act_cfg=None, **kwargs):
super().__init__()
self.with_activation = act_cfg is not None
self.linear = EqualizedLRLinearModule(*args, bias=False,
equalized_lr_cfg=equalized_lr_cfg, **kwargs)
if equalized_lr_cfg is not None:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if bias:
self.bias = nn.Parameter(torch.zeros(self.linear.out_features).
fill_(bias_init))
else:
self.bias = None
if self.with_activation:
act_cfg = deepcopy(act_cfg)
if act_cfg['type'] == 'fused_bias':
self.act_type = act_cfg.pop('type')
assert self.bias is not None
self.activate = partial(fused_bias_leakyrelu, **act_cfg)
else:
self.act_type = 'normal'
self.activate = build_activation_layer(act_cfg)
else:
self.act_type = None
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input feature map with shape of (N, C, ...).
Returns:
Tensor: Output feature map.
"""
if x.ndim >= 3:
x = x.reshape(x.size(0), -1)
x = self.linear(x)
if self.with_activation and self.act_type == 'fused_bias':
x = self.activate(x, self.bias * self.lr_mul)
elif self.bias is not None and self.with_activation:
x = self.activate(x + self.bias * self.lr_mul)
elif self.bias is not None:
x = x + self.bias * self.lr_mul
elif self.with_activation:
x = self.activate(x)
return x
class Blur(nn.Module):
"""Blur module.
This module is adopted rightly after upsampling operation in StyleGAN2.
Args:
kernel (Array): Blur kernel/filter used in UpFIRDn.
pad (list[int]): Padding for features.
upsample_factor (int, optional): Upsampling factor. Defaults to 1.
"""
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = _make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input feature map with shape of (N, C, H, W).
Returns:
Tensor: Output feature map.
"""
return upfirdn2d(x, self.kernel, pad=self.pad)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d in StyleGANv2.
This module implements the modulated convolution layers proposed in
StyleGAN2. Details can be found in Analyzing and Improving the Image
Quality of StyleGAN, CVPR2020.
Args:
in_channels (int): Input channels.
out_channels (int): Output channels.
kernel_size (int): Kernel size, same as :obj:`nn.Con2d`.
style_channels (int): Channels for the style codes.
demodulate (bool, optional): Whether to adopt demodulation.
Defaults to True.
upsample (bool, optional): Whether to adopt upsampling in features.
Defaults to False.
downsample (bool, optional): Whether to adopt downsampling in features.
Defaults to False.
blur_kernel (list[int], optional): Blurry kernel.
Defaults to [1, 3, 3, 1].
equalized_lr_cfg (dict | None, optional): Configs for equalized lr.
Defaults to dict(mode='fan_in', lr_mul=1., gain=1.).
style_mod_cfg (dict, optional): Configs for style modulation module.
Defaults to dict(bias_init=1.).
style_bias (float, optional): Bias value for style code.
Defaults to 0..
eps (float, optional): Epsilon value to avoid computation error.
Defaults to 1e-8.
"""
def __init__(self, in_channels, out_channels, kernel_size,
style_channels, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1], equalized_lr_cfg=dict(mode='fan_in',
lr_mul=1.0, gain=1.0), style_mod_cfg=dict(bias_init=1.0),
style_bias=0.0, eps=1e-08):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.style_channels = style_channels
self.demodulate = demodulate
assert isinstance(self.kernel_size, int) and (self.kernel_size >= 1 and
self.kernel_size % 2 == 1)
self.upsample = upsample
self.downsample = downsample
self.style_bias = style_bias
self.eps = eps
style_mod_cfg = dict() if style_mod_cfg is None else style_mod_cfg
self.style_modulation = EqualLinearActModule(style_channels,
in_channels, **style_mod_cfg)
lr_mul_ = 1.0
if equalized_lr_cfg is not None:
lr_mul_ = equalized_lr_cfg.get('lr_mul', 1.0)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size).div_(lr_mul_))
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, (pad0, pad1), upsample_factor=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
if equalized_lr_cfg is not None:
equalized_lr(self, **equalized_lr_cfg)
self.padding = kernel_size // 2
def forward(self, x, style):
n, c, h, w = x.shape
style = self.style_modulation(style).view(n, 1, c, 1, 1
) + self.style_bias
weight = self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(n, self.out_channels, 1, 1, 1)
weight = weight.view(n * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.upsample:
x = x.reshape(1, n * c, h, w)
weight = weight.view(n, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(n * c, self.
out_channels, self.kernel_size, self.kernel_size)
x = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=n)
x = x.reshape(n, self.out_channels, *x.shape[-2:])
x = self.blur(x)
elif self.downsample:
x = self.blur(x)
x = x.view(1, n * self.in_channels, *x.shape[-2:])
x = F.conv2d(x, weight, stride=2, padding=0, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
else:
x = x.view(1, n * c, h, w)
x = F.conv2d(x, weight, stride=1, padding=self.padding, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
return x
class UpsampleUpFIRDn(nn.Module):
"""UpFIRDn for Upsampling.
This module is used in the ``to_rgb`` layers in StyleGAN2 for upsampling
the images.
Args:
kernel (Array): Blur kernel/filter used in UpFIRDn.
factor (int, optional): Upsampling factor. Defaults to 2.
"""
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = _make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input feature map with shape of (N, C, H, W).
Returns:
Tensor: Output feature map.
"""
out = upfirdn2d(x, self.kernel, up=self.factor, down=1, pad=self.pad)
return out
class ModulatedToRGBNew(nn.Module):
"""To RGB layer.
This module is designed to output image tensor in StyleGAN2.
Args:
in_channels (int): Input channels.
style_channels (int): Channels for the style codes.
out_channels (int, optional): Output channels. Defaults to 3.
upsample (bool, optional): Whether to adopt upsampling in features.
Defaults to False.
blur_kernel (list[int], optional): Blurry kernel.
Defaults to [1, 3, 3, 1].
style_mod_cfg (dict, optional): Configs for style modulation module.
Defaults to dict(bias_init=1.).
style_bias (float, optional): Bias value for style code.
Defaults to 0..
"""
def __init__(self, in_channels, style_channels, out_channels=3,
upsample=True, blur_kernel=[1, 3, 3, 1], style_mod_cfg=dict(
bias_init=1.0), style_bias=0.0):
super().__init__()
if upsample:
self.upsample = UpsampleUpFIRDn(blur_kernel)
self.conv = ModulatedConv2d(in_channels, out_channels=out_channels,
kernel_size=1, style_channels=style_channels, demodulate=False,
style_mod_cfg=style_mod_cfg, style_bias=style_bias)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input_0, input_1):
primals_6 = self.bias
primals_1 = self.conv.weight_orig
primals_5 = self.conv.style_modulation.bias
primals_3 = self.conv.style_modulation.linear.weight_orig
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| jiangwenj02/mmgeneration | ModulatedToRGB | false | 12,623 | [
"Apache-2.0"
]
| 0 | da9ad377ae19260467fc332ddb88f505c38a915a | https://github.com/jiangwenj02/mmgeneration/tree/da9ad377ae19260467fc332ddb88f505c38a915a |
ClassificationModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/au/caug6nesiygukdpkrndsclkfho3dygoeotjtbnihl4wlyyiuddug.py
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# out => convolution
# out_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/mw/cmwgs5icg2cwiannk5teep5ap5cybx7v3k4l56nfby2eg4bkymzv.py
# Topologically Sorted Source Nodes: [out_8, out_9], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# out_8 => convolution_4
# out_9 => sigmoid
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 80
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (80, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (80, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 256, 4, 4), (4096, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 16384, grid=grid(16384), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 4, 4), (4096, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 16384, grid=grid(16384), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 4, 4), (4096, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf5, primals_7, 16384, grid=grid(16384), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 16, 4, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [out_6, out_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf7, primals_9, 16384, grid=grid(16384), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 80, 4, 4), (1280, 16, 4, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [out_8, out_9], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_1.run(buf9, primals_11, 5120, grid=grid(5120), stream=stream0)
del primals_11
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((80, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((80, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ClassificationModel(nn.Module):
def __init__(self, num_features_in, num_anchors=1, num_classes=80,
prior=0.01, feature_size=256):
super(ClassificationModel, self).__init__()
self.num_classes = num_classes
self.num_anchors = num_anchors
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3,
padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchors * num_classes,
kernel_size=3, padding=1)
self.output_act = nn.Sigmoid()
def forward(self, x):
out = self.conv1(x)
out = self.act1(out)
out = self.conv2(out)
out = self.act2(out)
out = self.conv3(out)
out = self.act3(out)
out = self.conv4(out)
out = self.act4(out)
out = self.output(out)
out = self.output_act(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features_in': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 80
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x3, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (80, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (80,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 256, 4, 4), (4096, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(16384)](buf1, primals_2,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 4, 4), (4096, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_0[grid(16384)](buf3, primals_5,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 4, 4), (4096, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_0[grid(16384)](buf5, primals_7,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 16, 4, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_0[grid(16384)](buf7, primals_9,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 80, 4, 4), (1280, 16, 4, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_sigmoid_1[grid(5120)](buf9, primals_11,
5120, XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, buf1, buf3, buf5, buf7, buf9)
class ClassificationModelNew(nn.Module):
def __init__(self, num_features_in, num_anchors=1, num_classes=80,
prior=0.01, feature_size=256):
super(ClassificationModelNew, self).__init__()
self.num_classes = num_classes
self.num_anchors = num_anchors
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3,
padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchors * num_classes,
kernel_size=3, padding=1)
self.output_act = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.output.weight
primals_11 = self.output.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| fmrdev/ctracker | ClassificationModel | false | 12,624 | [
"Apache-2.0"
]
| 0 | 6f5a88d569d0132a9f844cd1e55e60032d32bcba | https://github.com/fmrdev/ctracker/tree/6f5a88d569d0132a9f844cd1e55e60032d32bcba |
GroupNorm32 | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/zy/czyl6lkgkemly2rorp7dytnq5bsikpucv7yhz2var2hddv5xnkj4.py
# Topologically Sorted Source Nodes: [y, mul, sigmoid, y_1], Original ATen: [aten.native_group_norm, aten.mul, aten.sigmoid]
# Source node to ATen node mapping:
# mul => mul_2
# sigmoid => sigmoid
# y => add, add_1, mul_1, rsqrt, var_mean
# y_1 => mul_3
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 4.0), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mul_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %sigmoid), kwargs = {})
triton_per_fused_mul_native_group_norm_sigmoid_0 = async_compile.triton('triton_per_fused_mul_native_group_norm_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_native_group_norm_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_native_group_norm_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 64.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 * tmp21
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = 4.0
tmp29 = tmp27 * tmp28
tmp30 = tl.sigmoid(tmp29)
tmp31 = tmp27 * tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp21, xmask)
tl.store(in_out_ptr1 + (r1 + (64*x0)), tmp31, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32)
buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf3 = reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf1 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [y, mul, sigmoid, y_1], Original ATen: [aten.native_group_norm, aten.mul, aten.sigmoid]
stream0 = get_raw_stream(0)
triton_per_fused_mul_native_group_norm_sigmoid_0.run(buf3, buf5, primals_1, primals_2, primals_3, buf0, 4, 64, grid=grid(4), stream=stream0)
return (buf5, primals_1, primals_2, primals_3, buf0, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class GroupNorm32(nn.GroupNorm):
def __init__(self, num_groups, num_channels, swish, eps=1e-05):
super().__init__(num_groups=num_groups, num_channels=num_channels,
eps=eps)
self.swish = swish
def forward(self, x):
y = super().forward(x.float())
if self.swish == 1.0:
y = F.silu(y)
elif self.swish:
y = y * F.sigmoid(y * float(self.swish))
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_groups': 1, 'num_channels': 4, 'swish': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mul_native_group_norm_sigmoid_0(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 64.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 * tmp21
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = 4.0
tmp29 = tmp27 * tmp28
tmp30 = tl.sigmoid(tmp29)
tmp31 = tmp27 * tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp21, xmask)
tl.store(in_out_ptr1 + (r1 + 64 * x0), tmp31, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32)
buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf3 = reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf1
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = buf4
del buf4
get_raw_stream(0)
triton_per_fused_mul_native_group_norm_sigmoid_0[grid(4)](buf3,
buf5, primals_1, primals_2, primals_3, buf0, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
return buf5, primals_1, primals_2, primals_3, buf0, buf3
class GroupNorm32New(nn.GroupNorm):
def __init__(self, num_groups, num_channels, swish, eps=1e-05):
super().__init__(num_groups=num_groups, num_channels=num_channels,
eps=eps)
self.swish = swish
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| johnpaulbin/glide-text2im | GroupNorm32 | false | 12,625 | [
"MIT"
]
| 0 | 4897050c4c540316dfb1ec7e6ff95698bcb20487 | https://github.com/johnpaulbin/glide-text2im/tree/4897050c4c540316dfb1ec7e6ff95698bcb20487 |
TransformerEncoderLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/oz/cozo2tvc7hyhhuvn7mvono4mqt4xjxbetoafx6siwgnsijj54xyl.py
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# repeat => repeat
# Graph fragment:
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%view_12, [1, 4, 1, 1]), kwargs = {})
triton_poi_fused_repeat_1 = async_compile.triton('triton_poi_fused_repeat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/bx/cbxsgautsk4bd7exwaatk4zmdcujosx2bs6glhzldma6whelf3xa.py
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# attn_weights => exp, sum_1
# masked_fill_ => full_default, where
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_13, %full_default, %bmm), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_masked_fill_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp8 = tl.where(tmp6, tmp2, tmp7)
tmp9 = tmp8 * tmp4
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tl.where(tmp11, tmp2, tmp12)
tmp14 = tmp13 * tmp4
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tl.where(tmp16, tmp2, tmp17)
tmp19 = tmp18 * tmp4
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tmp21 * tmp4
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp9 - tmp20
tmp25 = tmp24 * tmp4
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 + tmp26
tmp28 = tmp14 - tmp20
tmp29 = tmp28 * tmp4
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp27 + tmp30
tmp32 = tmp19 - tmp20
tmp33 = tmp32 * tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp31 + tmp34
tl.store(out_ptr0 + (x2), tmp20, xmask)
tl.store(out_ptr1 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/k3/ck3ynjvzkegtm2kjok34x3fffzfegirtmypcfcgbywxdahuilxmg.py
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# attn_weights => div_1, exp
# masked_fill_ => full_default, where
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_13, %full_default, %bmm), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_masked_fill_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
x4 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + (x3), xmask)
tmp6 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp4
tmp9 = tl_math.exp(tmp8)
tmp11 = tmp9 / tmp10
tl.store(in_out_ptr0 + (x3), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous_3 => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/s7/cs7p2dyxlesdvuyx4owztmqg5sapsarlgzaivin7okeoe6lxygw7.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_18, [1]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_native_layer_norm_5 = async_compile.triton('triton_poi_fused_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/y6/cy6mkjdwes62jaih4dzebyknvxezhquh37cme5cflrxbxff3z675.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add_1, add_2, mul, mul_1, rsqrt, sub_1
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_18, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {})
triton_poi_fused_native_layer_norm_6 = async_compile.triton('triton_poi_fused_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/u4/cu4mvhweewrefdurxuza5qfbqlwomkc67kmxkkaurh6luaf2e2fz.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_21,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_relu_threshold_backward_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/he/chevf4d6tadiz3y2a2abr2lj2bvo3wyfykoivwj2s4xedp3vdjuf.py
# Topologically Sorted Source Nodes: [tensor_8], Original ATen: [aten.add]
# Source node to ATen node mapping:
# tensor_8 => add_3
# Graph fragment:
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %view_23), kwargs = {})
triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/hn/chnyp4bqchi6cc3qkpikodtjzt7sfs4gz3r2kunqaesb7ahrywso.py
# Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm_1 => add_4, rsqrt_1, var_mean_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_24, [1]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2i/c2it3bfvz5dki6xljhyv3o2tjme4rnp2cbavnrl4nu6kpvzqdzbp.py
# Topologically Sorted Source Nodes: [tensor_10], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# tensor_10 => mul_4
# Graph fragment:
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_25, %unsqueeze), kwargs = {})
triton_poi_fused_mul_10 = async_compile.triton('triton_poi_fused_mul_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (4, ), (1, ))
assert_size_stride(primals_18, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_3, buf1, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_3
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf3, primals_7, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_7
buf5 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_5, buf5, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [dot_prod], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
triton_poi_fused_repeat_1.run(primals_8, buf7, 64, grid=grid(64), stream=stream0)
buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 64), 0); del buf2 # reuse
buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_masked_fill_2.run(buf7, buf6, buf8, buf9, 64, grid=grid(64), stream=stream0)
buf10 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_masked_fill_3.run(buf10, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [attentioned], Original ATen: [aten.bmm]
extern_kernels.bmm(buf10, reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13)
del primals_10
buf14 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
buf15 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_5.run(primals_1, buf13, buf14, buf15, 16, grid=grid(16), stream=stream0)
buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_6.run(primals_1, buf13, buf14, buf15, primals_11, primals_12, buf16, 64, grid=grid(64), stream=stream0)
del primals_12
buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf16, reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf17)
buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0); del buf17 # reuse
buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_7.run(buf18, primals_14, buf24, 64, grid=grid(64), stream=stream0)
del primals_14
buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19)
buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0); del buf19 # reuse
# Topologically Sorted Source Nodes: [tensor_8], Original ATen: [aten.add]
triton_poi_fused_add_8.run(buf20, buf16, primals_16, 64, grid=grid(64), stream=stream0)
del primals_16
buf21 = buf15; del buf15 # reuse
buf22 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_9.run(buf20, buf21, buf22, 16, grid=grid(16), stream=stream0)
buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tensor_10], Original ATen: [aten.mul]
triton_poi_fused_mul_10.run(buf20, buf21, buf22, primals_17, primals_18, primals_8, buf23, 64, grid=grid(64), stream=stream0)
del buf21
del buf22
del primals_18
return (buf23, primals_1, primals_8, primals_11, primals_17, buf7, buf10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, buf16, reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(buf20, (16, 4), (4, 1), 0), primals_15, buf24, primals_13, primals_9, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
import torch.nn.functional as F
def _normalize(tensor, norm_layer):
"""
Broadcast layer norm
"""
size = tensor.size()
return norm_layer(tensor.view(-1, size[-1])).view(size)
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, dim, dropout=0):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.dim = dim
self.dropout = nn.Dropout(p=dropout)
self.q_lin = nn.Linear(dim, dim)
self.k_lin = nn.Linear(dim, dim)
self.v_lin = nn.Linear(dim, dim)
nn.init.xavier_normal_(self.q_lin.weight)
nn.init.xavier_normal_(self.k_lin.weight)
nn.init.xavier_normal_(self.v_lin.weight)
self.out_lin = nn.Linear(dim, dim)
nn.init.xavier_normal_(self.out_lin.weight)
def forward(self, query, key=None, value=None, mask=None):
batch_size, query_len, dim = query.size()
assert dim == self.dim, f'Dimensions do not match: {dim} query vs {self.dim} configured'
n_heads = self.n_heads
dim_per_head = dim // n_heads
scale = math.sqrt(dim_per_head)
def prepare_head(tensor):
_bsz, seq_len, _ = tensor.size()
tensor = tensor.view(batch_size, tensor.size(1), n_heads,
dim_per_head)
tensor = tensor.transpose(1, 2).contiguous().view(batch_size *
n_heads, seq_len, dim_per_head)
return tensor
if key is None and value is None:
key = value = query
elif value is None:
value = key
_, key_len, dim = key.size()
q = prepare_head(self.q_lin(query))
k = prepare_head(self.k_lin(key))
v = prepare_head(self.v_lin(value))
dot_prod = q.bmm(k.transpose(1, 2))
attn_mask = (mask == 0).view(batch_size, 1, -1, key_len).repeat(1,
n_heads, 1, 1).expand(batch_size, n_heads, query_len, key_len
).view(batch_size * n_heads, query_len, key_len)
assert attn_mask.shape == dot_prod.shape
dot_prod.masked_fill_(attn_mask, -float(1e+20))
attn_weights = F.softmax(dot_prod / scale, dim=-1)
attentioned = attn_weights.bmm(v)
attentioned = attentioned.view(batch_size, n_heads, query_len,
dim_per_head).transpose(1, 2).contiguous().view(batch_size,
query_len, dim)
out = self.out_lin(attentioned)
return out
class TransformerFFN(nn.Module):
def __init__(self, dim, dim_hidden, dropout=0):
super(TransformerFFN, self).__init__()
self.dropout = nn.Dropout(p=dropout)
self.lin1 = nn.Linear(dim, dim_hidden)
self.lin2 = nn.Linear(dim_hidden, dim)
nn.init.xavier_uniform_(self.lin1.weight)
nn.init.xavier_uniform_(self.lin2.weight)
def forward(self, x):
x = F.relu(self.lin1(x))
x = self.dropout(x)
x = self.lin2(x)
x = self.dropout(x)
return x
class TransformerEncoderLayer(nn.Module):
def __init__(self, n_heads, embedding_size, ffn_size, attention_dropout
=0.0, relu_dropout=0.0):
super().__init__()
self.dim = embedding_size
self.ffn_dim = ffn_size
self.attention = MultiHeadAttention(n_heads, embedding_size,
dropout=attention_dropout)
self.norm1 = nn.LayerNorm(embedding_size)
self.ffn = TransformerFFN(embedding_size, ffn_size, dropout=
relu_dropout)
self.norm2 = nn.LayerNorm(embedding_size)
def forward(self, tensor, mask):
tensor = tensor + self.attention(tensor, mask=mask)
tensor = _normalize(tensor, self.norm1)
tensor = tensor + self.ffn(tensor)
tensor = _normalize(tensor, self.norm2)
tensor *= mask.unsqueeze(-1).float()
return tensor
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'n_heads': 4, 'embedding_size': 4, 'ffn_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
from torch import nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp8 = tl.where(tmp6, tmp2, tmp7)
tmp9 = tmp8 * tmp4
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tl.where(tmp11, tmp2, tmp12)
tmp14 = tmp13 * tmp4
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tl.where(tmp16, tmp2, tmp17)
tmp19 = tmp18 * tmp4
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tmp21 * tmp4
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp9 - tmp20
tmp25 = tmp24 * tmp4
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 + tmp26
tmp28 = tmp14 - tmp20
tmp29 = tmp28 * tmp4
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp27 + tmp30
tmp32 = tmp19 - tmp20
tmp33 = tmp32 * tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp31 + tmp34
tl.store(out_ptr0 + x2, tmp20, xmask)
tl.store(out_ptr1 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
x4 = xindex // 4
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp6 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp4
tmp9 = tl_math.exp(tmp8)
tmp11 = tmp9 / tmp10
tl.store(in_out_ptr0 + x3, tmp11, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_mul_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17, primals_18
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (4,), (1,))
assert_size_stride(primals_18, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf1, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_3
buf2 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_0[grid(16, 4)](buf3, primals_7, buf4, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_7
buf5 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf3
triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_5, buf5, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.bool)
triton_poi_fused_repeat_1[grid(64)](primals_8, buf7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 64), 0)
del buf2
buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
triton_poi_fused__softmax_masked_fill_2[grid(64)](buf7, buf6, buf8,
buf9, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf10 = buf6
del buf6
triton_poi_fused__softmax_masked_fill_3[grid(256)](buf10, buf7,
buf8, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 1), 0)
del buf9
extern_kernels.bmm(buf10, reinterpret_tensor(buf4, (16, 4, 1), (4,
1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf8
triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0)
del buf11
extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf13)
del primals_10
buf14 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
buf15 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
triton_poi_fused_native_layer_norm_5[grid(16)](primals_1, buf13,
buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_6[grid(64)](primals_1, buf13,
buf14, buf15, primals_11, primals_12, buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_12
buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(buf16, reinterpret_tensor(primals_13, (4, 4), (1,
4), 0), out=buf17)
buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0)
del buf17
buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_7[grid(64)](buf18,
primals_14, buf24, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_14
buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19)
buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0)
del buf19
triton_poi_fused_add_8[grid(64)](buf20, buf16, primals_16, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_16
buf21 = buf15
del buf15
buf22 = buf14
del buf14
triton_poi_fused_native_layer_norm_9[grid(16)](buf20, buf21, buf22,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mul_10[grid(64)](buf20, buf21, buf22, primals_17,
primals_18, primals_8, buf23, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf21
del buf22
del primals_18
return (buf23, primals_1, primals_8, primals_11, primals_17, buf7,
buf10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, buf16,
reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(
buf20, (16, 4), (4, 1), 0), primals_15, buf24, primals_13,
primals_9, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0),
reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0),
reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0))
def _normalize(tensor, norm_layer):
"""
Broadcast layer norm
"""
size = tensor.size()
return norm_layer(tensor.view(-1, size[-1])).view(size)
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, dim, dropout=0):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.dim = dim
self.dropout = nn.Dropout(p=dropout)
self.q_lin = nn.Linear(dim, dim)
self.k_lin = nn.Linear(dim, dim)
self.v_lin = nn.Linear(dim, dim)
nn.init.xavier_normal_(self.q_lin.weight)
nn.init.xavier_normal_(self.k_lin.weight)
nn.init.xavier_normal_(self.v_lin.weight)
self.out_lin = nn.Linear(dim, dim)
nn.init.xavier_normal_(self.out_lin.weight)
def forward(self, query, key=None, value=None, mask=None):
batch_size, query_len, dim = query.size()
assert dim == self.dim, f'Dimensions do not match: {dim} query vs {self.dim} configured'
n_heads = self.n_heads
dim_per_head = dim // n_heads
scale = math.sqrt(dim_per_head)
def prepare_head(tensor):
_bsz, seq_len, _ = tensor.size()
tensor = tensor.view(batch_size, tensor.size(1), n_heads,
dim_per_head)
tensor = tensor.transpose(1, 2).contiguous().view(batch_size *
n_heads, seq_len, dim_per_head)
return tensor
if key is None and value is None:
key = value = query
elif value is None:
value = key
_, key_len, dim = key.size()
q = prepare_head(self.q_lin(query))
k = prepare_head(self.k_lin(key))
v = prepare_head(self.v_lin(value))
dot_prod = q.bmm(k.transpose(1, 2))
attn_mask = (mask == 0).view(batch_size, 1, -1, key_len).repeat(1,
n_heads, 1, 1).expand(batch_size, n_heads, query_len, key_len
).view(batch_size * n_heads, query_len, key_len)
assert attn_mask.shape == dot_prod.shape
dot_prod.masked_fill_(attn_mask, -float(1e+20))
attn_weights = F.softmax(dot_prod / scale, dim=-1)
attentioned = attn_weights.bmm(v)
attentioned = attentioned.view(batch_size, n_heads, query_len,
dim_per_head).transpose(1, 2).contiguous().view(batch_size,
query_len, dim)
out = self.out_lin(attentioned)
return out
class TransformerFFN(nn.Module):
def __init__(self, dim, dim_hidden, dropout=0):
super(TransformerFFN, self).__init__()
self.dropout = nn.Dropout(p=dropout)
self.lin1 = nn.Linear(dim, dim_hidden)
self.lin2 = nn.Linear(dim_hidden, dim)
nn.init.xavier_uniform_(self.lin1.weight)
nn.init.xavier_uniform_(self.lin2.weight)
def forward(self, x):
x = F.relu(self.lin1(x))
x = self.dropout(x)
x = self.lin2(x)
x = self.dropout(x)
return x
class TransformerEncoderLayerNew(nn.Module):
def __init__(self, n_heads, embedding_size, ffn_size, attention_dropout
=0.0, relu_dropout=0.0):
super().__init__()
self.dim = embedding_size
self.ffn_dim = ffn_size
self.attention = MultiHeadAttention(n_heads, embedding_size,
dropout=attention_dropout)
self.norm1 = nn.LayerNorm(embedding_size)
self.ffn = TransformerFFN(embedding_size, ffn_size, dropout=
relu_dropout)
self.norm2 = nn.LayerNorm(embedding_size)
def forward(self, input_0, input_1):
primals_2 = self.attention.q_lin.weight
primals_3 = self.attention.q_lin.bias
primals_4 = self.attention.k_lin.weight
primals_5 = self.attention.k_lin.bias
primals_6 = self.attention.v_lin.weight
primals_7 = self.attention.v_lin.bias
primals_8 = self.attention.out_lin.weight
primals_10 = self.attention.out_lin.bias
primals_11 = self.norm1.weight
primals_12 = self.norm1.bias
primals_9 = self.ffn.lin1.weight
primals_14 = self.ffn.lin1.bias
primals_13 = self.ffn.lin2.weight
primals_16 = self.ffn.lin2.bias
primals_17 = self.norm2.weight
primals_18 = self.norm2.bias
primals_1 = input_0
primals_15 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18])
return output[0]
| jinjiren/ParlAI | TransformerEncoderLayer | false | 12,626 | [
"MIT"
]
| 0 | 40799aeee69f2a0bb25a1341bb8da0c44861268e | https://github.com/jinjiren/ParlAI/tree/40799aeee69f2a0bb25a1341bb8da0c44861268e |
ModulatedConv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/3i/c3it2w2r3z7gdnrl7rpdpqiiot4zor7mekrndtvp2kybb36uwsh5.py
# Topologically Sorted Source Nodes: [mul, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# demod => rsqrt
# mul => mul
# pow_1 => pow_1
# sum_1 => sum_1
# weight => mul_1
# weight_1 => mul_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.125), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %view), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %view_1), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_0 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 16)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (64*x4)), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
stream0 = get_raw_stream(0)
triton_per_fused_add_mul_pow_rsqrt_sum_0.run(buf1, primals_3, primals_2, buf2, 16, 64, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf3, (1, 16, 5, 5), (400, 25, 5, 1))
return (reinterpret_tensor(buf3, (4, 4, 5, 5), (100, 25, 5, 1), 0), primals_2, primals_3, buf1, reinterpret_tensor(buf2, (16, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import math
import torch
from torch import nn
import torch.nn.functional as F
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0],
pad[1], pad[0], pad[1]))
return out
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_op.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_op.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
demodulate=True, upsample=False, downsample=False, blur_kernel=[1,
3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
self.modulation = nn.Identity()
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4,
'style_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch.autograd import Function
import math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = rindex // 16
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 64 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 64 * x4), tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_per_fused_add_mul_pow_rsqrt_sum_0[grid(16)](buf1, primals_3,
primals_2, buf2, 16, 64, XBLOCK=8, num_warps=4, num_stages=1)
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4,
4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf3, (1, 16, 5, 5), (400, 25, 5, 1))
return reinterpret_tensor(buf3, (4, 4, 5, 5), (100, 25, 5, 1), 0
), primals_2, primals_3, buf1, reinterpret_tensor(buf2, (16, 4, 4,
4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4),
(256, 16, 4, 1), 0)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0],
pad[1], pad[0], pad[1]))
return out
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_op.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_op.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class ModulatedConv2dNew(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
demodulate=True, upsample=False, downsample=False, blur_kernel=[1,
3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
self.modulation = nn.Identity()
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input_0, input_1):
primals_3 = self.weight
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
| johnberg1/psp_s | ModulatedConv2d | false | 12,627 | [
"Apache-2.0",
"BSD-2-Clause",
"MIT"
]
| 0 | 717f4c448a4e7537cf4b74067d454c7644609ca3 | https://github.com/johnberg1/psp_s/tree/717f4c448a4e7537cf4b74067d454c7644609ca3 |
GaussianKLLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/x4/cx4e6r3wtovetgfit3c47oplgue4lpimhztju62fldej6ezu4zln.py
# Topologically Sorted Source Nodes: [sub_1, exp, sub, pow_1, numerator, exp_1, fraction, add_1, sub_2, sum_1], Original ATen: [aten.sub, aten.exp, aten.pow, aten.add, aten.div, aten.sum]
# Source node to ATen node mapping:
# add_1 => add_1
# exp => exp
# exp_1 => exp_1
# fraction => div
# numerator => add
# pow_1 => pow_1
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sum_1 => sum_1
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg3_1, %arg0_1), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg2_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp, %pow_1), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg3_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %exp_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_1, %div), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, 1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_2, [1]), kwargs = {})
triton_poi_fused_add_div_exp_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_add_div_exp_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_exp_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_exp_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask)
tmp4 = tl.load(in_ptr2 + (x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr3 + (x0 + (64*x1)), xmask)
tmp14 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp15 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask)
tmp18 = tl.load(in_ptr2 + (16 + x0 + (64*x1)), xmask)
tmp19 = tl.load(in_ptr3 + (16 + x0 + (64*x1)), xmask)
tmp28 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp29 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask)
tmp32 = tl.load(in_ptr2 + (32 + x0 + (64*x1)), xmask)
tmp33 = tl.load(in_ptr3 + (32 + x0 + (64*x1)), xmask)
tmp42 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp43 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask)
tmp46 = tl.load(in_ptr2 + (48 + x0 + (64*x1)), xmask)
tmp47 = tl.load(in_ptr3 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp1)
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp9 = tl_math.exp(tmp0)
tmp10 = tmp8 / tmp9
tmp11 = tmp2 + tmp10
tmp12 = 1.0
tmp13 = tmp11 - tmp12
tmp16 = tmp14 - tmp15
tmp17 = tl_math.exp(tmp15)
tmp20 = tmp18 - tmp19
tmp21 = tmp20 * tmp20
tmp22 = tmp17 + tmp21
tmp23 = tl_math.exp(tmp14)
tmp24 = tmp22 / tmp23
tmp25 = tmp16 + tmp24
tmp26 = tmp25 - tmp12
tmp27 = tmp13 + tmp26
tmp30 = tmp28 - tmp29
tmp31 = tl_math.exp(tmp29)
tmp34 = tmp32 - tmp33
tmp35 = tmp34 * tmp34
tmp36 = tmp31 + tmp35
tmp37 = tl_math.exp(tmp28)
tmp38 = tmp36 / tmp37
tmp39 = tmp30 + tmp38
tmp40 = tmp39 - tmp12
tmp41 = tmp27 + tmp40
tmp44 = tmp42 - tmp43
tmp45 = tl_math.exp(tmp43)
tmp48 = tmp46 - tmp47
tmp49 = tmp48 * tmp48
tmp50 = tmp45 + tmp49
tmp51 = tl_math.exp(tmp42)
tmp52 = tmp50 / tmp51
tmp53 = tmp44 + tmp52
tmp54 = tmp53 - tmp12
tmp55 = tmp41 + tmp54
tl.store(out_ptr0 + (x2), tmp55, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/wz/cwzv7qhl75i7mhmemwgafhj7m6up6wzmdfskrn6ddvszpz3eqngo.py
# Topologically Sorted Source Nodes: [kl, mean], Original ATen: [aten.mul, aten.mean]
# Source node to ATen node mapping:
# kl => mul
# mean => mean
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 0.5), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul, [0]), kwargs = {})
triton_poi_fused_mean_mul_1 = async_compile.triton('triton_poi_fused_mean_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp6 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp9 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp1
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp1
tmp11 = tmp8 + tmp10
tmp12 = 4.0
tmp13 = tmp11 / tmp12
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub_1, exp, sub, pow_1, numerator, exp_1, fraction, add_1, sub_2, sum_1], Original ATen: [aten.sub, aten.exp, aten.pow, aten.add, aten.div, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_exp_pow_sub_sum_0.run(arg3_1, arg0_1, arg1_1, arg2_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [kl, mean], Original ATen: [aten.mul, aten.mean]
triton_poi_fused_mean_mul_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class GaussianKLLoss(nn.Module):
def __init__(self):
super(GaussianKLLoss, self).__init__()
def forward(self, mu1, logvar1, mu2, logvar2):
numerator = logvar1.exp() + torch.pow(mu1 - mu2, 2)
fraction = torch.div(numerator, logvar2.exp())
kl = 0.5 * torch.sum(logvar2 - logvar1 + fraction - 1, dim=1)
return kl.mean(dim=0)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_exp_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask)
tmp4 = tl.load(in_ptr2 + (x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr3 + (x0 + 64 * x1), xmask)
tmp14 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp15 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask)
tmp18 = tl.load(in_ptr2 + (16 + x0 + 64 * x1), xmask)
tmp19 = tl.load(in_ptr3 + (16 + x0 + 64 * x1), xmask)
tmp28 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp29 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask)
tmp32 = tl.load(in_ptr2 + (32 + x0 + 64 * x1), xmask)
tmp33 = tl.load(in_ptr3 + (32 + x0 + 64 * x1), xmask)
tmp42 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp43 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask)
tmp46 = tl.load(in_ptr2 + (48 + x0 + 64 * x1), xmask)
tmp47 = tl.load(in_ptr3 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp1)
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp9 = tl_math.exp(tmp0)
tmp10 = tmp8 / tmp9
tmp11 = tmp2 + tmp10
tmp12 = 1.0
tmp13 = tmp11 - tmp12
tmp16 = tmp14 - tmp15
tmp17 = tl_math.exp(tmp15)
tmp20 = tmp18 - tmp19
tmp21 = tmp20 * tmp20
tmp22 = tmp17 + tmp21
tmp23 = tl_math.exp(tmp14)
tmp24 = tmp22 / tmp23
tmp25 = tmp16 + tmp24
tmp26 = tmp25 - tmp12
tmp27 = tmp13 + tmp26
tmp30 = tmp28 - tmp29
tmp31 = tl_math.exp(tmp29)
tmp34 = tmp32 - tmp33
tmp35 = tmp34 * tmp34
tmp36 = tmp31 + tmp35
tmp37 = tl_math.exp(tmp28)
tmp38 = tmp36 / tmp37
tmp39 = tmp30 + tmp38
tmp40 = tmp39 - tmp12
tmp41 = tmp27 + tmp40
tmp44 = tmp42 - tmp43
tmp45 = tl_math.exp(tmp43)
tmp48 = tmp46 - tmp47
tmp49 = tmp48 * tmp48
tmp50 = tmp45 + tmp49
tmp51 = tl_math.exp(tmp42)
tmp52 = tmp50 / tmp51
tmp53 = tmp44 + tmp52
tmp54 = tmp53 - tmp12
tmp55 = tmp41 + tmp54
tl.store(out_ptr0 + x2, tmp55, xmask)
@triton.jit
def triton_poi_fused_mean_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp6 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp9 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp1
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp1
tmp11 = tmp8 + tmp10
tmp12 = 4.0
tmp13 = tmp11 / tmp12
tl.store(out_ptr0 + x0, tmp13, xmask)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_exp_pow_sub_sum_0[grid(64)](arg3_1, arg0_1,
arg1_1, arg2_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mean_mul_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
return buf1,
class GaussianKLLossNew(nn.Module):
def __init__(self):
super(GaussianKLLossNew, self).__init__()
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
| johnson7788/Info-HCVAE | GaussianKLLoss | false | 12,628 | [
"Apache-2.0"
]
| 0 | f43bf705aab3dcdc340ded3be09fb87420a48c51 | https://github.com/johnson7788/Info-HCVAE/tree/f43bf705aab3dcdc340ded3be09fb87420a48c51 |
CategoricalKLLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/kz/ckzbjorew6d2qnczvglsrdyz6betqwacszox7jxg7ucfo22ke4tw.py
# Topologically Sorted Source Nodes: [log_P, log_Q, sub, mul, sum_1, kl], Original ATen: [aten.log, aten.sub, aten.mul, aten.sum]
# Source node to ATen node mapping:
# kl => sum_2
# log_P => log
# log_Q => log_1
# mul => mul
# sub => sub
# sum_1 => sum_1
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%log, %log_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %sub), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_1, [-1]), kwargs = {})
triton_poi_fused_log_mul_sub_sum_0 = async_compile.triton('triton_poi_fused_log_mul_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_log_mul_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 32, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_log_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (16*x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr1 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr1 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp49 = tl.load(in_ptr1 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp55 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp57 = tl.load(in_ptr1 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp61 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp63 = tl.load(in_ptr1 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp68 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr1 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp75 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp77 = tl.load(in_ptr1 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp83 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp85 = tl.load(in_ptr1 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp89 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp91 = tl.load(in_ptr1 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp96 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp98 = tl.load(in_ptr1 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp103 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp105 = tl.load(in_ptr1 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp1 = tl_math.log(tmp0)
tmp3 = tl_math.log(tmp2)
tmp4 = tmp1 - tmp3
tmp5 = tmp0 * tmp4
tmp7 = tl_math.log(tmp6)
tmp9 = tl_math.log(tmp8)
tmp10 = tmp7 - tmp9
tmp11 = tmp6 * tmp10
tmp12 = tmp5 + tmp11
tmp14 = tl_math.log(tmp13)
tmp16 = tl_math.log(tmp15)
tmp17 = tmp14 - tmp16
tmp18 = tmp13 * tmp17
tmp19 = tmp12 + tmp18
tmp21 = tl_math.log(tmp20)
tmp23 = tl_math.log(tmp22)
tmp24 = tmp21 - tmp23
tmp25 = tmp20 * tmp24
tmp26 = tmp19 + tmp25
tmp28 = tl_math.log(tmp27)
tmp30 = tl_math.log(tmp29)
tmp31 = tmp28 - tmp30
tmp32 = tmp27 * tmp31
tmp34 = tl_math.log(tmp33)
tmp36 = tl_math.log(tmp35)
tmp37 = tmp34 - tmp36
tmp38 = tmp33 * tmp37
tmp39 = tmp32 + tmp38
tmp41 = tl_math.log(tmp40)
tmp43 = tl_math.log(tmp42)
tmp44 = tmp41 - tmp43
tmp45 = tmp40 * tmp44
tmp46 = tmp39 + tmp45
tmp48 = tl_math.log(tmp47)
tmp50 = tl_math.log(tmp49)
tmp51 = tmp48 - tmp50
tmp52 = tmp47 * tmp51
tmp53 = tmp46 + tmp52
tmp54 = tmp26 + tmp53
tmp56 = tl_math.log(tmp55)
tmp58 = tl_math.log(tmp57)
tmp59 = tmp56 - tmp58
tmp60 = tmp55 * tmp59
tmp62 = tl_math.log(tmp61)
tmp64 = tl_math.log(tmp63)
tmp65 = tmp62 - tmp64
tmp66 = tmp61 * tmp65
tmp67 = tmp60 + tmp66
tmp69 = tl_math.log(tmp68)
tmp71 = tl_math.log(tmp70)
tmp72 = tmp69 - tmp71
tmp73 = tmp68 * tmp72
tmp74 = tmp67 + tmp73
tmp76 = tl_math.log(tmp75)
tmp78 = tl_math.log(tmp77)
tmp79 = tmp76 - tmp78
tmp80 = tmp75 * tmp79
tmp81 = tmp74 + tmp80
tmp82 = tmp54 + tmp81
tmp84 = tl_math.log(tmp83)
tmp86 = tl_math.log(tmp85)
tmp87 = tmp84 - tmp86
tmp88 = tmp83 * tmp87
tmp90 = tl_math.log(tmp89)
tmp92 = tl_math.log(tmp91)
tmp93 = tmp90 - tmp92
tmp94 = tmp89 * tmp93
tmp95 = tmp88 + tmp94
tmp97 = tl_math.log(tmp96)
tmp99 = tl_math.log(tmp98)
tmp100 = tmp97 - tmp99
tmp101 = tmp96 * tmp100
tmp102 = tmp95 + tmp101
tmp104 = tl_math.log(tmp103)
tmp106 = tl_math.log(tmp105)
tmp107 = tmp104 - tmp106
tmp108 = tmp103 * tmp107
tmp109 = tmp102 + tmp108
tmp110 = tmp82 + tmp109
tl.store(out_ptr0 + (x0), tmp110, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/5i/c5ihqrojuny4xsnxeyq3omcrs6nck43hbetaz5t5kzhjm6ln2y6j.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sum_2, [0]), kwargs = {})
triton_poi_fused_mean_1 = async_compile.triton('triton_poi_fused_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_P, log_Q, sub, mul, sum_1, kl], Original ATen: [aten.log, aten.sub, aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_log_mul_sub_sum_0.run(arg0_1, arg1_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
triton_poi_fused_mean_1.run(buf0, buf1, 4, grid=grid(4), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class CategoricalKLLoss(nn.Module):
def __init__(self):
super(CategoricalKLLoss, self).__init__()
def forward(self, P, Q):
log_P = P.log()
log_Q = Q.log()
kl = (P * (log_P - log_Q)).sum(dim=-1).sum(dim=-1)
return kl.mean(dim=0)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_log_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + 16 * x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp8 = tl.load(in_ptr1 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp13 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr1 + (2 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp22 = tl.load(in_ptr1 + (3 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr1 + (4 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp33 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp35 = tl.load(in_ptr1 + (5 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp40 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp42 = tl.load(in_ptr1 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp47 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp49 = tl.load(in_ptr1 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp55 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp57 = tl.load(in_ptr1 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp61 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp63 = tl.load(in_ptr1 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp68 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp70 = tl.load(in_ptr1 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp75 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp77 = tl.load(in_ptr1 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp83 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp85 = tl.load(in_ptr1 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp89 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp91 = tl.load(in_ptr1 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp96 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp98 = tl.load(in_ptr1 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp103 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp105 = tl.load(in_ptr1 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp1 = tl_math.log(tmp0)
tmp3 = tl_math.log(tmp2)
tmp4 = tmp1 - tmp3
tmp5 = tmp0 * tmp4
tmp7 = tl_math.log(tmp6)
tmp9 = tl_math.log(tmp8)
tmp10 = tmp7 - tmp9
tmp11 = tmp6 * tmp10
tmp12 = tmp5 + tmp11
tmp14 = tl_math.log(tmp13)
tmp16 = tl_math.log(tmp15)
tmp17 = tmp14 - tmp16
tmp18 = tmp13 * tmp17
tmp19 = tmp12 + tmp18
tmp21 = tl_math.log(tmp20)
tmp23 = tl_math.log(tmp22)
tmp24 = tmp21 - tmp23
tmp25 = tmp20 * tmp24
tmp26 = tmp19 + tmp25
tmp28 = tl_math.log(tmp27)
tmp30 = tl_math.log(tmp29)
tmp31 = tmp28 - tmp30
tmp32 = tmp27 * tmp31
tmp34 = tl_math.log(tmp33)
tmp36 = tl_math.log(tmp35)
tmp37 = tmp34 - tmp36
tmp38 = tmp33 * tmp37
tmp39 = tmp32 + tmp38
tmp41 = tl_math.log(tmp40)
tmp43 = tl_math.log(tmp42)
tmp44 = tmp41 - tmp43
tmp45 = tmp40 * tmp44
tmp46 = tmp39 + tmp45
tmp48 = tl_math.log(tmp47)
tmp50 = tl_math.log(tmp49)
tmp51 = tmp48 - tmp50
tmp52 = tmp47 * tmp51
tmp53 = tmp46 + tmp52
tmp54 = tmp26 + tmp53
tmp56 = tl_math.log(tmp55)
tmp58 = tl_math.log(tmp57)
tmp59 = tmp56 - tmp58
tmp60 = tmp55 * tmp59
tmp62 = tl_math.log(tmp61)
tmp64 = tl_math.log(tmp63)
tmp65 = tmp62 - tmp64
tmp66 = tmp61 * tmp65
tmp67 = tmp60 + tmp66
tmp69 = tl_math.log(tmp68)
tmp71 = tl_math.log(tmp70)
tmp72 = tmp69 - tmp71
tmp73 = tmp68 * tmp72
tmp74 = tmp67 + tmp73
tmp76 = tl_math.log(tmp75)
tmp78 = tl_math.log(tmp77)
tmp79 = tmp76 - tmp78
tmp80 = tmp75 * tmp79
tmp81 = tmp74 + tmp80
tmp82 = tmp54 + tmp81
tmp84 = tl_math.log(tmp83)
tmp86 = tl_math.log(tmp85)
tmp87 = tmp84 - tmp86
tmp88 = tmp83 * tmp87
tmp90 = tl_math.log(tmp89)
tmp92 = tl_math.log(tmp91)
tmp93 = tmp90 - tmp92
tmp94 = tmp89 * tmp93
tmp95 = tmp88 + tmp94
tmp97 = tl_math.log(tmp96)
tmp99 = tl_math.log(tmp98)
tmp100 = tmp97 - tmp99
tmp101 = tmp96 * tmp100
tmp102 = tmp95 + tmp101
tmp104 = tl_math.log(tmp103)
tmp106 = tl_math.log(tmp105)
tmp107 = tmp104 - tmp106
tmp108 = tmp103 * tmp107
tmp109 = tmp102 + tmp108
tmp110 = tmp82 + tmp109
tl.store(out_ptr0 + x0, tmp110, xmask)
@triton.jit
def triton_poi_fused_mean_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_log_mul_sub_sum_0[grid(16)](arg0_1, arg1_1, buf0,
16, XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mean_1[grid(4)](buf0, buf1, 4, XBLOCK=4, num_warps
=1, num_stages=1)
del buf0
return buf1,
class CategoricalKLLossNew(nn.Module):
def __init__(self):
super(CategoricalKLLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| johnson7788/Info-HCVAE | CategoricalKLLoss | false | 12,629 | [
"Apache-2.0"
]
| 0 | f43bf705aab3dcdc340ded3be09fb87420a48c51 | https://github.com/johnson7788/Info-HCVAE/tree/f43bf705aab3dcdc340ded3be09fb87420a48c51 |
Feedback | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/y6/cy6g24sdqsjaqjfbvlsjwxjxnicovho2svumdpyu3a6q2ahveris.py
# Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu, aten.view, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# leaky_relu => gt, mul, view_3, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
# %view_3 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%view_2, [4, 4, 4, 4]), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_23, 0), kwargs = {})
triton_poi_fused_leaky_relu_leaky_relu_backward_view_0 = async_compile.triton('triton_poi_fused_leaky_relu_leaky_relu_backward_view_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_leaky_relu_backward_view_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_leaky_relu_backward_view_0(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + (x4), tmp7, xmask)
tl.store(out_ptr0 + (x4), tmp7, xmask)
tl.store(out_ptr1 + (x4), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6h/c6hgrncbhy7kjladlqflhqnw52mciqxt6qj53hxyw2giskevmcnl.py
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.view]
# Source node to ATen node mapping:
# linear_1 => view_7
# Graph fragment:
# %view_7 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_6, [64, 4]), kwargs = {})
triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*((x1 % 4) // 4)) + (64*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/gk/cgkxbks6h4eqrscppxnaorv4esw33shmgdrwqxjp2hxbln2y3baz.py
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.leaky_relu, aten.view, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# h => gt_1, mul_1, view_10, where_1
# Graph fragment:
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_8, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_8, 0.2), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %view_8, %mul_1), kwargs = {})
# %view_10 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%view_9, [4, 4, 4, 4]), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_15, 0), kwargs = {})
triton_poi_fused_leaky_relu_leaky_relu_backward_view_2 = async_compile.triton('triton_poi_fused_leaky_relu_leaky_relu_backward_view_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_leaky_relu_backward_view_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_leaky_relu_backward_view_2(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + (x4), tmp7, xmask)
tl.store(out_ptr1 + (x4), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu, aten.view, aten.leaky_relu_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_leaky_relu_backward_view_0.run(buf1, primals_2, buf2, buf8, 256, grid=grid(256), stream=stream0)
del primals_2
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.view]
triton_poi_fused_view_1.run(buf1, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf3, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.leaky_relu, aten.view, aten.leaky_relu_backward]
triton_poi_fused_leaky_relu_leaky_relu_backward_view_2.run(buf5, primals_5, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf5
del primals_5
return (buf6, buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf3, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
class Feedback(nn.Module):
def __init__(self, opt):
super(Feedback, self).__init__()
self.fc1 = nn.Linear(opt.ngh, opt.ngh)
self.fc2 = nn.Linear(opt.ngh, opt.ngh)
self.lrelu = nn.LeakyReLU(0.2, True)
self.apply(weights_init)
def forward(self, x):
self.x1 = self.lrelu(self.fc1(x))
h = self.lrelu(self.fc2(self.x1))
return h
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'opt': _mock_config(ngh=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_leaky_relu_backward_view_0(in_out_ptr0,
in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + x4, tmp7, xmask)
tl.store(out_ptr0 + x4, tmp7, xmask)
tl.store(out_ptr1 + x4, tmp8, xmask)
@triton.jit
def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * (x1 % 4 // 4) + 64 * ((4 *
(x1 // 4 % 4) + x1 % 4) // 16)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_leaky_relu_backward_view_2(in_out_ptr0,
in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + x4, tmp7, xmask)
tl.store(out_ptr1 + x4, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_leaky_relu_leaky_relu_backward_view_0[grid(256)](buf1,
primals_2, buf2, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused_view_1[grid(256)](buf1, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0)
del buf1
extern_kernels.mm(buf3, reinterpret_tensor(primals_4, (4, 4), (1, 4
), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_leaky_relu_leaky_relu_backward_view_2[grid(256)](buf5,
primals_5, buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf5
del primals_5
return buf6, buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf3, buf7, primals_4, buf8
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
class FeedbackNew(nn.Module):
def __init__(self, opt):
super(FeedbackNew, self).__init__()
self.fc1 = nn.Linear(opt.ngh, opt.ngh)
self.fc2 = nn.Linear(opt.ngh, opt.ngh)
self.lrelu = nn.LeakyReLU(0.2, True)
self.apply(weights_init)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| IacoSimoncini/tfvaegan | Feedback | false | 12,630 | [
"MIT"
]
| 0 | 157b526d65d0b0d5412f4be6fed02fc7d6325827 | https://github.com/IacoSimoncini/tfvaegan/tree/157b526d65d0b0d5412f4be6fed02fc7d6325827 |
ToRGB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/vm/cvmd2my75pirzl3upmpcp4yocpoihvichzmsknlesyku5iby4fr2.py
# Topologically Sorted Source Nodes: [mul, weight], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# weight => mul_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %view), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ai/caibhmblp5htnyf6mjkfxs57zeinkinqel7wxex5e5wmlzgcsmxm.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out_2 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_4), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_4, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, weight], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_3, primals_2, buf0, 48, grid=grid(48), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf0, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf1, (1, 12, 4, 4), (192, 16, 4, 1))
buf2 = reinterpret_tensor(buf1, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.add]
triton_poi_fused_add_1.run(buf2, primals_4, 192, grid=grid(192), stream=stream0)
del primals_4
return (buf2, primals_2, reinterpret_tensor(buf0, (12, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import math
import torch
from torch import nn
import torch.nn.functional as F
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0],
pad[1], pad[0], pad[1]))
return out
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_op.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_op.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
demodulate=True, upsample=False, downsample=False, blur_kernel=[1,
3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
self.modulation = nn.Identity()
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class Upsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=
self.pad)
return out
class ToRGB(nn.Module):
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1,
3, 3, 1]):
super().__init__()
if upsample:
self.upsample = Upsample(blur_kernel)
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate
=False)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input, style, skip=None):
out = self.conv(input, style)
out = out + self.bias
if skip is not None:
skip = self.upsample(skip)
out = out + skip
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'style_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.autograd import Function
import math
from torch import nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_4, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(48)](primals_3, primals_2, buf0, 48,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf0, (12, 4,
1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf1, (1, 12, 4, 4), (192, 16, 4, 1))
buf2 = reinterpret_tensor(buf1, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf1
triton_poi_fused_add_1[grid(192)](buf2, primals_4, 192, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_4
return buf2, primals_2, reinterpret_tensor(buf0, (12, 4, 1, 1), (4, 1,
1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4,
1), 0)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0],
pad[1], pad[0], pad[1]))
return out
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_op.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_op.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
demodulate=True, upsample=False, downsample=False, blur_kernel=[1,
3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
self.modulation = nn.Identity()
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class Upsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=
self.pad)
return out
class ToRGBNew(nn.Module):
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1,
3, 3, 1]):
super().__init__()
if upsample:
self.upsample = Upsample(blur_kernel)
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate
=False)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input_0, input_1):
primals_4 = self.bias
primals_3 = self.conv.weight
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| johnberg1/psp_s | ToRGB | false | 12,631 | [
"Apache-2.0",
"BSD-2-Clause",
"MIT"
]
| 0 | 717f4c448a4e7537cf4b74067d454c7644609ca3 | https://github.com/johnberg1/psp_s/tree/717f4c448a4e7537cf4b74067d454c7644609ca3 |
SirenLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ej/cejzhnnynxtkiot2qt7feea4bkwhxo5g2qmtwe2jbyvjefkkzt6m.py
# Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin]
# Source node to ATen node mapping:
# mul => mul
# sin => sin
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 30), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul,), kwargs = {})
triton_poi_fused_mul_sin_0 = async_compile.triton('triton_poi_fused_mul_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 30.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sin_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import nn
class SirenLayer(nn.Module):
def __init__(self, in_f, out_f, w0=30, is_first=False, is_last=False):
super().__init__()
self.in_f = in_f
self.w0 = w0
self.linear = nn.Linear(in_f, out_f)
self.is_first = is_first
self.is_last = is_last
self.init_weights()
def init_weights(self):
b = 1 / self.in_f if self.is_first else np.sqrt(6 / self.in_f
) / self.w0
with torch.no_grad():
self.linear.weight.uniform_(-b, b)
def forward(self, x, **kwargs):
x = self.linear(x)
return x if self.is_last else torch.sin(self.w0 * x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_f': 4, 'out_f': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 30.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sin_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0
class SirenLayerNew(nn.Module):
def __init__(self, in_f, out_f, w0=30, is_first=False, is_last=False):
super().__init__()
self.in_f = in_f
self.w0 = w0
self.linear = nn.Linear(in_f, out_f)
self.is_first = is_first
self.is_last = is_last
self.init_weights()
def init_weights(self):
b = 1 / self.in_f if self.is_first else np.sqrt(6 / self.in_f
) / self.w0
with torch.no_grad():
self.linear.weight.uniform_(-b, b)
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| jonathanfrawley/pixel-nerf | SirenLayer | false | 12,632 | [
"BSD-2-Clause"
]
| 0 | 11d06decbda363d6c5188ec45091da8605da4dfd | https://github.com/jonathanfrawley/pixel-nerf/tree/11d06decbda363d6c5188ec45091da8605da4dfd |
PredictionConvolutions | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/v7/cv7twjpvniqwhbel4vwonpnol3esiypsqnympotsly6desh4camn.py
# Topologically Sorted Source Nodes: [locs], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# locs => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3, %view_4, %view_5, %view_6], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 14, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2359296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4) % 147456
x0 = xindex % 4
x2 = (xindex // 589824)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 16384, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4096*((x0 + (4*x1)) % 16)) + (65536*(((x0 + (4*x1) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*x1)) // 16) % 4096)), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + ((x0 + (4*x1)) % 16), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 40960, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + ((4096*((x0 + (4*((-16384) + x1))) % 24)) + (98304*(((x0 + (4*((-16384) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-16384) + x1))) // 24) % 4096)), tmp13, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + ((x0 + (4*((-16384) + x1))) % 24), tmp13, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 65536, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr4 + ((4096*((x0 + (4*((-40960) + x1))) % 24)) + (98304*(((x0 + (4*((-40960) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-40960) + x1))) // 24) % 4096)), tmp22, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr5 + ((x0 + (4*((-40960) + x1))) % 24), tmp22, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1], 90112, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tmp28 & tmp30
tmp32 = tl.load(in_ptr6 + ((4096*((x0 + (4*((-65536) + x1))) % 24)) + (98304*(((x0 + (4*((-65536) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-65536) + x1))) // 24) % 4096)), tmp31, eviction_policy='evict_last', other=0.0)
tmp33 = tl.load(in_ptr7 + ((x0 + (4*((-65536) + x1))) % 24), tmp31, eviction_policy='evict_last', other=0.0)
tmp34 = tmp32 + tmp33
tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype)
tmp36 = tl.where(tmp31, tmp34, tmp35)
tmp37 = tmp0 >= tmp29
tmp38 = tl.full([1], 114688, tl.int64)
tmp39 = tmp0 < tmp38
tmp40 = tmp37 & tmp39
tmp41 = tl.load(in_ptr8 + ((4096*((x0 + (4*((-90112) + x1))) % 24)) + (98304*(((x0 + (4*((-90112) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-90112) + x1))) // 24) % 4096)), tmp40, eviction_policy='evict_last', other=0.0)
tmp42 = tl.load(in_ptr9 + ((x0 + (4*((-90112) + x1))) % 24), tmp40, eviction_policy='evict_last', other=0.0)
tmp43 = tmp41 + tmp42
tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype)
tmp45 = tl.where(tmp40, tmp43, tmp44)
tmp46 = tmp0 >= tmp38
tmp47 = tl.full([1], 131072, tl.int64)
tmp48 = tmp0 < tmp47
tmp49 = tmp46 & tmp48
tmp50 = tl.load(in_ptr10 + ((4096*((x0 + (4*((-114688) + x1))) % 16)) + (65536*(((x0 + (4*((-114688) + x1)) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*((-114688) + x1))) // 16) % 4096)), tmp49, eviction_policy='evict_last', other=0.0)
tmp51 = tl.load(in_ptr11 + ((x0 + (4*((-114688) + x1))) % 16), tmp49, eviction_policy='evict_last', other=0.0)
tmp52 = tmp50 + tmp51
tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype)
tmp54 = tl.where(tmp49, tmp52, tmp53)
tmp55 = tmp0 >= tmp47
tmp56 = tl.full([1], 147456, tl.int64)
tmp57 = tmp0 < tmp56
tmp58 = tl.load(in_ptr12 + ((4096*((x0 + (4*((-131072) + x1))) % 16)) + (65536*(((x0 + (4*((-131072) + x1)) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*((-131072) + x1))) // 16) % 4096)), tmp55, eviction_policy='evict_last', other=0.0)
tmp59 = tl.load(in_ptr13 + ((x0 + (4*((-131072) + x1))) % 16), tmp55, eviction_policy='evict_last', other=0.0)
tmp60 = tmp58 + tmp59
tmp61 = tl.full(tmp60.shape, 0.0, tmp60.dtype)
tmp62 = tl.where(tmp55, tmp60, tmp61)
tmp63 = tl.where(tmp49, tmp54, tmp62)
tmp64 = tl.where(tmp40, tmp45, tmp63)
tmp65 = tl.where(tmp31, tmp36, tmp64)
tmp66 = tl.where(tmp22, tmp27, tmp65)
tmp67 = tl.where(tmp13, tmp18, tmp66)
tmp68 = tl.where(tmp4, tmp9, tmp67)
tl.store(out_ptr0 + (x3), tmp68, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (16, ), (1, ))
assert_size_stride(primals_4, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_5, (24, ), (1, ))
assert_size_stride(primals_6, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_7, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_8, (24, ), (1, ))
assert_size_stride(primals_9, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_10, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (24, ), (1, ))
assert_size_stride(primals_12, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_13, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_14, (24, ), (1, ))
assert_size_stride(primals_15, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_16, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (16, ), (1, ))
assert_size_stride(primals_18, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_19, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_20, (16, ), (1, ))
assert_size_stride(primals_21, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_22, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_23, (16, ), (1, ))
assert_size_stride(primals_24, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_25, (24, ), (1, ))
assert_size_stride(primals_26, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (24, ), (1, ))
assert_size_stride(primals_28, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_29, (24, ), (1, ))
assert_size_stride(primals_30, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_31, (24, ), (1, ))
assert_size_stride(primals_32, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_33, (16, ), (1, ))
assert_size_stride(primals_34, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_35, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [l_conv4_3], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv7], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv8_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_9, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv9_2], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(primals_12, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv10_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(primals_15, primals_13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv11_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(primals_18, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv12_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(primals_21, primals_19, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv4_3], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(primals_1, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv7], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(primals_6, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv8_2], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(primals_9, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv9_2], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(primals_12, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv10_2], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(primals_15, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv11_2], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(primals_18, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv12_2], Original ATen: [aten.convolution]
buf13 = extern_kernels.convolution(primals_21, primals_34, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf14 = empty_strided_cuda((4, 147456, 4), (589824, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [locs], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_3, buf1, primals_5, buf2, primals_8, buf3, primals_11, buf4, primals_14, buf5, primals_17, buf6, primals_20, buf14, 2359296, grid=grid(2359296), stream=stream0)
del buf0
del buf1
del buf2
del buf3
del buf4
del buf5
del buf6
del primals_11
del primals_14
del primals_17
del primals_20
del primals_3
del primals_5
del primals_8
buf15 = empty_strided_cuda((4, 147456, 4), (589824, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [classes_scores], Original ATen: [aten.cat]
triton_poi_fused_cat_0.run(buf7, primals_23, buf8, primals_25, buf9, primals_27, buf10, primals_29, buf11, primals_31, buf12, primals_33, buf13, primals_35, buf15, 2359296, grid=grid(2359296), stream=stream0)
del buf10
del buf11
del buf12
del buf13
del buf7
del buf8
del buf9
del primals_23
del primals_25
del primals_27
del primals_29
del primals_31
del primals_33
del primals_35
return (buf14, buf15, primals_1, primals_2, primals_4, primals_6, primals_7, primals_9, primals_10, primals_12, primals_13, primals_15, primals_16, primals_18, primals_19, primals_21, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((24, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 1024, 64, 64), (4194304, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((24, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((16, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((24, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((24, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.optim
import torch.utils.data
class PredictionConvolutions(nn.Module):
"""
Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps.
The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 24564 prior (default) boxes.
See 'cxcy_to_gcxgcy' in utils.py for the encoding definition.
The class scores represent the scores of each object class in each of the 24564 bounding boxes located.
A high score for 'background' = no object.
"""
def __init__(self, n_classes):
"""
:param n_classes: number of different types of objects
"""
super(PredictionConvolutions, self).__init__()
self.n_classes = n_classes
n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6,
'conv10_2': 6, 'conv11_2': 4, 'conv12_2': 4}
self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4,
kernel_size=3, padding=1)
self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size=
3, padding=1)
self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv12_2 = nn.Conv2d(256, n_boxes['conv12_2'] * 4,
kernel_size=3, padding=1)
self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv12_2 = nn.Conv2d(256, n_boxes['conv12_2'] * n_classes,
kernel_size=3, padding=1)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats,
conv9_2_feats, conv10_2_feats, conv11_2_feats, conv12_2_feats):
batch_size = conv4_3_feats.size(0)
l_conv4_3 = self.loc_conv4_3(conv4_3_feats)
l_conv4_3 = l_conv4_3.permute(0, 2, 3, 1).contiguous()
l_conv4_3 = l_conv4_3.view(batch_size, -1, 4)
l_conv7 = self.loc_conv7(conv7_feats)
l_conv7 = l_conv7.permute(0, 2, 3, 1).contiguous()
l_conv7 = l_conv7.view(batch_size, -1, 4)
l_conv8_2 = self.loc_conv8_2(conv8_2_feats)
l_conv8_2 = l_conv8_2.permute(0, 2, 3, 1).contiguous()
l_conv8_2 = l_conv8_2.view(batch_size, -1, 4)
l_conv9_2 = self.loc_conv9_2(conv9_2_feats)
l_conv9_2 = l_conv9_2.permute(0, 2, 3, 1).contiguous()
l_conv9_2 = l_conv9_2.view(batch_size, -1, 4)
l_conv10_2 = self.loc_conv10_2(conv10_2_feats)
l_conv10_2 = l_conv10_2.permute(0, 2, 3, 1).contiguous()
l_conv10_2 = l_conv10_2.view(batch_size, -1, 4)
l_conv11_2 = self.loc_conv11_2(conv11_2_feats)
l_conv11_2 = l_conv11_2.permute(0, 2, 3, 1).contiguous()
l_conv11_2 = l_conv11_2.view(batch_size, -1, 4)
l_conv12_2 = self.loc_conv12_2(conv12_2_feats)
l_conv12_2 = l_conv12_2.permute(0, 2, 3, 1).contiguous()
l_conv12_2 = l_conv12_2.view(batch_size, -1, 4)
c_conv4_3 = self.cl_conv4_3(conv4_3_feats)
c_conv4_3 = c_conv4_3.permute(0, 2, 3, 1).contiguous()
c_conv4_3 = c_conv4_3.view(batch_size, -1, self.n_classes)
c_conv7 = self.cl_conv7(conv7_feats)
c_conv7 = c_conv7.permute(0, 2, 3, 1).contiguous()
c_conv7 = c_conv7.view(batch_size, -1, self.n_classes)
c_conv8_2 = self.cl_conv8_2(conv8_2_feats)
c_conv8_2 = c_conv8_2.permute(0, 2, 3, 1).contiguous()
c_conv8_2 = c_conv8_2.view(batch_size, -1, self.n_classes)
c_conv9_2 = self.cl_conv9_2(conv9_2_feats)
c_conv9_2 = c_conv9_2.permute(0, 2, 3, 1).contiguous()
c_conv9_2 = c_conv9_2.view(batch_size, -1, self.n_classes)
c_conv10_2 = self.cl_conv10_2(conv10_2_feats)
c_conv10_2 = c_conv10_2.permute(0, 2, 3, 1).contiguous()
c_conv10_2 = c_conv10_2.view(batch_size, -1, self.n_classes)
c_conv11_2 = self.cl_conv11_2(conv11_2_feats)
c_conv11_2 = c_conv11_2.permute(0, 2, 3, 1).contiguous()
c_conv11_2 = c_conv11_2.view(batch_size, -1, self.n_classes)
c_conv12_2 = self.cl_conv12_2(conv12_2_feats)
c_conv12_2 = c_conv12_2.permute(0, 2, 3, 1).contiguous()
c_conv12_2 = c_conv12_2.view(batch_size, -1, self.n_classes)
locs = torch.cat([l_conv4_3, l_conv7, l_conv8_2, l_conv9_2,
l_conv10_2, l_conv11_2, l_conv12_2], dim=1)
classes_scores = torch.cat([c_conv4_3, c_conv7, c_conv8_2,
c_conv9_2, c_conv10_2, c_conv11_2, c_conv12_2], dim=1)
return locs, classes_scores
def get_inputs():
return [torch.rand([4, 512, 64, 64]), torch.rand([4, 1024, 64, 64]),
torch.rand([4, 512, 64, 64]), torch.rand([4, 256, 64, 64]), torch.
rand([4, 256, 64, 64]), torch.rand([4, 256, 64, 64]), torch.rand([4,
256, 64, 64])]
def get_init_inputs():
return [[], {'n_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11,
in_ptr12, in_ptr13, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4 % 147456
x0 = xindex % 4
x2 = xindex // 589824
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 16384, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4096 * ((x0 + 4 * x1) % 16) + 65536 * ((x0 +
4 * x1 + 65536 * x2) // 65536 % 4) + (x0 + 4 * x1) // 16 % 4096),
tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0 + 4 * x1) % 16, tmp4, eviction_policy=
'evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 40960, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (4096 * ((x0 + 4 * (-16384 + x1)) % 24) +
98304 * ((x0 + 4 * (-16384 + x1) + 98304 * x2) // 98304 % 4) + (x0 +
4 * (-16384 + x1)) // 24 % 4096), tmp13, eviction_policy=
'evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + (x0 + 4 * (-16384 + x1)) % 24, tmp13,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 65536, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr4 + (4096 * ((x0 + 4 * (-40960 + x1)) % 24) +
98304 * ((x0 + 4 * (-40960 + x1) + 98304 * x2) // 98304 % 4) + (x0 +
4 * (-40960 + x1)) // 24 % 4096), tmp22, eviction_policy=
'evict_last', other=0.0)
tmp24 = tl.load(in_ptr5 + (x0 + 4 * (-40960 + x1)) % 24, tmp22,
eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1], 90112, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tmp28 & tmp30
tmp32 = tl.load(in_ptr6 + (4096 * ((x0 + 4 * (-65536 + x1)) % 24) +
98304 * ((x0 + 4 * (-65536 + x1) + 98304 * x2) // 98304 % 4) + (x0 +
4 * (-65536 + x1)) // 24 % 4096), tmp31, eviction_policy=
'evict_last', other=0.0)
tmp33 = tl.load(in_ptr7 + (x0 + 4 * (-65536 + x1)) % 24, tmp31,
eviction_policy='evict_last', other=0.0)
tmp34 = tmp32 + tmp33
tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype)
tmp36 = tl.where(tmp31, tmp34, tmp35)
tmp37 = tmp0 >= tmp29
tmp38 = tl.full([1], 114688, tl.int64)
tmp39 = tmp0 < tmp38
tmp40 = tmp37 & tmp39
tmp41 = tl.load(in_ptr8 + (4096 * ((x0 + 4 * (-90112 + x1)) % 24) +
98304 * ((x0 + 4 * (-90112 + x1) + 98304 * x2) // 98304 % 4) + (x0 +
4 * (-90112 + x1)) // 24 % 4096), tmp40, eviction_policy=
'evict_last', other=0.0)
tmp42 = tl.load(in_ptr9 + (x0 + 4 * (-90112 + x1)) % 24, tmp40,
eviction_policy='evict_last', other=0.0)
tmp43 = tmp41 + tmp42
tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype)
tmp45 = tl.where(tmp40, tmp43, tmp44)
tmp46 = tmp0 >= tmp38
tmp47 = tl.full([1], 131072, tl.int64)
tmp48 = tmp0 < tmp47
tmp49 = tmp46 & tmp48
tmp50 = tl.load(in_ptr10 + (4096 * ((x0 + 4 * (-114688 + x1)) % 16) +
65536 * ((x0 + 4 * (-114688 + x1) + 65536 * x2) // 65536 % 4) + (x0 +
4 * (-114688 + x1)) // 16 % 4096), tmp49, eviction_policy=
'evict_last', other=0.0)
tmp51 = tl.load(in_ptr11 + (x0 + 4 * (-114688 + x1)) % 16, tmp49,
eviction_policy='evict_last', other=0.0)
tmp52 = tmp50 + tmp51
tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype)
tmp54 = tl.where(tmp49, tmp52, tmp53)
tmp55 = tmp0 >= tmp47
tl.full([1], 147456, tl.int64)
tmp58 = tl.load(in_ptr12 + (4096 * ((x0 + 4 * (-131072 + x1)) % 16) +
65536 * ((x0 + 4 * (-131072 + x1) + 65536 * x2) // 65536 % 4) + (x0 +
4 * (-131072 + x1)) // 16 % 4096), tmp55, eviction_policy=
'evict_last', other=0.0)
tmp59 = tl.load(in_ptr13 + (x0 + 4 * (-131072 + x1)) % 16, tmp55,
eviction_policy='evict_last', other=0.0)
tmp60 = tmp58 + tmp59
tmp61 = tl.full(tmp60.shape, 0.0, tmp60.dtype)
tmp62 = tl.where(tmp55, tmp60, tmp61)
tmp63 = tl.where(tmp49, tmp54, tmp62)
tmp64 = tl.where(tmp40, tmp45, tmp63)
tmp65 = tl.where(tmp31, tmp36, tmp64)
tmp66 = tl.where(tmp22, tmp27, tmp65)
tmp67 = tl.where(tmp13, tmp18, tmp66)
tmp68 = tl.where(tmp4, tmp9, tmp67)
tl.store(out_ptr0 + x3, tmp68, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35) = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_5, (24,), (1,))
assert_size_stride(primals_6, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_7, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_8, (24,), (1,))
assert_size_stride(primals_9, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_10, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (24,), (1,))
assert_size_stride(primals_12, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_13, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_14, (24,), (1,))
assert_size_stride(primals_15, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_16, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (16,), (1,))
assert_size_stride(primals_18, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_19, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_20, (16,), (1,))
assert_size_stride(primals_21, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_22, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_23, (16,), (1,))
assert_size_stride(primals_24, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_25, (24,), (1,))
assert_size_stride(primals_26, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (24,), (1,))
assert_size_stride(primals_28, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_29, (24,), (1,))
assert_size_stride(primals_30, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_31, (24,), (1,))
assert_size_stride(primals_32, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_33, (16,), (1,))
assert_size_stride(primals_34, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_35, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf2 = extern_kernels.convolution(primals_9, primals_7, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf3 = extern_kernels.convolution(primals_12, primals_10, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf4 = extern_kernels.convolution(primals_15, primals_13, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf5 = extern_kernels.convolution(primals_18, primals_16, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf6 = extern_kernels.convolution(primals_21, primals_19, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf7 = extern_kernels.convolution(primals_1, primals_22, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf8 = extern_kernels.convolution(primals_6, primals_24, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf9 = extern_kernels.convolution(primals_9, primals_26, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf10 = extern_kernels.convolution(primals_12, primals_28, stride=(
1, 1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf11 = extern_kernels.convolution(primals_15, primals_30, stride=(
1, 1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf12 = extern_kernels.convolution(primals_18, primals_32, stride=(
1, 1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf13 = extern_kernels.convolution(primals_21, primals_34, stride=(
1, 1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf14 = empty_strided_cuda((4, 147456, 4), (589824, 4, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(2359296)](buf0, primals_3, buf1,
primals_5, buf2, primals_8, buf3, primals_11, buf4, primals_14,
buf5, primals_17, buf6, primals_20, buf14, 2359296, XBLOCK=512,
num_warps=8, num_stages=1)
del buf0
del buf1
del buf2
del buf3
del buf4
del buf5
del buf6
del primals_11
del primals_14
del primals_17
del primals_20
del primals_3
del primals_5
del primals_8
buf15 = empty_strided_cuda((4, 147456, 4), (589824, 4, 1), torch.
float32)
triton_poi_fused_cat_0[grid(2359296)](buf7, primals_23, buf8,
primals_25, buf9, primals_27, buf10, primals_29, buf11,
primals_31, buf12, primals_33, buf13, primals_35, buf15,
2359296, XBLOCK=512, num_warps=8, num_stages=1)
del buf10
del buf11
del buf12
del buf13
del buf7
del buf8
del buf9
del primals_23
del primals_25
del primals_27
del primals_29
del primals_31
del primals_33
del primals_35
return (buf14, buf15, primals_1, primals_2, primals_4, primals_6,
primals_7, primals_9, primals_10, primals_12, primals_13,
primals_15, primals_16, primals_18, primals_19, primals_21,
primals_22, primals_24, primals_26, primals_28, primals_30,
primals_32, primals_34)
class PredictionConvolutionsNew(nn.Module):
"""
Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps.
The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 24564 prior (default) boxes.
See 'cxcy_to_gcxgcy' in utils.py for the encoding definition.
The class scores represent the scores of each object class in each of the 24564 bounding boxes located.
A high score for 'background' = no object.
"""
def __init__(self, n_classes):
"""
:param n_classes: number of different types of objects
"""
super(PredictionConvolutionsNew, self).__init__()
self.n_classes = n_classes
n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6,
'conv10_2': 6, 'conv11_2': 4, 'conv12_2': 4}
self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4,
kernel_size=3, padding=1)
self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size=
3, padding=1)
self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv12_2 = nn.Conv2d(256, n_boxes['conv12_2'] * 4,
kernel_size=3, padding=1)
self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv12_2 = nn.Conv2d(256, n_boxes['conv12_2'] * n_classes,
kernel_size=3, padding=1)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, input_0, input_1, input_2, input_3, input_4, input_5,
input_6):
primals_2 = self.loc_conv4_3.weight
primals_3 = self.loc_conv4_3.bias
primals_4 = self.loc_conv7.weight
primals_5 = self.loc_conv7.bias
primals_7 = self.loc_conv8_2.weight
primals_8 = self.loc_conv8_2.bias
primals_10 = self.loc_conv9_2.weight
primals_11 = self.loc_conv9_2.bias
primals_13 = self.loc_conv10_2.weight
primals_14 = self.loc_conv10_2.bias
primals_16 = self.loc_conv11_2.weight
primals_17 = self.loc_conv11_2.bias
primals_19 = self.loc_conv12_2.weight
primals_20 = self.loc_conv12_2.bias
primals_22 = self.cl_conv4_3.weight
primals_23 = self.cl_conv4_3.bias
primals_24 = self.cl_conv7.weight
primals_25 = self.cl_conv7.bias
primals_26 = self.cl_conv8_2.weight
primals_27 = self.cl_conv8_2.bias
primals_28 = self.cl_conv9_2.weight
primals_29 = self.cl_conv9_2.bias
primals_30 = self.cl_conv10_2.weight
primals_31 = self.cl_conv10_2.bias
primals_32 = self.cl_conv11_2.weight
primals_33 = self.cl_conv11_2.bias
primals_34 = self.cl_conv12_2.weight
primals_35 = self.cl_conv12_2.bias
primals_1 = input_0
primals_6 = input_1
primals_9 = input_2
primals_12 = input_3
primals_15 = input_4
primals_18 = input_5
primals_21 = input_6
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35])
return output[0], output[1]
| doduythao/ssd | PredictionConvolutions | false | 12,633 | [
"MIT"
]
| 0 | 170064a3edef05d3274b08ea7f622eb3238b5c5c | https://github.com/doduythao/ssd/tree/170064a3edef05d3274b08ea7f622eb3238b5c5c |
GCN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/7s/c7sdgdzvetijpkvfeu3p5aih3qchwft4zmzs7hfsf4vbwypgyrim.py
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu]
# Source node to ATen node mapping:
# add => add
# x => relu
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/uz/cuzbnz5k52xhjpdoaucm3u5qsyj2prasqn3xsty665xnmdng4lmj.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_7 => relu_3
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_12), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args
args.clear()
assert_size_stride(primals_1, (4, 1024), (1024, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (1024, ), (1, ))
assert_size_stride(primals_5, (1024, 1024), (1024, 1))
assert_size_stride(primals_6, (1024, ), (1, ))
assert_size_stride(primals_7, (1024, 1024), (1024, 1))
assert_size_stride(primals_8, (1024, ), (1, ))
assert_size_stride(primals_9, (1024, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (2048, 4), (4, 1))
assert_size_stride(primals_12, (2048, ), (1, ))
assert_size_stride(primals_13, (2048, 2048), (2048, 1))
assert_size_stride(primals_14, (2048, ), (1, ))
assert_size_stride(primals_15, (2048, 2048), (2048, 1))
assert_size_stride(primals_16, (2048, ), (1, ))
assert_size_stride(primals_17, (4, 2048), (2048, 1))
assert_size_stride(primals_18, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm]
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_add_relu_0.run(buf2, primals_4, 4096, grid=grid(4096), stream=stream0)
del primals_4
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm]
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf3, out=buf4)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [add_1, x_2], Original ATen: [aten.add, aten.relu]
triton_poi_fused_add_relu_0.run(buf5, primals_6, 4096, grid=grid(4096), stream=stream0)
del primals_6
buf6 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [support_2], Original ATen: [aten.mm]
extern_kernels.mm(buf5, primals_7, out=buf6)
buf7 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf6, out=buf7)
del buf6
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [add_2, x_4], Original ATen: [aten.add, aten.relu]
triton_poi_fused_add_relu_0.run(buf8, primals_8, 4096, grid=grid(4096), stream=stream0)
del primals_8
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [support_3], Original ATen: [aten.mm]
extern_kernels.mm(buf8, primals_9, out=buf9)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.addmm(primals_10, primals_3, buf9, alpha=1, beta=1, out=buf10)
del primals_10
buf11 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf10, reinterpret_tensor(primals_11, (4, 2048), (1, 4), 0), out=buf11)
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf12, primals_12, 8192, grid=grid(8192), stream=stream0)
del primals_12
buf13 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf12, reinterpret_tensor(primals_13, (2048, 2048), (1, 2048), 0), out=buf13)
buf14 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf14, primals_14, 8192, grid=grid(8192), stream=stream0)
del primals_14
buf15 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf14, reinterpret_tensor(primals_15, (2048, 2048), (1, 2048), 0), out=buf15)
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf16, primals_16, 8192, grid=grid(8192), stream=stream0)
del primals_16
buf17 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_18, buf16, reinterpret_tensor(primals_17, (2048, 4), (1, 2048), 0), alpha=1, beta=1, out=buf17)
del primals_18
return (buf17, buf2, buf5, buf8, buf10, buf12, buf14, buf16, primals_17, primals_15, primals_13, primals_11, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_9, (4, 1024), (1, 4), 0), reinterpret_tensor(primals_7, (1024, 1024), (1, 1024), 0), reinterpret_tensor(primals_5, (1024, 1024), (1, 1024), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((2048, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((2048, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import math
import torch
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
import torch.nn as nn
import torch.nn.functional as F
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GCN(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, 1024)
self.gc2 = GraphConvolution(1024, 1024)
self.gc3 = GraphConvolution(1024, 1024)
self.gc4 = GraphConvolution(1024, nhid)
self.linear1 = nn.Linear(nhid, 2048)
self.linear2 = nn.Linear(2048, 2048)
self.linear3 = nn.Linear(2048, 2048)
self.linear4 = nn.Linear(2048, nclass)
self.dropout = dropout
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.gc2(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.gc3(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc4(x, adj)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
return self.linear4(x)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Module
import math
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17, primals_18
) = args
args.clear()
assert_size_stride(primals_1, (4, 1024), (1024, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (1024,), (1,))
assert_size_stride(primals_5, (1024, 1024), (1024, 1))
assert_size_stride(primals_6, (1024,), (1,))
assert_size_stride(primals_7, (1024, 1024), (1024, 1))
assert_size_stride(primals_8, (1024,), (1,))
assert_size_stride(primals_9, (1024, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (2048, 4), (4, 1))
assert_size_stride(primals_12, (2048,), (1,))
assert_size_stride(primals_13, (2048, 2048), (2048, 1))
assert_size_stride(primals_14, (2048,), (1,))
assert_size_stride(primals_15, (2048, 2048), (2048, 1))
assert_size_stride(primals_16, (2048,), (1,))
assert_size_stride(primals_17, (4, 2048), (2048, 1))
assert_size_stride(primals_18, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_relu_0[grid(4096)](buf2, primals_4, 4096,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_4
buf3 = buf0
del buf0
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
extern_kernels.mm(primals_3, buf3, out=buf4)
buf5 = buf4
del buf4
triton_poi_fused_add_relu_0[grid(4096)](buf5, primals_6, 4096,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_6
buf6 = buf3
del buf3
extern_kernels.mm(buf5, primals_7, out=buf6)
buf7 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
extern_kernels.mm(primals_3, buf6, out=buf7)
del buf6
buf8 = buf7
del buf7
triton_poi_fused_add_relu_0[grid(4096)](buf8, primals_8, 4096,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_8
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf8, primals_9, out=buf9)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, primals_3, buf9, alpha=1, beta=1,
out=buf10)
del primals_10
buf11 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
extern_kernels.mm(buf10, reinterpret_tensor(primals_11, (4, 2048),
(1, 4), 0), out=buf11)
buf12 = buf11
del buf11
triton_poi_fused_relu_1[grid(8192)](buf12, primals_12, 8192, XBLOCK
=128, num_warps=4, num_stages=1)
del primals_12
buf13 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
extern_kernels.mm(buf12, reinterpret_tensor(primals_13, (2048, 2048
), (1, 2048), 0), out=buf13)
buf14 = buf13
del buf13
triton_poi_fused_relu_1[grid(8192)](buf14, primals_14, 8192, XBLOCK
=128, num_warps=4, num_stages=1)
del primals_14
buf15 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
extern_kernels.mm(buf14, reinterpret_tensor(primals_15, (2048, 2048
), (1, 2048), 0), out=buf15)
buf16 = buf15
del buf15
triton_poi_fused_relu_1[grid(8192)](buf16, primals_16, 8192, XBLOCK
=128, num_warps=4, num_stages=1)
del primals_16
buf17 = buf9
del buf9
extern_kernels.addmm(primals_18, buf16, reinterpret_tensor(
primals_17, (2048, 4), (1, 2048), 0), alpha=1, beta=1, out=buf17)
del primals_18
return (buf17, buf2, buf5, buf8, buf10, buf12, buf14, buf16, primals_17,
primals_15, primals_13, primals_11, reinterpret_tensor(primals_3, (
4, 4), (1, 4), 0), reinterpret_tensor(primals_9, (4, 1024), (1, 4),
0), reinterpret_tensor(primals_7, (1024, 1024), (1, 1024), 0),
reinterpret_tensor(primals_5, (1024, 1024), (1, 1024), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0))
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GCNNew(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCNNew, self).__init__()
self.gc1 = GraphConvolution(nfeat, 1024)
self.gc2 = GraphConvolution(1024, 1024)
self.gc3 = GraphConvolution(1024, 1024)
self.gc4 = GraphConvolution(1024, nhid)
self.linear1 = nn.Linear(nhid, 2048)
self.linear2 = nn.Linear(2048, 2048)
self.linear3 = nn.Linear(2048, 2048)
self.linear4 = nn.Linear(2048, nclass)
self.dropout = dropout
def forward(self, input_0, input_1):
primals_1 = self.gc1.weight
primals_4 = self.gc1.bias
primals_5 = self.gc2.weight
primals_6 = self.gc2.bias
primals_7 = self.gc3.weight
primals_8 = self.gc3.bias
primals_9 = self.gc4.weight
primals_10 = self.gc4.bias
primals_11 = self.linear1.weight
primals_12 = self.linear1.bias
primals_13 = self.linear2.weight
primals_14 = self.linear2.bias
primals_15 = self.linear3.weight
primals_16 = self.linear3.bias
primals_17 = self.linear4.weight
primals_18 = self.linear4.bias
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18])
return output[0]
| jarvis08/gpackage-gcn-torch | GCN | false | 12,634 | [
"MIT"
]
| 0 | 5e483ea3012dfd0f23b194519c1295e3efcbdc35 | https://github.com/jarvis08/gpackage-gcn-torch/tree/5e483ea3012dfd0f23b194519c1295e3efcbdc35 |
TransformerDecoderLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vh/cvhiot6d7wcfsuy6rh4gl4pcavsvp2otvw6mzmz3nqtaqwsotole.py
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# repeat => repeat
# Graph fragment:
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%view_12, [1, 4, 1, 1]), kwargs = {})
triton_poi_fused_repeat_1 = async_compile.triton('triton_poi_fused_repeat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x3 = xindex
tmp0 = x0 + ((-1)*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 <= tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = tmp5 == tmp4
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/37/c37im5gvzgd54i6pwdkzbzagjgm2hlvyuufc537slxun4obyhoes.py
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# attn_weights => exp, sum_1
# masked_fill_ => full_default_2, where_1
# Graph fragment:
# %full_default_2 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_13, %full_default_2, %bmm), kwargs = {})
# %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_1, 1), kwargs = {})
# %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [-1], True), kwargs = {})
# %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {})
# %div_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_masked_fill_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp8 = tl.where(tmp6, tmp2, tmp7)
tmp9 = tmp8 * tmp4
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tl.where(tmp11, tmp2, tmp12)
tmp14 = tmp13 * tmp4
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tl.where(tmp16, tmp2, tmp17)
tmp19 = tmp18 * tmp4
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tmp21 * tmp4
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp9 - tmp20
tmp25 = tmp24 * tmp4
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 + tmp26
tmp28 = tmp14 - tmp20
tmp29 = tmp28 * tmp4
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp27 + tmp30
tmp32 = tmp19 - tmp20
tmp33 = tmp32 * tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp31 + tmp34
tl.store(out_ptr0 + (x0), tmp20, xmask)
tl.store(out_ptr1 + (x0), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/s7/cs7tkqbp32zttfoqu3noo4dzger63apkogo36sj6lkru33bw54tm.py
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# attn_weights => div_1, exp
# masked_fill_ => full_default_2, where_1
# Graph fragment:
# %full_default_2 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_13, %full_default_2, %bmm), kwargs = {})
# %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_1, 1), kwargs = {})
# %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [-1], True), kwargs = {})
# %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {})
# %div_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_masked_fill_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp6 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp4
tmp9 = tl_math.exp(tmp8)
tmp11 = tmp9 / tmp10
tl.store(in_out_ptr0 + (x2), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous_3 => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/s7/cs7p2dyxlesdvuyx4owztmqg5sapsarlgzaivin7okeoe6lxygw7.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_18, [1]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_native_layer_norm_5 = async_compile.triton('triton_poi_fused_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/y6/cy6mkjdwes62jaih4dzebyknvxezhquh37cme5cflrxbxff3z675.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add_1, add_2, mul, mul_1, rsqrt, sub_2
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_18, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_10), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_11), kwargs = {})
triton_poi_fused_native_layer_norm_6 = async_compile.triton('triton_poi_fused_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/36/c367rcv2obfrr3jnd6iifol46chcr6me3cdxpbe7jwum3jppqkna.py
# Topologically Sorted Source Nodes: [repeat_1], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# repeat_1 => repeat_1
# Graph fragment:
# %repeat_1 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%view_32, [1, 4, 1, 1]), kwargs = {})
triton_poi_fused_repeat_7 = async_compile.triton('triton_poi_fused_repeat_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6h/c6hd5ncxoecwkbb7fby7ebnhqlwhh4mzmufikxyk5aouosneh42d.py
# Topologically Sorted Source Nodes: [masked_fill_, masked_fill__1, attn_weights_1], Original ATen: [aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# attn_weights_1 => exp_1, sum_2
# masked_fill_ => full_default_2
# masked_fill__1 => where_2
# Graph fragment:
# %full_default_2 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_33, %full_default_2, %bmm_2), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_2, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {})
triton_poi_fused__softmax_masked_fill_8 = async_compile.triton('triton_poi_fused__softmax_masked_fill_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_masked_fill_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp8 = tl.where(tmp6, tmp2, tmp7)
tmp9 = tmp8 * tmp4
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tl.where(tmp11, tmp2, tmp12)
tmp14 = tmp13 * tmp4
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tl.where(tmp16, tmp2, tmp17)
tmp19 = tmp18 * tmp4
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tmp21 * tmp4
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp9 - tmp20
tmp25 = tmp24 * tmp4
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 + tmp26
tmp28 = tmp14 - tmp20
tmp29 = tmp28 * tmp4
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp27 + tmp30
tmp32 = tmp19 - tmp20
tmp33 = tmp32 * tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp31 + tmp34
tl.store(out_ptr0 + (x2), tmp20, xmask)
tl.store(out_ptr1 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/s5/cs5gdmm3aovofwif2w4uihyrz2dnsg43d5yononneqsiaiy2q2eu.py
# Topologically Sorted Source Nodes: [masked_fill_, masked_fill__1, attn_weights_1], Original ATen: [aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# attn_weights_1 => div_3, exp_1
# masked_fill_ => full_default_2
# masked_fill__1 => where_2
# Graph fragment:
# %full_default_2 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_33, %full_default_2, %bmm_2), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_2, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
triton_poi_fused__softmax_masked_fill_9 = async_compile.triton('triton_poi_fused__softmax_masked_fill_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_masked_fill_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
x4 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + (x3), xmask)
tmp6 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp4
tmp9 = tl_math.exp(tmp8)
tmp11 = tmp9 / tmp10
tl.store(in_out_ptr0 + (x3), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/cn/ccn3ztml5qupb2u6trhxfni5siq2chr5f7il63gpx775u3hi6iz5.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x_2 => add_3
# Graph fragment:
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %view_37), kwargs = {})
triton_poi_fused_add_10 = async_compile.triton('triton_poi_fused_add_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/s5/cs5qfpz5dtrtoopym4yheekk2kuetbhcvypaqjhns7stzzfhkjha.py
# Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm_1 => add_4, rsqrt_1, var_mean_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_38, [1]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
triton_poi_fused_native_layer_norm_11 = async_compile.triton('triton_poi_fused_native_layer_norm_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/dr/cdrqch7dkzd6wgbo46meh7vw2wmmm5avruav7pzwc4s4i4zleekn.py
# Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm_1 => add_4, add_5, mul_2, mul_3, rsqrt_1, sub_4, var_mean_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_38, [1]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_38, %getitem_3), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %rsqrt_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_22), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %primals_23), kwargs = {})
triton_poi_fused_native_layer_norm_12 = async_compile.triton('triton_poi_fused_native_layer_norm_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_12(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/d2/cd2jzht7h5xjxoygvrqqi5z6h7ymzldxrfdzzcr3hgci55wxxltm.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_4 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_41,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_13 = async_compile.triton('triton_poi_fused_relu_threshold_backward_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_13(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (4, 4), (4, 1))
assert_size_stride(primals_18, (4, ), (1, ))
assert_size_stride(primals_19, (4, 4), (4, 1))
assert_size_stride(primals_20, (4, 4), (4, 1))
assert_size_stride(primals_21, (4, ), (1, ))
assert_size_stride(primals_22, (4, ), (1, ))
assert_size_stride(primals_23, (4, ), (1, ))
assert_size_stride(primals_24, (4, 4), (4, 1))
assert_size_stride(primals_25, (4, ), (1, ))
assert_size_stride(primals_26, (4, 4), (4, 1))
assert_size_stride(primals_27, (4, ), (1, ))
assert_size_stride(primals_28, (4, ), (1, ))
assert_size_stride(primals_29, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_3, buf1, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_3
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf3, primals_7, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_7
buf5 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_5, buf5, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [dot_prod], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
triton_poi_fused_repeat_1.run(buf7, 256, grid=grid(256), stream=stream0)
buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 64), 0); del buf2 # reuse
buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_masked_fill_2.run(buf7, buf6, buf8, buf9, 64, grid=grid(64), stream=stream0)
buf10 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_masked_fill_3.run(buf10, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [attentioned], Original ATen: [aten.bmm]
extern_kernels.bmm(buf10, reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13)
del primals_9
buf14 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
buf15 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_5.run(buf13, primals_1, buf14, buf15, 16, grid=grid(16), stream=stream0)
buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_6.run(buf13, primals_1, buf14, buf15, primals_10, primals_11, buf16, 64, grid=grid(64), stream=stream0)
del primals_11
buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf16, reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf17)
buf18 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous_4], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf17, primals_14, buf18, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_14
buf19 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19)
del primals_15
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf20)
del primals_17
buf21 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous_6], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf20, primals_18, buf21, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_18
buf22 = reinterpret_tensor(buf20, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf20 # reuse
# Topologically Sorted Source Nodes: [contiguous_5], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf19, primals_16, buf22, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_16
buf23 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [dot_prod_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf22, (16, 1, 4), (4, 0, 1), 0), out=buf23)
buf24 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [repeat_1], Original ATen: [aten.repeat]
triton_poi_fused_repeat_7.run(primals_19, buf24, 64, grid=grid(64), stream=stream0)
del primals_19
buf25 = reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 64), 0); del buf19 # reuse
buf26 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [masked_fill_, masked_fill__1, attn_weights_1], Original ATen: [aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_masked_fill_8.run(buf24, buf23, buf25, buf26, 64, grid=grid(64), stream=stream0)
buf27 = buf23; del buf23 # reuse
# Topologically Sorted Source Nodes: [masked_fill_, masked_fill__1, attn_weights_1], Original ATen: [aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_masked_fill_9.run(buf27, buf24, buf25, buf26, 256, grid=grid(256), stream=stream0)
buf28 = reinterpret_tensor(buf26, (16, 4, 1), (4, 1, 1), 0); del buf26 # reuse
# Topologically Sorted Source Nodes: [attentioned_2], Original ATen: [aten.bmm]
extern_kernels.bmm(buf27, reinterpret_tensor(buf21, (16, 4, 1), (4, 1, 0), 0), out=buf28)
buf29 = reinterpret_tensor(buf25, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf25 # reuse
# Topologically Sorted Source Nodes: [contiguous_7], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf28, buf29, 16, 4, grid=grid(16, 4), stream=stream0)
buf30 = reinterpret_tensor(buf28, (16, 4), (4, 1), 0); del buf28 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf29, (16, 4), (4, 1), 0), reinterpret_tensor(primals_20, (4, 4), (1, 4), 0), out=buf30)
buf31 = reinterpret_tensor(buf30, (4, 4, 4), (16, 4, 1), 0); del buf30 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add]
triton_poi_fused_add_10.run(buf31, buf16, primals_21, 64, grid=grid(64), stream=stream0)
del primals_21
buf32 = buf15; del buf15 # reuse
buf33 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_11.run(buf31, buf32, buf33, 16, grid=grid(16), stream=stream0)
buf34 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_12.run(buf31, buf32, buf33, primals_22, primals_23, buf34, 64, grid=grid(64), stream=stream0)
del primals_23
buf35 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf34, reinterpret_tensor(primals_24, (4, 4), (1, 4), 0), out=buf35)
buf36 = reinterpret_tensor(buf35, (4, 4, 4), (16, 4, 1), 0); del buf35 # reuse
buf42 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_13.run(buf36, primals_25, buf42, 64, grid=grid(64), stream=stream0)
del primals_25
buf37 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf36, (16, 4), (4, 1), 0), reinterpret_tensor(primals_26, (4, 4), (1, 4), 0), out=buf37)
buf38 = reinterpret_tensor(buf37, (4, 4, 4), (16, 4, 1), 0); del buf37 # reuse
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.add]
triton_poi_fused_add_10.run(buf38, buf34, primals_27, 64, grid=grid(64), stream=stream0)
del primals_27
buf39 = buf33; del buf33 # reuse
buf40 = buf32; del buf32 # reuse
# Topologically Sorted Source Nodes: [layer_norm_2], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_11.run(buf38, buf39, buf40, 16, grid=grid(16), stream=stream0)
buf41 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm_2], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_12.run(buf38, buf39, buf40, primals_28, primals_29, buf41, 64, grid=grid(64), stream=stream0)
del buf39
del buf40
del primals_29
return (reinterpret_tensor(buf41, (4, 4, 4), (16, 4, 1), 0), primals_1, primals_10, primals_22, primals_28, buf7, buf10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, buf16, reinterpret_tensor(primals_12, (16, 4), (4, 1), 0), buf24, buf27, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), reinterpret_tensor(buf31, (16, 4), (4, 1), 0), buf34, reinterpret_tensor(buf36, (16, 4), (4, 1), 0), reinterpret_tensor(buf38, (16, 4), (4, 1), 0), primals_26, buf42, primals_24, primals_20, reinterpret_tensor(buf21, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf22, (16, 4, 1), (4, 1, 1), 0), primals_13, primals_8, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
import torch.nn.functional as F
def _normalize(tensor, norm_layer):
"""
Broadcast layer norm
"""
size = tensor.size()
return norm_layer(tensor.view(-1, size[-1])).view(size)
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, dim, dropout=0):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.dim = dim
self.dropout = nn.Dropout(p=dropout)
self.q_lin = nn.Linear(dim, dim)
self.k_lin = nn.Linear(dim, dim)
self.v_lin = nn.Linear(dim, dim)
nn.init.xavier_normal_(self.q_lin.weight)
nn.init.xavier_normal_(self.k_lin.weight)
nn.init.xavier_normal_(self.v_lin.weight)
self.out_lin = nn.Linear(dim, dim)
nn.init.xavier_normal_(self.out_lin.weight)
def forward(self, query, key=None, value=None, mask=None):
batch_size, query_len, dim = query.size()
assert dim == self.dim, f'Dimensions do not match: {dim} query vs {self.dim} configured'
n_heads = self.n_heads
dim_per_head = dim // n_heads
scale = math.sqrt(dim_per_head)
def prepare_head(tensor):
_bsz, seq_len, _ = tensor.size()
tensor = tensor.view(batch_size, tensor.size(1), n_heads,
dim_per_head)
tensor = tensor.transpose(1, 2).contiguous().view(batch_size *
n_heads, seq_len, dim_per_head)
return tensor
if key is None and value is None:
key = value = query
elif value is None:
value = key
_, key_len, dim = key.size()
q = prepare_head(self.q_lin(query))
k = prepare_head(self.k_lin(key))
v = prepare_head(self.v_lin(value))
dot_prod = q.bmm(k.transpose(1, 2))
attn_mask = (mask == 0).view(batch_size, 1, -1, key_len).repeat(1,
n_heads, 1, 1).expand(batch_size, n_heads, query_len, key_len
).view(batch_size * n_heads, query_len, key_len)
assert attn_mask.shape == dot_prod.shape
dot_prod.masked_fill_(attn_mask, -float(1e+20))
attn_weights = F.softmax(dot_prod / scale, dim=-1)
attentioned = attn_weights.bmm(v)
attentioned = attentioned.view(batch_size, n_heads, query_len,
dim_per_head).transpose(1, 2).contiguous().view(batch_size,
query_len, dim)
out = self.out_lin(attentioned)
return out
class TransformerFFN(nn.Module):
def __init__(self, dim, dim_hidden, dropout=0):
super(TransformerFFN, self).__init__()
self.dropout = nn.Dropout(p=dropout)
self.lin1 = nn.Linear(dim, dim_hidden)
self.lin2 = nn.Linear(dim_hidden, dim)
nn.init.xavier_uniform_(self.lin1.weight)
nn.init.xavier_uniform_(self.lin2.weight)
def forward(self, x):
x = F.relu(self.lin1(x))
x = self.dropout(x)
x = self.lin2(x)
x = self.dropout(x)
return x
class TransformerDecoderLayer(nn.Module):
def __init__(self, n_heads, embedding_size, ffn_size, attention_dropout
=0.0, relu_dropout=0.0):
super().__init__()
self.dim = embedding_size
self.ffn_dim = ffn_size
self.self_attention = MultiHeadAttention(n_heads, embedding_size,
dropout=attention_dropout)
self.norm1 = nn.LayerNorm(embedding_size)
self.encoder_attention = MultiHeadAttention(n_heads, embedding_size,
dropout=attention_dropout)
self.norm2 = nn.LayerNorm(embedding_size)
self.ffn = TransformerFFN(embedding_size, ffn_size, dropout=
relu_dropout)
self.norm3 = nn.LayerNorm(embedding_size)
def forward(self, x, encoder_output, encoder_mask):
decoder_mask = self._create_selfattn_mask(x)
residual = x
x = self.self_attention(query=x, mask=decoder_mask)
x = x + residual
x = _normalize(x, self.norm1)
residual = x
x = self.encoder_attention(query=x, key=encoder_output, value=
encoder_output, mask=encoder_mask)
x = residual + x
x = _normalize(x, self.norm2)
residual = x
x = self.ffn(x)
x = residual + x
x = _normalize(x, self.norm3)
return x
def _create_selfattn_mask(self, x):
bsz = x.size(0)
time = x.size(1)
mask = torch.tril(x.new(time, time).fill_(1))
mask = mask.unsqueeze(0).expand(bsz, -1, -1)
return mask
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'n_heads': 4, 'embedding_size': 4, 'ffn_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
from torch import nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_repeat_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x3 = xindex
tmp0 = x0 + -1 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 <= tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = tmp5 == tmp4
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp8 = tl.where(tmp6, tmp2, tmp7)
tmp9 = tmp8 * tmp4
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tl.where(tmp11, tmp2, tmp12)
tmp14 = tmp13 * tmp4
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tl.where(tmp16, tmp2, tmp17)
tmp19 = tmp18 * tmp4
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tmp21 * tmp4
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp9 - tmp20
tmp25 = tmp24 * tmp4
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 + tmp26
tmp28 = tmp14 - tmp20
tmp29 = tmp28 * tmp4
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp27 + tmp30
tmp32 = tmp19 - tmp20
tmp33 = tmp32 * tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp31 + tmp34
tl.store(out_ptr0 + x0, tmp20, xmask)
tl.store(out_ptr1 + x0, tmp35, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp6 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp4
tmp9 = tl_math.exp(tmp8)
tmp11 = tmp9 / tmp10
tl.store(in_out_ptr0 + x2, tmp11, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_repeat_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_8(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp8 = tl.where(tmp6, tmp2, tmp7)
tmp9 = tmp8 * tmp4
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tl.where(tmp11, tmp2, tmp12)
tmp14 = tmp13 * tmp4
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tl.where(tmp16, tmp2, tmp17)
tmp19 = tmp18 * tmp4
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tmp21 * tmp4
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp9 - tmp20
tmp25 = tmp24 * tmp4
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 + tmp26
tmp28 = tmp14 - tmp20
tmp29 = tmp28 * tmp4
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp27 + tmp30
tmp32 = tmp19 - tmp20
tmp33 = tmp32 * tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp31 + tmp34
tl.store(out_ptr0 + x2, tmp20, xmask)
tl.store(out_ptr1 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_9(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
x4 = xindex // 4
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp6 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp4
tmp9 = tl_math.exp(tmp8)
tmp11 = tmp9 / tmp10
tl.store(in_out_ptr0 + x3, tmp11, xmask)
@triton.jit
def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_11(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_12(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_13(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (4, 4), (4, 1))
assert_size_stride(primals_18, (4,), (1,))
assert_size_stride(primals_19, (4, 4), (4, 1))
assert_size_stride(primals_20, (4, 4), (4, 1))
assert_size_stride(primals_21, (4,), (1,))
assert_size_stride(primals_22, (4,), (1,))
assert_size_stride(primals_23, (4,), (1,))
assert_size_stride(primals_24, (4, 4), (4, 1))
assert_size_stride(primals_25, (4,), (1,))
assert_size_stride(primals_26, (4, 4), (4, 1))
assert_size_stride(primals_27, (4,), (1,))
assert_size_stride(primals_28, (4,), (1,))
assert_size_stride(primals_29, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf1, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_3
buf2 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_0[grid(16, 4)](buf3, primals_7, buf4, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_7
buf5 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf3
triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_5, buf5, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_repeat_1[grid(256)](buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 64), 0)
del buf2
buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
triton_poi_fused__softmax_masked_fill_2[grid(64)](buf7, buf6, buf8,
buf9, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf10 = buf6
del buf6
triton_poi_fused__softmax_masked_fill_3[grid(256)](buf10, buf7,
buf8, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 1), 0)
del buf9
extern_kernels.bmm(buf10, reinterpret_tensor(buf4, (16, 4, 1), (4,
1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf8
triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0)
del buf11
extern_kernels.addmm(primals_9, reinterpret_tensor(buf12, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf13)
del primals_9
buf14 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
buf15 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
triton_poi_fused_native_layer_norm_5[grid(16)](buf13, primals_1,
buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_6[grid(64)](buf13, primals_1,
buf14, buf15, primals_10, primals_11, buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_11
buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(buf16, reinterpret_tensor(primals_13, (4, 4), (1,
4), 0), out=buf17)
buf18 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_0[grid(16, 4)](buf17, primals_14, buf18, 16,
4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_14
buf19 = buf17
del buf17
extern_kernels.mm(reinterpret_tensor(primals_12, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19)
del primals_15
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_12, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf20)
del primals_17
buf21 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_0[grid(16, 4)](buf20, primals_18, buf21, 16,
4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_18
buf22 = reinterpret_tensor(buf20, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf20
triton_poi_fused_clone_0[grid(16, 4)](buf19, primals_16, buf22, 16,
4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_16
buf23 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf22, (16, 1, 4), (4, 0, 1), 0), out=buf23)
buf24 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.bool)
triton_poi_fused_repeat_7[grid(64)](primals_19, buf24, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del primals_19
buf25 = reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 64), 0)
del buf19
buf26 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
triton_poi_fused__softmax_masked_fill_8[grid(64)](buf24, buf23,
buf25, buf26, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf27 = buf23
del buf23
triton_poi_fused__softmax_masked_fill_9[grid(256)](buf27, buf24,
buf25, buf26, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf28 = reinterpret_tensor(buf26, (16, 4, 1), (4, 1, 1), 0)
del buf26
extern_kernels.bmm(buf27, reinterpret_tensor(buf21, (16, 4, 1), (4,
1, 0), 0), out=buf28)
buf29 = reinterpret_tensor(buf25, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf25
triton_poi_fused_clone_4[grid(16, 4)](buf28, buf29, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf30 = reinterpret_tensor(buf28, (16, 4), (4, 1), 0)
del buf28
extern_kernels.mm(reinterpret_tensor(buf29, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_20, (4, 4), (1, 4), 0), out=buf30)
buf31 = reinterpret_tensor(buf30, (4, 4, 4), (16, 4, 1), 0)
del buf30
triton_poi_fused_add_10[grid(64)](buf31, buf16, primals_21, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_21
buf32 = buf15
del buf15
buf33 = buf14
del buf14
triton_poi_fused_native_layer_norm_11[grid(16)](buf31, buf32, buf33,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf34 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_12[grid(64)](buf31, buf32, buf33,
primals_22, primals_23, buf34, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_23
buf35 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(buf34, reinterpret_tensor(primals_24, (4, 4), (1,
4), 0), out=buf35)
buf36 = reinterpret_tensor(buf35, (4, 4, 4), (16, 4, 1), 0)
del buf35
buf42 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_13[grid(64)](buf36,
primals_25, buf42, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_25
buf37 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf36, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_26, (4, 4), (1, 4), 0), out=buf37)
buf38 = reinterpret_tensor(buf37, (4, 4, 4), (16, 4, 1), 0)
del buf37
triton_poi_fused_add_10[grid(64)](buf38, buf34, primals_27, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_27
buf39 = buf33
del buf33
buf40 = buf32
del buf32
triton_poi_fused_native_layer_norm_11[grid(16)](buf38, buf39, buf40,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf41 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_12[grid(64)](buf38, buf39, buf40,
primals_28, primals_29, buf41, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf39
del buf40
del primals_29
return (reinterpret_tensor(buf41, (4, 4, 4), (16, 4, 1), 0), primals_1,
primals_10, primals_22, primals_28, buf7, buf10, reinterpret_tensor
(buf12, (16, 4), (4, 1), 0), buf13, buf16, reinterpret_tensor(
primals_12, (16, 4), (4, 1), 0), buf24, buf27, reinterpret_tensor(
buf29, (16, 4), (4, 1), 0), reinterpret_tensor(buf31, (16, 4), (4,
1), 0), buf34, reinterpret_tensor(buf36, (16, 4), (4, 1), 0),
reinterpret_tensor(buf38, (16, 4), (4, 1), 0), primals_26, buf42,
primals_24, primals_20, reinterpret_tensor(buf21, (16, 1, 4), (4, 1,
1), 0), reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0),
reinterpret_tensor(buf22, (16, 4, 1), (4, 1, 1), 0), primals_13,
primals_8, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0),
reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0),
reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0))
def _normalize(tensor, norm_layer):
"""
Broadcast layer norm
"""
size = tensor.size()
return norm_layer(tensor.view(-1, size[-1])).view(size)
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, dim, dropout=0):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.dim = dim
self.dropout = nn.Dropout(p=dropout)
self.q_lin = nn.Linear(dim, dim)
self.k_lin = nn.Linear(dim, dim)
self.v_lin = nn.Linear(dim, dim)
nn.init.xavier_normal_(self.q_lin.weight)
nn.init.xavier_normal_(self.k_lin.weight)
nn.init.xavier_normal_(self.v_lin.weight)
self.out_lin = nn.Linear(dim, dim)
nn.init.xavier_normal_(self.out_lin.weight)
def forward(self, query, key=None, value=None, mask=None):
batch_size, query_len, dim = query.size()
assert dim == self.dim, f'Dimensions do not match: {dim} query vs {self.dim} configured'
n_heads = self.n_heads
dim_per_head = dim // n_heads
scale = math.sqrt(dim_per_head)
def prepare_head(tensor):
_bsz, seq_len, _ = tensor.size()
tensor = tensor.view(batch_size, tensor.size(1), n_heads,
dim_per_head)
tensor = tensor.transpose(1, 2).contiguous().view(batch_size *
n_heads, seq_len, dim_per_head)
return tensor
if key is None and value is None:
key = value = query
elif value is None:
value = key
_, key_len, dim = key.size()
q = prepare_head(self.q_lin(query))
k = prepare_head(self.k_lin(key))
v = prepare_head(self.v_lin(value))
dot_prod = q.bmm(k.transpose(1, 2))
attn_mask = (mask == 0).view(batch_size, 1, -1, key_len).repeat(1,
n_heads, 1, 1).expand(batch_size, n_heads, query_len, key_len
).view(batch_size * n_heads, query_len, key_len)
assert attn_mask.shape == dot_prod.shape
dot_prod.masked_fill_(attn_mask, -float(1e+20))
attn_weights = F.softmax(dot_prod / scale, dim=-1)
attentioned = attn_weights.bmm(v)
attentioned = attentioned.view(batch_size, n_heads, query_len,
dim_per_head).transpose(1, 2).contiguous().view(batch_size,
query_len, dim)
out = self.out_lin(attentioned)
return out
class TransformerFFN(nn.Module):
def __init__(self, dim, dim_hidden, dropout=0):
super(TransformerFFN, self).__init__()
self.dropout = nn.Dropout(p=dropout)
self.lin1 = nn.Linear(dim, dim_hidden)
self.lin2 = nn.Linear(dim_hidden, dim)
nn.init.xavier_uniform_(self.lin1.weight)
nn.init.xavier_uniform_(self.lin2.weight)
def forward(self, x):
x = F.relu(self.lin1(x))
x = self.dropout(x)
x = self.lin2(x)
x = self.dropout(x)
return x
class TransformerDecoderLayerNew(nn.Module):
def __init__(self, n_heads, embedding_size, ffn_size, attention_dropout
=0.0, relu_dropout=0.0):
super().__init__()
self.dim = embedding_size
self.ffn_dim = ffn_size
self.self_attention = MultiHeadAttention(n_heads, embedding_size,
dropout=attention_dropout)
self.norm1 = nn.LayerNorm(embedding_size)
self.encoder_attention = MultiHeadAttention(n_heads, embedding_size,
dropout=attention_dropout)
self.norm2 = nn.LayerNorm(embedding_size)
self.ffn = TransformerFFN(embedding_size, ffn_size, dropout=
relu_dropout)
self.norm3 = nn.LayerNorm(embedding_size)
def _create_selfattn_mask(self, x):
bsz = x.size(0)
time = x.size(1)
mask = torch.tril(x.new(time, time).fill_(1))
mask = mask.unsqueeze(0).expand(bsz, -1, -1)
return mask
def forward(self, input_0, input_1, input_2):
primals_2 = self.self_attention.q_lin.weight
primals_3 = self.self_attention.q_lin.bias
primals_4 = self.self_attention.k_lin.weight
primals_5 = self.self_attention.k_lin.bias
primals_6 = self.self_attention.v_lin.weight
primals_7 = self.self_attention.v_lin.bias
primals_8 = self.self_attention.out_lin.weight
primals_9 = self.self_attention.out_lin.bias
primals_10 = self.norm1.weight
primals_11 = self.norm1.bias
primals_13 = self.encoder_attention.q_lin.weight
primals_14 = self.encoder_attention.q_lin.bias
primals_15 = self.encoder_attention.k_lin.weight
primals_16 = self.encoder_attention.k_lin.bias
primals_17 = self.encoder_attention.v_lin.weight
primals_18 = self.encoder_attention.v_lin.bias
primals_19 = self.encoder_attention.out_lin.weight
primals_21 = self.encoder_attention.out_lin.bias
primals_22 = self.norm2.weight
primals_23 = self.norm2.bias
primals_20 = self.ffn.lin1.weight
primals_25 = self.ffn.lin1.bias
primals_24 = self.ffn.lin2.weight
primals_27 = self.ffn.lin2.bias
primals_28 = self.norm3.weight
primals_29 = self.norm3.bias
primals_1 = input_0
primals_12 = input_1
primals_26 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29])
return output[0]
| jinjiren/ParlAI | TransformerDecoderLayer | false | 12,635 | [
"MIT"
]
| 0 | 40799aeee69f2a0bb25a1341bb8da0c44861268e | https://github.com/jinjiren/ParlAI/tree/40799aeee69f2a0bb25a1341bb8da0c44861268e |
AugCNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ur/curzudn4ai4j7lgrmbqwy57jpcw3gylwk4nkg6jt7lqh577w5ku7.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_2, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_3, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 49152, grid=grid(49152), stream=stream0)
del primals_3
return (buf1, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def apply_init_(modules):
"""
Initialize NN modules
"""
for m in modules:
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
class Conv2d_tf(nn.Conv2d):
"""
Conv2d with the padding behavior from TF
"""
def __init__(self, *args, **kwargs):
super(Conv2d_tf, self).__init__(*args, **kwargs)
self.padding = kwargs.get('padding', 'SAME')
def _compute_padding(self, input, dim):
input_size = input.size(dim + 2)
filter_size = self.weight.size(dim + 2)
effective_filter_size = (filter_size - 1) * self.dilation[dim] + 1
out_size = (input_size + self.stride[dim] - 1) // self.stride[dim]
total_padding = max(0, (out_size - 1) * self.stride[dim] +
effective_filter_size - input_size)
additional_padding = int(total_padding % 2 != 0)
return additional_padding, total_padding
def forward(self, input):
if self.padding == 'VALID':
return F.conv2d(input, self.weight, self.bias, self.stride,
padding=0, dilation=self.dilation, groups=self.groups)
rows_odd, padding_rows = self._compute_padding(input, dim=0)
cols_odd, padding_cols = self._compute_padding(input, dim=1)
if rows_odd or cols_odd:
input = F.pad(input, [0, cols_odd, 0, rows_odd])
return F.conv2d(input, self.weight, self.bias, self.stride, padding
=(padding_rows // 2, padding_cols // 2), dilation=self.dilation,
groups=self.groups)
class AugCNN(nn.Module):
"""
Convolutional Neural Network used as Augmentation
"""
def __init__(self):
super(AugCNN, self).__init__()
self.aug = Conv2d_tf(3, 3, kernel_size=3)
apply_init_(self.modules())
self.train()
def forward(self, obs):
return self.aug(obs)
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_2, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_3, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(49152)](buf1, primals_3, 49152,
XBLOCK=512, num_warps=4, num_stages=1)
del primals_3
return buf1, primals_1, primals_2
def apply_init_(modules):
"""
Initialize NN modules
"""
for m in modules:
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
class Conv2d_tf(nn.Conv2d):
"""
Conv2d with the padding behavior from TF
"""
def __init__(self, *args, **kwargs):
super(Conv2d_tf, self).__init__(*args, **kwargs)
self.padding = kwargs.get('padding', 'SAME')
def _compute_padding(self, input, dim):
input_size = input.size(dim + 2)
filter_size = self.weight.size(dim + 2)
effective_filter_size = (filter_size - 1) * self.dilation[dim] + 1
out_size = (input_size + self.stride[dim] - 1) // self.stride[dim]
total_padding = max(0, (out_size - 1) * self.stride[dim] +
effective_filter_size - input_size)
additional_padding = int(total_padding % 2 != 0)
return additional_padding, total_padding
def forward(self, input):
if self.padding == 'VALID':
return F.conv2d(input, self.weight, self.bias, self.stride,
padding=0, dilation=self.dilation, groups=self.groups)
rows_odd, padding_rows = self._compute_padding(input, dim=0)
cols_odd, padding_cols = self._compute_padding(input, dim=1)
if rows_odd or cols_odd:
input = F.pad(input, [0, cols_odd, 0, rows_odd])
return F.conv2d(input, self.weight, self.bias, self.stride, padding
=(padding_rows // 2, padding_cols // 2), dilation=self.dilation,
groups=self.groups)
class AugCNNNew(nn.Module):
"""
Convolutional Neural Network used as Augmentation
"""
def __init__(self):
super(AugCNNNew, self).__init__()
self.aug = Conv2d_tf(3, 3, kernel_size=3)
apply_init_(self.modules())
self.train()
def forward(self, input_0):
primals_2 = self.aug.weight
primals_3 = self.aug.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| joshnroy/contrastive-rl | AugCNN | false | 12,636 | [
"MIT"
]
| 0 | d0e8cd8fd6963983dc62dd282b788002a892704e | https://github.com/joshnroy/contrastive-rl/tree/d0e8cd8fd6963983dc62dd282b788002a892704e |
GlobalAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py
# Topologically Sorted Source Nodes: [attn_weights_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_weights_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [attn_weights_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_weights_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (8, 4), (4, 1))
assert_size_stride(primals_6, (8, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [query], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [c], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_5
del primals_6
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_weights], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (32, 1, 8), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_weights_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf2, buf3, 64, grid=grid(64), stream=stream0)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [attn_weights_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(buf4, reinterpret_tensor(buf1, (4, 4, 4), (32, 8, 1), 4), out=buf5)
buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(buf5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_8
return (reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf4, reinterpret_tensor(buf5, (16, 4), (4, 1), 0), primals_7, reinterpret_tensor(buf1, (4, 4, 4), (32, 1, 8), 4), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 4), (32, 8, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class GlobalAttention(nn.Module):
"""
Global Attention between encoder and decoder
"""
def __init__(self, key_features, query_features, value_features,
hidden_features=None, dropout=0.0):
"""
Args:
key_features: int
dimension of keys
query_features: int
dimension of queries
value_features: int
dimension of values (outputs)
hidden_features: int
dimension of hidden states (default value_features)
dropout: float
dropout rate
"""
super(GlobalAttention, self).__init__()
if hidden_features is None:
hidden_features = value_features
self.key_proj = nn.Linear(key_features, 2 * hidden_features, bias=True)
self.query_proj = nn.Linear(query_features, hidden_features, bias=True)
self.dropout = dropout
self.fc = nn.Linear(hidden_features, value_features)
self.hidden_features = hidden_features
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.key_proj.weight)
nn.init.constant_(self.key_proj.bias, 0)
nn.init.xavier_uniform_(self.query_proj.weight)
nn.init.constant_(self.query_proj.bias, 0)
nn.init.xavier_uniform_(self.fc.weight)
nn.init.constant_(self.fc.bias, 0)
def forward(self, query, key, key_mask=None):
"""
Args:
query: Tensor
query tensor [batch, query_length, query_features]
key: Tensor
key tensor [batch, key_length, key_features]
key_mask: ByteTensor or None
binary ByteTensor [batch, src_len] padding elements are indicated by 1s.
Returns: Tensor
value tensor [batch, query_length, value_features]
"""
bs, timesteps, _ = key.size()
dim = self.hidden_features
query = self.query_proj(query)
c = self.key_proj(key)
c = c.view(bs, timesteps, 2, dim)
key = c[:, :, 0]
value = c[:, :, 1]
attn_weights = torch.bmm(query, key.transpose(1, 2))
if key_mask is not None:
attn_weights = attn_weights.masked_fill(key_mask.unsqueeze(1),
float('-inf'))
attn_weights = F.softmax(attn_weights.float(), dim=-1, dtype=torch.
float32 if attn_weights.dtype == torch.float16 else
attn_weights.dtype)
out = torch.bmm(attn_weights, value)
out = F.dropout(self.fc(out), p=self.dropout, training=self.training)
return out
def init(self, query, key, key_mask=None, init_scale=1.0):
with torch.no_grad():
return self(query, key, key_mask=key_mask)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'key_features': 4, 'query_features': 4, 'value_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (8, 4), (4, 1))
assert_size_stride(primals_6, (8,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (16,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_1, (16,
4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 8), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_5
del primals_6
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf1, (4, 4, 4), (32, 1, 8), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = buf2
del buf2
triton_poi_fused__softmax_1[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = buf3
del buf3
extern_kernels.bmm(buf4, reinterpret_tensor(buf1, (4, 4, 4), (32, 8,
1), 4), out=buf5)
buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(buf5, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf6)
del primals_8
return reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), buf4, reinterpret_tensor(buf5, (16, 4), (4, 1), 0
), primals_7, reinterpret_tensor(buf1, (4, 4, 4), (32, 1, 8), 4
), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf1, (4, 4, 4), (32, 8, 1), 0)
class GlobalAttentionNew(nn.Module):
"""
Global Attention between encoder and decoder
"""
def __init__(self, key_features, query_features, value_features,
hidden_features=None, dropout=0.0):
"""
Args:
key_features: int
dimension of keys
query_features: int
dimension of queries
value_features: int
dimension of values (outputs)
hidden_features: int
dimension of hidden states (default value_features)
dropout: float
dropout rate
"""
super(GlobalAttentionNew, self).__init__()
if hidden_features is None:
hidden_features = value_features
self.key_proj = nn.Linear(key_features, 2 * hidden_features, bias=True)
self.query_proj = nn.Linear(query_features, hidden_features, bias=True)
self.dropout = dropout
self.fc = nn.Linear(hidden_features, value_features)
self.hidden_features = hidden_features
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.key_proj.weight)
nn.init.constant_(self.key_proj.bias, 0)
nn.init.xavier_uniform_(self.query_proj.weight)
nn.init.constant_(self.query_proj.bias, 0)
nn.init.xavier_uniform_(self.fc.weight)
nn.init.constant_(self.fc.bias, 0)
def init(self, query, key, key_mask=None, init_scale=1.0):
with torch.no_grad():
return self(query, key, key_mask=key_mask)
def forward(self, input_0, input_1):
primals_5 = self.key_proj.weight
primals_6 = self.key_proj.bias
primals_2 = self.query_proj.weight
primals_3 = self.query_proj.bias
primals_7 = self.fc.weight
primals_8 = self.fc.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| juheeuu/flowseq | GlobalAttention | false | 12,637 | [
"Apache-2.0"
]
| 0 | e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb | https://github.com/juheeuu/flowseq/tree/e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb |
MultiheadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/vb/cvbxdocetk5tj67qrxlvwxnmwf3z2efb37af24dzpjl5kw5bkmq5.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 1.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (1 + (3*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (1 + (3*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/q6/cq6z6xhbr2gyiw5id4lceemepctrgo25eo5gvvxlgbncy77qxm4p.py
# Topologically Sorted Source Nodes: [mul, softmax], Original ATen: [aten.mul, aten._softmax]
# Source node to ATen node mapping:
# mul => mul
# softmax => amax, clone, exp, sub, sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, 1.0), kwargs = {})
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%view_3,), kwargs = {memory_format: torch.contiguous_format})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_mul_1 = async_compile.triton('triton_poi_fused__softmax_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x3 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (3*x4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (3*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x0 + (16*x3)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (4 + x0 + (16*x3)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (8 + x0 + (16*x3)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr2 + (12 + x0 + (16*x3)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp4 * tmp7
tmp9 = triton_helpers.maximum(tmp6, tmp8)
tmp11 = tmp4 * tmp10
tmp12 = triton_helpers.maximum(tmp9, tmp11)
tmp14 = tmp4 * tmp13
tmp15 = triton_helpers.maximum(tmp12, tmp14)
tmp16 = tmp6 - tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = tmp8 - tmp15
tmp19 = tl_math.exp(tmp18)
tmp20 = tmp17 + tmp19
tmp21 = tmp11 - tmp15
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp20 + tmp22
tmp24 = tmp14 - tmp15
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp23 + tmp25
tl.store(out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr1 + (x4), tmp15, xmask)
tl.store(out_ptr2 + (x4), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/qh/cqhxytgzmsgejzq2rbt7fdr5j2twqslr3w2cz4yhih2lbgvx6yly.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, clone, div, exp, sub, sum_1
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%view_3,), kwargs = {memory_format: torch.contiguous_format})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = (xindex // 4)
x0 = xindex % 4
x1 = (xindex // 4) % 4
x3 = (xindex // 64)
x2 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x1 + (4*x0) + (16*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(out_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/uq/cuqseg2vikrs3ttioriunrdhmp6cffp4xwpf2b6xdz7w3atftosj.py
# Topologically Sorted Source Nodes: [einsum_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# einsum_1 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2 + (3*x1) + (12*x0) + (48*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (2 + (3*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x_2 => clone_2
# Graph fragment:
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_8,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/sz/csz5twnkhe2zz3eaafwmgidmezpgvs3favuuva73uud6rs7ouhj6.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x_2 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_10, %primals_5), kwargs = {})
triton_poi_fused_add_5 = async_compile.triton('triton_poi_fused_add_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (12, 4), (4, 1))
assert_size_stride(primals_2, (12, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf0, primals_2, buf2, 64, grid=grid(64), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
# Topologically Sorted Source Nodes: [mul, softmax], Original ATen: [aten.mul, aten._softmax]
triton_poi_fused__softmax_mul_1.run(buf0, primals_2, buf2, buf1, buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf1, buf2, buf3, buf4, buf5, 256, grid=grid(256), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 1, 1), (16, 4, 1, 1, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [einsum_1], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf0, primals_2, buf6, 64, grid=grid(64), stream=stream0)
del buf0
del primals_2
buf7 = reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [einsum_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf7, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9)
buf10 = reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add]
triton_poi_fused_add_5.run(buf10, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
return (buf10, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4, 1, 1), (16, 1, 4, 1, 1), 0), reinterpret_tensor(buf2, (4, 4, 1, 4, 1), (16, 1, 1, 4, 1), 0), buf5, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), primals_4, reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch as th
class QKVMultiheadAttention(nn.Module):
def __init__(self, n_heads: 'int', n_ctx: 'int'):
super().__init__()
self.n_heads = n_heads
self.n_ctx = n_ctx
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.n_heads // 3
scale = 1 / math.sqrt(math.sqrt(attn_ch))
qkv = qkv.view(bs, n_ctx, self.n_heads, -1)
q, k, v = th.split(qkv, attn_ch, dim=-1)
weight = th.einsum('bthc,bshc->bhts', q * scale, k * scale)
wdtype = weight.dtype
weight = th.softmax(weight.float(), dim=-1).type(wdtype)
return th.einsum('bhts,bshc->bthc', weight, v).reshape(bs, n_ctx, -1)
class MultiheadAttention(nn.Module):
def __init__(self, n_ctx, width, heads):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.heads = heads
self.c_qkv = nn.Linear(width, width * 3)
self.c_proj = nn.Linear(width, width)
self.attention = QKVMultiheadAttention(heads, n_ctx)
def forward(self, x):
x = self.c_qkv(x)
x = self.attention(x)
x = self.c_proj(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'n_ctx': 4, 'width': 4, 'heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.nn as nn
import torch as th
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (1 + 3 * x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (1 + 3 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x3 = xindex // 16
tmp0 = tl.load(in_ptr0 + 3 * x4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 3 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x0 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr2 + (4 + x0 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr2 + (8 + x0 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr2 + (12 + x0 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp4 * tmp7
tmp9 = triton_helpers.maximum(tmp6, tmp8)
tmp11 = tmp4 * tmp10
tmp12 = triton_helpers.maximum(tmp9, tmp11)
tmp14 = tmp4 * tmp13
tmp15 = triton_helpers.maximum(tmp12, tmp14)
tmp16 = tmp6 - tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = tmp8 - tmp15
tmp19 = tl_math.exp(tmp18)
tmp20 = tmp17 + tmp19
tmp21 = tmp11 - tmp15
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp20 + tmp22
tmp24 = tmp14 - tmp15
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp23 + tmp25
tl.store(out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr1 + x4, tmp15, xmask)
tl.store(out_ptr2 + x4, tmp26, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex // 4
x0 = xindex % 4
x1 = xindex // 4 % 4
x3 = xindex // 64
x2 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x1 + 4 * x0 + 16 * x3), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(out_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), tmp7, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2 + 3 * x1 + 12 * x0 + 48 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (2 + 3 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (12, 4), (4, 1))
assert_size_stride(primals_2, (12,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(64)](buf0, primals_2, buf2, 64, XBLOCK=
64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
triton_poi_fused__softmax_mul_1[grid(64)](buf0, primals_2, buf2,
buf1, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(256)](buf1, buf2, buf3, buf4, buf5,
256, XBLOCK=256, num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 1, 1), (16, 4, 1, 1, 1), 0)
del buf4
triton_poi_fused_clone_3[grid(64)](buf0, primals_2, buf6, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del primals_2
buf7 = reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 1), 0)
del buf3
extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 4)](buf7, buf8, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0)
del buf7
extern_kernels.mm(reinterpret_tensor(buf8, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9)
buf10 = reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0)
del buf9
triton_poi_fused_add_5[grid(64)](buf10, primals_5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_5
return buf10, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), reinterpret_tensor(buf1, (4, 4, 4, 1, 1), (16, 1, 4, 1, 1), 0
), reinterpret_tensor(buf2, (4, 4, 1, 4, 1), (16, 1, 1, 4, 1), 0
), buf5, reinterpret_tensor(buf8, (16, 4), (4, 1), 0
), primals_4, reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0)
class QKVMultiheadAttention(nn.Module):
def __init__(self, n_heads: 'int', n_ctx: 'int'):
super().__init__()
self.n_heads = n_heads
self.n_ctx = n_ctx
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.n_heads // 3
scale = 1 / math.sqrt(math.sqrt(attn_ch))
qkv = qkv.view(bs, n_ctx, self.n_heads, -1)
q, k, v = th.split(qkv, attn_ch, dim=-1)
weight = th.einsum('bthc,bshc->bhts', q * scale, k * scale)
wdtype = weight.dtype
weight = th.softmax(weight.float(), dim=-1).type(wdtype)
return th.einsum('bhts,bshc->bthc', weight, v).reshape(bs, n_ctx, -1)
class MultiheadAttentionNew(nn.Module):
def __init__(self, n_ctx, width, heads):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.heads = heads
self.c_qkv = nn.Linear(width, width * 3)
self.c_proj = nn.Linear(width, width)
self.attention = QKVMultiheadAttention(heads, n_ctx)
def forward(self, input_0):
primals_1 = self.c_qkv.weight
primals_2 = self.c_qkv.bias
primals_4 = self.c_proj.weight
primals_5 = self.c_proj.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| johnpaulbin/glide-text2im | MultiheadAttention | false | 12,638 | [
"MIT"
]
| 0 | 4897050c4c540316dfb1ec7e6ff95698bcb20487 | https://github.com/johnpaulbin/glide-text2im/tree/4897050c4c540316dfb1ec7e6ff95698bcb20487 |
Net | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/gn/cgn37hvkbudswcotxg2kd4nkddnptf52plxombym7nh7tjs5rbbc.py
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 784) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/jk/cjkfw7q2cdmjf2ab4jynamfj22kvje5c7y7o3cr7nyj7yej65x5e.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 12544
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x1 = (xindex // 14)
x4 = xindex
x3 = (xindex // 3136)
x5 = xindex % 3136
tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4), tmp6, xmask)
tl.store(out_ptr1 + (x5 + (3200*x3)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vi/cvii2lvgowi4ilvgcqvcouxsr3dqcg3yuq3ktwlv4tmvp2ll652d.py
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# relu_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 100) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ui/cui3s4mqognsjp5q5f2iwenfoqbabemexibxzboo4z6bekyz74i4.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (10 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (11 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x2), tmp15, xmask)
tl.store(out_ptr1 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/jn/cjnqv3sgcv5x2iz7ij5zdad6ofabcnonrlksgsxu2ob7n274gz6b.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_3 => relu_2
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 120
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6m/c6m6u2ctjb4r4ra3sizrwezzkzegfp2ombflmfg3dwjfci2pen7h.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_4 => relu_3
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 336
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 84
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (16, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1))
assert_size_stride(primals_4, (32, 16, 5, 5), (400, 25, 5, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (120, 800), (800, 1))
assert_size_stride(primals_7, (120, ), (1, ))
assert_size_stride(primals_8, (84, 120), (120, 1))
assert_size_stride(primals_9, (84, ), (1, ))
assert_size_stride(primals_10, (10, 84), (84, 1))
assert_size_stride(primals_11, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 28, 28), (12544, 784, 28, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 50176, grid=grid(50176), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 16, 14, 14), (3136, 196, 14, 1), torch.float32)
buf3 = empty_strided_cuda((4, 16, 14, 14), (3200, 196, 14, 1), torch.int8)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 12544, grid=grid(12544), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 10, 10), (3200, 100, 10, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 12800, grid=grid(12800), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 32, 5, 5), (800, 25, 5, 1), torch.int8)
buf7 = empty_strided_cuda((4, 32, 5, 5), (800, 25, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 3200, grid=grid(3200), stream=stream0)
buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf7, (4, 800), (800, 1), 0), reinterpret_tensor(primals_6, (800, 120), (1, 800), 0), out=buf8)
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
triton_poi_fused_relu_4.run(buf9, primals_7, 480, grid=grid(480), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10)
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
triton_poi_fused_relu_5.run(buf11, primals_9, 336, grid=grid(336), stream=stream0)
del primals_9
buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf12)
del primals_11
return (buf12, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 800), (800, 1), 0), buf9, buf11, primals_10, primals_8, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 32, 32), (3072, 1024, 32, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 16, 5, 5), (400, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((120, 800), (800, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((120, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((84, 120), (120, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((84, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((10, 84), (84, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 5)
self.fc1 = nn.Linear(32 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 32 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def get_inputs():
return [torch.rand([4, 3, 32, 32])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 784 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 12544
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x1 = xindex // 14
x4 = xindex
x3 = xindex // 3136
x5 = xindex % 3136
tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x1), xmask, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x1), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x1), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x4, tmp6, xmask)
tl.store(out_ptr1 + (x5 + 3200 * x3), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 100 % 32
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy
='evict_last')
tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask,
eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x2, tmp15, xmask)
tl.store(out_ptr1 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 120
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 336
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 84
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (16, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1))
assert_size_stride(primals_4, (32, 16, 5, 5), (400, 25, 5, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (120, 800), (800, 1))
assert_size_stride(primals_7, (120,), (1,))
assert_size_stride(primals_8, (84, 120), (120, 1))
assert_size_stride(primals_9, (84,), (1,))
assert_size_stride(primals_10, (10, 84), (84, 1))
assert_size_stride(primals_11, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 28, 28), (12544, 784, 28, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(50176)](buf1, primals_2,
50176, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 16, 14, 14), (3136, 196, 14, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 16, 14, 14), (3200, 196, 14, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(12544)](buf1, buf2,
buf3, 12544, XBLOCK=128, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 10, 10), (3200, 100, 10, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(12800)](buf5, primals_5,
12800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 32, 5, 5), (800, 25, 5, 1), torch.int8)
buf7 = empty_strided_cuda((4, 32, 5, 5), (800, 25, 5, 1), torch.float32
)
triton_poi_fused_max_pool2d_with_indices_3[grid(3200)](buf5, buf6,
buf7, 3200, XBLOCK=256, num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (4, 800), (800, 1), 0),
reinterpret_tensor(primals_6, (800, 120), (1, 800), 0), out=buf8)
buf9 = buf8
del buf8
triton_poi_fused_relu_4[grid(480)](buf9, primals_7, 480, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32)
extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1,
120), 0), out=buf10)
buf11 = buf10
del buf10
triton_poi_fused_relu_5[grid(336)](buf11, primals_9, 336, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_9
buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(
primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf12)
del primals_11
return (buf12, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5,
buf6, reinterpret_tensor(buf7, (4, 800), (800, 1), 0), buf9, buf11,
primals_10, primals_8, primals_6)
class NetNew(nn.Module):
def __init__(self):
super(NetNew, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 5)
self.fc1 = nn.Linear(32 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.fc1.weight
primals_7 = self.fc1.bias
primals_8 = self.fc2.weight
primals_9 = self.fc2.bias
primals_10 = self.fc3.weight
primals_11 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| juliowaissman/cifar10-jwv | Net | false | 12,639 | [
"MIT"
]
| 0 | a279ccf51f0e8cbacfcc34a9eee381c16ae536fc | https://github.com/juliowaissman/cifar10-jwv/tree/a279ccf51f0e8cbacfcc34a9eee381c16ae536fc |
Disc | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/7z/c7zsuucunqdovb2xa6tywxjxwmolzjzdk72ratro7fi3qvgyqb7c.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf6, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf5, primals_7, 64, grid=grid(64), stream=stream0)
del primals_7
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf5, primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Disc(nn.Module):
def __init__(self, N, z_dim):
super(Disc, self).__init__()
self.lin1 = nn.Linear(z_dim, N)
self.lin2 = nn.Linear(N, N)
self.lin3 = nn.Linear(N, 1)
def forward(self, x):
x = F.dropout(self.lin1(x), p=0.2, training=self.training)
x = F.relu(x)
x = F.dropout(self.lin2(x), p=0.2, training=self.training)
x = F.relu(x)
return F.sigmoid(self.lin3(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'N': 4, 'z_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3,
primals_5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf4
triton_poi_fused_sigmoid_1[grid(64)](buf5, primals_7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_7
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
buf3, (64, 4), (4, 1), 0), buf5, primals_6, buf6, primals_4, buf7
class DiscNew(nn.Module):
def __init__(self, N, z_dim):
super(DiscNew, self).__init__()
self.lin1 = nn.Linear(z_dim, N)
self.lin2 = nn.Linear(N, N)
self.lin3 = nn.Linear(N, 1)
def forward(self, input_0):
primals_1 = self.lin1.weight
primals_2 = self.lin1.bias
primals_4 = self.lin2.weight
primals_5 = self.lin2.bias
primals_6 = self.lin3.weight
primals_7 = self.lin3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| junhahyung/Pytorch-Sketch-RNN | Disc | false | 12,640 | [
"MIT"
]
| 0 | 7aa82755fdfdb9bd36f8a83f1cfc0ade43e50a7a | https://github.com/junhahyung/Pytorch-Sketch-RNN/tree/7aa82755fdfdb9bd36f8a83f1cfc0ade43e50a7a |
GumbelSoftMaxSampler | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/uj/cujzvosjzzutzoqirql6cbiqmbcuhtdxjhbt3hdz5pzyjfgksdco.py
# Topologically Sorted Source Nodes: [gumbel_softmax], Original ATen: [aten.log, aten.neg, aten.add, aten._softmax]
# Source node to ATen node mapping:
# gumbel_softmax => add, exp, log, neg, sum_1
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%exponential,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %neg), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_log_neg_0 = async_compile.triton('triton_poi_fused__softmax_add_log_neg_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_log_neg_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_log_neg_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tmp0 + tmp3
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp9 = tl_math.log(tmp8)
tmp10 = -tmp9
tmp11 = tmp7 + tmp10
tmp12 = tmp11 * tmp5
tmp13 = triton_helpers.maximum(tmp6, tmp12)
tmp16 = tl_math.log(tmp15)
tmp17 = -tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp18 * tmp5
tmp20 = triton_helpers.maximum(tmp13, tmp19)
tmp23 = tl_math.log(tmp22)
tmp24 = -tmp23
tmp25 = tmp21 + tmp24
tmp26 = tmp25 * tmp5
tmp27 = triton_helpers.maximum(tmp20, tmp26)
tmp28 = tmp6 - tmp27
tmp29 = tmp28 * tmp5
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp12 - tmp27
tmp32 = tmp31 * tmp5
tmp33 = tl_math.exp(tmp32)
tmp34 = tmp30 + tmp33
tmp35 = tmp19 - tmp27
tmp36 = tmp35 * tmp5
tmp37 = tl_math.exp(tmp36)
tmp38 = tmp34 + tmp37
tmp39 = tmp26 - tmp27
tmp40 = tmp39 * tmp5
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp38 + tmp41
tl.store(out_ptr0 + (x0), tmp27, xmask)
tl.store(out_ptr1 + (x0), tmp42, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/t5/ct5xtvx4mfmgxekpeeljuys2qhyqwsvbciwzgzjuo4eyqtwu27bn.py
# Topologically Sorted Source Nodes: [gumbel_softmax], Original ATen: [aten.log, aten.neg, aten.add, aten._softmax]
# Source node to ATen node mapping:
# gumbel_softmax => add, div_1, exp, log, neg
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%exponential,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %neg), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_add_log_neg_1 = async_compile.triton('triton_poi_fused__softmax_add_log_neg_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_log_neg_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_log_neg_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp7 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tmp0 + tmp3
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp8 = tmp6 - tmp7
tmp9 = tmp8 * tmp5
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 / tmp11
tl.store(in_out_ptr0 + (x2), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [gumbel_softmax], Original ATen: [aten.exponential]
buf1 = torch.ops.aten.exponential.default(buf0)
del buf0
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [gumbel_softmax], Original ATen: [aten.log, aten.neg, aten.add, aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_add_log_neg_0.run(arg0_1, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [gumbel_softmax], Original ATen: [aten.log, aten.neg, aten.add, aten._softmax]
triton_poi_fused__softmax_add_log_neg_1.run(buf5, arg0_1, buf3, buf4, 256, grid=grid(256), stream=stream0)
del arg0_1
del buf3
del buf4
return (buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.nn import functional as F
from torch import nn
from typing import *
class GumbelSoftMaxSampler(nn.Module):
def __init__(self, hard=False):
super().__init__()
self.hard = hard
def forward(self, logits):
return F.gumbel_softmax(logits=logits, hard=self.hard)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from typing import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_add_log_neg_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp21 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tmp0 + tmp3
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp9 = tl_math.log(tmp8)
tmp10 = -tmp9
tmp11 = tmp7 + tmp10
tmp12 = tmp11 * tmp5
tmp13 = triton_helpers.maximum(tmp6, tmp12)
tmp16 = tl_math.log(tmp15)
tmp17 = -tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp18 * tmp5
tmp20 = triton_helpers.maximum(tmp13, tmp19)
tmp23 = tl_math.log(tmp22)
tmp24 = -tmp23
tmp25 = tmp21 + tmp24
tmp26 = tmp25 * tmp5
tmp27 = triton_helpers.maximum(tmp20, tmp26)
tmp28 = tmp6 - tmp27
tmp29 = tmp28 * tmp5
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp12 - tmp27
tmp32 = tmp31 * tmp5
tmp33 = tl_math.exp(tmp32)
tmp34 = tmp30 + tmp33
tmp35 = tmp19 - tmp27
tmp36 = tmp35 * tmp5
tmp37 = tl_math.exp(tmp36)
tmp38 = tmp34 + tmp37
tmp39 = tmp26 - tmp27
tmp40 = tmp39 * tmp5
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp38 + tmp41
tl.store(out_ptr0 + x0, tmp27, xmask)
tl.store(out_ptr1 + x0, tmp42, xmask)
@triton.jit
def triton_poi_fused__softmax_add_log_neg_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp7 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tmp0 + tmp3
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp8 = tmp6 - tmp7
tmp9 = tmp8 * tmp5
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 / tmp11
tl.store(in_out_ptr0 + x2, tmp12, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = torch.ops.aten.exponential.default(buf0)
del buf0
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_add_log_neg_0[grid(64)](arg0_1, buf2,
buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf5 = buf2
del buf2
triton_poi_fused__softmax_add_log_neg_1[grid(256)](buf5, arg0_1,
buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del buf3
del buf4
return buf5,
class GumbelSoftMaxSamplerNew(nn.Module):
def __init__(self, hard=False):
super().__init__()
self.hard = hard
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| jvrana/deep-learning-guides | GumbelSoftMaxSampler | false | 12,641 | [
"MIT"
]
| 0 | 18b7a0808073dd7b345e7a683dd7ee89e97e47ce | https://github.com/jvrana/deep-learning-guides/tree/18b7a0808073dd7b345e7a683dd7ee89e97e47ce |
Gaussian | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/x6/cx6jmnk3w4fyizcgdntrll7zx32lso2oe3pzrnaggvqp5atfgroz.py
# Topologically Sorted Source Nodes: [neg, mul, exp], Original ATen: [aten.neg, aten.mul, aten.exp]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# neg => neg
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %arg0_1), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
triton_poi_fused_exp_mul_neg_0 = async_compile.triton('triton_poi_fused_exp_mul_neg_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_mul_neg_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_mul_neg_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = -tmp0
tmp2 = tmp1 * tmp0
tmp3 = tl_math.exp(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [neg, mul, exp], Original ATen: [aten.neg, aten.mul, aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_exp_mul_neg_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
import torch.utils.tensorboard
import torch.utils.data
class Gaussian(torch.nn.Module):
"""Gaussian activation"""
def forward(self, x: 'Tensor') ->Tensor:
return torch.exp(-x * x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.tensorboard
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_exp_mul_neg_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = -tmp0
tmp2 = tmp1 * tmp0
tmp3 = tl_math.exp(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_exp_mul_neg_0[grid(256)](arg0_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class GaussianNew(torch.nn.Module):
"""Gaussian activation"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| isayev/torchani | Gaussian | false | 12,642 | [
"MIT"
]
| 0 | f8edffe384e2cb2eebe3a7e04faa01b6f5e26b37 | https://github.com/isayev/torchani/tree/f8edffe384e2cb2eebe3a7e04faa01b6f5e26b37 |
NodeAdaptiveEncoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/2u/c2uscogbzv5w5toj2f5doql67p5kdfjl24e5exykcpjjl2uv3zyj.py
# Topologically Sorted Source Nodes: [h, h_1, lt, zeros_like, where, gt, where_1, mul, add_1], Original ATen: [aten.add, aten.sigmoid, aten.lt, aten.zeros_like, aten.where, aten.gt, aten.mul]
# Source node to ATen node mapping:
# add_1 => add_1
# gt => gt
# h => add
# h_1 => sigmoid
# lt => lt
# mul => mul
# where => where
# where_1 => where_1
# zeros_like => full_default
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm, %primals_3), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%primals_2, 0), kwargs = {})
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %full_default, %primals_2), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_2, 0), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %full_default, %primals_2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %where_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, %mul), kwargs = {})
triton_poi_fused_add_gt_lt_mul_sigmoid_where_zeros_like_0 = async_compile.triton('triton_poi_fused_add_gt_lt_mul_sigmoid_where_zeros_like_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_gt_lt_mul_sigmoid_where_zeros_like_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_gt_lt_mul_sigmoid_where_zeros_like_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp1 = 0.0
tmp2 = tmp0 < tmp1
tmp3 = tl.where(tmp2, tmp1, tmp0)
tmp7 = tmp4 + tmp6
tmp8 = tl.sigmoid(tmp7)
tmp9 = tmp0 > tmp1
tmp10 = tl.where(tmp9, tmp1, tmp0)
tmp11 = tmp8 * tmp10
tmp12 = tmp3 + tmp11
tl.store(out_ptr0 + (x2), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 1), (1, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h, h_1, lt, zeros_like, where, gt, where_1, mul, add_1], Original ATen: [aten.add, aten.sigmoid, aten.lt, aten.zeros_like, aten.where, aten.gt, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_gt_lt_mul_sigmoid_where_zeros_like_0.run(primals_2, buf0, primals_3, buf1, 16, grid=grid(16), stream=stream0)
return (buf1, primals_2, primals_3, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
import torch as torch
class NodeAdaptiveEncoder(nn.Module):
def __init__(self, num_features, dropout=0.5):
super(NodeAdaptiveEncoder, self).__init__()
self.fc = nn.Parameter(torch.zeros(size=(num_features, 1)))
nn.init.xavier_normal_(self.fc.data, gain=1.414)
self.bf = nn.Parameter(torch.zeros(size=(1,)))
self.dropout = torch.nn.Dropout(dropout)
def forward(self, x):
h = torch.mm(x, self.fc) + self.bf
h = torch.sigmoid(h)
h = self.dropout(h)
return torch.where(x < 0, torch.zeros_like(x), x) + h * torch.where(
x > 0, torch.zeros_like(x), x)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'num_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
import torch as torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_gt_lt_mul_sigmoid_where_zeros_like_0(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp1 = 0.0
tmp2 = tmp0 < tmp1
tmp3 = tl.where(tmp2, tmp1, tmp0)
tmp7 = tmp4 + tmp6
tmp8 = tl.sigmoid(tmp7)
tmp9 = tmp0 > tmp1
tmp10 = tl.where(tmp9, tmp1, tmp0)
tmp11 = tmp8 * tmp10
tmp12 = tmp3 + tmp11
tl.store(out_ptr0 + x2, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 1), (1, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_gt_lt_mul_sigmoid_where_zeros_like_0[grid(16)](
primals_2, buf0, primals_3, buf1, 16, XBLOCK=16, num_warps=1,
num_stages=1)
return buf1, primals_2, primals_3, buf0
class NodeAdaptiveEncoderNew(nn.Module):
def __init__(self, num_features, dropout=0.5):
super(NodeAdaptiveEncoderNew, self).__init__()
self.fc = nn.Parameter(torch.zeros(size=(num_features, 1)))
nn.init.xavier_normal_(self.fc.data, gain=1.414)
self.bf = nn.Parameter(torch.zeros(size=(1,)))
self.dropout = torch.nn.Dropout(dropout)
def forward(self, input_0):
primals_1 = self.fc
primals_3 = self.bf
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ckhui/cogdl | NodeAdaptiveEncoder | false | 12,643 | [
"MIT"
]
| 0 | 93bea17c2dc7084857cd0a4af8178c174965127c | https://github.com/ckhui/cogdl/tree/93bea17c2dc7084857cd0a4af8178c174965127c |
InvertibleMultiHeadFlow | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/uq/cuqw6hybzoomh5v56h5ewjc2oy4pdtd2gnrbz7lo2fdxyu54f3af.py
# Topologically Sorted Source Nodes: [sum_1, num, logdet_1], Original ATen: [aten.sum, aten.mul]
# Source node to ATen node mapping:
# logdet_1 => mul_1
# num => mul
# sum_1 => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_4, [1]), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, %mul), kwargs = {})
triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp7 = tl.load(in_ptr1 + (0))
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp9 = tmp8 * tmp6
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
# Topologically Sorted Source Nodes: [linalg_slogdet], Original ATen: [aten._linalg_slogdet]
buf1 = torch.ops.aten._linalg_slogdet.default(primals_2)
del primals_2
buf3 = buf1[1]
buf4 = buf1[2]
buf5 = buf1[3]
del buf1
buf6 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf7 = buf6; del buf6 # reuse
buf8 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [sum_1, num, logdet_1], Original ATen: [aten.sum, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_mul_sum_0.run(buf7, primals_3, buf3, buf8, 4, 64, grid=grid(4), stream=stream0)
del buf3
del primals_3
return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf8, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf4, buf5, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from typing import Dict
from typing import Tuple
import torch.nn as nn
from torch.nn import Parameter
import torch.nn.functional as F
class Flow(nn.Module):
"""
Normalizing Flow base class
"""
_registry = dict()
def __init__(self, inverse):
super(Flow, self).__init__()
self.inverse = inverse
def forward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def backward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def init(self, *input, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError
def fwdpass(self, x: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x: Tensor
The random variable before flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: y: Tensor, logdet: Tensor
y, the random variable after flow
logdet, the log determinant of :math:`\\partial y / \\partial x`
Then the density :math:`\\log(p(y)) = \\log(p(x)) - logdet`
"""
if self.inverse:
if init:
raise RuntimeError(
'inverse flow shold be initialized with backward pass')
else:
return self.backward(x, *h, **kwargs)
elif init:
return self.init(x, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(x, *h, **kwargs)
def bwdpass(self, y: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
y: Tensor
The random variable after flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: x: Tensor, logdet: Tensor
x, the random variable before flow
logdet, the log determinant of :math:`\\partial x / \\partial y`
Then the density :math:`\\log(p(y)) = \\log(p(x)) + logdet`
"""
if self.inverse:
if init:
return self.init(y, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(y, *h, **kwargs)
elif init:
raise RuntimeError(
'forward flow should be initialzed with forward pass')
else:
return self.backward(y, *h, **kwargs)
@classmethod
def register(cls, name: 'str'):
Flow._registry[name] = cls
@classmethod
def by_name(cls, name: 'str'):
return Flow._registry[name]
@classmethod
def from_params(cls, params: 'Dict'):
raise NotImplementedError
class InvertibleMultiHeadFlow(Flow):
@staticmethod
def _get_heads(in_features):
units = [32, 16, 8]
for unit in units:
if in_features % unit == 0:
return in_features // unit
assert in_features < 8, 'features={}'.format(in_features)
return 1
def __init__(self, in_features, heads=None, type='A', inverse=False):
super(InvertibleMultiHeadFlow, self).__init__(inverse)
self.in_features = in_features
if heads is None:
heads = InvertibleMultiHeadFlow._get_heads(in_features)
self.heads = heads
self.type = type
assert in_features % heads == 0, 'features ({}) should be divided by heads ({})'.format(
in_features, heads)
assert type in ['A', 'B'], 'type should belong to [A, B]'
self.weight = Parameter(torch.Tensor(in_features // heads,
in_features // heads))
self.register_buffer('weight_inv', self.weight.data.clone())
self.reset_parameters()
def reset_parameters(self):
nn.init.orthogonal_(self.weight)
self.sync()
def sync(self):
self.weight_inv.copy_(self.weight.data.inverse())
def forward(self, input: 'torch.Tensor', mask: 'torch.Tensor') ->Tuple[
torch.Tensor, torch.Tensor]:
"""
Args:
input: Tensor
input tensor [batch, N1, N2, ..., Nl, in_features]
mask: Tensor
mask tensor [batch, N1, N2, ...,Nl]
Returns: out: Tensor , logdet: Tensor
out: [batch, N1, N2, ..., in_features], the output of the flow
logdet: [batch], the log determinant of :math:`\\partial output / \\partial input`
"""
size = input.size()
dim = input.dim()
if self.type == 'A':
out = input.view(*size[:-1], self.heads, self.in_features //
self.heads)
else:
out = input.view(*size[:-1], self.in_features // self.heads,
self.heads).transpose(-2, -1)
out = F.linear(out, self.weight)
if self.type == 'B':
out = out.transpose(-2, -1).contiguous()
out = out.view(*size)
_, logdet = torch.linalg.slogdet(self.weight)
if dim > 2:
num = mask.view(size[0], -1).sum(dim=1) * self.heads
logdet = logdet * num
return out, logdet
def backward(self, input: 'torch.Tensor', mask: 'torch.Tensor') ->Tuple[
torch.Tensor, torch.Tensor]:
"""
Args:
input: Tensor
input tensor [batch, N1, N2, ..., Nl, in_features]
mask: Tensor
mask tensor [batch, N1, N2, ...,Nl]
Returns: out: Tensor , logdet: Tensor
out: [batch, N1, N2, ..., in_features], the output of the flow
logdet: [batch], the log determinant of :math:`\\partial output / \\partial input`
"""
size = input.size()
dim = input.dim()
if self.type == 'A':
out = input.view(*size[:-1], self.heads, self.in_features //
self.heads)
else:
out = input.view(*size[:-1], self.in_features // self.heads,
self.heads).transpose(-2, -1)
out = F.linear(out, self.weight_inv)
if self.type == 'B':
out = out.transpose(-2, -1).contiguous()
out = out.view(*size)
_, logdet = torch.linalg.slogdet(self.weight_inv)
if dim > 2:
num = mask.view(size[0], -1).sum(dim=1) * self.heads
logdet = logdet * num
return out, logdet
def init(self, data: 'torch.Tensor', mask: 'torch.Tensor', init_scale=1.0
) ->Tuple[torch.Tensor, torch.Tensor]:
with torch.no_grad():
return self.forward(data, mask)
def extra_repr(self):
return 'inverse={}, in_features={}, heads={}, type={}'.format(self.
inverse, self.in_features, self.heads, self.type)
@classmethod
def from_params(cls, params: 'Dict') ->'InvertibleMultiHeadFlow':
return InvertibleMultiHeadFlow(**params)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from typing import Dict
from typing import Tuple
import torch.nn as nn
from torch.nn import Parameter
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp7 = tl.load(in_ptr1 + 0)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp9 = tmp8 * tmp6
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = torch.ops.aten._linalg_slogdet.default(primals_2)
del primals_2
buf3 = buf1[1]
buf4 = buf1[2]
buf5 = buf1[3]
del buf1
buf6 = empty_strided_cuda((4,), (1,), torch.float32)
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_mul_sum_0[grid(4)](buf7, primals_3, buf3, buf8, 4,
64, XBLOCK=1, num_warps=2, num_stages=1)
del buf3
del primals_3
return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0
), buf8, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), buf4, buf5, buf7
class Flow(nn.Module):
"""
Normalizing Flow base class
"""
_registry = dict()
def __init__(self, inverse):
super(Flow, self).__init__()
self.inverse = inverse
def forward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def backward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def init(self, *input, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError
def fwdpass(self, x: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x: Tensor
The random variable before flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: y: Tensor, logdet: Tensor
y, the random variable after flow
logdet, the log determinant of :math:`\\partial y / \\partial x`
Then the density :math:`\\log(p(y)) = \\log(p(x)) - logdet`
"""
if self.inverse:
if init:
raise RuntimeError(
'inverse flow shold be initialized with backward pass')
else:
return self.backward(x, *h, **kwargs)
elif init:
return self.init(x, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(x, *h, **kwargs)
def bwdpass(self, y: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
y: Tensor
The random variable after flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: x: Tensor, logdet: Tensor
x, the random variable before flow
logdet, the log determinant of :math:`\\partial x / \\partial y`
Then the density :math:`\\log(p(y)) = \\log(p(x)) + logdet`
"""
if self.inverse:
if init:
return self.init(y, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(y, *h, **kwargs)
elif init:
raise RuntimeError(
'forward flow should be initialzed with forward pass')
else:
return self.backward(y, *h, **kwargs)
@classmethod
def register(cls, name: 'str'):
Flow._registry[name] = cls
@classmethod
def by_name(cls, name: 'str'):
return Flow._registry[name]
@classmethod
def from_params(cls, params: 'Dict'):
raise NotImplementedError
class InvertibleMultiHeadFlowNew(Flow):
@staticmethod
def _get_heads(in_features):
units = [32, 16, 8]
for unit in units:
if in_features % unit == 0:
return in_features // unit
assert in_features < 8, 'features={}'.format(in_features)
return 1
def __init__(self, in_features, heads=None, type='A', inverse=False):
super(InvertibleMultiHeadFlowNew, self).__init__(inverse)
self.in_features = in_features
if heads is None:
heads = InvertibleMultiHeadFlowNew._get_heads(in_features)
self.heads = heads
self.type = type
assert in_features % heads == 0, 'features ({}) should be divided by heads ({})'.format(
in_features, heads)
assert type in ['A', 'B'], 'type should belong to [A, B]'
self.weight = Parameter(torch.Tensor(in_features // heads,
in_features // heads))
self.register_buffer('weight_inv', self.weight.data.clone())
self.reset_parameters()
def reset_parameters(self):
nn.init.orthogonal_(self.weight)
self.sync()
def sync(self):
self.weight_inv.copy_(self.weight.data.inverse())
def backward(self, input: 'torch.Tensor', mask: 'torch.Tensor') ->Tuple[
torch.Tensor, torch.Tensor]:
"""
Args:
input: Tensor
input tensor [batch, N1, N2, ..., Nl, in_features]
mask: Tensor
mask tensor [batch, N1, N2, ...,Nl]
Returns: out: Tensor , logdet: Tensor
out: [batch, N1, N2, ..., in_features], the output of the flow
logdet: [batch], the log determinant of :math:`\\partial output / \\partial input`
"""
size = input.size()
dim = input.dim()
if self.type == 'A':
out = input.view(*size[:-1], self.heads, self.in_features //
self.heads)
else:
out = input.view(*size[:-1], self.in_features // self.heads,
self.heads).transpose(-2, -1)
out = F.linear(out, self.weight_inv)
if self.type == 'B':
out = out.transpose(-2, -1).contiguous()
out = out.view(*size)
_, logdet = torch.linalg.slogdet(self.weight_inv)
if dim > 2:
num = mask.view(size[0], -1).sum(dim=1) * self.heads
logdet = logdet * num
return out, logdet
def init(self, data: 'torch.Tensor', mask: 'torch.Tensor', init_scale=1.0
) ->Tuple[torch.Tensor, torch.Tensor]:
with torch.no_grad():
return self.forward(data, mask)
def extra_repr(self):
return 'inverse={}, in_features={}, heads={}, type={}'.format(self.
inverse, self.in_features, self.heads, self.type)
@classmethod
def from_params(cls, params: 'Dict') ->'InvertibleMultiHeadFlow':
return InvertibleMultiHeadFlowNew(**params)
def forward(self, input_0, input_1):
primals_2 = self.weight
primals_1 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| juheeuu/flowseq | InvertibleMultiHeadFlow | false | 12,644 | [
"Apache-2.0"
]
| 0 | e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb | https://github.com/juheeuu/flowseq/tree/e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb |
is_she_mad | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/sr/csrxdjbtbkq5mhx4lx76hdeti625uy52jalpuc5xjwghomvl635m.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/dh/cdhj4aozvvzkw7stzrqoauyoij3petwtvi4g4weydesiaurrughd.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_3 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/xr/cxrxf4nkydknjv7xhdecpyrprhviagsqwicrk4lpp64qv2hkzaxp.py
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# out_5 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 200), (200, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (1, 128), (128, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 12800, grid=grid(12800), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 128), (1, 200), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf6, 8192, grid=grid(8192), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf5, primals_7, 64, grid=grid(64), stream=stream0)
del primals_7
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 200), (200, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), buf5, primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((200, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class is_she_mad(nn.Module):
def __init__(self, modality_size):
super(is_she_mad, self).__init__()
self.fc1 = nn.Linear(modality_size, 200)
self.fc2 = nn.Linear(200, 128)
self.fc3 = nn.Linear(128, 1)
def forward(self, x):
out = self.fc1(x)
out = F.relu(out)
out = self.fc2(out)
out = F.relu(out)
out = self.fc3(out)
out = F.sigmoid(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'modality_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 200), (200, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (1, 128), (128, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 200), (3200, 800, 200, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(12800)](buf1,
primals_2, buf7, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_4, (200, 128), (1, 200), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3,
primals_5, buf6, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0),
reinterpret_tensor(primals_6, (128, 1), (1, 128), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf4
triton_poi_fused_sigmoid_2[grid(64)](buf5, primals_7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_7
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 200), (200, 1), 0
), reinterpret_tensor(buf3, (64, 128), (128, 1), 0
), buf5, primals_6, buf6, primals_4, buf7
class is_she_madNew(nn.Module):
def __init__(self, modality_size):
super(is_she_madNew, self).__init__()
self.fc1 = nn.Linear(modality_size, 200)
self.fc2 = nn.Linear(200, 128)
self.fc3 = nn.Linear(128, 1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| jryzkns/IsSheMadAtMe | is_she_mad | false | 12,645 | [
"MIT"
]
| 0 | 7776fb9730dab56f42418460efa0c2dec3988e46 | https://github.com/jryzkns/IsSheMadAtMe/tree/7776fb9730dab56f42418460efa0c2dec3988e46 |
ResidualAttentionBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ov/covnoswvamrduqnlpu7ioajrnn3hhte55stjgoorf2z6wjvkkv75.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_3
# Graph fragment:
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_3, 1.0), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (1 + (3*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (1 + (3*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/a3/ca3gcd62vddrpdf7wel6bpef44cv6vzsauaaigftsutida5ifj66.py
# Topologically Sorted Source Nodes: [mul, softmax], Original ATen: [aten.mul, aten._softmax]
# Source node to ATen node mapping:
# mul => mul_2
# softmax => amax, clone, exp, sub_1, sum_1
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_2, 1.0), kwargs = {})
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%view_3,), kwargs = {memory_format: torch.contiguous_format})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_mul_3 = async_compile.triton('triton_poi_fused__softmax_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x3 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (3*x4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (3*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x0 + (16*x3)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (4 + x0 + (16*x3)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (8 + x0 + (16*x3)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr2 + (12 + x0 + (16*x3)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp4 * tmp7
tmp9 = triton_helpers.maximum(tmp6, tmp8)
tmp11 = tmp4 * tmp10
tmp12 = triton_helpers.maximum(tmp9, tmp11)
tmp14 = tmp4 * tmp13
tmp15 = triton_helpers.maximum(tmp12, tmp14)
tmp16 = tmp6 - tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = tmp8 - tmp15
tmp19 = tl_math.exp(tmp18)
tmp20 = tmp17 + tmp19
tmp21 = tmp11 - tmp15
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp20 + tmp22
tmp24 = tmp14 - tmp15
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp23 + tmp25
tl.store(out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr1 + (x4), tmp15, xmask)
tl.store(out_ptr2 + (x4), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ry/crysvnpehef7t7qavdv4tjejxu2fplwpz5t7ziu4zobu2iuwbxgh.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, clone, div, exp, sub_1, sum_1
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%view_3,), kwargs = {memory_format: torch.contiguous_format})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = (xindex // 4)
x0 = xindex % 4
x1 = (xindex // 4) % 4
x3 = (xindex // 64)
x2 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x1 + (4*x0) + (16*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(out_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vt/cvtpzj4f2hmyerpchbm5i4eart4tas2pfh5e56t2solbcays5o7r.py
# Topologically Sorted Source Nodes: [einsum_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# einsum_1 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2 + (3*x1) + (12*x0) + (48*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (2 + (3*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/4k/c4kxxzyxk45cygbwnqkt5vb2udxol67wuotkh6zmuwsinb63uprn.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x_2 => clone_2
# Graph fragment:
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_8,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_6 = async_compile.triton('triton_poi_fused_clone_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/wy/cwy4kxyjt4etqj66cdnstjhqnyeqdu5ftn4ptejfyamzau7n3xqh.py
# Topologically Sorted Source Nodes: [x_2, x_3, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm_1 => var_mean_1
# x_2 => add_2
# x_3 => add_3
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_10, %primals_7), kwargs = {})
# %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %add_2), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (1))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp13 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr2 + (2))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp20 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr2 + (3))
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp10 = tmp7 + tmp9
tmp11 = tmp6 + tmp10
tmp12 = tmp5 + tmp11
tmp17 = tmp14 + tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp12 + tmp18
tmp24 = tmp21 + tmp23
tmp25 = tmp20 + tmp24
tmp26 = tmp19 + tmp25
tmp27 = 4.0
tmp28 = tmp26 / tmp27
tmp29 = tmp5 - tmp28
tmp30 = tmp29 * tmp29
tmp31 = tmp11 - tmp28
tmp32 = tmp31 * tmp31
tmp33 = tmp30 + tmp32
tmp34 = tmp18 - tmp28
tmp35 = tmp34 * tmp34
tmp36 = tmp33 + tmp35
tmp37 = tmp25 - tmp28
tmp38 = tmp37 * tmp37
tmp39 = tmp36 + tmp38
tmp40 = tmp39 / tmp27
tl.store(out_ptr0 + (x0), tmp28, xmask)
tl.store(out_ptr1 + (x0), tmp40, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2f/c2fol3uyk6gyusnfl52autx5hdhf3lnnchrftxvbnmmxfs5li5o4.py
# Topologically Sorted Source Nodes: [x_2, x_3, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm_1 => add_4, add_5, mul_5, mul_6, rsqrt_1, sub_2
# x_2 => add_2
# x_3 => add_3
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_10, %primals_7), kwargs = {})
# %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %add_2), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_5, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_6), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %primals_8), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_6, %primals_9), kwargs = {})
triton_poi_fused_add_native_layer_norm_8 = async_compile.triton('triton_poi_fused_add_native_layer_norm_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr6 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp6 = tmp4 - tmp5
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp6 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/7s/c7sh7255dxwfgfvzmp2g3slml6c3g5jdyjpq3rxua55pu5gg2wfd.py
# Topologically Sorted Source Nodes: [gelu], Original ATen: [aten.gelu]
# Source node to ATen node mapping:
# gelu => add_6, erf, mul_7, mul_8, mul_9
# Graph fragment:
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_12, 0.5), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_12, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_8,), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_7, %add_6), kwargs = {})
triton_poi_fused_gelu_9 = async_compile.triton('triton_poi_fused_gelu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gelu_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/7n/c7nsuy663pmek7olaj7xnomqpsspowavb2zqwzrjkaz42y7dnrtc.py
# Topologically Sorted Source Nodes: [x_2, x_3, x_4], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x_2 => add_2
# x_3 => add_3
# x_4 => add_7
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_10, %primals_7), kwargs = {})
# %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %add_2), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %view_14), kwargs = {})
triton_poi_fused_add_10 = async_compile.triton('triton_poi_fused_add_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_out_ptr0 + (x2), xmask)
tmp6 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tl.store(in_out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (16, 4), (4, 1))
assert_size_stride(primals_11, (16, ), (1, ))
assert_size_stride(primals_12, (4, 16), (16, 1))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 64, grid=grid(64), stream=stream0)
del primals_2
del primals_3
buf3 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), out=buf3)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf3, primals_5, buf5, 64, grid=grid(64), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
# Topologically Sorted Source Nodes: [mul, softmax], Original ATen: [aten.mul, aten._softmax]
triton_poi_fused__softmax_mul_3.run(buf3, primals_5, buf5, buf4, buf6, buf7, 64, grid=grid(64), stream=stream0)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_4.run(buf4, buf5, buf6, buf7, buf8, 256, grid=grid(256), stream=stream0)
buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1, 1), (16, 4, 1, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [einsum_1], Original ATen: [aten.clone]
triton_poi_fused_clone_5.run(buf3, primals_5, buf9, 64, grid=grid(64), stream=stream0)
del buf3
del primals_5
buf10 = reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [einsum_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
triton_poi_fused_clone_6.run(buf10, buf11, 16, 4, grid=grid(16, 4), stream=stream0)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf12)
buf13 = buf1; del buf1 # reuse
buf14 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_2, x_3, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_7.run(primals_1, buf12, primals_7, buf13, buf14, 16, grid=grid(16), stream=stream0)
buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2, x_3, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_8.run(primals_1, buf12, primals_7, buf13, buf14, primals_8, primals_9, buf15, 64, grid=grid(64), stream=stream0)
del buf13
del buf14
del primals_9
buf16 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf15, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf16)
del primals_11
buf17 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [gelu], Original ATen: [aten.gelu]
triton_poi_fused_gelu_9.run(buf16, buf17, 256, grid=grid(256), stream=stream0)
buf18 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf17, (16, 16), (16, 1), 0), reinterpret_tensor(primals_12, (16, 4), (1, 16), 0), out=buf18)
buf19 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0); del buf18 # reuse
# Topologically Sorted Source Nodes: [x_2, x_3, x_4], Original ATen: [aten.add]
triton_poi_fused_add_10.run(buf19, primals_1, buf12, primals_7, primals_13, 64, grid=grid(64), stream=stream0)
del primals_13
return (buf19, primals_1, primals_7, primals_8, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(buf4, (4, 4, 4, 1, 1), (16, 1, 4, 1, 1), 0), reinterpret_tensor(buf5, (4, 4, 1, 4, 1), (16, 1, 1, 4, 1), 0), buf8, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), buf12, reinterpret_tensor(buf15, (16, 4), (4, 1), 0), buf16, reinterpret_tensor(buf17, (16, 16), (16, 1), 0), primals_12, primals_10, primals_6, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0), primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch as th
class LayerNorm(nn.LayerNorm):
"""
Implementation that supports fp16 inputs but fp32 gains/biases.
"""
def forward(self, x: 'th.Tensor'):
return super().forward(x.float())
class QKVMultiheadAttention(nn.Module):
def __init__(self, n_heads: 'int', n_ctx: 'int'):
super().__init__()
self.n_heads = n_heads
self.n_ctx = n_ctx
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.n_heads // 3
scale = 1 / math.sqrt(math.sqrt(attn_ch))
qkv = qkv.view(bs, n_ctx, self.n_heads, -1)
q, k, v = th.split(qkv, attn_ch, dim=-1)
weight = th.einsum('bthc,bshc->bhts', q * scale, k * scale)
wdtype = weight.dtype
weight = th.softmax(weight.float(), dim=-1).type(wdtype)
return th.einsum('bhts,bshc->bthc', weight, v).reshape(bs, n_ctx, -1)
class MultiheadAttention(nn.Module):
def __init__(self, n_ctx, width, heads):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.heads = heads
self.c_qkv = nn.Linear(width, width * 3)
self.c_proj = nn.Linear(width, width)
self.attention = QKVMultiheadAttention(heads, n_ctx)
def forward(self, x):
x = self.c_qkv(x)
x = self.attention(x)
x = self.c_proj(x)
return x
class MLP(nn.Module):
def __init__(self, width):
super().__init__()
self.width = width
self.c_fc = nn.Linear(width, width * 4)
self.c_proj = nn.Linear(width * 4, width)
self.gelu = nn.GELU()
def forward(self, x):
return self.c_proj(self.gelu(self.c_fc(x)))
class ResidualAttentionBlock(nn.Module):
def __init__(self, n_ctx: 'int', width: 'int', heads: 'int'):
super().__init__()
self.attn = MultiheadAttention(n_ctx, width, heads)
self.ln_1 = LayerNorm(width)
self.mlp = MLP(width)
self.ln_2 = LayerNorm(width)
def forward(self, x: 'th.Tensor'):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'n_ctx': 4, 'width': 4, 'heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.nn as nn
import torch as th
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (1 + 3 * x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (1 + 3 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x3 = xindex // 16
tmp0 = tl.load(in_ptr0 + 3 * x4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 3 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x0 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr2 + (4 + x0 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr2 + (8 + x0 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr2 + (12 + x0 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp4 * tmp7
tmp9 = triton_helpers.maximum(tmp6, tmp8)
tmp11 = tmp4 * tmp10
tmp12 = triton_helpers.maximum(tmp9, tmp11)
tmp14 = tmp4 * tmp13
tmp15 = triton_helpers.maximum(tmp12, tmp14)
tmp16 = tmp6 - tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = tmp8 - tmp15
tmp19 = tl_math.exp(tmp18)
tmp20 = tmp17 + tmp19
tmp21 = tmp11 - tmp15
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp20 + tmp22
tmp24 = tmp14 - tmp15
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp23 + tmp25
tl.store(out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr1 + x4, tmp15, xmask)
tl.store(out_ptr2 + x4, tmp26, xmask)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex // 4
x0 = xindex % 4
x1 = xindex // 4 % 4
x3 = xindex // 64
x2 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x1 + 4 * x0 + 16 * x3), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(out_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), tmp7, xmask)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2 + 3 * x1 + 12 * x0 + 48 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (2 + 3 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_clone_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + 1)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp13 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr2 + 2)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp20 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp21 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr2 + 3)
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp10 = tmp7 + tmp9
tmp11 = tmp6 + tmp10
tmp12 = tmp5 + tmp11
tmp17 = tmp14 + tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp12 + tmp18
tmp24 = tmp21 + tmp23
tmp25 = tmp20 + tmp24
tmp26 = tmp19 + tmp25
tmp27 = 4.0
tmp28 = tmp26 / tmp27
tmp29 = tmp5 - tmp28
tmp30 = tmp29 * tmp29
tmp31 = tmp11 - tmp28
tmp32 = tmp31 * tmp31
tmp33 = tmp30 + tmp32
tmp34 = tmp18 - tmp28
tmp35 = tmp34 * tmp34
tmp36 = tmp33 + tmp35
tmp37 = tmp25 - tmp28
tmp38 = tmp37 * tmp37
tmp39 = tmp36 + tmp38
tmp40 = tmp39 / tmp27
tl.store(out_ptr0 + x0, tmp28, xmask)
tl.store(out_ptr1 + x0, tmp40, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_8(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp6 = tmp4 - tmp5
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp6 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_gelu_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_out_ptr0 + x2, xmask)
tmp6 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tl.store(in_out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (16, 4), (4, 1))
assert_size_stride(primals_11, (16,), (1,))
assert_size_stride(primals_12, (4, 16), (16, 1))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(16)](primals_1, buf0,
buf1, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](primals_1, buf0,
buf1, primals_2, primals_3, buf2, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_2
del primals_3
buf3 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), out=buf3)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_mul_2[grid(64)](buf3, primals_5, buf5, 64, XBLOCK=
64, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
triton_poi_fused__softmax_mul_3[grid(64)](buf3, primals_5, buf5,
buf4, buf6, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_4[grid(256)](buf4, buf5, buf6, buf7, buf8,
256, XBLOCK=128, num_warps=4, num_stages=1)
buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1, 1), (16, 4, 1, 1, 1), 0)
del buf7
triton_poi_fused_clone_5[grid(64)](buf3, primals_5, buf9, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf3
del primals_5
buf10 = reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 1), 0)
del buf6
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_6[grid(16, 4)](buf10, buf11, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0)
del buf10
extern_kernels.mm(reinterpret_tensor(buf11, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf12)
buf13 = buf1
del buf1
buf14 = buf0
del buf0
triton_poi_fused_add_native_layer_norm_7[grid(16)](primals_1, buf12,
primals_7, buf13, buf14, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_8[grid(64)](primals_1, buf12,
primals_7, buf13, buf14, primals_8, primals_9, buf15, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf13
del buf14
del primals_9
buf16 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf15, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_10, (4, 16), (1, 4), 0),
alpha=1, beta=1, out=buf16)
del primals_11
buf17 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
triton_poi_fused_gelu_9[grid(256)](buf16, buf17, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf18 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf17, (16, 16), (16, 1), 0),
reinterpret_tensor(primals_12, (16, 4), (1, 16), 0), out=buf18)
buf19 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0)
del buf18
triton_poi_fused_add_10[grid(64)](buf19, primals_1, buf12,
primals_7, primals_13, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_13
return buf19, primals_1, primals_7, primals_8, reinterpret_tensor(buf2,
(16, 4), (4, 1), 0), reinterpret_tensor(buf4, (4, 4, 4, 1, 1), (16,
1, 4, 1, 1), 0), reinterpret_tensor(buf5, (4, 4, 1, 4, 1), (16, 1,
1, 4, 1), 0), buf8, reinterpret_tensor(buf11, (16, 4), (4, 1), 0
), buf12, reinterpret_tensor(buf15, (16, 4), (4, 1), 0
), buf16, reinterpret_tensor(buf17, (16, 16), (16, 1), 0
), primals_12, primals_10, primals_6, reinterpret_tensor(buf9, (16,
1, 4), (4, 1, 1), 0), primals_4
class LayerNorm(nn.LayerNorm):
"""
Implementation that supports fp16 inputs but fp32 gains/biases.
"""
def forward(self, x: 'th.Tensor'):
return super().forward(x.float())
class QKVMultiheadAttention(nn.Module):
def __init__(self, n_heads: 'int', n_ctx: 'int'):
super().__init__()
self.n_heads = n_heads
self.n_ctx = n_ctx
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.n_heads // 3
scale = 1 / math.sqrt(math.sqrt(attn_ch))
qkv = qkv.view(bs, n_ctx, self.n_heads, -1)
q, k, v = th.split(qkv, attn_ch, dim=-1)
weight = th.einsum('bthc,bshc->bhts', q * scale, k * scale)
wdtype = weight.dtype
weight = th.softmax(weight.float(), dim=-1).type(wdtype)
return th.einsum('bhts,bshc->bthc', weight, v).reshape(bs, n_ctx, -1)
class MultiheadAttention(nn.Module):
def __init__(self, n_ctx, width, heads):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.heads = heads
self.c_qkv = nn.Linear(width, width * 3)
self.c_proj = nn.Linear(width, width)
self.attention = QKVMultiheadAttention(heads, n_ctx)
def forward(self, x):
x = self.c_qkv(x)
x = self.attention(x)
x = self.c_proj(x)
return x
class MLP(nn.Module):
def __init__(self, width):
super().__init__()
self.width = width
self.c_fc = nn.Linear(width, width * 4)
self.c_proj = nn.Linear(width * 4, width)
self.gelu = nn.GELU()
def forward(self, x):
return self.c_proj(self.gelu(self.c_fc(x)))
class ResidualAttentionBlockNew(nn.Module):
def __init__(self, n_ctx: 'int', width: 'int', heads: 'int'):
super().__init__()
self.attn = MultiheadAttention(n_ctx, width, heads)
self.ln_1 = LayerNorm(width)
self.mlp = MLP(width)
self.ln_2 = LayerNorm(width)
def forward(self, input_0):
primals_4 = self.attn.c_qkv.weight
primals_5 = self.attn.c_qkv.bias
primals_6 = self.attn.c_proj.weight
primals_2 = self.attn.c_proj.bias
primals_3 = self.ln_1.weight
primals_7 = self.ln_1.bias
primals_10 = self.mlp.c_fc.weight
primals_11 = self.mlp.c_fc.bias
primals_12 = self.mlp.c_proj.weight
primals_8 = self.mlp.c_proj.bias
primals_9 = self.ln_2.weight
primals_13 = self.ln_2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| johnpaulbin/glide-text2im | ResidualAttentionBlock | false | 12,646 | [
"MIT"
]
| 0 | 4897050c4c540316dfb1ec7e6ff95698bcb20487 | https://github.com/johnpaulbin/glide-text2im/tree/4897050c4c540316dfb1ec7e6ff95698bcb20487 |
DistMultLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/sr/csruoi7sqrevxeki5xnmzsq2chzkh4wlbrtopsch5bdo3txfvzib.py
# Topologically Sorted Source Nodes: [mul, mul_1, sum_1], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# sum_1 => sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg2_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {})
triton_poi_fused_mul_sum_0 = async_compile.triton('triton_poi_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp7 = tmp5 * tmp6
tmp9 = tmp7 * tmp8
tmp10 = tmp4 + tmp9
tmp13 = tmp11 * tmp12
tmp15 = tmp13 * tmp14
tmp16 = tmp10 + tmp15
tmp19 = tmp17 * tmp18
tmp21 = tmp19 * tmp20
tmp22 = tmp16 + tmp21
tl.store(out_ptr0 + (x0), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, sum_1], Original ATen: [aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sum_0.run(arg0_1, arg1_1, arg2_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
import torch as torch
class DistMultLayer(nn.Module):
def __init__(self):
super(DistMultLayer, self).__init__()
def forward(self, sub_emb, obj_emb, rel_emb):
return torch.sum(sub_emb * obj_emb * rel_emb, dim=-1)
def predict(self, sub_emb, obj_emb, rel_emb):
return torch.matmul(sub_emb * rel_emb, obj_emb.t())
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
import torch as torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp7 = tmp5 * tmp6
tmp9 = tmp7 * tmp8
tmp10 = tmp4 + tmp9
tmp13 = tmp11 * tmp12
tmp15 = tmp13 * tmp14
tmp16 = tmp10 + tmp15
tmp19 = tmp17 * tmp18
tmp21 = tmp19 * tmp20
tmp22 = tmp16 + tmp21
tl.store(out_ptr0 + x0, tmp22, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sum_0[grid(64)](arg0_1, arg1_1, arg2_1, buf0,
64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf0,
class DistMultLayerNew(nn.Module):
def __init__(self):
super(DistMultLayerNew, self).__init__()
def predict(self, sub_emb, obj_emb, rel_emb):
return torch.matmul(sub_emb * rel_emb, obj_emb.t())
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| ckhui/cogdl | DistMultLayer | false | 12,647 | [
"MIT"
]
| 0 | 93bea17c2dc7084857cd0a4af8178c174965127c | https://github.com/ckhui/cogdl/tree/93bea17c2dc7084857cd0a4af8178c174965127c |
RobertaClassificationHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x_1 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/xb/cxblo4rcs4c2gaeo4g2lzb4lnf2hnk52rokjaibitqw2ujbex3da.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x_4 => tanh
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 8), (8, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (2, 4), (4, 1))
assert_size_stride(primals_5, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((8, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (8, 8), (8, 1), 0), reinterpret_tensor(primals_2, (8, 4), (1, 8), 0), out=buf1)
del primals_2
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf2, primals_3, 32, grid=grid(32), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((8, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
return (buf3, reinterpret_tensor(buf0, (8, 8), (8, 1), 0), buf2, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
class RobertaClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, 2)
def forward(self, features, **kwargs):
x = features[:, 0, :]
x = x.reshape(-1, x.size(-1) * 2)
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, hidden_dropout_prob=
0.5)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 8), (8, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (2, 4), (4, 1))
assert_size_stride(primals_5, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((8, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (8, 8), (8, 1), 0),
reinterpret_tensor(primals_2, (8, 4), (1, 8), 0), out=buf1)
del primals_2
buf2 = buf1
del buf1
triton_poi_fused_tanh_1[grid(32)](buf2, primals_3, 32, XBLOCK=32,
num_warps=1, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((8, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4,
(4, 2), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
return buf3, reinterpret_tensor(buf0, (8, 8), (8, 1), 0), buf2, primals_4
class RobertaClassificationHeadNew(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, 2)
def forward(self, input_0):
primals_2 = self.dense.weight
primals_3 = self.dense.bias
primals_4 = self.out_proj.weight
primals_5 = self.out_proj.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| kamranazmat/CodeBERT | RobertaClassificationHead | false | 12,648 | [
"MIT"
]
| 0 | 109c1b58b96c61314a76563c6bd686bb09f86eab | https://github.com/kamranazmat/CodeBERT/tree/109c1b58b96c61314a76563c6bd686bb09f86eab |
InvertibleLinearFlow | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/z3/cz3d4mvbdfvtvhu2qixqkdpw7wbfq3tqd7co4jcol2sqrohzng6n.py
# Topologically Sorted Source Nodes: [num, logdet_1], Original ATen: [aten.sum, aten.mul]
# Source node to ATen node mapping:
# logdet_1 => mul
# num => sum_1
# Graph fragment:
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_2, [1]), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, %sum_1), kwargs = {})
triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp7 = tmp6 * tmp4
tl.store(out_ptr1 + (x0), tmp7, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
# Topologically Sorted Source Nodes: [linalg_slogdet], Original ATen: [aten._linalg_slogdet]
buf1 = torch.ops.aten._linalg_slogdet.default(primals_2)
del primals_2
buf3 = buf1[1]
buf4 = buf1[2]
buf5 = buf1[3]
del buf1
buf6 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf7 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [num, logdet_1], Original ATen: [aten.sum, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_mul_sum_0.run(primals_3, buf3, buf6, buf7, 4, 64, grid=grid(4), stream=stream0)
del buf3
del primals_3
return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf7, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf4, buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from typing import Dict
from typing import Tuple
import torch.nn as nn
from torch.nn import Parameter
import torch.nn.functional as F
class Flow(nn.Module):
"""
Normalizing Flow base class
"""
_registry = dict()
def __init__(self, inverse):
super(Flow, self).__init__()
self.inverse = inverse
def forward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def backward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def init(self, *input, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError
def fwdpass(self, x: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x: Tensor
The random variable before flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: y: Tensor, logdet: Tensor
y, the random variable after flow
logdet, the log determinant of :math:`\\partial y / \\partial x`
Then the density :math:`\\log(p(y)) = \\log(p(x)) - logdet`
"""
if self.inverse:
if init:
raise RuntimeError(
'inverse flow shold be initialized with backward pass')
else:
return self.backward(x, *h, **kwargs)
elif init:
return self.init(x, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(x, *h, **kwargs)
def bwdpass(self, y: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
y: Tensor
The random variable after flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: x: Tensor, logdet: Tensor
x, the random variable before flow
logdet, the log determinant of :math:`\\partial x / \\partial y`
Then the density :math:`\\log(p(y)) = \\log(p(x)) + logdet`
"""
if self.inverse:
if init:
return self.init(y, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(y, *h, **kwargs)
elif init:
raise RuntimeError(
'forward flow should be initialzed with forward pass')
else:
return self.backward(y, *h, **kwargs)
@classmethod
def register(cls, name: 'str'):
Flow._registry[name] = cls
@classmethod
def by_name(cls, name: 'str'):
return Flow._registry[name]
@classmethod
def from_params(cls, params: 'Dict'):
raise NotImplementedError
class InvertibleLinearFlow(Flow):
def __init__(self, in_features, inverse=False):
super(InvertibleLinearFlow, self).__init__(inverse)
self.in_features = in_features
self.weight = Parameter(torch.Tensor(in_features, in_features))
self.register_buffer('weight_inv', self.weight.data.clone())
self.reset_parameters()
def reset_parameters(self):
nn.init.orthogonal_(self.weight)
self.sync()
def sync(self):
self.weight_inv.copy_(self.weight.data.inverse())
def forward(self, input: 'torch.Tensor', mask: 'torch.Tensor') ->Tuple[
torch.Tensor, torch.Tensor]:
"""
Args:
input: Tensor
input tensor [batch, N1, N2, ..., Nl, in_features]
mask: Tensor
mask tensor [batch, N1, N2, ...,Nl]
Returns: out: Tensor , logdet: Tensor
out: [batch, N1, N2, ..., in_features], the output of the flow
logdet: [batch], the log determinant of :math:`\\partial output / \\partial input`
"""
dim = input.dim()
out = F.linear(input, self.weight)
_, logdet = torch.linalg.slogdet(self.weight)
if dim > 2:
num = mask.view(out.size(0), -1).sum(dim=1)
logdet = logdet * num
return out, logdet
def backward(self, input: 'torch.Tensor', mask: 'torch.Tensor') ->Tuple[
torch.Tensor, torch.Tensor]:
"""
Args:
input: Tensor
input tensor [batch, N1, N2, ..., Nl, in_features]
mask: Tensor
mask tensor [batch, N1, N2, ...,Nl]
Returns: out: Tensor , logdet: Tensor
out: [batch, N1, N2, ..., in_features], the output of the flow
logdet: [batch], the log determinant of :math:`\\partial output / \\partial input`
"""
dim = input.dim()
out = F.linear(input, self.weight_inv)
_, logdet = torch.linalg.slogdet(self.weight_inv)
if dim > 2:
num = mask.view(out.size(0), -1).sum(dim=1)
logdet = logdet * num
return out, logdet
def init(self, data: 'torch.Tensor', mask: 'torch.Tensor', init_scale=1.0
) ->Tuple[torch.Tensor, torch.Tensor]:
with torch.no_grad():
return self.forward(data)
def extra_repr(self):
return 'inverse={}, in_features={}'.format(self.inverse, self.
in_features)
@classmethod
def from_params(cls, params: 'Dict') ->'InvertibleLinearFlow':
return InvertibleLinearFlow(**params)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from typing import Dict
from typing import Tuple
import torch.nn as nn
from torch.nn import Parameter
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp7 = tmp6 * tmp4
tl.store(out_ptr1 + x0, tmp7, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = torch.ops.aten._linalg_slogdet.default(primals_2)
del primals_2
buf3 = buf1[1]
buf4 = buf1[2]
buf5 = buf1[3]
del buf1
buf6 = empty_strided_cuda((4,), (1,), torch.float32)
buf7 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_mul_sum_0[grid(4)](primals_3, buf3, buf6, buf7, 4,
64, XBLOCK=1, num_warps=2, num_stages=1)
del buf3
del primals_3
return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0
), buf7, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), buf4, buf5, buf6
class Flow(nn.Module):
"""
Normalizing Flow base class
"""
_registry = dict()
def __init__(self, inverse):
super(Flow, self).__init__()
self.inverse = inverse
def forward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def backward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def init(self, *input, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError
def fwdpass(self, x: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x: Tensor
The random variable before flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: y: Tensor, logdet: Tensor
y, the random variable after flow
logdet, the log determinant of :math:`\\partial y / \\partial x`
Then the density :math:`\\log(p(y)) = \\log(p(x)) - logdet`
"""
if self.inverse:
if init:
raise RuntimeError(
'inverse flow shold be initialized with backward pass')
else:
return self.backward(x, *h, **kwargs)
elif init:
return self.init(x, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(x, *h, **kwargs)
def bwdpass(self, y: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
y: Tensor
The random variable after flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: x: Tensor, logdet: Tensor
x, the random variable before flow
logdet, the log determinant of :math:`\\partial x / \\partial y`
Then the density :math:`\\log(p(y)) = \\log(p(x)) + logdet`
"""
if self.inverse:
if init:
return self.init(y, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(y, *h, **kwargs)
elif init:
raise RuntimeError(
'forward flow should be initialzed with forward pass')
else:
return self.backward(y, *h, **kwargs)
@classmethod
def register(cls, name: 'str'):
Flow._registry[name] = cls
@classmethod
def by_name(cls, name: 'str'):
return Flow._registry[name]
@classmethod
def from_params(cls, params: 'Dict'):
raise NotImplementedError
class InvertibleLinearFlowNew(Flow):
def __init__(self, in_features, inverse=False):
super(InvertibleLinearFlowNew, self).__init__(inverse)
self.in_features = in_features
self.weight = Parameter(torch.Tensor(in_features, in_features))
self.register_buffer('weight_inv', self.weight.data.clone())
self.reset_parameters()
def reset_parameters(self):
nn.init.orthogonal_(self.weight)
self.sync()
def sync(self):
self.weight_inv.copy_(self.weight.data.inverse())
def backward(self, input: 'torch.Tensor', mask: 'torch.Tensor') ->Tuple[
torch.Tensor, torch.Tensor]:
"""
Args:
input: Tensor
input tensor [batch, N1, N2, ..., Nl, in_features]
mask: Tensor
mask tensor [batch, N1, N2, ...,Nl]
Returns: out: Tensor , logdet: Tensor
out: [batch, N1, N2, ..., in_features], the output of the flow
logdet: [batch], the log determinant of :math:`\\partial output / \\partial input`
"""
dim = input.dim()
out = F.linear(input, self.weight_inv)
_, logdet = torch.linalg.slogdet(self.weight_inv)
if dim > 2:
num = mask.view(out.size(0), -1).sum(dim=1)
logdet = logdet * num
return out, logdet
def init(self, data: 'torch.Tensor', mask: 'torch.Tensor', init_scale=1.0
) ->Tuple[torch.Tensor, torch.Tensor]:
with torch.no_grad():
return self.forward(data)
def extra_repr(self):
return 'inverse={}, in_features={}'.format(self.inverse, self.
in_features)
@classmethod
def from_params(cls, params: 'Dict') ->'InvertibleLinearFlow':
return InvertibleLinearFlowNew(**params)
def forward(self, input_0, input_1):
primals_2 = self.weight
primals_1 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| juheeuu/flowseq | InvertibleLinearFlow | false | 12,649 | [
"Apache-2.0"
]
| 0 | e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb | https://github.com/juheeuu/flowseq/tree/e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb |
ActNormFlow | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/3t/c3tegjhab4p4hqm22zwhmg7geo53lf3hgtmb6ngf5ln3g4l4akaj.py
# Topologically Sorted Source Nodes: [exp, mul, out, out_1], Original ATen: [aten.exp, aten.mul, aten.add]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# out => add
# out_1 => mul_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_2,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %exp), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %unsqueeze), kwargs = {})
triton_poi_fused_add_exp_mul_0 = async_compile.triton('triton_poi_fused_add_exp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x0 = xindex % 4
x5 = (xindex // 16)
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (x0 + (4*x5)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 * tmp6
tl.store(out_ptr0 + (x6), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/hj/chjctndcct3uy5zpfj56qun4jpqjq3jp7qekxbult5tkzhebqoca.py
# Topologically Sorted Source Nodes: [logdet], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# logdet => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%primals_2, [0], True), kwargs = {})
triton_per_fused_sum_1 = async_compile.triton('triton_per_fused_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_sum_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/xw/cxwj4tauk4ppjfha7ldxck7ffhdnppggn3xisjfuxa7khdl5xvue.py
# Topologically Sorted Source Nodes: [num, logdet_1], Original ATen: [aten.sum, aten.mul]
# Source node to ATen node mapping:
# logdet_1 => mul_2
# num => sum_2
# Graph fragment:
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [1]), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_mul_sum_2 = async_compile.triton('triton_per_fused_mul_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp7 = tmp6 * tmp4
tl.store(out_ptr1 + (x0), tmp7, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [exp, mul, out, out_1], Original ATen: [aten.exp, aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_exp_mul_0.run(primals_1, primals_2, primals_3, primals_4, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((1, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [logdet], Original ATen: [aten.sum]
triton_per_fused_sum_1.run(primals_2, buf1, 1, 4, grid=grid(1), stream=stream0)
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf3 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [num, logdet_1], Original ATen: [aten.sum, aten.mul]
triton_per_fused_mul_sum_2.run(primals_4, buf1, buf2, buf3, 4, 64, grid=grid(4), stream=stream0)
del buf1
return (buf0, buf3, primals_1, primals_2, primals_4, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from typing import Dict
from typing import Tuple
import torch.nn as nn
from torch.nn import Parameter
class Flow(nn.Module):
"""
Normalizing Flow base class
"""
_registry = dict()
def __init__(self, inverse):
super(Flow, self).__init__()
self.inverse = inverse
def forward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def backward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def init(self, *input, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError
def fwdpass(self, x: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x: Tensor
The random variable before flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: y: Tensor, logdet: Tensor
y, the random variable after flow
logdet, the log determinant of :math:`\\partial y / \\partial x`
Then the density :math:`\\log(p(y)) = \\log(p(x)) - logdet`
"""
if self.inverse:
if init:
raise RuntimeError(
'inverse flow shold be initialized with backward pass')
else:
return self.backward(x, *h, **kwargs)
elif init:
return self.init(x, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(x, *h, **kwargs)
def bwdpass(self, y: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
y: Tensor
The random variable after flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: x: Tensor, logdet: Tensor
x, the random variable before flow
logdet, the log determinant of :math:`\\partial x / \\partial y`
Then the density :math:`\\log(p(y)) = \\log(p(x)) + logdet`
"""
if self.inverse:
if init:
return self.init(y, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(y, *h, **kwargs)
elif init:
raise RuntimeError(
'forward flow should be initialzed with forward pass')
else:
return self.backward(y, *h, **kwargs)
@classmethod
def register(cls, name: 'str'):
Flow._registry[name] = cls
@classmethod
def by_name(cls, name: 'str'):
return Flow._registry[name]
@classmethod
def from_params(cls, params: 'Dict'):
raise NotImplementedError
class ActNormFlow(Flow):
def __init__(self, in_features, inverse=False):
super(ActNormFlow, self).__init__(inverse)
self.in_features = in_features
self.log_scale = Parameter(torch.Tensor(in_features))
self.bias = Parameter(torch.Tensor(in_features))
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.log_scale, mean=0, std=0.05)
nn.init.constant_(self.bias, 0.0)
def forward(self, input: 'torch.Tensor', mask: 'torch.Tensor') ->Tuple[
torch.Tensor, torch.Tensor]:
"""
Args:
input: Tensor
input tensor [batch, N1, N2, ..., Nl, in_features]
mask: Tensor
mask tensor [batch, N1, N2, ...,Nl]
Returns: out: Tensor , logdet: Tensor
out: [batch, N1, N2, ..., in_features], the output of the flow
logdet: [batch], the log determinant of :math:`\\partial output / \\partial input`
"""
dim = input.dim()
out = input * self.log_scale.exp() + self.bias
out = out * mask.unsqueeze(dim - 1)
logdet = self.log_scale.sum(dim=0, keepdim=True)
if dim > 2:
num = mask.view(out.size(0), -1).sum(dim=1)
logdet = logdet * num
return out, logdet
def backward(self, input: 'torch.Tensor', mask: 'torch.Tensor') ->Tuple[
torch.Tensor, torch.Tensor]:
"""
Args:
input: Tensor
input tensor [batch, N1, N2, ..., Nl, in_features]
mask: Tensor
mask tensor [batch, N1, N2, ...,Nl]
Returns: out: Tensor , logdet: Tensor
out: [batch, N1, N2, ..., in_features], the output of the flow
logdet: [batch], the log determinant of :math:`\\partial output / \\partial input`
"""
dim = input.dim()
out = (input - self.bias) * mask.unsqueeze(dim - 1)
out = out.div(self.log_scale.exp() + 1e-08)
logdet = self.log_scale.sum(dim=0, keepdim=True) * -1.0
if dim > 2:
num = mask.view(out.size(0), -1).sum(dim=1)
logdet = logdet * num
return out, logdet
def init(self, data: 'torch.Tensor', mask: 'torch.Tensor', init_scale=1.0
) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
data: input: Tensor
input tensor [batch, N1, N2, ..., in_features]
mask: Tensor
mask tensor [batch, N1, N2, ...,Nl]
init_scale: float
initial scale
Returns: out: Tensor , logdet: Tensor
out: [batch, N1, N2, ..., in_features], the output of the flow
logdet: [batch], the log determinant of :math:`\\partial output / \\partial input`
"""
with torch.no_grad():
out, _ = self.forward(data, mask)
mean = out.view(-1, self.in_features).mean(dim=0)
std = out.view(-1, self.in_features).std(dim=0)
inv_stdv = init_scale / (std + 1e-06)
self.log_scale.add_(inv_stdv.log())
self.bias.add_(-mean).mul_(inv_stdv)
return self.forward(data, mask)
def extra_repr(self):
return 'inverse={}, in_features={}'.format(self.inverse, self.
in_features)
@classmethod
def from_params(cls, params: 'Dict') ->'ActNormFlow':
return ActNormFlow(**params)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from typing import Dict
from typing import Tuple
import torch.nn as nn
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x0 = xindex % 4
x5 = xindex // 16
x6 = xindex
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (x0 + 4 * x5), xmask, eviction_policy='evict_last'
)
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 * tmp6
tl.store(out_ptr0 + x6, tmp7, xmask)
@triton.jit
def triton_per_fused_sum_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None)
@triton.jit
def triton_per_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp7 = tmp6 * tmp4
tl.store(out_ptr1 + x0, tmp7, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_add_exp_mul_0[grid(1024)](primals_1, primals_2,
primals_3, primals_4, buf0, 1024, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_3
buf1 = empty_strided_cuda((1,), (1,), torch.float32)
triton_per_fused_sum_1[grid(1)](primals_2, buf1, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused_mul_sum_2[grid(4)](primals_4, buf1, buf2, buf3, 4,
64, XBLOCK=1, num_warps=2, num_stages=1)
del buf1
return buf0, buf3, primals_1, primals_2, primals_4, buf2
class Flow(nn.Module):
"""
Normalizing Flow base class
"""
_registry = dict()
def __init__(self, inverse):
super(Flow, self).__init__()
self.inverse = inverse
def forward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def backward(self, *inputs, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
*input: input [batch, *input_size]
Returns: out: Tensor [batch, *input_size], logdet: Tensor [batch]
out, the output of the flow
logdet, the log determinant of :math:`\\partial output / \\partial input`
"""
raise NotImplementedError
def init(self, *input, **kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError
def fwdpass(self, x: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x: Tensor
The random variable before flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: y: Tensor, logdet: Tensor
y, the random variable after flow
logdet, the log determinant of :math:`\\partial y / \\partial x`
Then the density :math:`\\log(p(y)) = \\log(p(x)) - logdet`
"""
if self.inverse:
if init:
raise RuntimeError(
'inverse flow shold be initialized with backward pass')
else:
return self.backward(x, *h, **kwargs)
elif init:
return self.init(x, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(x, *h, **kwargs)
def bwdpass(self, y: 'torch.Tensor', *h, init=False, init_scale=1.0, **
kwargs) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
y: Tensor
The random variable after flow
h: list of object
other conditional inputs
init: bool
perform initialization or not (default: False)
init_scale: float
initial scale (default: 1.0)
Returns: x: Tensor, logdet: Tensor
x, the random variable before flow
logdet, the log determinant of :math:`\\partial x / \\partial y`
Then the density :math:`\\log(p(y)) = \\log(p(x)) + logdet`
"""
if self.inverse:
if init:
return self.init(y, *h, init_scale=init_scale, **kwargs)
else:
return self.forward(y, *h, **kwargs)
elif init:
raise RuntimeError(
'forward flow should be initialzed with forward pass')
else:
return self.backward(y, *h, **kwargs)
@classmethod
def register(cls, name: 'str'):
Flow._registry[name] = cls
@classmethod
def by_name(cls, name: 'str'):
return Flow._registry[name]
@classmethod
def from_params(cls, params: 'Dict'):
raise NotImplementedError
class ActNormFlowNew(Flow):
def __init__(self, in_features, inverse=False):
super(ActNormFlowNew, self).__init__(inverse)
self.in_features = in_features
self.log_scale = Parameter(torch.Tensor(in_features))
self.bias = Parameter(torch.Tensor(in_features))
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.log_scale, mean=0, std=0.05)
nn.init.constant_(self.bias, 0.0)
def backward(self, input: 'torch.Tensor', mask: 'torch.Tensor') ->Tuple[
torch.Tensor, torch.Tensor]:
"""
Args:
input: Tensor
input tensor [batch, N1, N2, ..., Nl, in_features]
mask: Tensor
mask tensor [batch, N1, N2, ...,Nl]
Returns: out: Tensor , logdet: Tensor
out: [batch, N1, N2, ..., in_features], the output of the flow
logdet: [batch], the log determinant of :math:`\\partial output / \\partial input`
"""
dim = input.dim()
out = (input - self.bias) * mask.unsqueeze(dim - 1)
out = out.div(self.log_scale.exp() + 1e-08)
logdet = self.log_scale.sum(dim=0, keepdim=True) * -1.0
if dim > 2:
num = mask.view(out.size(0), -1).sum(dim=1)
logdet = logdet * num
return out, logdet
def init(self, data: 'torch.Tensor', mask: 'torch.Tensor', init_scale=1.0
) ->Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
data: input: Tensor
input tensor [batch, N1, N2, ..., in_features]
mask: Tensor
mask tensor [batch, N1, N2, ...,Nl]
init_scale: float
initial scale
Returns: out: Tensor , logdet: Tensor
out: [batch, N1, N2, ..., in_features], the output of the flow
logdet: [batch], the log determinant of :math:`\\partial output / \\partial input`
"""
with torch.no_grad():
out, _ = self.forward(data, mask)
mean = out.view(-1, self.in_features).mean(dim=0)
std = out.view(-1, self.in_features).std(dim=0)
inv_stdv = init_scale / (std + 1e-06)
self.log_scale.add_(inv_stdv.log())
self.bias.add_(-mean).mul_(inv_stdv)
return self.forward(data, mask)
def extra_repr(self):
return 'inverse={}, in_features={}'.format(self.inverse, self.
in_features)
@classmethod
def from_params(cls, params: 'Dict') ->'ActNormFlow':
return ActNormFlowNew(**params)
def forward(self, input_0, input_1):
primals_2 = self.log_scale
primals_3 = self.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0], output[1]
| juheeuu/flowseq | ActNormFlow | false | 12,650 | [
"Apache-2.0"
]
| 0 | e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb | https://github.com/juheeuu/flowseq/tree/e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb |
PrototypicalDecoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/q3/cq3hlsb3oxxxwpofddnblmd63fvwbw26vtzy3rdosoriaqbincal.py
# Topologically Sorted Source Nodes: [dist, scores], Original ATen: [aten.stack, aten.neg]
# Source node to ATen node mapping:
# dist => cat
# scores => neg
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%sum_1, %sum_2, %sum_3, %sum_4], 1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%view,), kwargs = {})
triton_poi_fused_neg_stack_0 = async_compile.triton('triton_poi_fused_neg_stack_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_neg_stack_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_neg_stack_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 16
x0 = xindex % 4
x2 = (xindex // 64)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp7
tmp9 = tl.load(in_ptr0 + (16 + x0 + (4*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp10 = tmp9 - tmp6
tmp11 = tmp10 * tmp10
tmp12 = tmp8 + tmp11
tmp13 = tl.load(in_ptr0 + (32 + x0 + (4*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp14 = tmp13 - tmp6
tmp15 = tmp14 * tmp14
tmp16 = tmp12 + tmp15
tmp17 = tl.load(in_ptr0 + (48 + x0 + (4*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp18 = tmp17 - tmp6
tmp19 = tmp18 * tmp18
tmp20 = tmp16 + tmp19
tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype)
tmp22 = tl.where(tmp4, tmp20, tmp21)
tmp23 = tmp0 >= tmp3
tmp24 = tl.full([1], 8, tl.int64)
tmp25 = tmp0 < tmp24
tmp26 = tmp23 & tmp25
tmp27 = tl.load(in_ptr0 + (x0 + (4*((-4) + x1)) + (64*x2)), tmp26 & xmask, other=0.0)
tmp28 = tl.load(in_ptr1 + (4 + x0), tmp26 & xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tmp27 - tmp28
tmp30 = tmp29 * tmp29
tmp31 = tl.load(in_ptr0 + (16 + x0 + (4*((-4) + x1)) + (64*x2)), tmp26 & xmask, other=0.0)
tmp32 = tmp31 - tmp28
tmp33 = tmp32 * tmp32
tmp34 = tmp30 + tmp33
tmp35 = tl.load(in_ptr0 + (32 + x0 + (4*((-4) + x1)) + (64*x2)), tmp26 & xmask, other=0.0)
tmp36 = tmp35 - tmp28
tmp37 = tmp36 * tmp36
tmp38 = tmp34 + tmp37
tmp39 = tl.load(in_ptr0 + (48 + x0 + (4*((-4) + x1)) + (64*x2)), tmp26 & xmask, other=0.0)
tmp40 = tmp39 - tmp28
tmp41 = tmp40 * tmp40
tmp42 = tmp38 + tmp41
tmp43 = tl.full(tmp42.shape, 0.0, tmp42.dtype)
tmp44 = tl.where(tmp26, tmp42, tmp43)
tmp45 = tmp0 >= tmp24
tmp46 = tl.full([1], 12, tl.int64)
tmp47 = tmp0 < tmp46
tmp48 = tmp45 & tmp47
tmp49 = tl.load(in_ptr0 + (x0 + (4*((-8) + x1)) + (64*x2)), tmp48 & xmask, other=0.0)
tmp50 = tl.load(in_ptr1 + (8 + x0), tmp48 & xmask, eviction_policy='evict_last', other=0.0)
tmp51 = tmp49 - tmp50
tmp52 = tmp51 * tmp51
tmp53 = tl.load(in_ptr0 + (16 + x0 + (4*((-8) + x1)) + (64*x2)), tmp48 & xmask, other=0.0)
tmp54 = tmp53 - tmp50
tmp55 = tmp54 * tmp54
tmp56 = tmp52 + tmp55
tmp57 = tl.load(in_ptr0 + (32 + x0 + (4*((-8) + x1)) + (64*x2)), tmp48 & xmask, other=0.0)
tmp58 = tmp57 - tmp50
tmp59 = tmp58 * tmp58
tmp60 = tmp56 + tmp59
tmp61 = tl.load(in_ptr0 + (48 + x0 + (4*((-8) + x1)) + (64*x2)), tmp48 & xmask, other=0.0)
tmp62 = tmp61 - tmp50
tmp63 = tmp62 * tmp62
tmp64 = tmp60 + tmp63
tmp65 = tl.full(tmp64.shape, 0.0, tmp64.dtype)
tmp66 = tl.where(tmp48, tmp64, tmp65)
tmp67 = tmp0 >= tmp46
tmp68 = tl.full([1], 16, tl.int64)
tmp69 = tmp0 < tmp68
tmp70 = tl.load(in_ptr0 + (x0 + (4*((-12) + x1)) + (64*x2)), tmp67 & xmask, other=0.0)
tmp71 = tl.load(in_ptr1 + (12 + x0), tmp67 & xmask, eviction_policy='evict_last', other=0.0)
tmp72 = tmp70 - tmp71
tmp73 = tmp72 * tmp72
tmp74 = tl.load(in_ptr0 + (16 + x0 + (4*((-12) + x1)) + (64*x2)), tmp67 & xmask, other=0.0)
tmp75 = tmp74 - tmp71
tmp76 = tmp75 * tmp75
tmp77 = tmp73 + tmp76
tmp78 = tl.load(in_ptr0 + (32 + x0 + (4*((-12) + x1)) + (64*x2)), tmp67 & xmask, other=0.0)
tmp79 = tmp78 - tmp71
tmp80 = tmp79 * tmp79
tmp81 = tmp77 + tmp80
tmp82 = tl.load(in_ptr0 + (48 + x0 + (4*((-12) + x1)) + (64*x2)), tmp67 & xmask, other=0.0)
tmp83 = tmp82 - tmp71
tmp84 = tmp83 * tmp83
tmp85 = tmp81 + tmp84
tmp86 = tl.full(tmp85.shape, 0.0, tmp85.dtype)
tmp87 = tl.where(tmp67, tmp85, tmp86)
tmp88 = tl.where(tmp48, tmp66, tmp87)
tmp89 = tl.where(tmp26, tmp44, tmp88)
tmp90 = tl.where(tmp4, tmp22, tmp89)
tmp91 = -tmp90
tl.store(in_out_ptr0 + (x3), tmp91, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [dist, scores], Original ATen: [aten.stack, aten.neg]
stream0 = get_raw_stream(0)
triton_poi_fused_neg_stack_0.run(buf1, primals_1, primals_2, 256, grid=grid(256), stream=stream0)
return (buf1, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import typing
from torch import Tensor
from collections import Counter
from typing import List
from typing import Optional
from typing import Union
from torch.utils.data import Dataset
import torch.utils.data.dataloader
from torch import nn
import torch.nn
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
def dot_product(a: 'torch.Tensor', b: 'torch.Tensor', normalize=False):
"""
Computes dot product for pairs of vectors.
:param normalize: Vectors are normalized (leads to cosine similarity)
:return: Matrix with res[i][j] = dot_product(a[i], b[j])
"""
if len(a.shape) == 1:
a = a.unsqueeze(0)
if len(b.shape) == 1:
b = b.unsqueeze(0)
if normalize:
a = torch.nn.functional.normalize(a, p=2, dim=1)
b = torch.nn.functional.normalize(b, p=2, dim=1)
return torch.mm(a, b.transpose(0, 1))
def arccosh(x):
"""Compute the arcosh, numerically stable."""
x = torch.clamp(x, min=1 + EPSILON)
a = torch.log(x)
b = torch.log1p(torch.sqrt(x * x - 1) / x)
return a + b
def _iter_dataset(dataset: 'Optional[Dataset]') ->typing.Iterable:
if dataset is None:
return []
return map(lambda x: x[0], DataLoader(dataset, batch_size=1, num_workers=0)
)
def identify_dynamic_embeddings(data_point: 'DataPoint'):
dynamic_embeddings = []
if isinstance(data_point, Sentence):
first_token = data_point[0]
for name, vector in first_token._embeddings.items():
if vector.requires_grad:
dynamic_embeddings.append(name)
for name, vector in data_point._embeddings.items():
if vector.requires_grad:
dynamic_embeddings.append(name)
return dynamic_embeddings
def store_embeddings(data_points: 'Union[List[DT], Dataset]', storage_mode:
'str', dynamic_embeddings: 'Optional[List[str]]'=None):
if isinstance(data_points, Dataset):
data_points = list(_iter_dataset(data_points))
if storage_mode == 'none':
dynamic_embeddings = None
elif not dynamic_embeddings:
dynamic_embeddings = identify_dynamic_embeddings(data_points[0])
for data_point in data_points:
data_point.clear_embeddings(dynamic_embeddings)
if storage_mode == 'cpu':
str(flair.device) != 'cpu'
for data_point in data_points:
data_point
def mdot(x, y):
"""Compute the inner product."""
m = x.new_ones(1, x.size(1))
m[0, 0] = -1
return torch.sum(m * x * y, 1, keepdim=True)
def dist(x, y):
"""Get the hyperbolic distance between x and y."""
return arccosh(-mdot(x, y))
class CosineDistance(torch.nn.Module):
def forward(self, a, b):
return -dot_product(a, b, normalize=True)
class EuclideanDistance(nn.Module):
"""Implement a EuclideanDistance object."""
def forward(self, mat_1: 'Tensor', mat_2: 'Tensor') ->Tensor:
"""Returns the squared euclidean distance between each
element in mat_1 and each element in mat_2.
Parameters
----------
mat_1: torch.Tensor
matrix of shape (n_1, n_features)
mat_2: torch.Tensor
matrix of shape (n_2, n_features)
Returns
-------
dist: torch.Tensor
distance matrix of shape (n_1, n_2)
"""
_dist = [torch.sum((mat_1 - mat_2[i]) ** 2, dim=1) for i in range(
mat_2.size(0))]
dist = torch.stack(_dist, dim=1)
return dist
class HyperbolicDistance(nn.Module):
"""Implement a HyperbolicDistance object."""
def forward(self, mat_1: 'Tensor', mat_2: 'Tensor') ->Tensor:
"""Returns the squared euclidean distance between each
element in mat_1 and each element in mat_2.
Parameters
----------
mat_1: torch.Tensor
matrix of shape (n_1, n_features)
mat_2: torch.Tensor
matrix of shape (n_2, n_features)
Returns
-------
dist: torch.Tensor
distance matrix of shape (n_1, n_2)
"""
mat_1_x_0 = torch.sqrt(1 + mat_1.pow(2).sum(dim=1, keepdim=True))
mat_2_x_0 = torch.sqrt(1 + mat_2.pow(2).sum(dim=1, keepdim=True))
left = mat_1_x_0.mm(mat_2_x_0.t())
right = mat_1[:, 1:].mm(mat_2[:, 1:].t())
return arccosh(left - right).pow(2)
class LogitCosineDistance(torch.nn.Module):
def forward(self, a, b):
return torch.logit(0.5 - 0.5 * dot_product(a, b, normalize=True))
class NegativeScaledDotProduct(torch.nn.Module):
def forward(self, a, b):
sqrt_d = torch.sqrt(torch.tensor(a.size(-1)))
return -dot_product(a, b, normalize=False) / sqrt_d
class PrototypicalDecoder(torch.nn.Module):
def __init__(self, num_prototypes: 'int', embeddings_size: 'int',
prototype_size: 'Optional[int]'=None, distance_function: 'str'=
'euclidean', use_radius: 'Optional[bool]'=False, min_radius:
'Optional[int]'=0, unlabeled_distance: 'Optional[float]'=None,
unlabeled_idx: 'Optional[int]'=None, learning_mode: 'Optional[str]'
='joint', normal_distributed_initial_prototypes: 'bool'=False):
super().__init__()
if not prototype_size:
prototype_size = embeddings_size
self.prototype_size = prototype_size
self.metric_space_decoder: 'Optional[torch.nn.Linear]' = None
if prototype_size != embeddings_size:
self.metric_space_decoder = torch.nn.Linear(embeddings_size,
prototype_size)
torch.nn.init.xavier_uniform_(self.metric_space_decoder.weight)
self.prototype_vectors = torch.nn.Parameter(torch.ones(
num_prototypes, prototype_size), requires_grad=True)
if normal_distributed_initial_prototypes:
self.prototype_vectors = torch.nn.Parameter(torch.normal(torch.
zeros(num_prototypes, prototype_size)))
self.prototype_radii: 'Optional[torch.nn.Parameter]' = None
if use_radius:
self.prototype_radii = torch.nn.Parameter(torch.ones(
num_prototypes), requires_grad=True)
self.min_radius = min_radius
self.learning_mode = learning_mode
assert (unlabeled_idx is None) == (unlabeled_distance is None
), "'unlabeled_idx' and 'unlabeled_distance' should either both be set or both not be set."
self.unlabeled_idx = unlabeled_idx
self.unlabeled_distance = unlabeled_distance
self._distance_function = distance_function
self.distance: 'Optional[torch.nn.Module]' = None
if distance_function.lower() == 'hyperbolic':
self.distance = HyperbolicDistance()
elif distance_function.lower() == 'cosine':
self.distance = CosineDistance()
elif distance_function.lower() == 'logit_cosine':
self.distance = LogitCosineDistance()
elif distance_function.lower() == 'euclidean':
self.distance = EuclideanDistance()
elif distance_function.lower() == 'dot_product':
self.distance = NegativeScaledDotProduct()
else:
raise KeyError(f'Distance function {distance_function} not found.')
self
@property
def num_prototypes(self):
return self.prototype_vectors.size(0)
def forward(self, embedded):
if self.learning_mode == 'learn_only_map_and_prototypes':
embedded = embedded.detach()
if self.metric_space_decoder is not None:
encoded = self.metric_space_decoder(embedded)
else:
encoded = embedded
prot = self.prototype_vectors
radii = self.prototype_radii
if self.learning_mode == 'learn_only_prototypes':
encoded = encoded.detach()
if self.learning_mode == 'learn_only_embeddings_and_map':
prot = prot.detach()
if radii is not None:
radii = radii.detach()
distance = self.distance(encoded, prot)
if radii is not None:
distance /= self.min_radius + torch.nn.functional.softplus(radii)
if self.unlabeled_distance:
distance[..., self.unlabeled_idx] = self.unlabeled_distance
scores = -distance
return scores
def enable_expectation_maximization(self, data: 'FlairDataset', encoder:
'DefaultClassifier', exempt_labels: 'List[str]'=[], mini_batch_size:
'int'=8):
"""Applies monkey-patch to train method (which sets the train flag).
This allows for computation of average prototypes after a training
sequence."""
decoder = self
unpatched_train = encoder.train
def patched_train(mode: 'bool'=True):
unpatched_train(mode=mode)
if mode:
logger.info('recalculating prototypes')
with torch.no_grad():
decoder.calculate_prototypes(data=data, encoder=encoder,
exempt_labels=exempt_labels, mini_batch_size=
mini_batch_size)
encoder.train = patched_train
def calculate_prototypes(self, data: 'FlairDataset', encoder:
'DefaultClassifier', exempt_labels: 'List[str]'=[], mini_batch_size=32
):
"""
Function that calclues a prototype for each class based on the euclidean average embedding over the whole dataset
:param data: dataset for which to calculate prototypes
:param encoder: encoder to use
:param exempt_labels: labels to exclude
:param mini_batch_size: number of sentences to embed at same time
:return:
"""
with torch.no_grad():
dataloader = DataLoader(data, batch_size=mini_batch_size)
new_prototypes = torch.zeros(self.num_prototypes, self.
prototype_size, device=flair.device)
counter: 'Counter' = Counter()
for batch in tqdm(dataloader):
logits, labels = encoder.forward_pass(batch)
if len(labels) > 0:
if self.metric_space_decoder is not None:
logits = self.metric_space_decoder(logits)
for logit, label in zip(logits, labels):
counter.update(label)
idx = encoder.label_dictionary.get_idx_for_item(label
[0])
new_prototypes[idx] += logit
store_embeddings(batch, storage_mode='none')
for label, count in counter.most_common():
average_prototype = new_prototypes[encoder.label_dictionary
.get_idx_for_item(label)] / count
new_prototypes[encoder.label_dictionary.get_idx_for_item(label)
] = average_prototype
for label in exempt_labels:
label_idx = encoder.label_dictionary.get_idx_for_item(label)
new_prototypes[label_idx] = self.prototype_vectors[label_idx]
self.prototype_vectors.data = new_prototypes
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_prototypes': 4, 'embeddings_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import typing
from torch import Tensor
from collections import Counter
from typing import List
from typing import Optional
from typing import Union
from torch.utils.data import Dataset
import torch.utils.data.dataloader
from torch import nn
import torch.nn
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_neg_stack_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 16
x0 = xindex % 4
x2 = xindex // 64
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp7
tmp9 = tl.load(in_ptr0 + (16 + x0 + 4 * x1 + 64 * x2), tmp4 & xmask,
other=0.0)
tmp10 = tmp9 - tmp6
tmp11 = tmp10 * tmp10
tmp12 = tmp8 + tmp11
tmp13 = tl.load(in_ptr0 + (32 + x0 + 4 * x1 + 64 * x2), tmp4 & xmask,
other=0.0)
tmp14 = tmp13 - tmp6
tmp15 = tmp14 * tmp14
tmp16 = tmp12 + tmp15
tmp17 = tl.load(in_ptr0 + (48 + x0 + 4 * x1 + 64 * x2), tmp4 & xmask,
other=0.0)
tmp18 = tmp17 - tmp6
tmp19 = tmp18 * tmp18
tmp20 = tmp16 + tmp19
tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype)
tmp22 = tl.where(tmp4, tmp20, tmp21)
tmp23 = tmp0 >= tmp3
tmp24 = tl.full([1], 8, tl.int64)
tmp25 = tmp0 < tmp24
tmp26 = tmp23 & tmp25
tmp27 = tl.load(in_ptr0 + (x0 + 4 * (-4 + x1) + 64 * x2), tmp26 & xmask,
other=0.0)
tmp28 = tl.load(in_ptr1 + (4 + x0), tmp26 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp29 = tmp27 - tmp28
tmp30 = tmp29 * tmp29
tmp31 = tl.load(in_ptr0 + (16 + x0 + 4 * (-4 + x1) + 64 * x2), tmp26 &
xmask, other=0.0)
tmp32 = tmp31 - tmp28
tmp33 = tmp32 * tmp32
tmp34 = tmp30 + tmp33
tmp35 = tl.load(in_ptr0 + (32 + x0 + 4 * (-4 + x1) + 64 * x2), tmp26 &
xmask, other=0.0)
tmp36 = tmp35 - tmp28
tmp37 = tmp36 * tmp36
tmp38 = tmp34 + tmp37
tmp39 = tl.load(in_ptr0 + (48 + x0 + 4 * (-4 + x1) + 64 * x2), tmp26 &
xmask, other=0.0)
tmp40 = tmp39 - tmp28
tmp41 = tmp40 * tmp40
tmp42 = tmp38 + tmp41
tmp43 = tl.full(tmp42.shape, 0.0, tmp42.dtype)
tmp44 = tl.where(tmp26, tmp42, tmp43)
tmp45 = tmp0 >= tmp24
tmp46 = tl.full([1], 12, tl.int64)
tmp47 = tmp0 < tmp46
tmp48 = tmp45 & tmp47
tmp49 = tl.load(in_ptr0 + (x0 + 4 * (-8 + x1) + 64 * x2), tmp48 & xmask,
other=0.0)
tmp50 = tl.load(in_ptr1 + (8 + x0), tmp48 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp51 = tmp49 - tmp50
tmp52 = tmp51 * tmp51
tmp53 = tl.load(in_ptr0 + (16 + x0 + 4 * (-8 + x1) + 64 * x2), tmp48 &
xmask, other=0.0)
tmp54 = tmp53 - tmp50
tmp55 = tmp54 * tmp54
tmp56 = tmp52 + tmp55
tmp57 = tl.load(in_ptr0 + (32 + x0 + 4 * (-8 + x1) + 64 * x2), tmp48 &
xmask, other=0.0)
tmp58 = tmp57 - tmp50
tmp59 = tmp58 * tmp58
tmp60 = tmp56 + tmp59
tmp61 = tl.load(in_ptr0 + (48 + x0 + 4 * (-8 + x1) + 64 * x2), tmp48 &
xmask, other=0.0)
tmp62 = tmp61 - tmp50
tmp63 = tmp62 * tmp62
tmp64 = tmp60 + tmp63
tmp65 = tl.full(tmp64.shape, 0.0, tmp64.dtype)
tmp66 = tl.where(tmp48, tmp64, tmp65)
tmp67 = tmp0 >= tmp46
tl.full([1], 16, tl.int64)
tmp70 = tl.load(in_ptr0 + (x0 + 4 * (-12 + x1) + 64 * x2), tmp67 &
xmask, other=0.0)
tmp71 = tl.load(in_ptr1 + (12 + x0), tmp67 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp72 = tmp70 - tmp71
tmp73 = tmp72 * tmp72
tmp74 = tl.load(in_ptr0 + (16 + x0 + 4 * (-12 + x1) + 64 * x2), tmp67 &
xmask, other=0.0)
tmp75 = tmp74 - tmp71
tmp76 = tmp75 * tmp75
tmp77 = tmp73 + tmp76
tmp78 = tl.load(in_ptr0 + (32 + x0 + 4 * (-12 + x1) + 64 * x2), tmp67 &
xmask, other=0.0)
tmp79 = tmp78 - tmp71
tmp80 = tmp79 * tmp79
tmp81 = tmp77 + tmp80
tmp82 = tl.load(in_ptr0 + (48 + x0 + 4 * (-12 + x1) + 64 * x2), tmp67 &
xmask, other=0.0)
tmp83 = tmp82 - tmp71
tmp84 = tmp83 * tmp83
tmp85 = tmp81 + tmp84
tmp86 = tl.full(tmp85.shape, 0.0, tmp85.dtype)
tmp87 = tl.where(tmp67, tmp85, tmp86)
tmp88 = tl.where(tmp48, tmp66, tmp87)
tmp89 = tl.where(tmp26, tmp44, tmp88)
tmp90 = tl.where(tmp4, tmp22, tmp89)
tmp91 = -tmp90
tl.store(in_out_ptr0 + x3, tmp91, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_neg_stack_0[grid(256)](buf1, primals_1, primals_2,
256, XBLOCK=128, num_warps=4, num_stages=1)
return buf1, primals_1, primals_2
def dot_product(a: 'torch.Tensor', b: 'torch.Tensor', normalize=False):
"""
Computes dot product for pairs of vectors.
:param normalize: Vectors are normalized (leads to cosine similarity)
:return: Matrix with res[i][j] = dot_product(a[i], b[j])
"""
if len(a.shape) == 1:
a = a.unsqueeze(0)
if len(b.shape) == 1:
b = b.unsqueeze(0)
if normalize:
a = torch.nn.functional.normalize(a, p=2, dim=1)
b = torch.nn.functional.normalize(b, p=2, dim=1)
return torch.mm(a, b.transpose(0, 1))
def arccosh(x):
"""Compute the arcosh, numerically stable."""
x = torch.clamp(x, min=1 + EPSILON)
a = torch.log(x)
b = torch.log1p(torch.sqrt(x * x - 1) / x)
return a + b
def _iter_dataset(dataset: 'Optional[Dataset]') ->typing.Iterable:
if dataset is None:
return []
return map(lambda x: x[0], DataLoader(dataset, batch_size=1, num_workers=0)
)
def identify_dynamic_embeddings(data_point: 'DataPoint'):
dynamic_embeddings = []
if isinstance(data_point, Sentence):
first_token = data_point[0]
for name, vector in first_token._embeddings.items():
if vector.requires_grad:
dynamic_embeddings.append(name)
for name, vector in data_point._embeddings.items():
if vector.requires_grad:
dynamic_embeddings.append(name)
return dynamic_embeddings
def store_embeddings(data_points: 'Union[List[DT], Dataset]', storage_mode:
'str', dynamic_embeddings: 'Optional[List[str]]'=None):
if isinstance(data_points, Dataset):
data_points = list(_iter_dataset(data_points))
if storage_mode == 'none':
dynamic_embeddings = None
elif not dynamic_embeddings:
dynamic_embeddings = identify_dynamic_embeddings(data_points[0])
for data_point in data_points:
data_point.clear_embeddings(dynamic_embeddings)
if storage_mode == 'cpu':
str(flair.device) != 'cpu'
for data_point in data_points:
data_point
def mdot(x, y):
"""Compute the inner product."""
m = x.new_ones(1, x.size(1))
m[0, 0] = -1
return torch.sum(m * x * y, 1, keepdim=True)
def dist(x, y):
"""Get the hyperbolic distance between x and y."""
return arccosh(-mdot(x, y))
class CosineDistance(torch.nn.Module):
def forward(self, a, b):
return -dot_product(a, b, normalize=True)
class EuclideanDistance(nn.Module):
"""Implement a EuclideanDistance object."""
def forward(self, mat_1: 'Tensor', mat_2: 'Tensor') ->Tensor:
"""Returns the squared euclidean distance between each
element in mat_1 and each element in mat_2.
Parameters
----------
mat_1: torch.Tensor
matrix of shape (n_1, n_features)
mat_2: torch.Tensor
matrix of shape (n_2, n_features)
Returns
-------
dist: torch.Tensor
distance matrix of shape (n_1, n_2)
"""
_dist = [torch.sum((mat_1 - mat_2[i]) ** 2, dim=1) for i in range(
mat_2.size(0))]
dist = torch.stack(_dist, dim=1)
return dist
class HyperbolicDistance(nn.Module):
"""Implement a HyperbolicDistance object."""
def forward(self, mat_1: 'Tensor', mat_2: 'Tensor') ->Tensor:
"""Returns the squared euclidean distance between each
element in mat_1 and each element in mat_2.
Parameters
----------
mat_1: torch.Tensor
matrix of shape (n_1, n_features)
mat_2: torch.Tensor
matrix of shape (n_2, n_features)
Returns
-------
dist: torch.Tensor
distance matrix of shape (n_1, n_2)
"""
mat_1_x_0 = torch.sqrt(1 + mat_1.pow(2).sum(dim=1, keepdim=True))
mat_2_x_0 = torch.sqrt(1 + mat_2.pow(2).sum(dim=1, keepdim=True))
left = mat_1_x_0.mm(mat_2_x_0.t())
right = mat_1[:, 1:].mm(mat_2[:, 1:].t())
return arccosh(left - right).pow(2)
class LogitCosineDistance(torch.nn.Module):
def forward(self, a, b):
return torch.logit(0.5 - 0.5 * dot_product(a, b, normalize=True))
class NegativeScaledDotProduct(torch.nn.Module):
def forward(self, a, b):
sqrt_d = torch.sqrt(torch.tensor(a.size(-1)))
return -dot_product(a, b, normalize=False) / sqrt_d
class PrototypicalDecoderNew(torch.nn.Module):
def __init__(self, num_prototypes: 'int', embeddings_size: 'int',
prototype_size: 'Optional[int]'=None, distance_function: 'str'=
'euclidean', use_radius: 'Optional[bool]'=False, min_radius:
'Optional[int]'=0, unlabeled_distance: 'Optional[float]'=None,
unlabeled_idx: 'Optional[int]'=None, learning_mode: 'Optional[str]'
='joint', normal_distributed_initial_prototypes: 'bool'=False):
super().__init__()
if not prototype_size:
prototype_size = embeddings_size
self.prototype_size = prototype_size
self.metric_space_decoder: 'Optional[torch.nn.Linear]' = None
if prototype_size != embeddings_size:
self.metric_space_decoder = torch.nn.Linear(embeddings_size,
prototype_size)
torch.nn.init.xavier_uniform_(self.metric_space_decoder.weight)
self.prototype_vectors = torch.nn.Parameter(torch.ones(
num_prototypes, prototype_size), requires_grad=True)
if normal_distributed_initial_prototypes:
self.prototype_vectors = torch.nn.Parameter(torch.normal(torch.
zeros(num_prototypes, prototype_size)))
self.prototype_radii: 'Optional[torch.nn.Parameter]' = None
if use_radius:
self.prototype_radii = torch.nn.Parameter(torch.ones(
num_prototypes), requires_grad=True)
self.min_radius = min_radius
self.learning_mode = learning_mode
assert (unlabeled_idx is None) == (unlabeled_distance is None
), "'unlabeled_idx' and 'unlabeled_distance' should either both be set or both not be set."
self.unlabeled_idx = unlabeled_idx
self.unlabeled_distance = unlabeled_distance
self._distance_function = distance_function
self.distance: 'Optional[torch.nn.Module]' = None
if distance_function.lower() == 'hyperbolic':
self.distance = HyperbolicDistance()
elif distance_function.lower() == 'cosine':
self.distance = CosineDistance()
elif distance_function.lower() == 'logit_cosine':
self.distance = LogitCosineDistance()
elif distance_function.lower() == 'euclidean':
self.distance = EuclideanDistance()
elif distance_function.lower() == 'dot_product':
self.distance = NegativeScaledDotProduct()
else:
raise KeyError(f'Distance function {distance_function} not found.')
self
@property
def num_prototypes(self):
return self.prototype_vectors.size(0)
def enable_expectation_maximization(self, data: 'FlairDataset', encoder:
'DefaultClassifier', exempt_labels: 'List[str]'=[], mini_batch_size:
'int'=8):
"""Applies monkey-patch to train method (which sets the train flag).
This allows for computation of average prototypes after a training
sequence."""
decoder = self
unpatched_train = encoder.train
def patched_train(mode: 'bool'=True):
unpatched_train(mode=mode)
if mode:
logger.info('recalculating prototypes')
with torch.no_grad():
decoder.calculate_prototypes(data=data, encoder=encoder,
exempt_labels=exempt_labels, mini_batch_size=
mini_batch_size)
encoder.train = patched_train
def calculate_prototypes(self, data: 'FlairDataset', encoder:
'DefaultClassifier', exempt_labels: 'List[str]'=[], mini_batch_size=32
):
"""
Function that calclues a prototype for each class based on the euclidean average embedding over the whole dataset
:param data: dataset for which to calculate prototypes
:param encoder: encoder to use
:param exempt_labels: labels to exclude
:param mini_batch_size: number of sentences to embed at same time
:return:
"""
with torch.no_grad():
dataloader = DataLoader(data, batch_size=mini_batch_size)
new_prototypes = torch.zeros(self.num_prototypes, self.
prototype_size, device=flair.device)
counter: 'Counter' = Counter()
for batch in tqdm(dataloader):
logits, labels = encoder.forward_pass(batch)
if len(labels) > 0:
if self.metric_space_decoder is not None:
logits = self.metric_space_decoder(logits)
for logit, label in zip(logits, labels):
counter.update(label)
idx = encoder.label_dictionary.get_idx_for_item(label
[0])
new_prototypes[idx] += logit
store_embeddings(batch, storage_mode='none')
for label, count in counter.most_common():
average_prototype = new_prototypes[encoder.label_dictionary
.get_idx_for_item(label)] / count
new_prototypes[encoder.label_dictionary.get_idx_for_item(label)
] = average_prototype
for label in exempt_labels:
label_idx = encoder.label_dictionary.get_idx_for_item(label)
new_prototypes[label_idx] = self.prototype_vectors[label_idx]
self.prototype_vectors.data = new_prototypes
def forward(self, input_0):
primals_2 = self.prototype_vectors
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| k2room/ParaphraseQA | PrototypicalDecoder | false | 12,651 | [
"MIT"
]
| 0 | 5aebe02c26a0bac3731f18bb115b33ba3a772756 | https://github.com/k2room/ParaphraseQA/tree/5aebe02c26a0bac3731f18bb115b33ba3a772756 |
TwoLinearsModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/2h/c2hxg45skvy6hnampidmbrudkadykbjbsftxsrksoez35npxavq6.py
# Topologically Sorted Source Nodes: [h_relu], Original ATen: [aten.clamp, aten.ge]
# Source node to ATen node mapping:
# h_relu => clamp_min
# Graph fragment:
# %add_tensor : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %clamp_min : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_tensor, 0), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_tensor, 0), kwargs = {})
triton_poi_fused_clamp_ge_0 = async_compile.triton('triton_poi_fused_clamp_ge_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_ge_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp2 >= tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 64), (64, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 64), (64, 1), 0), reinterpret_tensor(primals_2, (64, 4), (1, 64), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
# Topologically Sorted Source Nodes: [h_relu], Original ATen: [aten.clamp, aten.ge]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_ge_0.run(buf0, primals_3, buf1, buf3, 16, grid=grid(16), stream=stream0)
del primals_3
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [y_pred], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (buf2, reinterpret_tensor(primals_1, (4, 64), (64, 1), 0), buf1, primals_4, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn
import torch.utils.data
import torch.utils.tensorboard._pytorch_graph
import torch.onnx.symbolic_caffe2
class TwoLinearsModel(nn.Module):
def __init__(self, per_sample_shape: 'list', hidden_size: 'int',
output_size: 'int'):
super(TwoLinearsModel, self).__init__()
assert len(per_sample_shape) == 3
self.per_sample_shape = per_sample_shape
input_size = per_sample_shape[0]
for dim in per_sample_shape[1:]:
input_size *= dim
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, output_size)
def forward(self, x: 'torch.Tensor'):
batch_size = x.size(0)
x = x.view(batch_size, -1)
h_relu = self.linear1(x).clamp(min=0)
y_pred = self.linear2(h_relu)
return y_pred
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'per_sample_shape': [4, 4, 4], 'hidden_size': 4,
'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn
import torch.utils.data
import torch.utils.tensorboard._pytorch_graph
import torch.onnx.symbolic_caffe2
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clamp_ge_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp2 >= tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 64), (64, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 64), (64, 1), 0
), reinterpret_tensor(primals_2, (64, 4), (1, 64), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_clamp_ge_0[grid(16)](buf0, primals_3, buf1, buf3,
16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf2 = buf0
del buf0
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return buf2, reinterpret_tensor(primals_1, (4, 64), (64, 1), 0
), buf1, primals_4, buf3
class TwoLinearsModelNew(nn.Module):
def __init__(self, per_sample_shape: 'list', hidden_size: 'int',
output_size: 'int'):
super(TwoLinearsModelNew, self).__init__()
assert len(per_sample_shape) == 3
self.per_sample_shape = per_sample_shape
input_size = per_sample_shape[0]
for dim in per_sample_shape[1:]:
input_size *= dim
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, output_size)
def forward(self, input_0):
primals_2 = self.linear1.weight
primals_3 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| arjunsuresh/aimet | TwoLinearsModel | false | 12,652 | [
"BSD-3-Clause"
]
| 0 | f6e09cb07a91eed3a5e6b8e19e6b065303af5a39 | https://github.com/arjunsuresh/aimet/tree/f6e09cb07a91eed3a5e6b8e19e6b065303af5a39 |
Net | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/la/clalnn5iz2syotwgvds5fjb6mtcklh5yizks6zdxu552jin7zbwe.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten._prelu_kernel]
# Source node to ATen node mapping:
# x => convolution
# x_1 => gt, mul, where
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %convolution), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_0 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/dg/cdgi57gzwpeejdwbzdsfg4uihbr2hunpoyspa5gj2rdusiuxnqhs.py
# Topologically Sorted Source Nodes: [x_4, l0], Original ATen: [aten.convolution, aten._prelu_kernel]
# Source node to ATen node mapping:
# l0 => gt_2, mul_2, where_2
# x_4 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_8, %primals_9, [2, 2], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %convolution_2), kwargs = {})
# %where_2 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_1 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/l2/cl26qlqbg4ashxwthfa7y7w2lu5hks2tixgyjr7r7uwzp4cso4h4.py
# Topologically Sorted Source Nodes: [x_5, h0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub]
# Source node to ATen node mapping:
# h0 => gt_3, mul_3, where_3
# sub => sub
# x_5 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_11, %primals_12, [2, 2], [2, 2], [1, 1], True, [0, 0], 1), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %convolution_3), kwargs = {})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_3, %where_1), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_sub_2 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 - tmp9
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6u/c6upo47sukvb6r3ezcbrtiu4k23o3ipxybjgvcbho3hh7vlgzgss.py
# Topologically Sorted Source Nodes: [x_6, l1, x_7], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
# Source node to ATen node mapping:
# l1 => gt_4, mul_4, where_4
# x_6 => convolution_4
# x_7 => add
# Graph fragment:
# %convolution_4 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%sub, %primals_14, %primals_15, [2, 2], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %convolution_4), kwargs = {})
# %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_4), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_4, %where_2), kwargs = {})
triton_poi_fused__prelu_kernel_add_convolution_3 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 + tmp9
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/3x/c3xyjskkjups25u3j3yhj4hlfs2qrwtmbtvecyuaysvh4x3jm6tn.py
# Topologically Sorted Source Nodes: [x_9, l0_1, sub_1], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub]
# Source node to ATen node mapping:
# l0_1 => gt_6, mul_6, where_6
# sub_1 => sub_1
# x_9 => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where_5, %primals_20, %primals_21, [2, 2], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_6, %convolution_6), kwargs = {})
# %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_6, %mul_6), kwargs = {})
# %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_6, %add), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_sub_4 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_sub_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_sub_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_sub_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 - tmp9
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/l6/cl6hfaxvr7gbbjmd7ss5mpea4jfxmddqefs22ndohfkcmqyg7oev.py
# Topologically Sorted Source Nodes: [x_10, h1, x_11], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
# Source node to ATen node mapping:
# h1 => gt_7, mul_7, where_7
# x_10 => convolution_7
# x_11 => add_1
# Graph fragment:
# %convolution_7 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%sub_1, %primals_23, %primals_24, [2, 2], [2, 2], [1, 1], True, [0, 0], 1), kwargs = {})
# %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, %convolution_7), kwargs = {})
# %where_7 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %convolution_7, %mul_7), kwargs = {})
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_7, %where_5), kwargs = {})
triton_poi_fused__prelu_kernel_add_convolution_5 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 + tmp9
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/me/cmekfe7l6ph2yyraier4zgu6oqvnrkly54r6gxogod3onxbjbh7d.py
# Topologically Sorted Source Nodes: [x_22, x_23], Original ATen: [aten.convolution, aten._prelu_kernel]
# Source node to ATen node mapping:
# x_22 => convolution_15
# x_23 => gt_15, mul_15, where_15
# Graph fragment:
# %convolution_15 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where_14, %primals_47, %primals_48, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %gt_15 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_15, 0), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_15, %convolution_15), kwargs = {})
# %where_15 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_15, %convolution_15, %mul_15), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_6 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_6(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, ), (1, ))
assert_size_stride(primals_5, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (1, ), (1, ))
assert_size_stride(primals_11, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (1, ), (1, ))
assert_size_stride(primals_14, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (1, ), (1, ))
assert_size_stride(primals_17, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_18, (4, ), (1, ))
assert_size_stride(primals_19, (1, ), (1, ))
assert_size_stride(primals_20, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_21, (4, ), (1, ))
assert_size_stride(primals_22, (1, ), (1, ))
assert_size_stride(primals_23, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_24, (4, ), (1, ))
assert_size_stride(primals_25, (1, ), (1, ))
assert_size_stride(primals_26, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_27, (4, ), (1, ))
assert_size_stride(primals_28, (1, ), (1, ))
assert_size_stride(primals_29, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_30, (4, ), (1, ))
assert_size_stride(primals_31, (1, ), (1, ))
assert_size_stride(primals_32, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_33, (4, ), (1, ))
assert_size_stride(primals_34, (1, ), (1, ))
assert_size_stride(primals_35, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_36, (4, ), (1, ))
assert_size_stride(primals_37, (1, ), (1, ))
assert_size_stride(primals_38, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_39, (4, ), (1, ))
assert_size_stride(primals_40, (1, ), (1, ))
assert_size_stride(primals_41, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_42, (4, ), (1, ))
assert_size_stride(primals_43, (1, ), (1, ))
assert_size_stride(primals_44, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_45, (4, ), (1, ))
assert_size_stride(primals_46, (1, ), (1, ))
assert_size_stride(primals_47, (4, 4, 2, 2), (16, 4, 2, 1))
assert_size_stride(primals_48, (4, ), (1, ))
assert_size_stride(primals_49, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten._prelu_kernel]
stream0 = get_raw_stream(0)
triton_poi_fused__prelu_kernel_convolution_0.run(buf1, primals_2, primals_4, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_0.run(buf4, primals_6, primals_7, buf5, 256, grid=grid(256), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 2, 2), (16, 4, 2, 1))
buf7 = buf6; del buf6 # reuse
buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4, l0], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_1.run(buf7, primals_9, primals_10, buf8, 64, grid=grid(64), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, primals_11, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 4, 4), (64, 16, 4, 1))
buf10 = buf9; del buf9 # reuse
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5, h0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub]
triton_poi_fused__prelu_kernel_convolution_sub_2.run(buf10, primals_12, primals_13, buf5, buf11, 256, grid=grid(256), stream=stream0)
del primals_12
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_14, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 2, 2), (16, 4, 2, 1))
buf13 = buf12; del buf12 # reuse
buf14 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_6, l1, x_7], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
triton_poi_fused__prelu_kernel_add_convolution_3.run(buf13, primals_15, primals_16, buf8, buf14, 64, grid=grid(64), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf14, primals_17, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 4, 4, 4), (64, 16, 4, 1))
buf16 = buf15; del buf15 # reuse
buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_8, h0_1], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_0.run(buf16, primals_18, primals_19, buf17, 256, grid=grid(256), stream=stream0)
del primals_18
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution]
buf18 = extern_kernels.convolution(buf17, primals_20, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 4, 2, 2), (16, 4, 2, 1))
buf19 = buf18; del buf18 # reuse
buf20 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_9, l0_1, sub_1], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub]
triton_poi_fused__prelu_kernel_convolution_sub_4.run(buf19, primals_21, primals_22, buf14, buf20, 64, grid=grid(64), stream=stream0)
del primals_21
# Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution]
buf21 = extern_kernels.convolution(buf20, primals_23, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 4, 4, 4), (64, 16, 4, 1))
buf22 = buf21; del buf21 # reuse
buf23 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_10, h1, x_11], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
triton_poi_fused__prelu_kernel_add_convolution_5.run(buf22, primals_24, primals_25, buf17, buf23, 256, grid=grid(256), stream=stream0)
del primals_24
# Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf23, primals_26, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 4, 2, 2), (16, 4, 2, 1))
buf25 = buf24; del buf24 # reuse
buf26 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_12, l0_2], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_1.run(buf25, primals_27, primals_28, buf26, 64, grid=grid(64), stream=stream0)
del primals_27
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.convolution]
buf27 = extern_kernels.convolution(buf26, primals_29, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 4, 4, 4), (64, 16, 4, 1))
buf28 = buf27; del buf27 # reuse
buf29 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_13, h0_2, sub_2], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub]
triton_poi_fused__prelu_kernel_convolution_sub_2.run(buf28, primals_30, primals_31, buf23, buf29, 256, grid=grid(256), stream=stream0)
del primals_30
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.convolution]
buf30 = extern_kernels.convolution(buf29, primals_32, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 4, 2, 2), (16, 4, 2, 1))
buf31 = buf30; del buf30 # reuse
buf32 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_14, l1_1, x_15], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
triton_poi_fused__prelu_kernel_add_convolution_3.run(buf31, primals_33, primals_34, buf26, buf32, 64, grid=grid(64), stream=stream0)
del primals_33
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.convolution]
buf33 = extern_kernels.convolution(buf32, primals_35, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 4, 4, 4), (64, 16, 4, 1))
buf34 = buf33; del buf33 # reuse
buf35 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_16, h0_3], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_0.run(buf34, primals_36, primals_37, buf35, 256, grid=grid(256), stream=stream0)
del primals_36
# Topologically Sorted Source Nodes: [x_17], Original ATen: [aten.convolution]
buf36 = extern_kernels.convolution(buf35, primals_38, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 4, 2, 2), (16, 4, 2, 1))
buf37 = buf36; del buf36 # reuse
buf38 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_17, l0_3, sub_3], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub]
triton_poi_fused__prelu_kernel_convolution_sub_4.run(buf37, primals_39, primals_40, buf32, buf38, 64, grid=grid(64), stream=stream0)
del primals_39
# Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.convolution]
buf39 = extern_kernels.convolution(buf38, primals_41, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf39, (4, 4, 4, 4), (64, 16, 4, 1))
buf40 = buf39; del buf39 # reuse
buf41 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_18, h1_1, x_19], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
triton_poi_fused__prelu_kernel_add_convolution_5.run(buf40, primals_42, primals_43, buf35, buf41, 256, grid=grid(256), stream=stream0)
del primals_42
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.convolution]
buf42 = extern_kernels.convolution(buf41, primals_44, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf42, (4, 4, 4, 4), (64, 16, 4, 1))
buf43 = buf42; del buf42 # reuse
buf44 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_20, x_21], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_0.run(buf43, primals_45, primals_46, buf44, 256, grid=grid(256), stream=stream0)
del primals_45
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.convolution]
buf45 = extern_kernels.convolution(buf44, primals_47, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 4, 8, 8), (256, 64, 8, 1))
buf46 = buf45; del buf45 # reuse
buf47 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_22, x_23], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_6.run(buf46, primals_48, primals_49, buf47, 1024, grid=grid(1024), stream=stream0)
del primals_48
return (buf47, primals_1, primals_3, primals_4, primals_5, primals_7, primals_8, primals_10, primals_11, primals_13, primals_14, primals_16, primals_17, primals_19, primals_20, primals_22, primals_23, primals_25, primals_26, primals_28, primals_29, primals_31, primals_32, primals_34, primals_35, primals_37, primals_38, primals_40, primals_41, primals_43, primals_44, primals_46, primals_47, primals_49, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13, buf14, buf16, buf17, buf19, buf20, buf22, buf23, buf25, buf26, buf28, buf29, buf31, buf32, buf34, buf35, buf37, buf38, buf40, buf41, buf43, buf44, buf46, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_36 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_37 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_38 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_39 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_40 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_41 = rand_strided((4, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_42 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_43 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_44 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_45 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_46 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_47 = rand_strided((4, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_48 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_49 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ConvBlock(nn.Module):
def __init__(self, in_size, out_size, kernel=3, stride=1, padding=1,
activ='relu', norm=None):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_size, out_size, kernel, stride, padding)
self.norm = norm
self.activ = activ
if self.norm == 'batch':
self.bn = nn.BatchNorm2d(out_size)
elif self.norm == 'instance':
self.bn = nn.InstanceNorm2d(out_size)
if self.activ == 'relu':
self.act = nn.ReLU(True)
elif self.activ == 'prelu':
self.act = nn.PReLU()
elif self.activ == 'lrelu':
self.act = nn.LeakyReLU(0.2, True)
elif self.activ == 'tanh':
self.act = nn.Tanh()
def forward(self, x):
if self.norm is not None:
x = self.bn(self.conv(x))
else:
x = self.conv(x)
if self.activ is not None:
return self.act(x)
else:
return x
class DeconvBlock(nn.Module):
def __init__(self, in_size, out_size, kernel=4, stride=2, padding=1,
activ='relu', norm=None):
super(DeconvBlock, self).__init__()
self.deconv = nn.ConvTranspose2d(in_size, out_size, kernel, stride,
padding)
self.norm = norm
self.activ = activ
if self.norm == 'batch':
self.bn = nn.BatchNorm2d(out_size)
elif self.norm == 'instance':
self.bn = nn.InstanceNorm2d(out_size)
if self.activ == 'relu':
self.act = nn.ReLU(True)
elif self.activ == 'prelu':
self.act = nn.PReLU()
elif self.activ == 'lrelu':
self.act = nn.LeakyReLU(0.2, True)
elif self.activ == 'tanh':
self.act = nn.Tanh()
def forward(self, x):
if self.norm is not None:
x = self.bn(self.deconv(x))
else:
x = self.deconv(x)
if self.activ is not None:
return self.act(x)
else:
return x
class DownBlock(torch.nn.Module):
def __init__(self, num_filter, kernel_size=8, stride=4, padding=2,
activation='prelu'):
super(DownBlock, self).__init__()
self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
self.down_conv2 = DeconvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
def forward(self, x):
l0 = self.down_conv1(x)
h0 = self.down_conv2(l0)
l1 = self.down_conv3(h0 - x)
return l1 + l0
class UpBlock(torch.nn.Module):
def __init__(self, num_filter, kernel_size=8, stride=4, padding=2,
activation='prelu'):
super(UpBlock, self).__init__()
self.up_conv1 = DeconvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
self.up_conv3 = DeconvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
def forward(self, x):
h0 = self.up_conv1(x)
l0 = self.up_conv2(h0)
h1 = self.up_conv3(l0 - x)
return h1 + h0
class Net(nn.Module):
def __init__(self, channels, filters, features, scale_fact):
super(Net, self).__init__()
self.lay1 = ConvBlock(in_size=channels, out_size=features, kernel=3,
stride=1, padding=1, activ='prelu')
self.lay2 = ConvBlock(in_size=features, out_size=filters, kernel=1,
stride=1, padding=0, activ='prelu')
self.down1 = DownBlock(num_filter=filters, kernel_size=6, stride=2,
padding=2, activation='prelu')
self.up1 = UpBlock(num_filter=filters, kernel_size=6, stride=2,
padding=2, activation='prelu')
self.down2 = DownBlock(num_filter=filters, kernel_size=6, stride=2,
padding=2, activation='prelu')
self.up2 = UpBlock(num_filter=filters, kernel_size=6, stride=2,
padding=2, activation='prelu')
self.out1 = DeconvBlock(in_size=filters, out_size=features, kernel=
1, stride=1, padding=0, activ='prelu')
self.out2 = DeconvBlock(in_size=features, out_size=channels, kernel
=2, stride=2, padding=0, activ='prelu')
def forward(self, x):
x = self.lay1(x)
x = self.lay2(x)
x = self.down1(x)
x = self.up1(x)
x = self.down2(x)
x = self.up2(x)
x = self.out1(x)
x = self.out2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4, 'filters': 4, 'features': 4, 'scale_fact': 1.0}
]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_1(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_sub_2(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 - tmp9
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_3(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 + tmp9
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_sub_4(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 - tmp9
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_5(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 + tmp9
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_6(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35, primals_36, primals_37,
primals_38, primals_39, primals_40, primals_41, primals_42,
primals_43, primals_44, primals_45, primals_46, primals_47,
primals_48, primals_49) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1,), (1,))
assert_size_stride(primals_5, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (1,), (1,))
assert_size_stride(primals_11, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (1,), (1,))
assert_size_stride(primals_14, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (1,), (1,))
assert_size_stride(primals_17, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_18, (4,), (1,))
assert_size_stride(primals_19, (1,), (1,))
assert_size_stride(primals_20, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_21, (4,), (1,))
assert_size_stride(primals_22, (1,), (1,))
assert_size_stride(primals_23, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_24, (4,), (1,))
assert_size_stride(primals_25, (1,), (1,))
assert_size_stride(primals_26, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_27, (4,), (1,))
assert_size_stride(primals_28, (1,), (1,))
assert_size_stride(primals_29, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_30, (4,), (1,))
assert_size_stride(primals_31, (1,), (1,))
assert_size_stride(primals_32, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_33, (4,), (1,))
assert_size_stride(primals_34, (1,), (1,))
assert_size_stride(primals_35, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_36, (4,), (1,))
assert_size_stride(primals_37, (1,), (1,))
assert_size_stride(primals_38, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_39, (4,), (1,))
assert_size_stride(primals_40, (1,), (1,))
assert_size_stride(primals_41, (4, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_42, (4,), (1,))
assert_size_stride(primals_43, (1,), (1,))
assert_size_stride(primals_44, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_45, (4,), (1,))
assert_size_stride(primals_46, (1,), (1,))
assert_size_stride(primals_47, (4, 4, 2, 2), (16, 4, 2, 1))
assert_size_stride(primals_48, (4,), (1,))
assert_size_stride(primals_49, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__prelu_kernel_convolution_0[grid(256)](buf1,
primals_2, primals_4, buf2, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_0[grid(256)](buf4,
primals_6, primals_7, buf5, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_6
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 2, 2), (16, 4, 2, 1))
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_1[grid(64)](buf7,
primals_9, primals_10, buf8, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_9
buf9 = extern_kernels.convolution(buf8, primals_11, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 4, 4), (64, 16, 4, 1))
buf10 = buf9
del buf9
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_sub_2[grid(256)](buf10,
primals_12, primals_13, buf5, buf11, 256, XBLOCK=256, num_warps
=4, num_stages=1)
del primals_12
buf12 = extern_kernels.convolution(buf11, primals_14, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 2, 2), (16, 4, 2, 1))
buf13 = buf12
del buf12
buf14 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused__prelu_kernel_add_convolution_3[grid(64)](buf13,
primals_15, primals_16, buf8, buf14, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_15
buf15 = extern_kernels.convolution(buf14, primals_17, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 4, 4, 4), (64, 16, 4, 1))
buf16 = buf15
del buf15
buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_0[grid(256)](buf16,
primals_18, primals_19, buf17, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_18
buf18 = extern_kernels.convolution(buf17, primals_20, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 4, 2, 2), (16, 4, 2, 1))
buf19 = buf18
del buf18
buf20 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_sub_4[grid(64)](buf19,
primals_21, primals_22, buf14, buf20, 64, XBLOCK=64, num_warps=
1, num_stages=1)
del primals_21
buf21 = extern_kernels.convolution(buf20, primals_23, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 4, 4, 4), (64, 16, 4, 1))
buf22 = buf21
del buf21
buf23 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__prelu_kernel_add_convolution_5[grid(256)](buf22,
primals_24, primals_25, buf17, buf23, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_24
buf24 = extern_kernels.convolution(buf23, primals_26, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 4, 2, 2), (16, 4, 2, 1))
buf25 = buf24
del buf24
buf26 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_1[grid(64)](buf25,
primals_27, primals_28, buf26, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_27
buf27 = extern_kernels.convolution(buf26, primals_29, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 4, 4, 4), (64, 16, 4, 1))
buf28 = buf27
del buf27
buf29 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_sub_2[grid(256)](buf28,
primals_30, primals_31, buf23, buf29, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_30
buf30 = extern_kernels.convolution(buf29, primals_32, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 4, 2, 2), (16, 4, 2, 1))
buf31 = buf30
del buf30
buf32 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused__prelu_kernel_add_convolution_3[grid(64)](buf31,
primals_33, primals_34, buf26, buf32, 64, XBLOCK=64, num_warps=
1, num_stages=1)
del primals_33
buf33 = extern_kernels.convolution(buf32, primals_35, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 4, 4, 4), (64, 16, 4, 1))
buf34 = buf33
del buf33
buf35 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_0[grid(256)](buf34,
primals_36, primals_37, buf35, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_36
buf36 = extern_kernels.convolution(buf35, primals_38, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 4, 2, 2), (16, 4, 2, 1))
buf37 = buf36
del buf36
buf38 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_sub_4[grid(64)](buf37,
primals_39, primals_40, buf32, buf38, 64, XBLOCK=64, num_warps=
1, num_stages=1)
del primals_39
buf39 = extern_kernels.convolution(buf38, primals_41, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf39, (4, 4, 4, 4), (64, 16, 4, 1))
buf40 = buf39
del buf39
buf41 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__prelu_kernel_add_convolution_5[grid(256)](buf40,
primals_42, primals_43, buf35, buf41, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_42
buf42 = extern_kernels.convolution(buf41, primals_44, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf42, (4, 4, 4, 4), (64, 16, 4, 1))
buf43 = buf42
del buf42
buf44 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_0[grid(256)](buf43,
primals_45, primals_46, buf44, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_45
buf45 = extern_kernels.convolution(buf44, primals_47, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 4, 8, 8), (256, 64, 8, 1))
buf46 = buf45
del buf45
buf47 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32
)
triton_poi_fused__prelu_kernel_convolution_6[grid(1024)](buf46,
primals_48, primals_49, buf47, 1024, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_48
return (buf47, primals_1, primals_3, primals_4, primals_5, primals_7,
primals_8, primals_10, primals_11, primals_13, primals_14,
primals_16, primals_17, primals_19, primals_20, primals_22,
primals_23, primals_25, primals_26, primals_28, primals_29,
primals_31, primals_32, primals_34, primals_35, primals_37,
primals_38, primals_40, primals_41, primals_43, primals_44,
primals_46, primals_47, primals_49, buf1, buf2, buf4, buf5, buf7,
buf8, buf10, buf11, buf13, buf14, buf16, buf17, buf19, buf20, buf22,
buf23, buf25, buf26, buf28, buf29, buf31, buf32, buf34, buf35,
buf37, buf38, buf40, buf41, buf43, buf44, buf46)
class ConvBlock(nn.Module):
def __init__(self, in_size, out_size, kernel=3, stride=1, padding=1,
activ='relu', norm=None):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_size, out_size, kernel, stride, padding)
self.norm = norm
self.activ = activ
if self.norm == 'batch':
self.bn = nn.BatchNorm2d(out_size)
elif self.norm == 'instance':
self.bn = nn.InstanceNorm2d(out_size)
if self.activ == 'relu':
self.act = nn.ReLU(True)
elif self.activ == 'prelu':
self.act = nn.PReLU()
elif self.activ == 'lrelu':
self.act = nn.LeakyReLU(0.2, True)
elif self.activ == 'tanh':
self.act = nn.Tanh()
def forward(self, x):
if self.norm is not None:
x = self.bn(self.conv(x))
else:
x = self.conv(x)
if self.activ is not None:
return self.act(x)
else:
return x
class DeconvBlock(nn.Module):
def __init__(self, in_size, out_size, kernel=4, stride=2, padding=1,
activ='relu', norm=None):
super(DeconvBlock, self).__init__()
self.deconv = nn.ConvTranspose2d(in_size, out_size, kernel, stride,
padding)
self.norm = norm
self.activ = activ
if self.norm == 'batch':
self.bn = nn.BatchNorm2d(out_size)
elif self.norm == 'instance':
self.bn = nn.InstanceNorm2d(out_size)
if self.activ == 'relu':
self.act = nn.ReLU(True)
elif self.activ == 'prelu':
self.act = nn.PReLU()
elif self.activ == 'lrelu':
self.act = nn.LeakyReLU(0.2, True)
elif self.activ == 'tanh':
self.act = nn.Tanh()
def forward(self, x):
if self.norm is not None:
x = self.bn(self.deconv(x))
else:
x = self.deconv(x)
if self.activ is not None:
return self.act(x)
else:
return x
class DownBlock(torch.nn.Module):
def __init__(self, num_filter, kernel_size=8, stride=4, padding=2,
activation='prelu'):
super(DownBlock, self).__init__()
self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
self.down_conv2 = DeconvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
def forward(self, x):
l0 = self.down_conv1(x)
h0 = self.down_conv2(l0)
l1 = self.down_conv3(h0 - x)
return l1 + l0
class UpBlock(torch.nn.Module):
def __init__(self, num_filter, kernel_size=8, stride=4, padding=2,
activation='prelu'):
super(UpBlock, self).__init__()
self.up_conv1 = DeconvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
self.up_conv3 = DeconvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation)
def forward(self, x):
h0 = self.up_conv1(x)
l0 = self.up_conv2(h0)
h1 = self.up_conv3(l0 - x)
return h1 + h0
class NetNew(nn.Module):
def __init__(self, channels, filters, features, scale_fact):
super(NetNew, self).__init__()
self.lay1 = ConvBlock(in_size=channels, out_size=features, kernel=3,
stride=1, padding=1, activ='prelu')
self.lay2 = ConvBlock(in_size=features, out_size=filters, kernel=1,
stride=1, padding=0, activ='prelu')
self.down1 = DownBlock(num_filter=filters, kernel_size=6, stride=2,
padding=2, activation='prelu')
self.up1 = UpBlock(num_filter=filters, kernel_size=6, stride=2,
padding=2, activation='prelu')
self.down2 = DownBlock(num_filter=filters, kernel_size=6, stride=2,
padding=2, activation='prelu')
self.up2 = UpBlock(num_filter=filters, kernel_size=6, stride=2,
padding=2, activation='prelu')
self.out1 = DeconvBlock(in_size=filters, out_size=features, kernel=
1, stride=1, padding=0, activ='prelu')
self.out2 = DeconvBlock(in_size=features, out_size=channels, kernel
=2, stride=2, padding=0, activ='prelu')
def forward(self, input_0):
primals_1 = self.lay1.conv.weight
primals_2 = self.lay1.conv.bias
primals_4 = self.lay1.act.weight
primals_5 = self.lay2.conv.weight
primals_6 = self.lay2.conv.bias
primals_7 = self.lay2.act.weight
primals_8 = self.down1.down_conv1.conv.weight
primals_9 = self.down1.down_conv1.conv.bias
primals_10 = self.down1.down_conv1.act.weight
primals_11 = self.down1.down_conv2.deconv.weight
primals_12 = self.down1.down_conv2.deconv.bias
primals_13 = self.down1.down_conv2.act.weight
primals_14 = self.down1.down_conv3.conv.weight
primals_15 = self.down1.down_conv3.conv.bias
primals_16 = self.down1.down_conv3.act.weight
primals_17 = self.up1.up_conv1.deconv.weight
primals_18 = self.up1.up_conv1.deconv.bias
primals_19 = self.up1.up_conv1.act.weight
primals_20 = self.up1.up_conv2.conv.weight
primals_21 = self.up1.up_conv2.conv.bias
primals_22 = self.up1.up_conv2.act.weight
primals_23 = self.up1.up_conv3.deconv.weight
primals_24 = self.up1.up_conv3.deconv.bias
primals_25 = self.up1.up_conv3.act.weight
primals_26 = self.down2.down_conv1.conv.weight
primals_27 = self.down2.down_conv1.conv.bias
primals_28 = self.down2.down_conv1.act.weight
primals_29 = self.down2.down_conv2.deconv.weight
primals_30 = self.down2.down_conv2.deconv.bias
primals_31 = self.down2.down_conv2.act.weight
primals_32 = self.down2.down_conv3.conv.weight
primals_33 = self.down2.down_conv3.conv.bias
primals_34 = self.down2.down_conv3.act.weight
primals_35 = self.up2.up_conv1.deconv.weight
primals_36 = self.up2.up_conv1.deconv.bias
primals_37 = self.up2.up_conv1.act.weight
primals_38 = self.up2.up_conv2.conv.weight
primals_39 = self.up2.up_conv2.conv.bias
primals_40 = self.up2.up_conv2.act.weight
primals_41 = self.up2.up_conv3.deconv.weight
primals_42 = self.up2.up_conv3.deconv.bias
primals_43 = self.up2.up_conv3.act.weight
primals_44 = self.out1.deconv.weight
primals_45 = self.out1.deconv.bias
primals_46 = self.out1.act.weight
primals_47 = self.out2.deconv.weight
primals_48 = self.out2.deconv.bias
primals_49 = self.out2.act.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35, primals_36, primals_37, primals_38, primals_39,
primals_40, primals_41, primals_42, primals_43, primals_44,
primals_45, primals_46, primals_47, primals_48, primals_49])
return output[0]
| jth1011/ECE539-Project | Net | false | 12,653 | [
"MIT"
]
| 0 | bce6ffd75da92e862d8fda3852be247602b1567e | https://github.com/jth1011/ECE539-Project/tree/bce6ffd75da92e862d8fda3852be247602b1567e |
ColorJitterLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/k5/ck5gtelstphbmeyxj47cxu7yycqfyjvkdcsi2irtvkcdext2kdfh.py
# Topologically Sorted Source Nodes: [hsv], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# hsv => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%div, %sub_3, %getitem], 1), kwargs = {})
triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 12
x0 = xindex % 4
x2 = (xindex // 48)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (16 + x0 + (4*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tl.load(in_ptr0 + (32 + x0 + (4*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp7 = tmp5 - tmp6
tmp8 = 1.7320508075688772
tmp9 = tmp7 * tmp8
tmp10 = tl.load(in_ptr0 + (x0 + (4*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp11 = 2.0
tmp12 = tmp10 * tmp11
tmp13 = tmp12 - tmp5
tmp14 = tmp13 - tmp6
tmp15 = libdevice.atan2(tmp9, tmp14)
tmp16 = 6.283185307179586
tmp17 = tmp15 % tmp16
tmp18 = tl.full([1], 0, tl.int32)
tmp19 = tmp17 != tmp18
tmp20 = libdevice.signbit(tmp17) if (tmp17).dtype is tl.float32 else tmp17 < 0
tmp21 = libdevice.signbit(tmp16) if (tmp16).dtype is tl.float32 else tmp16 < 0
tmp22 = tmp20 != tmp21
tmp23 = tmp19 & tmp22
tmp24 = tmp17 + tmp16
tmp25 = tl.where(tmp23, tmp24, tmp17)
tmp26 = 0.15915494309189535
tmp27 = tmp25 * tmp26
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp4, tmp27, tmp28)
tmp30 = tmp0 >= tmp3
tmp31 = tl.full([1], 8, tl.int64)
tmp32 = tmp0 < tmp31
tmp33 = tmp30 & tmp32
tmp34 = tl.load(in_ptr0 + (x0 + (4*((-4) + x1)) + (64*x2)), tmp33 & xmask, other=0.0)
tmp35 = tl.load(in_ptr0 + (16 + x0 + (4*((-4) + x1)) + (64*x2)), tmp33 & xmask, other=0.0)
tmp36 = triton_helpers.minimum(tmp34, tmp35)
tmp37 = tl.load(in_ptr0 + (32 + x0 + (4*((-4) + x1)) + (64*x2)), tmp33 & xmask, other=0.0)
tmp38 = triton_helpers.minimum(tmp36, tmp37)
tmp39 = tl.load(in_ptr0 + (48 + x0 + (4*((-4) + x1)) + (64*x2)), tmp33 & xmask, other=0.0)
tmp40 = triton_helpers.minimum(tmp38, tmp39)
tmp41 = triton_helpers.maximum(tmp34, tmp35)
tmp42 = triton_helpers.maximum(tmp41, tmp37)
tmp43 = triton_helpers.maximum(tmp42, tmp39)
tmp44 = 1e-08
tmp45 = tmp43 + tmp44
tmp46 = tmp40 / tmp45
tmp47 = 1.0
tmp48 = tmp47 - tmp46
tmp49 = tl.full(tmp48.shape, 0.0, tmp48.dtype)
tmp50 = tl.where(tmp33, tmp48, tmp49)
tmp51 = tmp0 >= tmp31
tmp52 = tl.full([1], 12, tl.int64)
tmp53 = tmp0 < tmp52
tmp54 = tl.load(in_ptr0 + (x0 + (4*((-8) + x1)) + (64*x2)), tmp51 & xmask, other=0.0)
tmp55 = tl.load(in_ptr0 + (16 + x0 + (4*((-8) + x1)) + (64*x2)), tmp51 & xmask, other=0.0)
tmp56 = triton_helpers.maximum(tmp54, tmp55)
tmp57 = tl.load(in_ptr0 + (32 + x0 + (4*((-8) + x1)) + (64*x2)), tmp51 & xmask, other=0.0)
tmp58 = triton_helpers.maximum(tmp56, tmp57)
tmp59 = tl.load(in_ptr0 + (48 + x0 + (4*((-8) + x1)) + (64*x2)), tmp51 & xmask, other=0.0)
tmp60 = triton_helpers.maximum(tmp58, tmp59)
tmp61 = tl.full(tmp60.shape, 0.0, tmp60.dtype)
tmp62 = tl.where(tmp51, tmp60, tmp61)
tmp63 = tl.where(tmp33, tmp50, tmp62)
tmp64 = tl.where(tmp4, tmp29, tmp63)
tl.store(out_ptr0 + (x3), tmp64, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/gg/cggxgz5kv3f6v57dm57mpxkp77xbxjw2mh4mscq7a4rphyiqpca4.py
# Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# setitem => full_default_3, index_put
# Graph fragment:
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %index_put : [num_users=4] = call_function[target=torch.ops.aten.index_put_.default](args = (%view, [%bitwise_not], %full_default_3), kwargs = {})
triton_poi_fused_index_put_lift_fresh_1 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_1', 'mutated_arg_names': ['in_ptr0', 'out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 == tmp0
tmp2 = tl_math.abs(tmp0)
tmp3 = float("inf")
tmp4 = tmp2 != tmp3
tmp5 = tmp1 & tmp4
tmp6 = tmp5 == 0
tmp7 = 0.0
tmp8 = tl.where(tmp6, tmp7, tmp0)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/tw/ctw7vqtn4wrdd6k3eojcn6wy2cqgcazcuexsxhfewjvf3xjv6ole.py
# Topologically Sorted Source Nodes: [f_h], Original ATen: [aten.new_zeros]
# Source node to ATen node mapping:
# f_h => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 1], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_new_zeros_2 = async_compile.triton('triton_poi_fused_new_zeros_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_new_zeros_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_new_zeros_2(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/v4/cv46aopjpsjvzqshfrlrag6y4ifo6nlt2huynabmbhvbs437klh2.py
# Topologically Sorted Source Nodes: [f_s], Original ATen: [aten.new_ones]
# Source node to ATen node mapping:
# f_s => full_default_1
# Graph fragment:
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_new_ones_3 = async_compile.triton('triton_poi_fused_new_ones_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_new_ones_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_new_ones_3(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 1.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/mq/cmqhtrxejw46pbgdo6fh4f7w3qkoe46hoelc5we53jnftjhog4ar.py
# Topologically Sorted Source Nodes: [mul_2, truediv_2, h_1, h_2, setitem_1, mul_3, setitem_2], Original ATen: [aten.mul, aten.div, aten.add, aten.remainder, aten.copy]
# Source node to ATen node mapping:
# h_1 => add_1
# h_2 => remainder_1
# mul_2 => mul_3
# mul_3 => mul_4
# setitem_1 => copy
# setitem_2 => copy_1
# truediv_2 => div_2
# Graph fragment:
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%uniform, 255.0), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_3, 360.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%select_4, %div_2), kwargs = {})
# %slice_scatter_default : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%select_int, %add_1, 2, 0, 9223372036854775807), kwargs = {})
# %select_scatter_default : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%index_put, %slice_scatter_default, 1, 0), kwargs = {})
# %remainder_1 : [num_users=1] = call_function[target=torch.ops.aten.remainder.Scalar](args = (%select_6, 1), kwargs = {})
# %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_8, %remainder_1), kwargs = {})
# %select_scatter_default_1 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default, %copy, 1, 0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_12, %uniform_1), kwargs = {})
# %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_14, %mul_4), kwargs = {})
# %select_scatter_default_2 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %copy_1, 1, 1), kwargs = {})
triton_poi_fused_add_copy_div_mul_remainder_4 = async_compile.triton('triton_poi_fused_add_copy_div_mul_remainder_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_copy_div_mul_remainder_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_copy_div_mul_remainder_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 3
x0 = xindex % 16
x2 = (xindex // 48)
x3 = xindex
tmp6 = tl.load(in_ptr0 + (x0 + (48*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (16 + x0 + (48*x2)), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (x3), xmask)
tmp0 = x1
tmp1 = tl.full([1], 1, tl.int32)
tmp2 = tmp0 == tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp1 == tmp3
tmp5 = tmp3 == tmp3
tmp8 = 255.0
tmp9 = tmp7 * tmp8
tmp10 = 0.002777777777777778
tmp11 = tmp9 * tmp10
tmp12 = tmp6 + tmp11
tmp13 = tl.where(tmp5, tmp12, tmp6)
tmp14 = 1.0
tmp15 = tmp13 % tmp14
tmp16 = tmp15 != tmp3
tmp17 = libdevice.signbit(tmp15) if (tmp15).dtype is tl.float32 else tmp15 < 0
tmp18 = libdevice.signbit(tmp14) if (tmp14).dtype is tl.float32 else tmp14 < 0
tmp19 = tmp17 != tmp18
tmp20 = tmp16 & tmp19
tmp21 = tmp15 + tmp14
tmp22 = tl.where(tmp20, tmp21, tmp15)
tmp24 = tl.where(tmp4, tmp12, tmp23)
tmp25 = tl.where(tmp4, tmp22, tmp24)
tmp27 = tmp25 * tmp26
tmp28 = tmp0 == tmp3
tmp30 = tl.where(tmp28, tmp12, tmp29)
tmp31 = tl.where(tmp28, tmp22, tmp30)
tmp32 = tl.where(tmp2, tmp27, tmp31)
tl.store(out_ptr0 + (x3), tmp32, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/zq/czq45ck4e3bfpgidquurvbk77tkggknyyrok7iefanwqczot3sts.py
# Topologically Sorted Source Nodes: [mul_4, setitem_3, x, v, s, c, h_3, mul_6, add_1, k, sub_4, t, t_1, mul_7, x_1, means, sub_6, mul_8, x_2, inputs], Original ATen: [aten.mul, aten.copy, aten.clamp, aten.index, aten.add, aten.remainder, aten.rsub, aten.minimum, aten.sub, aten.mean]
# Source node to ATen node mapping:
# add_1 => add_2
# c => mul_6
# h_3 => index
# inputs => clamp_max_2, clamp_min_2
# k => remainder_2
# means => mean
# mul_4 => mul_5
# mul_6 => mul_7
# mul_7 => mul_8
# mul_8 => mul_9
# s => index_1
# setitem_3 => copy_2
# sub_4 => sub_4
# sub_6 => sub_6
# t => minimum
# t_1 => clamp_max_1, clamp_min_1
# v => index_2
# x => clamp_max, clamp_min
# x_1 => sub_5
# x_2 => add_3
# Graph fragment:
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_18, %uniform_2), kwargs = {})
# %copy_2 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_20, %mul_5), kwargs = {})
# %select_scatter_default_3 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_2, %copy_2, 1, 2), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%select_scatter_default_3, 0), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {})
# %index_2 : [num_users=2] = call_function[target=torch.ops.aten.index.Tensor](args = (%clamp_max, [None, %full_default_6]), kwargs = {})
# %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%clamp_max, [None, %full_default_5]), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index_2, %index_1), kwargs = {})
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%clamp_max, [None, %full_default_4]), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, 6), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %mul_7), kwargs = {})
# %remainder_2 : [num_users=2] = call_function[target=torch.ops.aten.remainder.Scalar](args = (%add_2, 6), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (4.0, %remainder_2), kwargs = {})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%remainder_2, %sub_4), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%minimum, 0), kwargs = {})
# %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 1), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %clamp_max_1), kwargs = {})
# %sub_5 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%index_2, %mul_8), kwargs = {})
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%sub_5, [2, 3], True), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_5, %mean), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %uniform_3), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_9, %mean), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_3, 0), kwargs = {})
# %clamp_max_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1), kwargs = {})
triton_per_fused_add_clamp_copy_index_mean_minimum_mul_remainder_rsub_sub_5 = async_compile.triton('triton_per_fused_add_clamp_copy_index_mean_minimum_mul_remainder_rsub_sub_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_copy_index_mean_minimum_mul_remainder_rsub_sub_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_copy_index_mean_minimum_mul_remainder_rsub_sub_5(in_ptr0, in_ptr1, in_ptr2, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 12
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 3
r2 = rindex
x1 = (xindex // 3)
x3 = xindex
tmp13 = tl.load(in_ptr0 + (32 + r2 + (48*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (r2 + (48*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp42 = tl.load(in_ptr0 + (16 + r2 + (48*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp0 = x0
tmp1 = tl.full([1, 1], 1, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1, 1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = 3.0
tmp6 = 1.0
tmp7 = tl.where(tmp4, tmp5, tmp6)
tmp8 = 5.0
tmp9 = tl.where(tmp2, tmp8, tmp7)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = tl.full([1, 1], 2, tl.int32)
tmp12 = tmp10 == tmp11
tmp15 = tmp13 * tmp14
tmp17 = tl.where(tmp12, tmp15, tmp16)
tmp18 = 0.0
tmp19 = triton_helpers.maximum(tmp17, tmp18)
tmp20 = triton_helpers.minimum(tmp19, tmp6)
tmp21 = 6.0
tmp22 = tmp20 * tmp21
tmp23 = tmp9 + tmp22
tmp24 = tmp23 % tmp21
tmp25 = tmp24 != tmp10
tmp26 = libdevice.signbit(tmp24) if (tmp24).dtype is tl.float32 else tmp24 < 0
tmp27 = libdevice.signbit(tmp21) if (tmp21).dtype is tl.float32 else tmp21 < 0
tmp28 = tmp26 != tmp27
tmp29 = tmp25 & tmp28
tmp30 = tmp24 + tmp21
tmp31 = tl.where(tmp29, tmp30, tmp24)
tmp32 = 4.0
tmp33 = tmp32 - tmp31
tmp34 = triton_helpers.minimum(tmp31, tmp33)
tmp35 = triton_helpers.maximum(tmp34, tmp18)
tmp36 = tmp11 == tmp11
tmp37 = tl.where(tmp36, tmp15, tmp13)
tmp38 = triton_helpers.maximum(tmp37, tmp18)
tmp39 = triton_helpers.minimum(tmp38, tmp6)
tmp40 = tl.full([1, 1], 1, tl.int32)
tmp41 = tmp40 == tmp11
tmp43 = tl.where(tmp41, tmp15, tmp42)
tmp44 = triton_helpers.maximum(tmp43, tmp18)
tmp45 = triton_helpers.minimum(tmp44, tmp6)
tmp46 = tmp39 * tmp45
tmp47 = triton_helpers.minimum(tmp35, tmp6)
tmp48 = tmp46 * tmp47
tmp49 = tmp39 - tmp48
tmp50 = tl.broadcast_to(tmp49, [XBLOCK, RBLOCK])
tmp52 = tl.where(xmask, tmp50, 0)
tmp53 = tl.sum(tmp52, 1)[:, None]
tmp54 = 16.0
tmp55 = tmp53 / tmp54
tmp56 = tmp49 - tmp55
tmp58 = tmp56 * tmp57
tmp59 = tmp58 + tmp55
tmp60 = triton_helpers.maximum(tmp59, tmp18)
tmp61 = triton_helpers.minimum(tmp60, tmp6)
tl.store(out_ptr1 + (r2 + (16*x3)), tmp61, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12, 4), (48, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hsv], Original ATen: [aten.stack]
stream0 = get_raw_stream(0)
triton_poi_fused_stack_0.run(arg0_1, buf0, 192, grid=grid(192), stream=stream0)
del arg0_1
# Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put]
triton_poi_fused_index_put_lift_fresh_1.run(buf0, buf0, 192, grid=grid(192), stream=stream0)
buf7 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [f_h], Original ATen: [aten.new_zeros]
triton_poi_fused_new_zeros_2.run(buf7, 4, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [f_h, uniform_], Original ATen: [aten.new_zeros, aten.uniform]
buf8 = torch.ops.aten.uniform.default(buf7, -4.0, 4.0)
buf9 = buf8
del buf8
buf10 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [f_s], Original ATen: [aten.new_ones]
triton_poi_fused_new_ones_3.run(buf10, 4, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [f_s, f_s_1], Original ATen: [aten.new_ones, aten.uniform]
buf11 = torch.ops.aten.uniform.default(buf10, 0.0, 5.0)
del buf10
buf12 = buf11
del buf11
buf13 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, truediv_2, h_1, h_2, setitem_1, mul_3, setitem_2], Original ATen: [aten.mul, aten.div, aten.add, aten.remainder, aten.copy]
triton_poi_fused_add_copy_div_mul_remainder_4.run(buf0, buf9, buf12, buf13, 192, grid=grid(192), stream=stream0)
del buf12
buf14 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [f_v], Original ATen: [aten.new_ones]
triton_poi_fused_new_ones_3.run(buf14, 4, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [f_v, f_v_1], Original ATen: [aten.new_ones, aten.uniform]
buf15 = torch.ops.aten.uniform.default(buf14, 0.0, 5.0)
buf16 = buf15
del buf15
buf20 = reinterpret_tensor(buf14, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf14 # reuse
# Topologically Sorted Source Nodes: [factor], Original ATen: [aten.uniform]
buf21 = torch.ops.aten.uniform.default(buf20, 0.0, 5.0)
del buf20
buf22 = buf21
del buf21
buf23 = reinterpret_tensor(buf0, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [mul_4, setitem_3, x, v, s, c, h_3, mul_6, add_1, k, sub_4, t, t_1, mul_7, x_1, means, sub_6, mul_8, x_2, inputs], Original ATen: [aten.mul, aten.copy, aten.clamp, aten.index, aten.add, aten.remainder, aten.rsub, aten.minimum, aten.sub, aten.mean]
triton_per_fused_add_clamp_copy_index_mean_minimum_mul_remainder_rsub_sub_5.run(buf13, buf16, buf22, buf23, 12, 16, grid=grid(12), stream=stream0)
del buf13
del buf16
del buf22
return (buf23, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import math
import numbers
import torch
import numpy as np
import torch.nn as nn
import torch.utils.cpp_extension
def hsv2rgb(hsv):
"""Convert a 4-d HSV tensor to the RGB counterpart.
>>> %timeit hsv2rgb_lookup(hsv)
2.37 ms ± 13.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
>>> %timeit hsv2rgb(rgb)
298 µs ± 542 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> torch.allclose(hsv2rgb(hsv), hsv2rgb_lookup(hsv), atol=1e-6)
True
References
[1] https://en.wikipedia.org/wiki/HSL_and_HSV#HSV_to_RGB_alternative
"""
h, s, v = hsv[:, [0]], hsv[:, [1]], hsv[:, [2]]
c = v * s
n = hsv.new_tensor([5, 3, 1]).view(3, 1, 1)
k = (n + h * 6) % 6
t = torch.min(k, 4.0 - k)
t = torch.clamp(t, 0, 1)
return v - c * t
def rgb2hsv(rgb):
"""Convert a 4-d RGB tensor to the HSV counterpart.
Here, we compute hue using atan2() based on the definition in [1],
instead of using the common lookup table approach as in [2, 3].
Those values agree when the angle is a multiple of 30°,
otherwise they may differ at most ~1.2°.
>>> %timeit rgb2hsv_lookup(rgb)
1.07 ms ± 2.96 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> %timeit rgb2hsv(rgb)
380 µs ± 555 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> (rgb2hsv_lookup(rgb) - rgb2hsv(rgb)).abs().max()
tensor(0.0031, device='cuda:0')
References
[1] https://en.wikipedia.org/wiki/Hue
[2] https://www.rapidtables.com/convert/color/rgb-to-hsv.html
[3] https://github.com/scikit-image/scikit-image/blob/master/skimage/color/colorconv.py#L212
"""
r, g, b = rgb[:, 0, :, :], rgb[:, 1, :, :], rgb[:, 2, :, :]
Cmax = rgb.max(1)[0]
Cmin = rgb.min(1)[0]
hue = torch.atan2(math.sqrt(3) * (g - b), 2 * r - g - b)
hue = hue % (2 * math.pi) / (2 * math.pi)
saturate = 1 - Cmin / (Cmax + 1e-08)
value = Cmax
hsv = torch.stack([hue, saturate, value], dim=1)
hsv[~torch.isfinite(hsv)] = 0.0
return hsv
class RandomHSVFunction(Function):
@staticmethod
def forward(ctx, x, f_h, f_s, f_v):
x = rgb2hsv(x)
h = x[:, 0, :, :]
h += f_h * 255.0 / 360.0
h = h % 1
x[:, 0, :, :] = h
x[:, 1, :, :] = x[:, 1, :, :] * f_s
x[:, 2, :, :] = x[:, 2, :, :] * f_v
x = torch.clamp(x, 0, 1)
x = hsv2rgb(x)
return x
@staticmethod
def backward(ctx, grad_output):
grad_input = None
if ctx.needs_input_grad[0]:
grad_input = grad_output.clone()
return grad_input, None, None, None
class ColorJitterLayer(nn.Module):
def __init__(self, brightness, contrast, saturation, hue):
super(ColorJitterLayer, self).__init__()
self.brightness = self._check_input(brightness, 'brightness')
self.contrast = self._check_input(contrast, 'contrast')
self.saturation = self._check_input(saturation, 'saturation')
self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5
), clip_first_on_zero=False)
def _check_input(self, value, name, center=1, bound=(0, float('inf')),
clip_first_on_zero=True):
if isinstance(value, numbers.Number):
if value < 0:
raise ValueError(
'If {} is a single number, it must be non negative.'.
format(name))
value = [center - value, center + value]
if clip_first_on_zero:
value[0] = max(value[0], 0)
elif isinstance(value, (tuple, list)) and len(value) == 2:
if not bound[0] <= value[0] <= value[1] <= bound[1]:
raise ValueError('{} values should be between {}'.format(
name, bound))
else:
raise TypeError(
'{} should be a single number or a list/tuple with lenght 2.'
.format(name))
if value[0] == value[1] == center:
value = None
return value
def adjust_contrast(self, x):
if self.contrast:
factor = x.new_empty(x.size(0), 1, 1, 1).uniform_(*self.contrast)
means = torch.mean(x, dim=[2, 3], keepdim=True)
x = (x - means) * factor + means
return torch.clamp(x, 0, 1)
def adjust_hsv(self, x):
f_h = x.new_zeros(x.size(0), 1, 1)
f_s = x.new_ones(x.size(0), 1, 1)
f_v = x.new_ones(x.size(0), 1, 1)
if self.hue:
f_h.uniform_(*self.hue)
if self.saturation:
f_s = f_s.uniform_(*self.saturation)
if self.brightness:
f_v = f_v.uniform_(*self.brightness)
return RandomHSVFunction.apply(x, f_h, f_s, f_v)
def transform(self, inputs):
if np.random.rand() > 0.5:
transforms = [self.adjust_contrast, self.adjust_hsv]
else:
transforms = [self.adjust_hsv, self.adjust_contrast]
for t in transforms:
inputs = t(inputs)
return inputs
def forward(self, inputs):
return self.transform(inputs)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'brightness': 4, 'contrast': 4, 'saturation': 4, 'hue': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.autograd import Function
import math
import numbers
import numpy as np
import torch.nn as nn
import torch.utils.cpp_extension
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 12
x0 = xindex % 4
x2 = xindex // 48
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (16 + x0 + 4 * x1 + 64 * x2), tmp4 & xmask,
other=0.0)
tmp6 = tl.load(in_ptr0 + (32 + x0 + 4 * x1 + 64 * x2), tmp4 & xmask,
other=0.0)
tmp7 = tmp5 - tmp6
tmp8 = 1.7320508075688772
tmp9 = tmp7 * tmp8
tmp10 = tl.load(in_ptr0 + (x0 + 4 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp11 = 2.0
tmp12 = tmp10 * tmp11
tmp13 = tmp12 - tmp5
tmp14 = tmp13 - tmp6
tmp15 = libdevice.atan2(tmp9, tmp14)
tmp16 = 6.283185307179586
tmp17 = tmp15 % tmp16
tmp18 = tl.full([1], 0, tl.int32)
tmp19 = tmp17 != tmp18
tmp20 = libdevice.signbit(tmp17
) if tmp17.dtype is tl.float32 else tmp17 < 0
tmp21 = libdevice.signbit(tmp16
) if tmp16.dtype is tl.float32 else tmp16 < 0
tmp22 = tmp20 != tmp21
tmp23 = tmp19 & tmp22
tmp24 = tmp17 + tmp16
tmp25 = tl.where(tmp23, tmp24, tmp17)
tmp26 = 0.15915494309189535
tmp27 = tmp25 * tmp26
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp4, tmp27, tmp28)
tmp30 = tmp0 >= tmp3
tmp31 = tl.full([1], 8, tl.int64)
tmp32 = tmp0 < tmp31
tmp33 = tmp30 & tmp32
tmp34 = tl.load(in_ptr0 + (x0 + 4 * (-4 + x1) + 64 * x2), tmp33 & xmask,
other=0.0)
tmp35 = tl.load(in_ptr0 + (16 + x0 + 4 * (-4 + x1) + 64 * x2), tmp33 &
xmask, other=0.0)
tmp36 = triton_helpers.minimum(tmp34, tmp35)
tmp37 = tl.load(in_ptr0 + (32 + x0 + 4 * (-4 + x1) + 64 * x2), tmp33 &
xmask, other=0.0)
tmp38 = triton_helpers.minimum(tmp36, tmp37)
tmp39 = tl.load(in_ptr0 + (48 + x0 + 4 * (-4 + x1) + 64 * x2), tmp33 &
xmask, other=0.0)
tmp40 = triton_helpers.minimum(tmp38, tmp39)
tmp41 = triton_helpers.maximum(tmp34, tmp35)
tmp42 = triton_helpers.maximum(tmp41, tmp37)
tmp43 = triton_helpers.maximum(tmp42, tmp39)
tmp44 = 1e-08
tmp45 = tmp43 + tmp44
tmp46 = tmp40 / tmp45
tmp47 = 1.0
tmp48 = tmp47 - tmp46
tmp49 = tl.full(tmp48.shape, 0.0, tmp48.dtype)
tmp50 = tl.where(tmp33, tmp48, tmp49)
tmp51 = tmp0 >= tmp31
tl.full([1], 12, tl.int64)
tmp54 = tl.load(in_ptr0 + (x0 + 4 * (-8 + x1) + 64 * x2), tmp51 & xmask,
other=0.0)
tmp55 = tl.load(in_ptr0 + (16 + x0 + 4 * (-8 + x1) + 64 * x2), tmp51 &
xmask, other=0.0)
tmp56 = triton_helpers.maximum(tmp54, tmp55)
tmp57 = tl.load(in_ptr0 + (32 + x0 + 4 * (-8 + x1) + 64 * x2), tmp51 &
xmask, other=0.0)
tmp58 = triton_helpers.maximum(tmp56, tmp57)
tmp59 = tl.load(in_ptr0 + (48 + x0 + 4 * (-8 + x1) + 64 * x2), tmp51 &
xmask, other=0.0)
tmp60 = triton_helpers.maximum(tmp58, tmp59)
tmp61 = tl.full(tmp60.shape, 0.0, tmp60.dtype)
tmp62 = tl.where(tmp51, tmp60, tmp61)
tmp63 = tl.where(tmp33, tmp50, tmp62)
tmp64 = tl.where(tmp4, tmp29, tmp63)
tl.store(out_ptr0 + x3, tmp64, xmask)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 == tmp0
tmp2 = tl_math.abs(tmp0)
tmp3 = float('inf')
tmp4 = tmp2 != tmp3
tmp5 = tmp1 & tmp4
tmp6 = tmp5 == 0
tmp7 = 0.0
tmp8 = tl.where(tmp6, tmp7, tmp0)
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_new_zeros_2(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_new_ones_3(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 1.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_copy_div_mul_remainder_4(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 3
x0 = xindex % 16
x2 = xindex // 48
x3 = xindex
tmp6 = tl.load(in_ptr0 + (x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (16 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp26 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + x3, xmask)
tmp0 = x1
tmp1 = tl.full([1], 1, tl.int32)
tmp2 = tmp0 == tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp1 == tmp3
tmp5 = tmp3 == tmp3
tmp8 = 255.0
tmp9 = tmp7 * tmp8
tmp10 = 0.002777777777777778
tmp11 = tmp9 * tmp10
tmp12 = tmp6 + tmp11
tmp13 = tl.where(tmp5, tmp12, tmp6)
tmp14 = 1.0
tmp15 = tmp13 % tmp14
tmp16 = tmp15 != tmp3
tmp17 = libdevice.signbit(tmp15
) if tmp15.dtype is tl.float32 else tmp15 < 0
tmp18 = libdevice.signbit(tmp14
) if tmp14.dtype is tl.float32 else tmp14 < 0
tmp19 = tmp17 != tmp18
tmp20 = tmp16 & tmp19
tmp21 = tmp15 + tmp14
tmp22 = tl.where(tmp20, tmp21, tmp15)
tmp24 = tl.where(tmp4, tmp12, tmp23)
tmp25 = tl.where(tmp4, tmp22, tmp24)
tmp27 = tmp25 * tmp26
tmp28 = tmp0 == tmp3
tmp30 = tl.where(tmp28, tmp12, tmp29)
tmp31 = tl.where(tmp28, tmp22, tmp30)
tmp32 = tl.where(tmp2, tmp27, tmp31)
tl.store(out_ptr0 + x3, tmp32, xmask)
@triton.jit
def triton_per_fused_add_clamp_copy_index_mean_minimum_mul_remainder_rsub_sub_5(
in_ptr0, in_ptr1, in_ptr2, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 12
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 3
r2 = rindex
x1 = xindex // 3
x3 = xindex
tmp13 = tl.load(in_ptr0 + (32 + r2 + 48 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (r2 + 48 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp42 = tl.load(in_ptr0 + (16 + r2 + 48 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp57 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp0 = x0
tmp1 = tl.full([1, 1], 1, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1, 1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = 3.0
tmp6 = 1.0
tmp7 = tl.where(tmp4, tmp5, tmp6)
tmp8 = 5.0
tmp9 = tl.where(tmp2, tmp8, tmp7)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = tl.full([1, 1], 2, tl.int32)
tmp12 = tmp10 == tmp11
tmp15 = tmp13 * tmp14
tmp17 = tl.where(tmp12, tmp15, tmp16)
tmp18 = 0.0
tmp19 = triton_helpers.maximum(tmp17, tmp18)
tmp20 = triton_helpers.minimum(tmp19, tmp6)
tmp21 = 6.0
tmp22 = tmp20 * tmp21
tmp23 = tmp9 + tmp22
tmp24 = tmp23 % tmp21
tmp25 = tmp24 != tmp10
tmp26 = libdevice.signbit(tmp24
) if tmp24.dtype is tl.float32 else tmp24 < 0
tmp27 = libdevice.signbit(tmp21
) if tmp21.dtype is tl.float32 else tmp21 < 0
tmp28 = tmp26 != tmp27
tmp29 = tmp25 & tmp28
tmp30 = tmp24 + tmp21
tmp31 = tl.where(tmp29, tmp30, tmp24)
tmp32 = 4.0
tmp33 = tmp32 - tmp31
tmp34 = triton_helpers.minimum(tmp31, tmp33)
tmp35 = triton_helpers.maximum(tmp34, tmp18)
tmp36 = tmp11 == tmp11
tmp37 = tl.where(tmp36, tmp15, tmp13)
tmp38 = triton_helpers.maximum(tmp37, tmp18)
tmp39 = triton_helpers.minimum(tmp38, tmp6)
tmp40 = tl.full([1, 1], 1, tl.int32)
tmp41 = tmp40 == tmp11
tmp43 = tl.where(tmp41, tmp15, tmp42)
tmp44 = triton_helpers.maximum(tmp43, tmp18)
tmp45 = triton_helpers.minimum(tmp44, tmp6)
tmp46 = tmp39 * tmp45
tmp47 = triton_helpers.minimum(tmp35, tmp6)
tmp48 = tmp46 * tmp47
tmp49 = tmp39 - tmp48
tmp50 = tl.broadcast_to(tmp49, [XBLOCK, RBLOCK])
tmp52 = tl.where(xmask, tmp50, 0)
tmp53 = tl.sum(tmp52, 1)[:, None]
tmp54 = 16.0
tmp55 = tmp53 / tmp54
tmp56 = tmp49 - tmp55
tmp58 = tmp56 * tmp57
tmp59 = tmp58 + tmp55
tmp60 = triton_helpers.maximum(tmp59, tmp18)
tmp61 = triton_helpers.minimum(tmp60, tmp6)
tl.store(out_ptr1 + (r2 + 16 * x3), tmp61, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12, 4), (48, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_stack_0[grid(192)](arg0_1, buf0, 192, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
triton_poi_fused_index_put_lift_fresh_1[grid(192)](buf0, buf0, 192,
XBLOCK=256, num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
triton_poi_fused_new_zeros_2[grid(4)](buf7, 4, XBLOCK=4, num_warps=
1, num_stages=1)
buf8 = torch.ops.aten.uniform.default(buf7, -4.0, 4.0)
buf9 = buf8
del buf8
buf10 = buf7
del buf7
triton_poi_fused_new_ones_3[grid(4)](buf10, 4, XBLOCK=4, num_warps=
1, num_stages=1)
buf11 = torch.ops.aten.uniform.default(buf10, 0.0, 5.0)
del buf10
buf12 = buf11
del buf11
buf13 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32)
triton_poi_fused_add_copy_div_mul_remainder_4[grid(192)](buf0, buf9,
buf12, buf13, 192, XBLOCK=256, num_warps=4, num_stages=1)
del buf12
buf14 = buf9
del buf9
triton_poi_fused_new_ones_3[grid(4)](buf14, 4, XBLOCK=4, num_warps=
1, num_stages=1)
buf15 = torch.ops.aten.uniform.default(buf14, 0.0, 5.0)
buf16 = buf15
del buf15
buf20 = reinterpret_tensor(buf14, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf14
buf21 = torch.ops.aten.uniform.default(buf20, 0.0, 5.0)
del buf20
buf22 = buf21
del buf21
buf23 = reinterpret_tensor(buf0, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf0
triton_per_fused_add_clamp_copy_index_mean_minimum_mul_remainder_rsub_sub_5[
grid(12)](buf13, buf16, buf22, buf23, 12, 16, XBLOCK=1,
num_warps=2, num_stages=1)
del buf13
del buf16
del buf22
return buf23,
def hsv2rgb(hsv):
"""Convert a 4-d HSV tensor to the RGB counterpart.
>>> %timeit hsv2rgb_lookup(hsv)
2.37 ms ± 13.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
>>> %timeit hsv2rgb(rgb)
298 µs ± 542 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> torch.allclose(hsv2rgb(hsv), hsv2rgb_lookup(hsv), atol=1e-6)
True
References
[1] https://en.wikipedia.org/wiki/HSL_and_HSV#HSV_to_RGB_alternative
"""
h, s, v = hsv[:, [0]], hsv[:, [1]], hsv[:, [2]]
c = v * s
n = hsv.new_tensor([5, 3, 1]).view(3, 1, 1)
k = (n + h * 6) % 6
t = torch.min(k, 4.0 - k)
t = torch.clamp(t, 0, 1)
return v - c * t
def rgb2hsv(rgb):
"""Convert a 4-d RGB tensor to the HSV counterpart.
Here, we compute hue using atan2() based on the definition in [1],
instead of using the common lookup table approach as in [2, 3].
Those values agree when the angle is a multiple of 30°,
otherwise they may differ at most ~1.2°.
>>> %timeit rgb2hsv_lookup(rgb)
1.07 ms ± 2.96 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> %timeit rgb2hsv(rgb)
380 µs ± 555 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> (rgb2hsv_lookup(rgb) - rgb2hsv(rgb)).abs().max()
tensor(0.0031, device='cuda:0')
References
[1] https://en.wikipedia.org/wiki/Hue
[2] https://www.rapidtables.com/convert/color/rgb-to-hsv.html
[3] https://github.com/scikit-image/scikit-image/blob/master/skimage/color/colorconv.py#L212
"""
r, g, b = rgb[:, 0, :, :], rgb[:, 1, :, :], rgb[:, 2, :, :]
Cmax = rgb.max(1)[0]
Cmin = rgb.min(1)[0]
hue = torch.atan2(math.sqrt(3) * (g - b), 2 * r - g - b)
hue = hue % (2 * math.pi) / (2 * math.pi)
saturate = 1 - Cmin / (Cmax + 1e-08)
value = Cmax
hsv = torch.stack([hue, saturate, value], dim=1)
hsv[~torch.isfinite(hsv)] = 0.0
return hsv
class RandomHSVFunction(Function):
@staticmethod
def forward(ctx, x, f_h, f_s, f_v):
x = rgb2hsv(x)
h = x[:, 0, :, :]
h += f_h * 255.0 / 360.0
h = h % 1
x[:, 0, :, :] = h
x[:, 1, :, :] = x[:, 1, :, :] * f_s
x[:, 2, :, :] = x[:, 2, :, :] * f_v
x = torch.clamp(x, 0, 1)
x = hsv2rgb(x)
return x
@staticmethod
def backward(ctx, grad_output):
grad_input = None
if ctx.needs_input_grad[0]:
grad_input = grad_output.clone()
return grad_input, None, None, None
class ColorJitterLayerNew(nn.Module):
def __init__(self, brightness, contrast, saturation, hue):
super(ColorJitterLayerNew, self).__init__()
self.brightness = self._check_input(brightness, 'brightness')
self.contrast = self._check_input(contrast, 'contrast')
self.saturation = self._check_input(saturation, 'saturation')
self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5
), clip_first_on_zero=False)
def _check_input(self, value, name, center=1, bound=(0, float('inf')),
clip_first_on_zero=True):
if isinstance(value, numbers.Number):
if value < 0:
raise ValueError(
'If {} is a single number, it must be non negative.'.
format(name))
value = [center - value, center + value]
if clip_first_on_zero:
value[0] = max(value[0], 0)
elif isinstance(value, (tuple, list)) and len(value) == 2:
if not bound[0] <= value[0] <= value[1] <= bound[1]:
raise ValueError('{} values should be between {}'.format(
name, bound))
else:
raise TypeError(
'{} should be a single number or a list/tuple with lenght 2.'
.format(name))
if value[0] == value[1] == center:
value = None
return value
def adjust_contrast(self, x):
if self.contrast:
factor = x.new_empty(x.size(0), 1, 1, 1).uniform_(*self.contrast)
means = torch.mean(x, dim=[2, 3], keepdim=True)
x = (x - means) * factor + means
return torch.clamp(x, 0, 1)
def adjust_hsv(self, x):
f_h = x.new_zeros(x.size(0), 1, 1)
f_s = x.new_ones(x.size(0), 1, 1)
f_v = x.new_ones(x.size(0), 1, 1)
if self.hue:
f_h.uniform_(*self.hue)
if self.saturation:
f_s = f_s.uniform_(*self.saturation)
if self.brightness:
f_v = f_v.uniform_(*self.brightness)
return RandomHSVFunction.apply(x, f_h, f_s, f_v)
def transform(self, inputs):
if np.random.rand() > 0.5:
transforms = [self.adjust_contrast, self.adjust_hsv]
else:
transforms = [self.adjust_hsv, self.adjust_contrast]
for t in transforms:
inputs = t(inputs)
return inputs
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| hugobloem/PyTorch-StudioGAN | ColorJitterLayer | false | 12,654 | [
"MIT"
]
| 0 | 3deab27c0774adba5a94c7f452d32d4cbc3b117c | https://github.com/hugobloem/PyTorch-StudioGAN/tree/3deab27c0774adba5a94c7f452d32d4cbc3b117c |
DiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/33/c33u5ltxjw6rn4li2j53yyzvr5xmqgu5ezjzwlr4xkh266pnrokm.py
# Topologically Sorted Source Nodes: [mul, sum_1, mul_1, add, sum_2, sum_3, add_1, add_2, add_3, truediv, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# mul => mul
# mul_1 => mul_1
# sub => sub
# sum_1 => sum_1
# sum_2 => sum_2
# sum_3 => sum_3
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 0), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg0_1,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg1_1,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 0), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 1e-07), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_3), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {})
triton_per_fused_add_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.broadcast_to(tmp0, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tl.broadcast_to(tmp1, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = 2.0
tmp13 = tmp5 * tmp12
tmp14 = 0.0
tmp15 = tmp13 + tmp14
tmp16 = tmp8 + tmp11
tmp17 = tmp16 + tmp14
tmp18 = 1e-07
tmp19 = tmp17 + tmp18
tmp20 = tmp15 / tmp19
tmp21 = 1.0
tmp22 = tmp21 - tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp22, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, sum_1, mul_1, add, sum_2, sum_3, add_1, add_2, add_3, truediv, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mul_rsub_sum_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class DiceLoss(nn.Module):
def __init__(self, smooth=0, eps=1e-07):
super(DiceLoss, self).__init__()
self.smooth = smooth
self.eps = eps
def forward(self, output, target):
return 1 - (2 * torch.sum(output * target) + self.smooth) / (torch.
sum(output) + torch.sum(target) + self.smooth + self.eps)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.broadcast_to(tmp0, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tl.broadcast_to(tmp1, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = 2.0
tmp13 = tmp5 * tmp12
tmp14 = 0.0
tmp15 = tmp13 + tmp14
tmp16 = tmp8 + tmp11
tmp17 = tmp16 + tmp14
tmp18 = 1e-07
tmp19 = tmp17 + tmp18
tmp20 = tmp15 / tmp19
tmp21 = 1.0
tmp22 = tmp21 - tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp22, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_mul_rsub_sum_0[grid(1)](buf3, arg0_1,
arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf3,
class DiceLossNew(nn.Module):
def __init__(self, smooth=0, eps=1e-07):
super(DiceLossNew, self).__init__()
self.smooth = smooth
self.eps = eps
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| kant/open-solution-ship-detection | DiceLoss | false | 12,655 | [
"MIT"
]
| 0 | 94fa14fc461d6088d884930cbd8e2a2b99a338b5 | https://github.com/kant/open-solution-ship-detection/tree/94fa14fc461d6088d884930cbd8e2a2b99a338b5 |
NetVLAD | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/bf/cbfrkgswbn2pkwqjbw4i7f66ydt4nol3efiwmcxa2rjdv6dwkqje.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# x => pow_1, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
triton_red_fused_linalg_vector_norm_0 = async_compile.triton('triton_red_fused_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[16384, 2048],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 16384
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 4096
x1 = (xindex // 4096)
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (8388608*x1)), rmask, eviction_policy='evict_last', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/qa/cqaszodpzbcscr27ul4a4jibczspt3c377awsaeus56ighyyoksv.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.div]
# Source node to ATen node mapping:
# x => div
# Graph fragment:
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 4096], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y1 = (yindex // 2048)
y0 = yindex % 2048
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + (4096*y1)), None, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tl.store(out_ptr0 + (y0 + (2048*x2) + (8388608*y1)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/7w/c7wj3o4hkz7b7hkmngp4dqyks75cnwqwmxqhjj2wgpdb3zojbcgt.py
# Topologically Sorted Source Nodes: [conv2d, soft_assign_1], Original ATen: [aten.convolution, aten._softmax]
# Source node to ATen node mapping:
# conv2d => convolution
# soft_assign_1 => amax, exp, sub, sum_2
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%div, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_per_fused__softmax_convolution_2 = async_compile.triton('triton_per_fused__softmax_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16384, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_convolution_2(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16384
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (r1 + (16*x0)), None)
tmp1 = tl.load(in_ptr0 + (r1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = triton_helpers.max2(tmp3, 1)[:, None]
tmp6 = tmp2 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.sum(tmp8, 1)[:, None]
tl.store(in_out_ptr0 + (r1 + (16*x0)), tmp2, None)
tl.store(out_ptr0 + (x0), tmp5, None)
tl.store(out_ptr1 + (x0), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/p6/cp6mf4zvc62jxklsm2dgzmyaobltt6bodnipovjl2f4j4b7wn2fm.py
# Topologically Sorted Source Nodes: [residual, residual_1, vlad], Original ATen: [aten.sub, aten.mul, aten.sum]
# Source node to ATen node mapping:
# residual => sub_1
# residual_1 => mul
# vlad => sum_3
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %unsqueeze_1), kwargs = {})
# %sum_3 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
triton_red_fused_mul_sub_sum_3 = async_compile.triton('triton_red_fused_mul_sub_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[131072, 4096],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sub_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 131072
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 2048
x2 = (xindex // 32768)
x4 = xindex % 32768
tmp1 = tl.load(in_ptr1 + (x4), None, eviction_policy='evict_last')
x1 = (xindex // 2048) % 16
_tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x5 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + (2048*r3) + (8388608*x2)), rmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr2 + (x1 + (16*r3) + (65536*x2)), rmask, eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr3 + (r3 + (4096*x2)), rmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr4 + (r3 + (4096*x2)), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp2 * tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = _tmp11 + tmp10
_tmp11 = tl.where(rmask, tmp12, _tmp11)
tmp11 = tl.sum(_tmp11, 1)[:, None]
tl.store(out_ptr0 + (x5), tmp11, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/k6/ck64gjoptjweacs5vakn6svbb5dmx7n72ar2va5c262w5dbjui5l.py
# Topologically Sorted Source Nodes: [vlad_1], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# vlad_1 => pow_3, pow_4, sum_4
# Graph fragment:
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 2), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [2], True), kwargs = {})
# %pow_4 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 0.5), kwargs = {})
triton_red_fused_linalg_vector_norm_4 = async_compile.triton('triton_red_fused_linalg_vector_norm_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[64, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_linalg_vector_norm_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_linalg_vector_norm_4(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 64
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (2048*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask & xmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tmp5 = libdevice.sqrt(tmp3)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/4b/c4by4mz5l3624eqee5nubw66nu7yxydwqpbcoikhk4b6ko4tnfrs.py
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# vlad_3 => pow_5, sum_5
# Graph fragment:
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_2, 2), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_5, [1], True), kwargs = {})
triton_red_fused_linalg_vector_norm_5 = async_compile.triton('triton_red_fused_linalg_vector_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[16, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_linalg_vector_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_linalg_vector_norm_5(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 16
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp7 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + ((4*x0) + (r1 // 2048)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = 1e-12
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 / tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = _tmp7 + tmp6
_tmp7 = tl.where(rmask & xmask, tmp8, _tmp7)
tmp7 = tl.sum(_tmp7, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/w4/cw4sjn5i7macqqawovqsorg5splabaed43d6ca36ca2jv2mgsgi6.py
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# vlad_3 => pow_5, pow_6, sum_5
# Graph fragment:
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_2, 2), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_5, [1], True), kwargs = {})
# %pow_6 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_5, 0.5), kwargs = {})
triton_per_fused_linalg_vector_norm_6 = async_compile.triton('triton_per_fused_linalg_vector_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_linalg_vector_norm_6(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/j7/cj72ul6x5mnmg2inrn2wq62lxsfe7nyl4s22mbdkfeugyqa453ed.py
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.div]
# Source node to ATen node mapping:
# vlad_3 => div_3
# Graph fragment:
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %expand_4), kwargs = {})
triton_poi_fused_div_7 = async_compile.triton('triton_poi_fused_div_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x1 = (xindex // 32768)
tmp0 = tl.load(in_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr1 + ((x2 // 2048)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last')
tmp2 = 1e-12
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 / tmp3
tmp6 = triton_helpers.maximum(tmp5, tmp2)
tmp7 = tmp4 / tmp6
tl.store(out_ptr0 + (x2), tmp7, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 2048, 64, 64), (8388608, 4096, 64, 1))
assert_size_stride(primals_2, (16, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_3, (16, ), (1, ))
assert_size_stride(primals_4, (16, 2048), (2048, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_red_fused_linalg_vector_norm_0.run(primals_1, buf0, 16384, 2048, grid=grid(16384), stream=stream0)
buf1 = empty_strided_cuda((4, 2048, 64, 64), (8388608, 1, 131072, 2048), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.div]
triton_poi_fused_div_1.run(primals_1, buf0, buf1, 8192, 4096, grid=grid(8192, 4096), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 64, 64), (65536, 1, 1024, 16))
buf3 = buf2; del buf2 # reuse
buf4 = reinterpret_tensor(buf0, (4, 1, 4096), (4096, 4096, 1), 0); del buf0 # reuse
buf5 = empty_strided_cuda((4, 1, 4096), (4096, 4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, soft_assign_1], Original ATen: [aten.convolution, aten._softmax]
triton_per_fused__softmax_convolution_2.run(buf3, primals_3, buf4, buf5, 16384, 16, grid=grid(16384), stream=stream0)
del primals_3
buf6 = empty_strided_cuda((4, 16, 2048), (32768, 2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [residual, residual_1, vlad], Original ATen: [aten.sub, aten.mul, aten.sum]
triton_red_fused_mul_sub_sum_3.run(buf1, primals_4, buf3, buf4, buf5, buf6, 131072, 4096, grid=grid(131072), stream=stream0)
buf7 = empty_strided_cuda((4, 16, 1), (16, 1, 64), torch.float32)
buf8 = reinterpret_tensor(buf7, (4, 16, 1), (16, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [vlad_1], Original ATen: [aten.linalg_vector_norm]
triton_red_fused_linalg_vector_norm_4.run(buf8, buf6, 64, 2048, grid=grid(64), stream=stream0)
buf9 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm]
triton_red_fused_linalg_vector_norm_5.run(buf6, buf8, buf9, 16, 8192, grid=grid(16), stream=stream0)
buf10 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf11 = reinterpret_tensor(buf10, (4, 1), (1, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm]
triton_per_fused_linalg_vector_norm_6.run(buf11, buf9, 4, 4, grid=grid(4), stream=stream0)
del buf9
buf12 = empty_strided_cuda((4, 32768), (32768, 1), torch.float32)
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.div]
triton_poi_fused_div_7.run(buf6, buf8, buf11, buf12, 131072, grid=grid(131072), stream=stream0)
return (buf12, primals_2, primals_4, buf1, buf3, buf4, buf5, buf6, buf8, buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 2048, 64, 64), (8388608, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
import torch.nn.functional as F
class NetVLAD(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=16, dim=2048, alpha=30.0,
normalize_input=True):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
alpha : float
Parameter of initialization. Larger value is harder assignment.
normalize_input : bool
If true, descriptor-wise L2 normalization is applied to input.
"""
super(NetVLAD, self).__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = alpha
self.normalize_input = normalize_input
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=True)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
self._init_params()
def _init_params(self):
self.conv.weight = nn.Parameter((2.0 * self.alpha * self.centroids)
.unsqueeze(-1).unsqueeze(-1))
self.conv.bias = nn.Parameter(-self.alpha * self.centroids.norm(dim=1))
def forward(self, x):
N, C = x.shape[:2]
if self.normalize_input:
x = F.normalize(x, p=2, dim=1)
soft_assign = self.conv(x).view(N, self.num_clusters, -1)
soft_assign = F.softmax(soft_assign, dim=1)
x_flatten = x.view(N, C, -1)
residual = x_flatten.expand(self.num_clusters, -1, -1, -1).permute(
1, 0, 2, 3) - self.centroids.expand(x_flatten.size(-1), -1, -1
).permute(1, 2, 0).unsqueeze(0)
residual *= soft_assign.unsqueeze(2)
vlad = residual.sum(dim=-1)
vlad = F.normalize(vlad, p=2, dim=2)
vlad = vlad.view(x.size(0), -1)
vlad = F.normalize(vlad, p=2, dim=1)
return vlad
def get_inputs():
return [torch.rand([4, 2048, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 4096
x1 = xindex // 4096
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 8388608 * x1), rmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tl.store(out_ptr0 + x3, tmp3, None)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y1 = yindex // 2048
y0 = yindex % 2048
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + 4096 * y1), None, eviction_policy=
'evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tl.store(out_ptr0 + (y0 + 2048 * x2 + 8388608 * y1), tmp5, None)
@triton.jit
def triton_per_fused__softmax_convolution_2(in_out_ptr0, in_ptr0, out_ptr0,
out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (r1 + 16 * x0), None)
tmp1 = tl.load(in_ptr0 + r1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = triton_helpers.max2(tmp3, 1)[:, None]
tmp6 = tmp2 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.sum(tmp8, 1)[:, None]
tl.store(in_out_ptr0 + (r1 + 16 * x0), tmp2, None)
tl.store(out_ptr0 + x0, tmp5, None)
tl.store(out_ptr1 + x0, tmp10, None)
@triton.jit
def triton_red_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.
constexpr):
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 2048
x2 = xindex // 32768
x4 = xindex % 32768
tmp1 = tl.load(in_ptr1 + x4, None, eviction_policy='evict_last')
x1 = xindex // 2048 % 16
_tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x5 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 2048 * r3 + 8388608 * x2), rmask,
eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr2 + (x1 + 16 * r3 + 65536 * x2), rmask,
eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr3 + (r3 + 4096 * x2), rmask, eviction_policy=
'evict_last', other=0.0)
tmp7 = tl.load(in_ptr4 + (r3 + 4096 * x2), rmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp2 * tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = _tmp11 + tmp10
_tmp11 = tl.where(rmask, tmp12, _tmp11)
tmp11 = tl.sum(_tmp11, 1)[:, None]
tl.store(out_ptr0 + x5, tmp11, None)
@triton.jit
def triton_red_fused_linalg_vector_norm_4(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 64
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 2048 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask & xmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tmp5 = libdevice.sqrt(tmp3)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_red_fused_linalg_vector_norm_5(in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 16
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp7 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (4 * x0 + r1 // 2048), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = 1e-12
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 / tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = _tmp7 + tmp6
_tmp7 = tl.where(rmask & xmask, tmp8, _tmp7)
tmp7 = tl.sum(_tmp7, 1)[:, None]
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_per_fused_linalg_vector_norm_6(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_div_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x1 = xindex // 32768
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr1 + x2 // 2048, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last')
tmp2 = 1e-12
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 / tmp3
tmp6 = triton_helpers.maximum(tmp5, tmp2)
tmp7 = tmp4 / tmp6
tl.store(out_ptr0 + x2, tmp7, None)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 2048, 64, 64), (8388608, 4096, 64, 1))
assert_size_stride(primals_2, (16, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (16, 2048), (2048, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
get_raw_stream(0)
triton_red_fused_linalg_vector_norm_0[grid(16384)](primals_1, buf0,
16384, 2048, XBLOCK=64, RBLOCK=64, num_warps=16, num_stages=1)
buf1 = empty_strided_cuda((4, 2048, 64, 64), (8388608, 1, 131072,
2048), torch.float32)
triton_poi_fused_div_1[grid(8192, 4096)](primals_1, buf0, buf1,
8192, 4096, XBLOCK=64, YBLOCK=64, num_warps=8, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 64, 64), (65536, 1, 1024, 16))
buf3 = buf2
del buf2
buf4 = reinterpret_tensor(buf0, (4, 1, 4096), (4096, 4096, 1), 0)
del buf0
buf5 = empty_strided_cuda((4, 1, 4096), (4096, 4096, 1), torch.float32)
triton_per_fused__softmax_convolution_2[grid(16384)](buf3,
primals_3, buf4, buf5, 16384, 16, XBLOCK=32, num_warps=4,
num_stages=1)
del primals_3
buf6 = empty_strided_cuda((4, 16, 2048), (32768, 2048, 1), torch.
float32)
triton_red_fused_mul_sub_sum_3[grid(131072)](buf1, primals_4, buf3,
buf4, buf5, buf6, 131072, 4096, XBLOCK=64, RBLOCK=4, num_warps=
8, num_stages=1)
buf7 = empty_strided_cuda((4, 16, 1), (16, 1, 64), torch.float32)
buf8 = reinterpret_tensor(buf7, (4, 16, 1), (16, 1, 1), 0)
del buf7
triton_red_fused_linalg_vector_norm_4[grid(64)](buf8, buf6, 64,
2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
buf9 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
triton_red_fused_linalg_vector_norm_5[grid(16)](buf6, buf8, buf9,
16, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
buf10 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf11 = reinterpret_tensor(buf10, (4, 1), (1, 1), 0)
del buf10
triton_per_fused_linalg_vector_norm_6[grid(4)](buf11, buf9, 4, 4,
XBLOCK=1, num_warps=2, num_stages=1)
del buf9
buf12 = empty_strided_cuda((4, 32768), (32768, 1), torch.float32)
triton_poi_fused_div_7[grid(131072)](buf6, buf8, buf11, buf12,
131072, XBLOCK=512, num_warps=8, num_stages=1)
return (buf12, primals_2, primals_4, buf1, buf3, buf4, buf5, buf6, buf8,
buf11)
class NetVLADNew(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=16, dim=2048, alpha=30.0,
normalize_input=True):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
alpha : float
Parameter of initialization. Larger value is harder assignment.
normalize_input : bool
If true, descriptor-wise L2 normalization is applied to input.
"""
super(NetVLADNew, self).__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = alpha
self.normalize_input = normalize_input
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=True)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
self._init_params()
def _init_params(self):
self.conv.weight = nn.Parameter((2.0 * self.alpha * self.centroids)
.unsqueeze(-1).unsqueeze(-1))
self.conv.bias = nn.Parameter(-self.alpha * self.centroids.norm(dim=1))
def forward(self, input_0):
primals_4 = self.centroids
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| fede-vaccaro/cnnimageretrieval-pytorch | NetVLAD | false | 12,656 | [
"MIT"
]
| 0 | 56bf4ee865e9769801819943f75fff207f0c2f00 | https://github.com/fede-vaccaro/cnnimageretrieval-pytorch/tree/56bf4ee865e9769801819943f75fff207f0c2f00 |
Conv1dWeightNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/vw/cvwzmrf7u7j4rr5x5bjsxorzvl7rkn2io72j5uk3mjnapf4ukldf.py
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
# Source node to ATen node mapping:
# _weight_norm => div, mul, pow_1, pow_2, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1, 2], True), kwargs = {})
# %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
triton_per_fused__weight_norm_interface_0 = async_compile.triton('triton_per_fused__weight_norm_interface_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__weight_norm_interface_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = libdevice.sqrt(tmp5)
tmp8 = tmp7 / tmp6
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
tl.store(out_ptr0 + (r1 + (16*x0)), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/sr/csrhsrdic5iyy4yxrz5ceuduwhllrnbrs3ear4tfocob4nmhl4ke.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %mul, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1), (1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0); del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
stream0 = get_raw_stream(0)
triton_per_fused__weight_norm_interface_0.run(buf1, primals_2, primals_1, buf2, 4, 16, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_4, (1, 4, 4), (16, 4, 1), 0), buf2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf3, (1, 4, 1), (4, 1, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf4, primals_3, 4, grid=grid(4), stream=stream0)
del primals_3
return (reinterpret_tensor(buf4, (4, 1), (1, 1), 0), buf2, primals_1, primals_2, buf1, buf2, reinterpret_tensor(primals_4, (1, 4, 4), (16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Conv1dWeightNorm(nn.Module):
"""
Conv1d with weight normalization
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv1dWeightNorm, self).__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=
groups, bias=bias)
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.conv.weight, mean=0.0, std=0.05)
if self.conv.bias is not None:
nn.init.constant_(self.conv.bias, 0)
self.conv = nn.utils.weight_norm(self.conv)
def init(self, x, init_scale=1.0):
with torch.no_grad():
out = self(x)
n_channels = out.size(1)
out = out.transpose(0, 1).contiguous().view(n_channels, -1)
mean = out.mean(dim=1)
std = out.std(dim=1)
inv_stdv = init_scale / (std + 1e-06)
self.conv.weight_g.mul_(inv_stdv.view(n_channels, 1, 1))
if self.conv.bias is not None:
self.conv.bias.add_(-mean).mul_(inv_stdv)
return self(x)
def forward(self, input):
return self.conv(input)
def extra_repr(self):
return self.conv.extra_repr()
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = libdevice.sqrt(tmp5)
tmp8 = tmp7 / tmp6
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr0 + (r1 + 16 * x0), tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1), (1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0)
del buf0
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__weight_norm_interface_0[grid(4)](buf1, primals_2,
primals_1, buf2, 4, 16, XBLOCK=1, num_warps=2, num_stages=1)
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_4, (1,
4, 4), (16, 4, 1), 0), buf2, stride=(1,), padding=(0,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf3, (1, 4, 1), (4, 1, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_1[grid(4)](buf4, primals_3, 4, XBLOCK=
4, num_warps=1, num_stages=1)
del primals_3
return reinterpret_tensor(buf4, (4, 1), (1, 1), 0
), buf2, primals_1, primals_2, buf1, buf2, reinterpret_tensor(primals_4
, (1, 4, 4), (16, 4, 1), 0)
class Conv1dWeightNormNew(nn.Module):
"""
Conv1d with weight normalization
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv1dWeightNormNew, self).__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=
groups, bias=bias)
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.conv.weight, mean=0.0, std=0.05)
if self.conv.bias is not None:
nn.init.constant_(self.conv.bias, 0)
self.conv = nn.utils.weight_norm(self.conv)
def init(self, x, init_scale=1.0):
with torch.no_grad():
out = self(x)
n_channels = out.size(1)
out = out.transpose(0, 1).contiguous().view(n_channels, -1)
mean = out.mean(dim=1)
std = out.std(dim=1)
inv_stdv = init_scale / (std + 1e-06)
self.conv.weight_g.mul_(inv_stdv.view(n_channels, 1, 1))
if self.conv.bias is not None:
self.conv.bias.add_(-mean).mul_(inv_stdv)
return self(x)
def extra_repr(self):
return self.conv.extra_repr()
def forward(self, input_0):
primals_3 = self.conv.bias
primals_1 = self.conv.weight_g
primals_2 = self.conv.weight_v
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| juheeuu/flowseq | Conv1dWeightNorm | false | 12,657 | [
"Apache-2.0"
]
| 0 | e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb | https://github.com/juheeuu/flowseq/tree/e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb |
Scaler | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/zb/czbpxgc7coll2fuutovx35jzbugs5g2f5fy4pos333z2gsojlifu.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.sub, aten.mul]
# Source node to ATen node mapping:
# x => sub
# x_1 => mul
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg2_1), kwargs = {})
triton_poi_fused_mul_sub_0 = async_compile.triton('triton_poi_fused_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + (0))
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp3 = tmp0 - tmp2
tmp6 = tmp3 * tmp5
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (1, ), (1, ))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.sub, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sub_0.run(arg1_1, arg0_1, arg2_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from abc import ABC
class BaseOperator(ABC):
"""
Abstract class defining the basic structure for operator implementations in Hummingbird.
"""
def __init__(self, regression=False, classification=False, transformer=
False, anomaly_detection=False, **kwargs):
super().__init__()
self.regression = regression
self.classification = classification
self.transformer = transformer
self.anomaly_detection = anomaly_detection
class Scaler(BaseOperator, torch.nn.Module):
"""
Class implementing Scaler operators in PyTorch. Supported normalizers are L1, L2 and Max.
"""
def __init__(self, offset, scale, device):
super(Scaler, self).__init__(transformer=True)
self.offset = offset
self.scale = scale
if offset is not None:
self.offset = torch.nn.Parameter(torch.FloatTensor([offset]),
requires_grad=False)
if scale is not None:
self.scale = torch.nn.Parameter(torch.FloatTensor([scale]),
requires_grad=False)
def forward(self, x):
if self.offset is not None:
x = x - self.offset
if self.scale is not None:
x = x * self.scale
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'offset': 4, 'scale': 1.0, 'device': 0}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from abc import ABC
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + 0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp3 = tmp0 - tmp2
tmp6 = tmp3 * tmp5
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (1,), (1,))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sub_0[grid(256)](arg1_1, arg0_1, arg2_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf0,
class BaseOperator(ABC):
"""
Abstract class defining the basic structure for operator implementations in Hummingbird.
"""
def __init__(self, regression=False, classification=False, transformer=
False, anomaly_detection=False, **kwargs):
super().__init__()
self.regression = regression
self.classification = classification
self.transformer = transformer
self.anomaly_detection = anomaly_detection
class ScalerNew(BaseOperator, torch.nn.Module):
"""
Class implementing Scaler operators in PyTorch. Supported normalizers are L1, L2 and Max.
"""
def __init__(self, offset, scale, device):
super(ScalerNew, self).__init__(transformer=True)
self.offset = offset
self.scale = scale
if offset is not None:
self.offset = torch.nn.Parameter(torch.FloatTensor([offset]),
requires_grad=False)
if scale is not None:
self.scale = torch.nn.Parameter(torch.FloatTensor([scale]),
requires_grad=False)
def forward(self, input_0):
arg0_1 = self.offset
arg2_1 = self.scale
arg1_1 = input_0
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| kernc/hummingbird | Scaler | false | 12,658 | [
"MIT"
]
| 0 | 8c9d5b1f19054d521b22ad7fcffa8ee10e405ac3 | https://github.com/kernc/hummingbird/tree/8c9d5b1f19054d521b22ad7fcffa8ee10e405ac3 |
ConConv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ie/ciettq2a3562jfpgfe75iig4ki2hbm6pmbwujlvp6mw26i2odufm.py
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py
# Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x1_1 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
del primals_1
del primals_2
# Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_4, 256, grid=grid(256), stream=stream0)
del primals_4
return (buf2, primals_3, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8, 1, 1), (8, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ConConv(nn.Module):
def __init__(self, inplanes_x1, inplanes_x2, planes):
super(ConConv, self).__init__()
self.conv = nn.Conv2d(inplanes_x1 + inplanes_x2, planes,
kernel_size=1, bias=True)
def forward(self, x1, x2):
x1 = torch.cat([x2, x1], dim=1)
x1 = self.conv(x1)
return x1
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inplanes_x1': 4, 'inplanes_x2': 4, 'planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(256)](buf2, primals_4, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
return buf2, primals_3, buf0
class ConConvNew(nn.Module):
def __init__(self, inplanes_x1, inplanes_x2, planes):
super(ConConvNew, self).__init__()
self.conv = nn.Conv2d(inplanes_x1 + inplanes_x2, planes,
kernel_size=1, bias=True)
def forward(self, input_0, input_1):
primals_3 = self.conv.weight
primals_4 = self.conv.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| karoly-hars/DE_hybrid_CNN | ConConv | false | 12,659 | [
"BSD-3-Clause"
]
| 0 | d74ba4291d6db335151d5262ab96e8e3806a7587 | https://github.com/karoly-hars/DE_hybrid_CNN/tree/d74ba4291d6db335151d5262ab96e8e3806a7587 |
Net_mish_ranger | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/nt/cnt242zndfm3n4oylofk2hfby6qwsvn3dgogtgqskjur3zjntaph.py
# Topologically Sorted Source Nodes: [softplus, tanh, x], Original ATen: [aten.softplus, aten.tanh, aten.mul]
# Source node to ATen node mapping:
# softplus => exp, gt, log1p, where
# tanh => tanh
# x => mul
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%view_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 20), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %log1p), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%where,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %tanh), kwargs = {})
triton_poi_fused_mul_softplus_tanh_0 = async_compile.triton('triton_poi_fused_mul_softplus_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_softplus_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_softplus_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = libdevice.tanh(tmp5)
tmp7 = tmp0 * tmp6
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softplus, tanh, x], Original ATen: [aten.softplus, aten.tanh, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_softplus_tanh_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softplus_1, tanh_1, x_1], Original ATen: [aten.softplus, aten.tanh, aten.mul]
triton_poi_fused_mul_softplus_tanh_0.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softplus_2, tanh_2, x_2], Original ATen: [aten.softplus, aten.tanh, aten.mul]
triton_poi_fused_mul_softplus_tanh_0.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_9
return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf2, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
def mish(x):
return x * torch.tanh(F.softplus(x))
class Net_mish_ranger(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net_mish_ranger, self).__init__()
self.hidden1 = torch.nn.Linear(n_feature, n_hidden)
self.hidden2 = torch.nn.Linear(n_hidden, n_hidden)
self.hidden3 = torch.nn.Linear(n_hidden, n_output)
self.predict = torch.nn.Linear(n_output, n_output)
def forward(self, x):
x = mish(self.hidden1(x))
x = mish(self.hidden2(x))
x = mish(self.hidden3(x))
x = self.predict(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_feature': 4, 'n_hidden': 4, 'n_output': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_softplus_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = libdevice.tanh(tmp5)
tmp7 = tmp0 * tmp6
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_softplus_tanh_0[grid(256)](buf0, buf1, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_softplus_tanh_0[grid(256)](buf2, buf3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_softplus_tanh_0[grid(256)](buf4, buf5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf6)
del primals_9
return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0
), buf2, reinterpret_tensor(buf3, (64, 4), (4, 1), 0
), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0
), primals_8, primals_6, primals_4
def mish(x):
return x * torch.tanh(F.softplus(x))
class Net_mish_rangerNew(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net_mish_rangerNew, self).__init__()
self.hidden1 = torch.nn.Linear(n_feature, n_hidden)
self.hidden2 = torch.nn.Linear(n_hidden, n_hidden)
self.hidden3 = torch.nn.Linear(n_hidden, n_output)
self.predict = torch.nn.Linear(n_output, n_output)
def forward(self, input_0):
primals_1 = self.hidden1.weight
primals_2 = self.hidden1.bias
primals_4 = self.hidden2.weight
primals_5 = self.hidden2.bias
primals_6 = self.hidden3.weight
primals_7 = self.hidden3.bias
primals_8 = self.predict.weight
primals_9 = self.predict.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| kartheikiyer/dense_basis_toolbelt | Net_mish_ranger | false | 12,660 | [
"MIT"
]
| 0 | 5cae6e8f4ea6983fba3625f47413d40d6b3bc6e4 | https://github.com/kartheikiyer/dense_basis_toolbelt/tree/5cae6e8f4ea6983fba3625f47413d40d6b3bc6e4 |
SELoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ik/cikb25u5x5667mb6rnbleob7teijkbt54zawgiyjor4rhenfpsjm.py
# Topologically Sorted Source Nodes: [mse_loss, sum_1], Original ATen: [aten.mse_loss, aten.sum]
# Source node to ATen node mapping:
# mse_loss => pow_1, sub
# sum_1 => sum_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {})
triton_poi_fused_mse_loss_sum_0 = async_compile.triton('triton_poi_fused_mse_loss_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mse_loss_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mse_loss_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask)
tmp4 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask)
tmp9 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp10 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask)
tmp14 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp15 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tl.store(out_ptr0 + (x2), tmp18, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mse_loss, sum_1], Original ATen: [aten.mse_loss, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_mse_loss_sum_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from torch import nn
class SELoss(nn.MSELoss):
def __init__(self):
super().__init__(reduction='none')
def forward(self, inputs: 'Tensor', target: 'Tensor') ->Tensor:
return super().forward(inputs, target).sum(1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mse_loss_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask)
tmp4 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask)
tmp9 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp10 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask)
tmp14 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp15 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tl.store(out_ptr0 + x2, tmp18, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mse_loss_sum_0[grid(64)](arg1_1, arg0_1, buf0, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SELossNew(nn.MSELoss):
def __init__(self):
super().__init__(reduction='none')
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| kfirgedal/lightning-bolts | SELoss | false | 12,661 | [
"Apache-2.0"
]
| 0 | cbb8b6c21ca1de757d0f289fb840d59a3b6a10f5 | https://github.com/kfirgedal/lightning-bolts/tree/cbb8b6c21ca1de757d0f289fb840d59a3b6a10f5 |
BPR | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/uk/cukg7ikh2js3f5lgwuhamf4rclidekibnzzkn54t6vyfir6hcsao.py
# Topologically Sorted Source Nodes: [u, i, j, mul, x_ui, mul_1, x_uj, x_uij, log_sigmoid, log_prob, norm, pow_1, sum_4, norm_1, pow_2, sum_5, add, norm_2, pow_3, sum_6, add_1, regularization, neg, add_2], Original ATen: [aten.index, aten.mul, aten.sum, aten.sub, aten.log_sigmoid_forward, aten.linalg_vector_norm, aten.pow, aten.add, aten.neg]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# i => index_1
# j => index_2
# log_prob => sum_3
# log_sigmoid => abs_1, exp, full_default, log1p, minimum, neg, sub_1
# mul => mul
# mul_1 => mul_1
# neg => neg_1
# norm => pow_1, pow_2, sum_4
# norm_1 => pow_4, pow_5, sum_6
# norm_2 => pow_7, pow_8, sum_8
# pow_1 => pow_3
# pow_2 => pow_6
# pow_3 => pow_9
# regularization => mul_2
# sum_4 => sum_5
# sum_5 => sum_7
# sum_6 => sum_9
# u => index
# x_ui => sum_1
# x_uij => sub
# x_uj => sum_2
# Graph fragment:
# %index : [num_users=3] = call_function[target=torch.ops.aten.index.Tensor](args = (%primals_1, [%primals_2]), kwargs = {})
# %index_1 : [num_users=2] = call_function[target=torch.ops.aten.index.Tensor](args = (%primals_3, [%primals_4]), kwargs = {})
# %index_2 : [num_users=2] = call_function[target=torch.ops.aten.index.Tensor](args = (%primals_3, [%primals_5]), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %index_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %index_2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %sum_2), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %sub), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_1,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%index, 2), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 0.5), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_2, 2), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_3,), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%index_1, 2), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_4, [1]), kwargs = {})
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_6, 0.5), kwargs = {})
# %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_5, 2), kwargs = {})
# %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_6,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_5, %sum_7), kwargs = {})
# %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%index_2, 2), kwargs = {})
# %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_7, [1]), kwargs = {})
# %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_8, 0.5), kwargs = {})
# %pow_9 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_8, 2), kwargs = {})
# %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_9,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %sum_9), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 4), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_3,), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg_1, %mul_2), kwargs = {})
triton_per_fused_add_index_linalg_vector_norm_log_sigmoid_forward_mul_neg_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_index_linalg_vector_norm_log_sigmoid_forward_mul_neg_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: '*i64', 4: '*fp32', 5: '*i64', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {6: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=(6,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_index_linalg_vector_norm_log_sigmoid_forward_mul_neg_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_index_linalg_vector_norm_log_sigmoid_forward_mul_neg_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp7 = tl.load(in_ptr2 + (r0), None)
tmp26 = tl.load(in_ptr4 + (r0), None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (4*tmp4), None, eviction_policy='evict_last')
tmp8 = tmp7 + tmp1
tmp9 = tmp7 < 0
tmp10 = tl.where(tmp9, tmp8, tmp7)
tl.device_assert((0 <= tmp10) & (tmp10 < 4), "index out of bounds: 0 <= tmp10 < 4")
tmp12 = tl.load(in_ptr3 + (4*tmp10), None, eviction_policy='evict_last')
tmp13 = tmp6 * tmp12
tmp14 = tl.load(in_ptr1 + (1 + (4*tmp4)), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr3 + (1 + (4*tmp10)), None, eviction_policy='evict_last')
tmp16 = tmp14 * tmp15
tmp17 = tmp13 + tmp16
tmp18 = tl.load(in_ptr1 + (2 + (4*tmp4)), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr3 + (2 + (4*tmp10)), None, eviction_policy='evict_last')
tmp20 = tmp18 * tmp19
tmp21 = tmp17 + tmp20
tmp22 = tl.load(in_ptr1 + (3 + (4*tmp4)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr3 + (3 + (4*tmp10)), None, eviction_policy='evict_last')
tmp24 = tmp22 * tmp23
tmp25 = tmp21 + tmp24
tmp27 = tmp26 + tmp1
tmp28 = tmp26 < 0
tmp29 = tl.where(tmp28, tmp27, tmp26)
tl.device_assert((0 <= tmp29) & (tmp29 < 4), "index out of bounds: 0 <= tmp29 < 4")
tmp31 = tl.load(in_ptr3 + (4*tmp29), None, eviction_policy='evict_last')
tmp32 = tmp6 * tmp31
tmp33 = tl.load(in_ptr3 + (1 + (4*tmp29)), None, eviction_policy='evict_last')
tmp34 = tmp14 * tmp33
tmp35 = tmp32 + tmp34
tmp36 = tl.load(in_ptr3 + (2 + (4*tmp29)), None, eviction_policy='evict_last')
tmp37 = tmp18 * tmp36
tmp38 = tmp35 + tmp37
tmp39 = tl.load(in_ptr3 + (3 + (4*tmp29)), None, eviction_policy='evict_last')
tmp40 = tmp22 * tmp39
tmp41 = tmp38 + tmp40
tmp42 = tmp6 * tmp6
tmp43 = tmp14 * tmp14
tmp44 = tmp42 + tmp43
tmp45 = tmp18 * tmp18
tmp46 = tmp44 + tmp45
tmp47 = tmp22 * tmp22
tmp48 = tmp46 + tmp47
tmp49 = libdevice.sqrt(tmp48)
tmp50 = tmp49 * tmp49
tmp51 = tl.broadcast_to(tmp50, [XBLOCK, RBLOCK])
tmp53 = tl.sum(tmp51, 1)[:, None]
tmp54 = tmp12 * tmp12
tmp55 = tmp15 * tmp15
tmp56 = tmp54 + tmp55
tmp57 = tmp19 * tmp19
tmp58 = tmp56 + tmp57
tmp59 = tmp23 * tmp23
tmp60 = tmp58 + tmp59
tmp61 = libdevice.sqrt(tmp60)
tmp62 = tmp61 * tmp61
tmp63 = tl.broadcast_to(tmp62, [XBLOCK, RBLOCK])
tmp65 = tl.sum(tmp63, 1)[:, None]
tmp66 = tmp31 * tmp31
tmp67 = tmp33 * tmp33
tmp68 = tmp66 + tmp67
tmp69 = tmp36 * tmp36
tmp70 = tmp68 + tmp69
tmp71 = tmp39 * tmp39
tmp72 = tmp70 + tmp71
tmp73 = libdevice.sqrt(tmp72)
tmp74 = tmp73 * tmp73
tmp75 = tl.broadcast_to(tmp74, [XBLOCK, RBLOCK])
tmp77 = tl.sum(tmp75, 1)[:, None]
tmp78 = tmp25 - tmp41
tmp79 = 0.0
tmp80 = triton_helpers.minimum(tmp79, tmp78)
tmp81 = tl_math.abs(tmp78)
tmp82 = -tmp81
tmp83 = tl_math.exp(tmp82)
tmp84 = libdevice.log1p(tmp83)
tmp85 = tmp80 - tmp84
tmp86 = tl.broadcast_to(tmp85, [XBLOCK, RBLOCK])
tmp88 = tl.sum(tmp86, 1)[:, None]
tmp89 = -tmp88
tmp90 = tmp53 + tmp65
tmp91 = tmp90 + tmp77
tmp92 = 4.0
tmp93 = tmp91 * tmp92
tmp94 = tmp89 + tmp93
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp94, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf6 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [u, i, j, mul, x_ui, mul_1, x_uj, x_uij, log_sigmoid, log_prob, norm, pow_1, sum_4, norm_1, pow_2, sum_5, add, norm_2, pow_3, sum_6, add_1, regularization, neg, add_2], Original ATen: [aten.index, aten.mul, aten.sum, aten.sub, aten.log_sigmoid_forward, aten.linalg_vector_norm, aten.pow, aten.add, aten.neg]
stream0 = get_raw_stream(0)
triton_per_fused_add_index_linalg_vector_norm_log_sigmoid_forward_mul_neg_pow_sub_sum_0.run(buf6, primals_2, primals_1, primals_4, primals_3, primals_5, 1, 4, grid=grid(1), stream=stream0)
return (buf6, primals_1, primals_2, primals_3, primals_4, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class BPR(nn.Module):
def __init__(self, user_size, item_size, dim, weight_decay):
super().__init__()
self.W = nn.Parameter(torch.empty(user_size, dim))
None
self.H = nn.Parameter(torch.empty(item_size, dim))
None
nn.init.xavier_normal_(self.W.data)
nn.init.xavier_normal_(self.H.data)
self.weight_decay = weight_decay
def forward(self, u, i, j):
"""Return loss value.
Args:
u(torch.LongTensor): tensor stored user indexes. [batch_size,]
i(torch.LongTensor): tensor stored item indexes which is prefered by user. [batch_size,]
j(torch.LongTensor): tensor stored item indexes which is not prefered by user. [batch_size,]
Returns:
torch.FloatTensor
"""
u = self.W[u, :]
i = self.H[i, :]
j = self.H[j, :]
x_ui = torch.mul(u, i).sum(dim=1)
x_uj = torch.mul(u, j).sum(dim=1)
x_uij = x_ui - x_uj
log_prob = F.logsigmoid(x_uij).sum()
regularization = self.weight_decay * (u.norm(dim=1).pow(2).sum() +
i.norm(dim=1).pow(2).sum() + j.norm(dim=1).pow(2).sum())
return -log_prob + regularization
def recommend(self, u):
"""Return recommended item list given users.
Args:
u(torch.LongTensor): tensor stored user indexes. [batch_size,]
Returns:
pred(torch.LongTensor): recommended item list sorted by preference. [batch_size, item_size]
"""
u = self.W[u, :]
x_ui = torch.mm(u, self.H.t())
pred = torch.argsort(x_ui, dim=1)
return pred
def get_inputs():
return [torch.ones([4], dtype=torch.int64), torch.ones([4], dtype=torch
.int64), torch.ones([4], dtype=torch.int64)]
def get_init_inputs():
return [[], {'user_size': 4, 'item_size': 4, 'dim': 4, 'weight_decay': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_index_linalg_vector_norm_log_sigmoid_forward_mul_neg_pow_sub_sum_0(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp7 = tl.load(in_ptr2 + r0, None)
tmp26 = tl.load(in_ptr4 + r0, None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4),
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + 4 * tmp4, None, eviction_policy='evict_last')
tmp8 = tmp7 + tmp1
tmp9 = tmp7 < 0
tmp10 = tl.where(tmp9, tmp8, tmp7)
tl.device_assert((0 <= tmp10) & (tmp10 < 4),
'index out of bounds: 0 <= tmp10 < 4')
tmp12 = tl.load(in_ptr3 + 4 * tmp10, None, eviction_policy='evict_last')
tmp13 = tmp6 * tmp12
tmp14 = tl.load(in_ptr1 + (1 + 4 * tmp4), None, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr3 + (1 + 4 * tmp10), None, eviction_policy=
'evict_last')
tmp16 = tmp14 * tmp15
tmp17 = tmp13 + tmp16
tmp18 = tl.load(in_ptr1 + (2 + 4 * tmp4), None, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr3 + (2 + 4 * tmp10), None, eviction_policy=
'evict_last')
tmp20 = tmp18 * tmp19
tmp21 = tmp17 + tmp20
tmp22 = tl.load(in_ptr1 + (3 + 4 * tmp4), None, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr3 + (3 + 4 * tmp10), None, eviction_policy=
'evict_last')
tmp24 = tmp22 * tmp23
tmp25 = tmp21 + tmp24
tmp27 = tmp26 + tmp1
tmp28 = tmp26 < 0
tmp29 = tl.where(tmp28, tmp27, tmp26)
tl.device_assert((0 <= tmp29) & (tmp29 < 4),
'index out of bounds: 0 <= tmp29 < 4')
tmp31 = tl.load(in_ptr3 + 4 * tmp29, None, eviction_policy='evict_last')
tmp32 = tmp6 * tmp31
tmp33 = tl.load(in_ptr3 + (1 + 4 * tmp29), None, eviction_policy=
'evict_last')
tmp34 = tmp14 * tmp33
tmp35 = tmp32 + tmp34
tmp36 = tl.load(in_ptr3 + (2 + 4 * tmp29), None, eviction_policy=
'evict_last')
tmp37 = tmp18 * tmp36
tmp38 = tmp35 + tmp37
tmp39 = tl.load(in_ptr3 + (3 + 4 * tmp29), None, eviction_policy=
'evict_last')
tmp40 = tmp22 * tmp39
tmp41 = tmp38 + tmp40
tmp42 = tmp6 * tmp6
tmp43 = tmp14 * tmp14
tmp44 = tmp42 + tmp43
tmp45 = tmp18 * tmp18
tmp46 = tmp44 + tmp45
tmp47 = tmp22 * tmp22
tmp48 = tmp46 + tmp47
tmp49 = libdevice.sqrt(tmp48)
tmp50 = tmp49 * tmp49
tmp51 = tl.broadcast_to(tmp50, [XBLOCK, RBLOCK])
tmp53 = tl.sum(tmp51, 1)[:, None]
tmp54 = tmp12 * tmp12
tmp55 = tmp15 * tmp15
tmp56 = tmp54 + tmp55
tmp57 = tmp19 * tmp19
tmp58 = tmp56 + tmp57
tmp59 = tmp23 * tmp23
tmp60 = tmp58 + tmp59
tmp61 = libdevice.sqrt(tmp60)
tmp62 = tmp61 * tmp61
tmp63 = tl.broadcast_to(tmp62, [XBLOCK, RBLOCK])
tmp65 = tl.sum(tmp63, 1)[:, None]
tmp66 = tmp31 * tmp31
tmp67 = tmp33 * tmp33
tmp68 = tmp66 + tmp67
tmp69 = tmp36 * tmp36
tmp70 = tmp68 + tmp69
tmp71 = tmp39 * tmp39
tmp72 = tmp70 + tmp71
tmp73 = libdevice.sqrt(tmp72)
tmp74 = tmp73 * tmp73
tmp75 = tl.broadcast_to(tmp74, [XBLOCK, RBLOCK])
tmp77 = tl.sum(tmp75, 1)[:, None]
tmp78 = tmp25 - tmp41
tmp79 = 0.0
tmp80 = triton_helpers.minimum(tmp79, tmp78)
tmp81 = tl_math.abs(tmp78)
tmp82 = -tmp81
tmp83 = tl_math.exp(tmp82)
tmp84 = libdevice.log1p(tmp83)
tmp85 = tmp80 - tmp84
tmp86 = tl.broadcast_to(tmp85, [XBLOCK, RBLOCK])
tmp88 = tl.sum(tmp86, 1)[:, None]
tmp89 = -tmp88
tmp90 = tmp53 + tmp65
tmp91 = tmp90 + tmp77
tmp92 = 4.0
tmp93 = tmp91 * tmp92
tmp94 = tmp89 + tmp93
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp94, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf6 = buf2
del buf2
get_raw_stream(0)
triton_per_fused_add_index_linalg_vector_norm_log_sigmoid_forward_mul_neg_pow_sub_sum_0[
grid(1)](buf6, primals_2, primals_1, primals_4, primals_3,
primals_5, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
return buf6, primals_1, primals_2, primals_3, primals_4, primals_5
class BPRNew(nn.Module):
def __init__(self, user_size, item_size, dim, weight_decay):
super().__init__()
self.W = nn.Parameter(torch.empty(user_size, dim))
None
self.H = nn.Parameter(torch.empty(item_size, dim))
None
nn.init.xavier_normal_(self.W.data)
nn.init.xavier_normal_(self.H.data)
self.weight_decay = weight_decay
def recommend(self, u):
"""Return recommended item list given users.
Args:
u(torch.LongTensor): tensor stored user indexes. [batch_size,]
Returns:
pred(torch.LongTensor): recommended item list sorted by preference. [batch_size, item_size]
"""
u = self.W[u, :]
x_ui = torch.mm(u, self.H.t())
pred = torch.argsort(x_ui, dim=1)
return pred
def forward(self, input_0, input_1, input_2):
primals_1 = self.W
primals_3 = self.H
primals_2 = input_0
primals_4 = input_1
primals_5 = input_2
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| kerengaiger/bpr | BPR | false | 12,662 | [
"MIT"
]
| 0 | 66bfa57469a9c70ba5b9158fde5210abe1bd8d7b | https://github.com/kerengaiger/bpr/tree/66bfa57469a9c70ba5b9158fde5210abe1bd8d7b |
SimulatorReward | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/5j/c5ji4mfxenghd3ccczky5osir42aijmeisydrv7ufxv2edv4ktf6.py
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/l5/cl567j2pbsgcv6nt7ux6tlu6b7q2zlzodpyhx5vc6sfgkf4lnrcu.py
# Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_2 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/om/comxhxljgusfvchwfatyy3zlyu63ectx7cc43vhpq4slnbeelc4a.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_3 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/hx/chxm27gfgqrmlk4dtntfyb4eusceejl3zp6b5gugzys3ftbpi4v5.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_5 => relu_2
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_9), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_3 = async_compile.triton('triton_poi_fused_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/5d/c5dvgve24hbvrdcz5w4qrfj4r34h3se3x2w5fculeyheewlhp45h.py
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_6 => relu_3
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 100
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/3y/c3yxwuwmqvwyaal5sg5yv4hb66vvtdtpd7juzykvfeirynnm6y36.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 3)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (3*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (3*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (3*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp0 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp1 - tmp5
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp2 - tmp5
tmp11 = tl_math.exp(tmp10)
tmp12 = tmp9 + tmp11
tmp13 = tmp4 - tmp5
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp12 + tmp14
tmp16 = tmp7 / tmp15
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (16, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_7, (32, ), (1, ))
assert_size_stride(primals_8, (200, 512), (512, 1))
assert_size_stride(primals_9, (200, ), (1, ))
assert_size_stride(primals_10, (100, 200), (200, 1))
assert_size_stride(primals_11, (100, ), (1, ))
assert_size_stride(primals_12, (3, 100), (100, 1))
assert_size_stride(primals_13, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 512, grid=grid(512), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 4, 4), (256, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 1024, grid=grid(1024), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 4, 4), (512, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_7, 2048, grid=grid(2048), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (4, 512), (512, 1), 0), reinterpret_tensor(primals_8, (512, 200), (1, 512), 0), out=buf6)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu]
triton_poi_fused_relu_3.run(buf7, primals_9, 800, grid=grid(800), stream=stream0)
del primals_9
buf8 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf7, reinterpret_tensor(primals_10, (200, 100), (1, 200), 0), out=buf8)
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu]
triton_poi_fused_relu_4.run(buf9, primals_11, 400, grid=grid(400), stream=stream0)
del primals_11
buf10 = empty_strided_cuda((4, 3), (3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_13, buf9, reinterpret_tensor(primals_12, (100, 3), (1, 100), 0), alpha=1, beta=1, out=buf10)
del primals_13
buf11 = empty_strided_cuda((4, 3), (3, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_5.run(buf10, buf11, 12, grid=grid(12), stream=stream0)
del buf10
return (buf11, primals_2, primals_4, primals_6, primals_1, buf1, buf3, reinterpret_tensor(buf5, (4, 512), (512, 1), 0), buf7, buf9, buf11, primals_12, primals_10, primals_8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((200, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((100, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((3, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class SimulatorReward(torch.nn.Module):
def __init__(self):
super(SimulatorReward, self).__init__()
self.conv1 = torch.nn.Conv2d(4, 8, kernel_size=3, padding=1)
self.conv2 = torch.nn.Conv2d(8, 16, kernel_size=3, padding=1)
self.conv3 = torch.nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.fc1 = torch.nn.Linear(512, 200)
self.fc2 = torch.nn.Linear(200, 100)
self.fc3 = torch.nn.Linear(100, 3)
def forward(self, x):
x = x.reshape(-1, 4, 4, 4)
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.conv3(x)
x = x.view(-1, 512)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.softmax(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 8
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 100
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 3
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 3 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 3 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 3 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp0 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp1 - tmp5
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp2 - tmp5
tmp11 = tl_math.exp(tmp10)
tmp12 = tmp9 + tmp11
tmp13 = tmp4 - tmp5
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp12 + tmp14
tmp16 = tmp7 / tmp15
tl.store(out_ptr0 + x2, tmp16, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (16, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_7, (32,), (1,))
assert_size_stride(primals_8, (200, 512), (512, 1))
assert_size_stride(primals_9, (200,), (1,))
assert_size_stride(primals_10, (100, 200), (200, 1))
assert_size_stride(primals_11, (100,), (1,))
assert_size_stride(primals_12, (3, 100), (100, 1))
assert_size_stride(primals_13, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(512)](buf1, primals_3, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 4, 4), (256, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(1024)](buf3, primals_5,
1024, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 4, 4), (512, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(2048)](buf5, primals_7, 2048,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (4, 512), (512, 1), 0),
reinterpret_tensor(primals_8, (512, 200), (1, 512), 0), out=buf6)
buf7 = buf6
del buf6
triton_poi_fused_relu_3[grid(800)](buf7, primals_9, 800, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_9
buf8 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
extern_kernels.mm(buf7, reinterpret_tensor(primals_10, (200, 100),
(1, 200), 0), out=buf8)
buf9 = buf8
del buf8
triton_poi_fused_relu_4[grid(400)](buf9, primals_11, 400, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_11
buf10 = empty_strided_cuda((4, 3), (3, 1), torch.float32)
extern_kernels.addmm(primals_13, buf9, reinterpret_tensor(
primals_12, (100, 3), (1, 100), 0), alpha=1, beta=1, out=buf10)
del primals_13
buf11 = empty_strided_cuda((4, 3), (3, 1), torch.float32)
triton_poi_fused__softmax_5[grid(12)](buf10, buf11, 12, XBLOCK=16,
num_warps=1, num_stages=1)
del buf10
return (buf11, primals_2, primals_4, primals_6, primals_1, buf1, buf3,
reinterpret_tensor(buf5, (4, 512), (512, 1), 0), buf7, buf9, buf11,
primals_12, primals_10, primals_8)
class SimulatorRewardNew(torch.nn.Module):
def __init__(self):
super(SimulatorRewardNew, self).__init__()
self.conv1 = torch.nn.Conv2d(4, 8, kernel_size=3, padding=1)
self.conv2 = torch.nn.Conv2d(8, 16, kernel_size=3, padding=1)
self.conv3 = torch.nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.fc1 = torch.nn.Linear(512, 200)
self.fc2 = torch.nn.Linear(200, 100)
self.fc3 = torch.nn.Linear(100, 3)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.fc1.weight
primals_9 = self.fc1.bias
primals_10 = self.fc2.weight
primals_11 = self.fc2.bias
primals_12 = self.fc3.weight
primals_13 = self.fc3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| karshtharyani/DeepReinforcementLearningInAction | SimulatorReward | false | 12,663 | [
"MIT"
]
| 0 | 9dc40a43b43f05daf9aecb7e3ec7592cf38720e5 | https://github.com/karshtharyani/DeepReinforcementLearningInAction/tree/9dc40a43b43f05daf9aecb7e3ec7592cf38720e5 |
UnpoolingAsConvolution | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ca/ccacj4wpx7z2m7f2urwr37plqbnkovuvco2er2l6bllg7a7ckqai.py
# Topologically Sorted Source Nodes: [padded_b], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# padded_b => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_3, [1, 1, 0, 1], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 5
x0 = xindex % 6
x2 = (xindex // 30)
x4 = xindex
tmp0 = x1
tmp1 = tl.full([1], 4, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = (-1) + x0
tmp4 = tl.full([1], 0, tl.int64)
tmp5 = tmp3 >= tmp4
tmp6 = tmp3 < tmp1
tmp7 = tmp2 & tmp5
tmp8 = tmp7 & tmp6
tmp9 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1) + (16*x2)), tmp8 & xmask, other=0.0)
tl.store(out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/zx/czx2juz5rjbhbiirukrz6d6kx7jco6dqgpkpvvc7m75kxtwkey4h.py
# Topologically Sorted Source Nodes: [padded_c], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# padded_c => constant_pad_nd_1
# Graph fragment:
# %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_3, [0, 1, 1, 1], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_1 = async_compile.triton('triton_poi_fused_constant_pad_nd_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 5) % 6
x0 = xindex % 5
x2 = (xindex // 30)
x3 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = x0
tmp6 = tmp5 < tmp3
tmp7 = tmp2 & tmp4
tmp8 = tmp7 & tmp6
tmp9 = tl.load(in_ptr0 + ((-4) + x0 + (4*x1) + (16*x2)), tmp8 & xmask, other=0.0)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/cd/ccd5s4fpd3lxf637fdxhtl6drfxl33ps3hjs7hw2ls5lojfpirc2.py
# Topologically Sorted Source Nodes: [padded_d], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# padded_d => constant_pad_nd_2
# Graph fragment:
# %constant_pad_nd_2 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_3, [0, 1, 0, 1], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_2 = async_compile.triton('triton_poi_fused_constant_pad_nd_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 5) % 5
x0 = xindex % 5
x2 = (xindex // 25)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 4, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = x0
tmp4 = tmp3 < tmp1
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp5 & xmask, other=0.0)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/7k/c7kzycclc2im22az3rwdu4aimn2tldhwgz27hjvwwhc2sfhyjnh2.py
# Topologically Sorted Source Nodes: [stacked_2], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# stacked_2 => cat_2
# Graph fragment:
# %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1], 4), kwargs = {})
triton_poi_fused_stack_3 = async_compile.triton('triton_poi_fused_stack_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2) % 4
x2 = (xindex // 8) % 8
x5 = (xindex // 64)
x3 = (xindex // 64) % 4
x6 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = x1 + (4*(x2 % 2))
tmp6 = tmp5 >= tmp1
tmp7 = tl.full([1], 4, tl.int64)
tmp8 = tmp5 < tmp7
tmp9 = tmp8 & tmp4
tmp10 = tl.load(in_ptr0 + ((4*(x2 // 2)) + (16*x5) + (x1 + (4*(x2 % 2)))), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr1 + (x3), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp9, tmp12, tmp13)
tmp15 = tmp5 >= tmp7
tmp16 = tl.full([1], 8, tl.int64)
tmp17 = tmp5 < tmp16
tmp18 = tmp15 & tmp4
tmp19 = tl.load(in_ptr2 + ((4*(x2 // 2)) + (16*x5) + ((-4) + x1 + (4*(x2 % 2)))), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr3 + (x3), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp18, tmp21, tmp22)
tmp24 = tl.where(tmp8, tmp14, tmp23)
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp4, tmp24, tmp25)
tmp27 = tmp0 >= tmp3
tmp28 = tl.full([1], 2, tl.int64)
tmp29 = tmp0 < tmp28
tmp30 = tmp8 & tmp27
tmp31 = tl.load(in_ptr4 + ((4*(x2 // 2)) + (16*x5) + (x1 + (4*(x2 % 2)))), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr5 + (x3), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp30, tmp33, tmp34)
tmp36 = tmp15 & tmp27
tmp37 = tl.load(in_ptr6 + ((4*(x2 // 2)) + (16*x5) + ((-4) + x1 + (4*(x2 % 2)))), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (x3), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp39 = tmp37 + tmp38
tmp40 = tl.full(tmp39.shape, 0.0, tmp39.dtype)
tmp41 = tl.where(tmp36, tmp39, tmp40)
tmp42 = tl.where(tmp8, tmp35, tmp41)
tmp43 = tl.full(tmp42.shape, 0.0, tmp42.dtype)
tmp44 = tl.where(tmp27, tmp42, tmp43)
tmp45 = tl.where(tmp4, tmp26, tmp44)
tl.store(out_ptr0 + (x6), tmp45, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 2, 3), (24, 6, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 3, 2), (24, 6, 2, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 2, 2), (16, 4, 2, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [output_a], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 5, 6), (120, 30, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [padded_b], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_3, buf1, 480, grid=grid(480), stream=stream0)
# Topologically Sorted Source Nodes: [output_b], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = empty_strided_cuda((4, 4, 6, 5), (120, 30, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [padded_c], Original ATen: [aten.constant_pad_nd]
triton_poi_fused_constant_pad_nd_1.run(primals_3, buf3, 480, grid=grid(480), stream=stream0)
# Topologically Sorted Source Nodes: [output_c], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [padded_d], Original ATen: [aten.constant_pad_nd]
triton_poi_fused_constant_pad_nd_2.run(primals_3, buf5, 400, grid=grid(400), stream=stream0)
# Topologically Sorted Source Nodes: [output_d], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 8, 4, 2), (256, 64, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [stacked_2], Original ATen: [aten.stack]
triton_poi_fused_stack_3.run(buf0, primals_2, buf2, primals_5, buf4, primals_7, buf6, primals_9, buf7, 1024, grid=grid(1024), stream=stream0)
del buf0
del buf2
del buf4
del buf6
del primals_2
del primals_5
del primals_7
del primals_9
return (reinterpret_tensor(buf7, (4, 4, 8, 8), (256, 64, 8, 1), 0), primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 2, 3), (24, 6, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 2), (24, 6, 2, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def get_incoming_shape(incoming):
size = incoming.size()
return [size[0], size[1], size[2], size[3]]
def interleave(tensors, axis):
old_shape = get_incoming_shape(tensors[0])[1:]
new_shape = [-1] + old_shape
new_shape[axis] *= len(tensors)
stacked = torch.stack(tensors, axis + 1)
reshaped = stacked.view(new_shape)
return reshaped
class UnpoolingAsConvolution(nn.Module):
def __init__(self, inplanes, planes):
super(UnpoolingAsConvolution, self).__init__()
self.conv_A = nn.Conv2d(in_channels=inplanes, out_channels=planes,
kernel_size=(3, 3), stride=1, padding=1)
self.conv_B = nn.Conv2d(in_channels=inplanes, out_channels=planes,
kernel_size=(2, 3), stride=1, padding=0)
self.conv_C = nn.Conv2d(in_channels=inplanes, out_channels=planes,
kernel_size=(3, 2), stride=1, padding=0)
self.conv_D = nn.Conv2d(in_channels=inplanes, out_channels=planes,
kernel_size=(2, 2), stride=1, padding=0)
def forward(self, x):
output_a = self.conv_A(x)
padded_b = nn.functional.pad(x, (1, 1, 0, 1))
output_b = self.conv_B(padded_b)
padded_c = nn.functional.pad(x, (0, 1, 1, 1))
output_c = self.conv_C(padded_c)
padded_d = nn.functional.pad(x, (0, 1, 0, 1))
output_d = self.conv_D(padded_d)
left = interleave([output_a, output_b], axis=2)
right = interleave([output_c, output_d], axis=2)
y = interleave([left, right], axis=3)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inplanes': 4, 'planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 5
x0 = xindex % 6
x2 = xindex // 30
x4 = xindex
tmp0 = x1
tmp1 = tl.full([1], 4, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = -1 + x0
tmp4 = tl.full([1], 0, tl.int64)
tmp5 = tmp3 >= tmp4
tmp6 = tmp3 < tmp1
tmp7 = tmp2 & tmp5
tmp8 = tmp7 & tmp6
tmp9 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1 + 16 * x2), tmp8 & xmask,
other=0.0)
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_constant_pad_nd_1(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 5 % 6
x0 = xindex % 5
x2 = xindex // 30
x3 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = x0
tmp6 = tmp5 < tmp3
tmp7 = tmp2 & tmp4
tmp8 = tmp7 & tmp6
tmp9 = tl.load(in_ptr0 + (-4 + x0 + 4 * x1 + 16 * x2), tmp8 & xmask,
other=0.0)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_constant_pad_nd_2(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 5 % 5
x0 = xindex % 5
x2 = xindex // 25
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 4, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = x0
tmp4 = tmp3 < tmp1
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp5 & xmask, other=0.0)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_stack_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2 % 4
x2 = xindex // 8 % 8
x5 = xindex // 64
x3 = xindex // 64 % 4
x6 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = x1 + 4 * (x2 % 2)
tmp7 = tl.full([1], 4, tl.int64)
tmp8 = tmp5 < tmp7
tmp9 = tmp8 & tmp4
tmp10 = tl.load(in_ptr0 + (4 * (x2 // 2) + 16 * x5 + (x1 + 4 * (x2 % 2)
)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr1 + x3, tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp9, tmp12, tmp13)
tmp15 = tmp5 >= tmp7
tl.full([1], 8, tl.int64)
tmp18 = tmp15 & tmp4
tmp19 = tl.load(in_ptr2 + (4 * (x2 // 2) + 16 * x5 + (-4 + x1 + 4 * (x2 %
2))), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr3 + x3, tmp18 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp18, tmp21, tmp22)
tmp24 = tl.where(tmp8, tmp14, tmp23)
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp4, tmp24, tmp25)
tmp27 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp30 = tmp8 & tmp27
tmp31 = tl.load(in_ptr4 + (4 * (x2 // 2) + 16 * x5 + (x1 + 4 * (x2 % 2)
)), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr5 + x3, tmp30 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp30, tmp33, tmp34)
tmp36 = tmp15 & tmp27
tmp37 = tl.load(in_ptr6 + (4 * (x2 // 2) + 16 * x5 + (-4 + x1 + 4 * (x2 %
2))), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + x3, tmp36 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp39 = tmp37 + tmp38
tmp40 = tl.full(tmp39.shape, 0.0, tmp39.dtype)
tmp41 = tl.where(tmp36, tmp39, tmp40)
tmp42 = tl.where(tmp8, tmp35, tmp41)
tmp43 = tl.full(tmp42.shape, 0.0, tmp42.dtype)
tmp44 = tl.where(tmp27, tmp42, tmp43)
tmp45 = tl.where(tmp4, tmp26, tmp44)
tl.store(out_ptr0 + x6, tmp45, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 2, 3), (24, 6, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 3, 2), (24, 6, 2, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 2, 2), (16, 4, 2, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 5, 6), (120, 30, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(480)](primals_3, buf1, 480,
XBLOCK=256, num_warps=4, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = empty_strided_cuda((4, 4, 6, 5), (120, 30, 5, 1), torch.float32)
triton_poi_fused_constant_pad_nd_1[grid(480)](primals_3, buf3, 480,
XBLOCK=128, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
triton_poi_fused_constant_pad_nd_2[grid(400)](primals_3, buf5, 400,
XBLOCK=256, num_warps=4, num_stages=1)
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 8, 4, 2), (256, 64, 8, 2, 1),
torch.float32)
triton_poi_fused_stack_3[grid(1024)](buf0, primals_2, buf2,
primals_5, buf4, primals_7, buf6, primals_9, buf7, 1024, XBLOCK
=128, num_warps=4, num_stages=1)
del buf0
del buf2
del buf4
del buf6
del primals_2
del primals_5
del primals_7
del primals_9
return reinterpret_tensor(buf7, (4, 4, 8, 8), (256, 64, 8, 1), 0
), primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf5
def get_incoming_shape(incoming):
size = incoming.size()
return [size[0], size[1], size[2], size[3]]
def interleave(tensors, axis):
old_shape = get_incoming_shape(tensors[0])[1:]
new_shape = [-1] + old_shape
new_shape[axis] *= len(tensors)
stacked = torch.stack(tensors, axis + 1)
reshaped = stacked.view(new_shape)
return reshaped
class UnpoolingAsConvolutionNew(nn.Module):
def __init__(self, inplanes, planes):
super(UnpoolingAsConvolutionNew, self).__init__()
self.conv_A = nn.Conv2d(in_channels=inplanes, out_channels=planes,
kernel_size=(3, 3), stride=1, padding=1)
self.conv_B = nn.Conv2d(in_channels=inplanes, out_channels=planes,
kernel_size=(2, 3), stride=1, padding=0)
self.conv_C = nn.Conv2d(in_channels=inplanes, out_channels=planes,
kernel_size=(3, 2), stride=1, padding=0)
self.conv_D = nn.Conv2d(in_channels=inplanes, out_channels=planes,
kernel_size=(2, 2), stride=1, padding=0)
def forward(self, input_0):
primals_1 = self.conv_A.weight
primals_2 = self.conv_A.bias
primals_4 = self.conv_B.weight
primals_5 = self.conv_B.bias
primals_6 = self.conv_C.weight
primals_7 = self.conv_C.bias
primals_8 = self.conv_D.weight
primals_9 = self.conv_D.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| karoly-hars/DE_hybrid_CNN | UnpoolingAsConvolution | false | 12,664 | [
"BSD-3-Clause"
]
| 0 | d74ba4291d6db335151d5262ab96e8e3806a7587 | https://github.com/karoly-hars/DE_hybrid_CNN/tree/d74ba4291d6db335151d5262ab96e8e3806a7587 |
ActorCriticMLP | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/g5/cg5f2rptqnpi2mrqpqc4tujqpbrrrjrse6plhgftx425znsffpfv.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# a => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/yh/cyhogxneodczl7mcnuf7mkhxldvr2nc5wj5e42agntthff4e45p7.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# a => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (128, 4), (4, 1))
assert_size_stride(primals_3, (128, ), (1, ))
assert_size_stride(primals_4, (4, 128), (128, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 128), (128, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 128), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf7, 8192, grid=grid(8192), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [a], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0)
del buf3
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [c], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf6)
del primals_7
return (buf4, reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), buf4, primals_6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from torch import nn
from typing import Tuple
from torch.nn import functional as F
class ActorCriticMLP(nn.Module):
"""MLP network with heads for actor and critic."""
def __init__(self, input_shape: 'Tuple[int]', n_actions: 'int',
hidden_size: 'int'=128):
"""
Args:
input_shape: observation shape of the environment
n_actions: number of discrete actions available in the environment
hidden_size: size of hidden layers
"""
super().__init__()
self.fc1 = nn.Linear(input_shape[0], hidden_size)
self.actor_head = nn.Linear(hidden_size, n_actions)
self.critic_head = nn.Linear(hidden_size, 1)
def forward(self, x) ->Tuple[Tensor, Tensor]:
"""Forward pass through network. Calculates the action logits and the value.
Args:
x: input to network
Returns:
action log probs (logits), value
"""
x = F.relu(self.fc1(x.float()))
a = F.log_softmax(self.actor_head(x), dim=-1)
c = self.critic_head(x)
return a, c
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_shape': [4, 4], 'n_actions': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from typing import Tuple
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (128, 4), (4, 1))
assert_size_stride(primals_3, (128,), (1,))
assert_size_stride(primals_4, (4, 128), (128, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 128), (128, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 128), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1,
primals_3, buf7, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_4, (128, 4), (1, 128),
0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=
256, num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused__log_softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del buf3
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128),
0), alpha=1, beta=1, out=buf6)
del primals_7
return buf4, reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 128), (128, 1), 0
), buf4, primals_6, primals_4, buf7
class ActorCriticMLPNew(nn.Module):
"""MLP network with heads for actor and critic."""
def __init__(self, input_shape: 'Tuple[int]', n_actions: 'int',
hidden_size: 'int'=128):
"""
Args:
input_shape: observation shape of the environment
n_actions: number of discrete actions available in the environment
hidden_size: size of hidden layers
"""
super().__init__()
self.fc1 = nn.Linear(input_shape[0], hidden_size)
self.actor_head = nn.Linear(hidden_size, n_actions)
self.critic_head = nn.Linear(hidden_size, 1)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.actor_head.weight
primals_5 = self.actor_head.bias
primals_6 = self.critic_head.weight
primals_7 = self.critic_head.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
| kfirgedal/lightning-bolts | ActorCriticMLP | false | 12,665 | [
"Apache-2.0"
]
| 0 | cbb8b6c21ca1de757d0f289fb840d59a3b6a10f5 | https://github.com/kfirgedal/lightning-bolts/tree/cbb8b6c21ca1de757d0f289fb840d59a3b6a10f5 |
SDNE_layer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/jo/cjoedcmy7gkzotfopp7atueg5hlb65rgyaj7o2wkgwedzdx5r26r.py
# Topologically Sorted Source Nodes: [t0], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# t0 => gt, mul, where
# Graph fragment:
# %add_tensor_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_2), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_2, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_2, 0.01), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_tensor_2, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/zc/czc7u2dq2vtql25zagxwmpr4hs6rlgasv7bt6hnyjlwyehn7iert.py
# Topologically Sorted Source Nodes: [t0_3, sub, mul_1, mul_2, mul_5, L_2nd], Original ATen: [aten.leaky_relu, aten.sub, aten.mul, aten.sum]
# Source node to ATen node mapping:
# L_2nd => sum_2
# mul_1 => mul_5
# mul_2 => mul_6
# mul_5 => mul_9
# sub => sub
# t0_3 => gt_3, mul_3, where_3
# Graph fragment:
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%addmm_3, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_3, 0.01), kwargs = {})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %addmm_3, %mul_3), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %where_3), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_3), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, 4), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %mul_6), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_9,), kwargs = {})
triton_per_fused_leaky_relu_mul_sub_sum_1 = async_compile.triton('triton_per_fused_leaky_relu_mul_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_leaky_relu_mul_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_leaky_relu_mul_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = 0.0
tmp3 = tmp1 > tmp2
tmp4 = 0.01
tmp5 = tmp1 * tmp4
tmp6 = tl.where(tmp3, tmp1, tmp5)
tmp7 = tmp0 - tmp6
tmp8 = tmp7 * tmp0
tmp9 = 4.0
tmp10 = tmp8 * tmp9
tmp11 = tmp10 * tmp10
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.sum(tmp12, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp14, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/sj/csjofojkruavhzqz4olfzmhyc3z7nkdnkvkw2mil5b5g3poqp465.py
# Topologically Sorted Source Nodes: [trace, L_1st, mul_30, mul_31, add_9], Original ATen: [aten.trace, aten.mul, aten.add]
# Source node to ATen node mapping:
# L_1st => mul_4
# add_9 => add_16
# mul_30 => mul_34
# mul_31 => mul_35
# trace => diagonal_copy, sum_1
# Graph fragment:
# %diagonal_copy : [num_users=1] = call_function[target=torch.ops.aten.diagonal_copy.default](args = (%mm_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%diagonal_copy,), kwargs = {})
# %mul_4 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {})
# %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, 4), kwargs = {})
# %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, 4), kwargs = {})
# %add_16 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_35, %sum_2), kwargs = {})
triton_per_fused_add_mul_trace_2 = async_compile.triton('triton_per_fused_add_mul_trace_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_trace_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_trace_2(in_ptr0, in_ptr1, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (5*r0), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (0))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 2.0
tmp5 = tmp3 * tmp4
tmp6 = 4.0
tmp7 = tmp5 * tmp6
tmp10 = tmp7 + tmp9
tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp7, None)
tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/pm/cpmcm6vae4i5kfw32dc5glavrbpkpf57x2zxlc24hgiogzll476e.py
# Topologically Sorted Source Nodes: [abs_2, sum_4, mul_10, sum_5], Original ATen: [aten.abs, aten.sum, aten.mul]
# Source node to ATen node mapping:
# abs_2 => abs_2
# mul_10 => mul_14
# sum_4 => sum_5
# sum_5 => sum_6
# Graph fragment:
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%primals_2,), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_2,), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_2), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_14,), kwargs = {})
triton_per_fused_abs_mul_sum_3 = async_compile.triton('triton_per_fused_abs_mul_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mul_sum_3(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl_math.abs(tmp0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = tmp0 * tmp0
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp4, None)
tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/e4/ce4hfyn5vohuqnghdltzoskekpfblvr522oitv6ouzcvnumqzc64.py
# Topologically Sorted Source Nodes: [abs_1, sum_2, mul_6, mul_7, sum_3, mul_8, add, L_reg, mul_9, mul_11, add_2, L_reg_1, abs_3, sum_6, mul_12, mul_13, sum_7, mul_14, add_3, L_reg_2, mul_15, mul_17, add_4, L_reg_3, abs_5, sum_10, mul_18, mul_19, sum_11, mul_20, add_5, L_reg_4, mul_21, mul_23, add_6, L_reg_5, abs_7, sum_14, mul_24, mul_25, sum_15, mul_26, add_7, L_reg_6, mul_27, mul_29, add_8, L_reg_7], Original ATen: [aten.abs, aten.sum, aten.mul, aten.add]
# Source node to ATen node mapping:
# L_reg => add_1
# L_reg_1 => add_3
# L_reg_2 => add_5
# L_reg_3 => add_7
# L_reg_4 => add_9
# L_reg_5 => add_11
# L_reg_6 => add_13
# L_reg_7 => add_15
# abs_1 => abs_1
# abs_3 => abs_3
# abs_5 => abs_5
# abs_7 => abs_7
# add => add
# add_2 => add_2
# add_3 => add_4
# add_4 => add_6
# add_5 => add_8
# add_6 => add_10
# add_7 => add_12
# add_8 => add_14
# mul_11 => mul_15
# mul_12 => mul_16
# mul_13 => mul_17
# mul_14 => mul_18
# mul_15 => mul_19
# mul_17 => mul_21
# mul_18 => mul_22
# mul_19 => mul_23
# mul_20 => mul_24
# mul_21 => mul_25
# mul_23 => mul_27
# mul_24 => mul_28
# mul_25 => mul_29
# mul_26 => mul_30
# mul_27 => mul_31
# mul_29 => mul_33
# mul_6 => mul_10
# mul_7 => mul_11
# mul_8 => mul_12
# mul_9 => mul_13
# sum_10 => sum_11
# sum_11 => sum_12
# sum_14 => sum_15
# sum_15 => sum_16
# sum_2 => sum_3
# sum_3 => sum_4
# sum_6 => sum_7
# sum_7 => sum_8
# Graph fragment:
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%primals_1,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_1,), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_3, 4), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_1), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_11,), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_10, %mul_12), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 0), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_5, 4), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_6, 4), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_13, %mul_15), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %add_2), kwargs = {})
# %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%primals_4,), kwargs = {})
# %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_3,), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_7, 4), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %primals_4), kwargs = {})
# %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_17,), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_8, 4), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_16, %mul_18), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %add_4), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_9, 4), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_10, 4), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_19, %mul_21), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %add_6), kwargs = {})
# %abs_5 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%primals_6,), kwargs = {})
# %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_5,), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_11, 4), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_6, %primals_6), kwargs = {})
# %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_23,), kwargs = {})
# %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_12, 4), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_22, %mul_24), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %add_8), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_13, 4), kwargs = {})
# %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_14, 4), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_25, %mul_27), kwargs = {})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, %add_10), kwargs = {})
# %abs_7 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%primals_8,), kwargs = {})
# %sum_15 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_7,), kwargs = {})
# %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_15, 4), kwargs = {})
# %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_8, %primals_8), kwargs = {})
# %sum_16 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_29,), kwargs = {})
# %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_16, 4), kwargs = {})
# %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_28, %mul_30), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %add_12), kwargs = {})
# %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_17, 4), kwargs = {})
# %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_18, 4), kwargs = {})
# %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_31, %mul_33), kwargs = {})
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_13, %add_14), kwargs = {})
triton_per_fused_abs_add_mul_sum_4 = async_compile.triton('triton_per_fused_abs_add_mul_sum_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: 'i32', 14: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {13: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14), equal_to_1=(13,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_mul_sum_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 8, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_mul_sum_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp9 = tl.load(in_ptr1 + (r0), None)
tmp18 = tl.load(in_ptr2 + (r0), None)
tmp27 = tl.load(in_ptr3 + (r0), None)
tmp42 = tl.load(in_ptr4 + (0))
tmp43 = tl.broadcast_to(tmp42, [XBLOCK, 1])
tmp45 = tl.load(in_ptr5 + (0))
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, 1])
tmp54 = tl.load(in_ptr6 + (0))
tmp55 = tl.broadcast_to(tmp54, [XBLOCK, 1])
tmp57 = tl.load(in_ptr7 + (0))
tmp58 = tl.broadcast_to(tmp57, [XBLOCK, 1])
tmp66 = tl.load(in_ptr8 + (0))
tmp67 = tl.broadcast_to(tmp66, [XBLOCK, 1])
tmp69 = tl.load(in_ptr9 + (0))
tmp70 = tl.broadcast_to(tmp69, [XBLOCK, 1])
tmp78 = tl.load(in_ptr10 + (0))
tmp79 = tl.broadcast_to(tmp78, [XBLOCK, 1])
tmp81 = tl.load(in_ptr11 + (0))
tmp82 = tl.broadcast_to(tmp81, [XBLOCK, 1])
tmp1 = tl_math.abs(tmp0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = tmp0 * tmp0
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tmp10 = tl_math.abs(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = tmp9 * tmp9
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.sum(tmp15, 1)[:, None]
tmp19 = tl_math.abs(tmp18)
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tmp23 = tmp18 * tmp18
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp28 = tl_math.abs(tmp27)
tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK])
tmp31 = tl.sum(tmp29, 1)[:, None]
tmp32 = tmp27 * tmp27
tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK])
tmp35 = tl.sum(tmp33, 1)[:, None]
tmp36 = 4.0
tmp37 = tmp4 * tmp36
tmp38 = tmp8 * tmp36
tmp39 = tmp37 + tmp38
tmp40 = 0.0
tmp41 = tmp39 + tmp40
tmp44 = tmp43 * tmp36
tmp47 = tmp46 * tmp36
tmp48 = tmp44 + tmp47
tmp49 = tmp41 + tmp48
tmp50 = tmp22 * tmp36
tmp51 = tmp26 * tmp36
tmp52 = tmp50 + tmp51
tmp53 = tmp49 + tmp52
tmp56 = tmp55 * tmp36
tmp59 = tmp58 * tmp36
tmp60 = tmp56 + tmp59
tmp61 = tmp53 + tmp60
tmp62 = tmp31 * tmp36
tmp63 = tmp35 * tmp36
tmp64 = tmp62 + tmp63
tmp65 = tmp61 + tmp64
tmp68 = tmp67 * tmp36
tmp71 = tmp70 * tmp36
tmp72 = tmp68 + tmp71
tmp73 = tmp65 + tmp72
tmp74 = tmp13 * tmp36
tmp75 = tmp17 * tmp36
tmp76 = tmp74 + tmp75
tmp77 = tmp73 + tmp76
tmp80 = tmp79 * tmp36
tmp83 = tmp82 * tmp36
tmp84 = tmp80 + tmp83
tmp85 = tmp77 + tmp84
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp85, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [t0], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 16, grid=grid(16), stream=stream0)
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [t0_1], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 16, grid=grid(16), stream=stream0)
buf6 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [t0_2], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf6, primals_7, buf7, buf8, 16, grid=grid(16), stream=stream0)
buf9 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf5, (4, 4), (1, 4), 0), primals_10, out=buf10)
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm_1], Original ATen: [aten.mm]
extern_kernels.mm(buf10, buf5, out=buf11)
buf13 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [t0_3, sub, mul_1, mul_2, mul_5, L_2nd], Original ATen: [aten.leaky_relu, aten.sub, aten.mul, aten.sum]
triton_per_fused_leaky_relu_mul_sub_sum_1.run(primals_3, buf9, buf13, 1, 16, grid=grid(1), stream=stream0)
buf31 = empty_strided_cuda((), (), torch.float32)
buf32 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [trace, L_1st, mul_30, mul_31, add_9], Original ATen: [aten.trace, aten.mul, aten.add]
triton_per_fused_add_mul_trace_2.run(buf11, buf13, buf31, buf32, 1, 4, grid=grid(1), stream=stream0)
del buf11
buf16 = empty_strided_cuda((), (), torch.float32)
buf17 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [abs_2, sum_4, mul_10, sum_5], Original ATen: [aten.abs, aten.sum, aten.mul]
triton_per_fused_abs_mul_sum_3.run(primals_2, buf16, buf17, 1, 4, grid=grid(1), stream=stream0)
buf20 = empty_strided_cuda((), (), torch.float32)
buf21 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [abs_4, sum_8, mul_16, sum_9], Original ATen: [aten.abs, aten.sum, aten.mul]
triton_per_fused_abs_mul_sum_3.run(primals_5, buf20, buf21, 1, 4, grid=grid(1), stream=stream0)
buf25 = empty_strided_cuda((), (), torch.float32)
buf26 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [abs_6, sum_12, mul_22, sum_13], Original ATen: [aten.abs, aten.sum, aten.mul]
triton_per_fused_abs_mul_sum_3.run(primals_7, buf25, buf26, 1, 4, grid=grid(1), stream=stream0)
buf29 = empty_strided_cuda((), (), torch.float32)
buf30 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [abs_8, sum_16, mul_28, sum_17], Original ATen: [aten.abs, aten.sum, aten.mul]
triton_per_fused_abs_mul_sum_3.run(primals_9, buf29, buf30, 1, 4, grid=grid(1), stream=stream0)
buf14 = empty_strided_cuda((), (), torch.float32)
buf24 = buf14; del buf14 # reuse
buf33 = buf24; del buf24 # reuse
# Topologically Sorted Source Nodes: [abs_1, sum_2, mul_6, mul_7, sum_3, mul_8, add, L_reg, mul_9, mul_11, add_2, L_reg_1, abs_3, sum_6, mul_12, mul_13, sum_7, mul_14, add_3, L_reg_2, mul_15, mul_17, add_4, L_reg_3, abs_5, sum_10, mul_18, mul_19, sum_11, mul_20, add_5, L_reg_4, mul_21, mul_23, add_6, L_reg_5, abs_7, sum_14, mul_24, mul_25, sum_15, mul_26, add_7, L_reg_6, mul_27, mul_29, add_8, L_reg_7], Original ATen: [aten.abs, aten.sum, aten.mul, aten.add]
triton_per_fused_abs_add_mul_sum_4.run(buf33, primals_1, primals_8, primals_4, primals_6, buf16, buf17, buf20, buf21, buf25, buf26, buf29, buf30, 1, 16, grid=grid(1), stream=stream0)
del buf16
del buf17
del buf20
del buf21
del buf25
del buf26
del buf29
del buf30
return (buf31, buf13, buf32, buf33, buf5, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, buf1, buf2, buf4, buf5, buf7, buf8, buf9, reinterpret_tensor(buf10, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
import torch as torch
class SDNE_layer(nn.Module):
def __init__(self, num_node, hidden_size1, hidden_size2, droput, alpha,
beta, nu1, nu2):
super(SDNE_layer, self).__init__()
self.num_node = num_node
self.hidden_size1 = hidden_size1
self.hidden_size2 = hidden_size2
self.droput = droput
self.alpha = alpha
self.beta = beta
self.nu1 = nu1
self.nu2 = nu2
self.encode0 = nn.Linear(self.num_node, self.hidden_size1)
self.encode1 = nn.Linear(self.hidden_size1, self.hidden_size2)
self.decode0 = nn.Linear(self.hidden_size2, self.hidden_size1)
self.decode1 = nn.Linear(self.hidden_size1, self.num_node)
def forward(self, adj_mat, l_mat):
t0 = F.leaky_relu(self.encode0(adj_mat))
t0 = F.leaky_relu(self.encode1(t0))
self.embedding = t0
t0 = F.leaky_relu(self.decode0(t0))
t0 = F.leaky_relu(self.decode1(t0))
L_1st = 2 * torch.trace(torch.mm(torch.mm(torch.t(self.embedding),
l_mat), self.embedding))
L_2nd = torch.sum((adj_mat - t0) * adj_mat * self.beta * ((adj_mat -
t0) * adj_mat * self.beta))
L_reg = 0
for param in self.parameters():
L_reg += self.nu1 * torch.sum(torch.abs(param)
) + self.nu2 * torch.sum(param * param)
return self.alpha * L_1st, L_2nd, self.alpha * L_1st + L_2nd, L_reg
def get_emb(self, adj):
t0 = self.encode0(adj)
t0 = self.encode1(t0)
return t0
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'num_node': 4, 'hidden_size1': 4, 'hidden_size2': 4,
'droput': 4, 'alpha': 4, 'beta': 4, 'nu1': 4, 'nu2': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch.nn as nn
import torch as torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_per_fused_leaky_relu_mul_sub_sum_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = 0.0
tmp3 = tmp1 > tmp2
tmp4 = 0.01
tmp5 = tmp1 * tmp4
tmp6 = tl.where(tmp3, tmp1, tmp5)
tmp7 = tmp0 - tmp6
tmp8 = tmp7 * tmp0
tmp9 = 4.0
tmp10 = tmp8 * tmp9
tmp11 = tmp10 * tmp10
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.sum(tmp12, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp14, None)
@triton.jit
def triton_per_fused_add_mul_trace_2(in_ptr0, in_ptr1, out_ptr1, out_ptr2,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 5 * r0, None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + 0)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 2.0
tmp5 = tmp3 * tmp4
tmp6 = 4.0
tmp7 = tmp5 * tmp6
tmp10 = tmp7 + tmp9
tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp7, None)
tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp10, None)
@triton.jit
def triton_per_fused_abs_mul_sum_3(in_ptr0, out_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl_math.abs(tmp0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = tmp0 * tmp0
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp4, None)
tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp8, None)
@triton.jit
def triton_per_fused_abs_add_mul_sum_4(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9,
in_ptr10, in_ptr11, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp9 = tl.load(in_ptr1 + r0, None)
tmp18 = tl.load(in_ptr2 + r0, None)
tmp27 = tl.load(in_ptr3 + r0, None)
tmp42 = tl.load(in_ptr4 + 0)
tmp43 = tl.broadcast_to(tmp42, [XBLOCK, 1])
tmp45 = tl.load(in_ptr5 + 0)
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, 1])
tmp54 = tl.load(in_ptr6 + 0)
tmp55 = tl.broadcast_to(tmp54, [XBLOCK, 1])
tmp57 = tl.load(in_ptr7 + 0)
tmp58 = tl.broadcast_to(tmp57, [XBLOCK, 1])
tmp66 = tl.load(in_ptr8 + 0)
tmp67 = tl.broadcast_to(tmp66, [XBLOCK, 1])
tmp69 = tl.load(in_ptr9 + 0)
tmp70 = tl.broadcast_to(tmp69, [XBLOCK, 1])
tmp78 = tl.load(in_ptr10 + 0)
tmp79 = tl.broadcast_to(tmp78, [XBLOCK, 1])
tmp81 = tl.load(in_ptr11 + 0)
tmp82 = tl.broadcast_to(tmp81, [XBLOCK, 1])
tmp1 = tl_math.abs(tmp0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = tmp0 * tmp0
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tmp10 = tl_math.abs(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = tmp9 * tmp9
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.sum(tmp15, 1)[:, None]
tmp19 = tl_math.abs(tmp18)
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tmp23 = tmp18 * tmp18
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp28 = tl_math.abs(tmp27)
tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK])
tmp31 = tl.sum(tmp29, 1)[:, None]
tmp32 = tmp27 * tmp27
tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK])
tmp35 = tl.sum(tmp33, 1)[:, None]
tmp36 = 4.0
tmp37 = tmp4 * tmp36
tmp38 = tmp8 * tmp36
tmp39 = tmp37 + tmp38
tmp40 = 0.0
tmp41 = tmp39 + tmp40
tmp44 = tmp43 * tmp36
tmp47 = tmp46 * tmp36
tmp48 = tmp44 + tmp47
tmp49 = tmp41 + tmp48
tmp50 = tmp22 * tmp36
tmp51 = tmp26 * tmp36
tmp52 = tmp50 + tmp51
tmp53 = tmp49 + tmp52
tmp56 = tmp55 * tmp36
tmp59 = tmp58 * tmp36
tmp60 = tmp56 + tmp59
tmp61 = tmp53 + tmp60
tmp62 = tmp31 * tmp36
tmp63 = tmp35 * tmp36
tmp64 = tmp62 + tmp63
tmp65 = tmp61 + tmp64
tmp68 = tmp67 * tmp36
tmp71 = tmp70 * tmp36
tmp72 = tmp68 + tmp71
tmp73 = tmp65 + tmp72
tmp74 = tmp13 * tmp36
tmp75 = tmp17 * tmp36
tmp76 = tmp74 + tmp75
tmp77 = tmp73 + tmp76
tmp80 = tmp79 * tmp36
tmp83 = tmp82 * tmp36
tmp84 = tmp80 + tmp83
tmp85 = tmp77 + tmp84
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp85, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4),
(1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(16)](buf0, primals_2, buf1, buf2,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf3 = buf0
del buf0
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4
), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_leaky_relu_0[grid(16)](buf3, primals_5, buf4, buf5,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf6 = buf3
del buf3
extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (4, 4), (1, 4
), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_leaky_relu_0[grid(16)](buf6, primals_7, buf7, buf8,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf9 = buf6
del buf6
extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (4, 4), (1, 4), 0),
primals_10, out=buf10)
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf10, buf5, out=buf11)
buf13 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_leaky_relu_mul_sub_sum_1[grid(1)](primals_3, buf9,
buf13, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
buf31 = empty_strided_cuda((), (), torch.float32)
buf32 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_add_mul_trace_2[grid(1)](buf11, buf13, buf31,
buf32, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf11
buf16 = empty_strided_cuda((), (), torch.float32)
buf17 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_abs_mul_sum_3[grid(1)](primals_2, buf16, buf17, 1,
4, XBLOCK=1, num_warps=2, num_stages=1)
buf20 = empty_strided_cuda((), (), torch.float32)
buf21 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_abs_mul_sum_3[grid(1)](primals_5, buf20, buf21, 1,
4, XBLOCK=1, num_warps=2, num_stages=1)
buf25 = empty_strided_cuda((), (), torch.float32)
buf26 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_abs_mul_sum_3[grid(1)](primals_7, buf25, buf26, 1,
4, XBLOCK=1, num_warps=2, num_stages=1)
buf29 = empty_strided_cuda((), (), torch.float32)
buf30 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_abs_mul_sum_3[grid(1)](primals_9, buf29, buf30, 1,
4, XBLOCK=1, num_warps=2, num_stages=1)
buf14 = empty_strided_cuda((), (), torch.float32)
buf24 = buf14
del buf14
buf33 = buf24
del buf24
triton_per_fused_abs_add_mul_sum_4[grid(1)](buf33, primals_1,
primals_8, primals_4, primals_6, buf16, buf17, buf20, buf21,
buf25, buf26, buf29, buf30, 1, 16, XBLOCK=1, num_warps=2,
num_stages=1)
del buf16
del buf17
del buf20
del buf21
del buf25
del buf26
del buf29
del buf30
return (buf31, buf13, buf32, buf33, buf5, primals_1, primals_2,
primals_3, primals_4, primals_5, primals_6, primals_7, primals_8,
primals_9, primals_10, buf1, buf2, buf4, buf5, buf7, buf8, buf9,
reinterpret_tensor(buf10, (4, 4), (1, 4), 0))
class SDNE_layerNew(nn.Module):
def __init__(self, num_node, hidden_size1, hidden_size2, droput, alpha,
beta, nu1, nu2):
super(SDNE_layerNew, self).__init__()
self.num_node = num_node
self.hidden_size1 = hidden_size1
self.hidden_size2 = hidden_size2
self.droput = droput
self.alpha = alpha
self.beta = beta
self.nu1 = nu1
self.nu2 = nu2
self.encode0 = nn.Linear(self.num_node, self.hidden_size1)
self.encode1 = nn.Linear(self.hidden_size1, self.hidden_size2)
self.decode0 = nn.Linear(self.hidden_size2, self.hidden_size1)
self.decode1 = nn.Linear(self.hidden_size1, self.num_node)
def get_emb(self, adj):
t0 = self.encode0(adj)
t0 = self.encode1(t0)
return t0
def forward(self, input_0, input_1):
primals_1 = self.encode0.weight
primals_2 = self.encode0.bias
primals_3 = self.encode1.weight
primals_5 = self.encode1.bias
primals_4 = self.decode0.weight
primals_7 = self.decode0.bias
primals_6 = self.decode1.weight
primals_9 = self.decode1.bias
primals_8 = input_0
primals_10 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0], output[1], output[2], output[3]
| ckhui/cogdl | SDNE_layer | false | 12,666 | [
"MIT"
]
| 0 | 93bea17c2dc7084857cd0a4af8178c174965127c | https://github.com/ckhui/cogdl/tree/93bea17c2dc7084857cd0a4af8178c174965127c |
LearnedPositionalEmbedding | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/5i/c5iybmnijeaxq3pumkl5crtkns462pwdrh72bxy4lcvnlh3r4364.py
# Topologically Sorted Source Nodes: [ne, mask, cumsum], Original ATen: [aten.ne, aten._to_copy, aten.cumsum]
# Source node to ATen node mapping:
# cumsum => cumsum
# mask => convert_element_type
# ne => ne
# Graph fragment:
# %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%primals_1, 4), kwargs = {})
# %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne, torch.int32), kwargs = {})
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%convert_element_type, 1), kwargs = {})
triton_per_fused__to_copy_cumsum_ne_0 = async_compile.triton('triton_per_fused__to_copy_cumsum_ne_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[64, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_cumsum_ne_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_cumsum_ne_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (64*x1)), xmask, other=0.0)
tmp1 = 4.0
tmp2 = tmp0 != tmp1
tmp3 = tmp2.to(tl.int32)
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4.to(tl.int64)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp7, = tl.associative_scan((tmp6,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (x0 + (16*r2) + (64*x1)), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ft/cftxaavy7b7scxgnrhfsvfnicvimxnf3kpckow5nzkyed3meyoli.py
# Topologically Sorted Source Nodes: [ne, mask, type_as, incremental_indices, long, positions], Original ATen: [aten.ne, aten._to_copy, aten.mul, aten.add]
# Source node to ATen node mapping:
# incremental_indices => mul
# long => convert_element_type_2
# mask => convert_element_type
# ne => ne
# positions => add
# type_as => convert_element_type_1
# Graph fragment:
# %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%primals_1, 4), kwargs = {})
# %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne, torch.int32), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%cumsum, torch.int32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %convert_element_type), kwargs = {})
# %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul, torch.int64), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 4), kwargs = {})
triton_poi_fused__to_copy_add_mul_ne_1 = async_compile.triton('triton_poi_fused__to_copy_add_mul_ne_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_mul_ne_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_mul_ne_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0.to(tl.int32)
tmp3 = 4.0
tmp4 = tmp2 != tmp3
tmp5 = tmp4.to(tl.int32)
tmp6 = tmp1 * tmp5
tmp7 = tmp6.to(tl.int64)
tmp8 = tl.full([1], 4, tl.int64)
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/in/cinglqnf6mtochspmiolvr3bqay6yiivzgqlihpkdlbd5p4ccw54.py
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.embedding]
# Source node to ATen node mapping:
# embedding => embedding
# Graph fragment:
# %embedding : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_2, %add, 4), kwargs = {})
triton_poi_fused_embedding_2 = async_compile.triton('triton_poi_fused_embedding_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_embedding_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_embedding_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 9, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 9)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 9")
tmp6 = tl.load(in_ptr1 + (x0 + (4*tmp4)), xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (9, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [ne, mask, cumsum], Original ATen: [aten.ne, aten._to_copy, aten.cumsum]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_cumsum_ne_0.run(primals_1, buf0, 64, 4, grid=grid(64), stream=stream0)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [ne, mask, type_as, incremental_indices, long, positions], Original ATen: [aten.ne, aten._to_copy, aten.mul, aten.add]
triton_poi_fused__to_copy_add_mul_ne_1.run(buf1, primals_1, 256, grid=grid(256), stream=stream0)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.embedding]
triton_poi_fused_embedding_2.run(buf1, primals_2, buf2, 1024, grid=grid(1024), stream=stream0)
del primals_2
return (buf2, buf1, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((9, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch import nn
def create_position_ids_from_input_ids(input_ids, padding_idx):
""" Replace non-padding symbols with their position numbers. Position numbers begin at
padding_idx+1. Padding symbols are ignored. This is modified from fairseq's
`utils.make_positions`.
:param torch.Tensor x:
:return torch.Tensor:
"""
mask = input_ids.ne(padding_idx).int()
incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask
return incremental_indices.long() + padding_idx
class LearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(self, num_embeddings: 'int', embedding_dim: 'int',
padding_idx: 'int'):
assert padding_idx is not None
num_embeddings += padding_idx + 1
super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx
)
def forward(self, input, use_cache=False):
"""Input is expected to be of size [bsz x seqlen]."""
if use_cache:
pos = int(self.padding_idx + input.size(1))
positions = input.data.new(1, 1).fill_(pos)
else:
positions = create_position_ids_from_input_ids(input, self.
padding_idx)
return super().forward(positions), positions
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_embeddings': 4, 'embedding_dim': 4, 'padding_idx': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused__to_copy_cumsum_ne_0(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 64 * x1), xmask, other=0.0)
tmp1 = 4.0
tmp2 = tmp0 != tmp1
tmp3 = tmp2.to(tl.int32)
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4.to(tl.int64)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp7, = tl.associative_scan((tmp6,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (x0 + 16 * r2 + 64 * x1), tmp7, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_mul_ne_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0.to(tl.int32)
tmp3 = 4.0
tmp4 = tmp2 != tmp3
tmp5 = tmp4.to(tl.int32)
tmp6 = tmp1 * tmp5
tmp7 = tmp6.to(tl.int64)
tmp8 = tl.full([1], 4, tl.int64)
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_embedding_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 9, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 9) | ~xmask,
'index out of bounds: 0 <= tmp4 < 9')
tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4), xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (9, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
get_raw_stream(0)
triton_per_fused__to_copy_cumsum_ne_0[grid(64)](primals_1, buf0, 64,
4, XBLOCK=32, num_warps=2, num_stages=1)
buf1 = buf0
del buf0
triton_poi_fused__to_copy_add_mul_ne_1[grid(256)](buf1, primals_1,
256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_embedding_2[grid(1024)](buf1, primals_2, buf2,
1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return buf2, buf1, buf1
def create_position_ids_from_input_ids(input_ids, padding_idx):
""" Replace non-padding symbols with their position numbers. Position numbers begin at
padding_idx+1. Padding symbols are ignored. This is modified from fairseq's
`utils.make_positions`.
:param torch.Tensor x:
:return torch.Tensor:
"""
mask = input_ids.ne(padding_idx).int()
incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask
return incremental_indices.long() + padding_idx
class LearnedPositionalEmbeddingNew(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(self, num_embeddings: 'int', embedding_dim: 'int',
padding_idx: 'int'):
assert padding_idx is not None
num_embeddings += padding_idx + 1
super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx
)
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0], output[1]
| kev2513/gap-text2sql | LearnedPositionalEmbedding | false | 12,667 | [
"Apache-2.0"
]
| 0 | 67c4d6489ac44d4785a0cc1b836c889f00226f1d | https://github.com/kev2513/gap-text2sql/tree/67c4d6489ac44d4785a0cc1b836c889f00226f1d |
CrossEntropyLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# cross_entropy => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/za/cza3krejiqg7tjfagjknvrkfb4hawyqjlraihwndrbdsaurpzx3y.py
# Topologically Sorted Source Nodes: [cross_entropy, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.mean]
# Source node to ATen node mapping:
# cross_entropy => div, exp, log, mul, neg, sub_1, sum_1, sum_2
# mean => mean
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div,), kwargs = {})
triton_per_fused__log_softmax_div_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_mean_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_div_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r3), None)
tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (r3), None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tmp22 = 1.0
tmp23 = tmp21 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [cross_entropy, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.mean]
triton_per_fused__log_softmax_div_mean_mul_neg_sum_1.run(buf2, buf0, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.cpp_extension
class CrossEntropyLoss(torch.nn.Module):
def __init__(self):
super(CrossEntropyLoss, self).__init__()
self.ce_loss = torch.nn.CrossEntropyLoss()
def forward(self, cls_output, label, **_):
return self.ce_loss(cls_output, label).mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.cpp_extension
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_div_mean_mul_neg_sum_1(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = rindex // 64
tmp0 = tl.load(in_ptr0 + r3, None)
tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr1 + r3, None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tmp22 = 1.0
tmp23 = tmp21 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_div_mean_mul_neg_sum_1[grid(1)](buf2,
buf0, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del buf0
return buf2,
class CrossEntropyLossNew(torch.nn.Module):
def __init__(self):
super(CrossEntropyLossNew, self).__init__()
self.ce_loss = torch.nn.CrossEntropyLoss()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| hugobloem/PyTorch-StudioGAN | CrossEntropyLoss | false | 12,668 | [
"MIT"
]
| 0 | 3deab27c0774adba5a94c7f452d32d4cbc3b117c | https://github.com/hugobloem/PyTorch-StudioGAN/tree/3deab27c0774adba5a94c7f452d32d4cbc3b117c |
LSoftLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/jj/cjjzsmiaz6yk7enttuncto5y2bnsngnjksfwuet4p7shqjhbwt36.py
# Topologically Sorted Source Nodes: [mul, sub, mul_1, y_true_updated, binary_cross_entropy], Original ATen: [aten.mul, aten.rsub, aten.add, aten.binary_cross_entropy]
# Source node to ATen node mapping:
# binary_cross_entropy => full_default, full_default_1, log, log1p, maximum, maximum_1, mul_2, mul_3, neg, sub_1, sub_2
# mul => mul
# mul_1 => mul_1
# sub => sub
# y_true_updated => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg2_1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, 1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg2_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %maximum), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg2_1,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %maximum_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %mul_3), kwargs = {})
triton_poi_fused_add_binary_cross_entropy_mul_rsub_0 = async_compile.triton('triton_poi_fused_add_binary_cross_entropy_mul_rsub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_binary_cross_entropy_mul_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_binary_cross_entropy_mul_rsub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp5 = tl.load(in_ptr2 + (x0), xmask)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = tmp7 - tmp3
tmp9 = -tmp5
tmp10 = libdevice.log1p(tmp9)
tmp11 = -100.0
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = tmp8 * tmp12
tmp14 = tl_math.log(tmp5)
tmp15 = triton_helpers.maximum(tmp14, tmp11)
tmp16 = tmp7 * tmp15
tmp17 = tmp13 - tmp16
tl.store(out_ptr0 + (x0), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sub, mul_1, y_true_updated, binary_cross_entropy], Original ATen: [aten.mul, aten.rsub, aten.add, aten.binary_cross_entropy]
stream0 = get_raw_stream(0)
triton_poi_fused_add_binary_cross_entropy_mul_rsub_0.run(arg0_1, arg1_1, arg2_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class LSoftLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, y_pred, y_true, beta):
with torch.no_grad():
y_true_updated = beta * y_true + (1 - beta) * y_pred
return F.binary_cross_entropy(y_pred, y_true_updated, reduction='none')
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_binary_cross_entropy_mul_rsub_0(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp5 = tl.load(in_ptr2 + x0, xmask)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = tmp7 - tmp3
tmp9 = -tmp5
tmp10 = libdevice.log1p(tmp9)
tmp11 = -100.0
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = tmp8 * tmp12
tmp14 = tl_math.log(tmp5)
tmp15 = triton_helpers.maximum(tmp14, tmp11)
tmp16 = tmp7 * tmp15
tmp17 = tmp13 - tmp16
tl.store(out_ptr0 + x0, tmp17, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_binary_cross_entropy_mul_rsub_0[grid(256)](arg0_1,
arg1_1, arg2_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf0,
class LSoftLossNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| khodwe56/kaggle-birdsong-recognition | LSoftLoss | false | 12,669 | [
"MIT"
]
| 0 | 95a902c37355619cf02558968f000038e487db47 | https://github.com/khodwe56/kaggle-birdsong-recognition/tree/95a902c37355619cf02558968f000038e487db47 |
RNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# combined => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
return (buf2, buf1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(input_size + hidden_size, output_size)
def forward(self, input, hidden):
combined = torch.cat((input, hidden), 1)
hidden = self.i2h(combined)
output = self.i2o(combined)
return output, hidden
def initHidden(self):
return torch.zeros(1, self.hidden_size)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
return buf2, buf1, buf0
class RNNNew(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNNNew, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(input_size + hidden_size, output_size)
def initHidden(self):
return torch.zeros(1, self.hidden_size)
def forward(self, input_0, input_1):
primals_3 = self.i2h.weight
primals_4 = self.i2h.bias
primals_5 = self.i2o.weight
primals_6 = self.i2o.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1]
| khalilbalaree/Key-Smasher | RNN | false | 12,670 | [
"Apache-2.0"
]
| 0 | 981bb1fd9b91e9a693dba8b1cd4ee7ea82409d14 | https://github.com/khalilbalaree/Key-Smasher/tree/981bb1fd9b91e9a693dba8b1cd4ee7ea82409d14 |
CDEFunc | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py
# Topologically Sorted Source Nodes: [z_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# z_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6t/c6teacbdnrlxbeecxkpwnmehhrwep7knmvoy2pekproaa5jueeax.py
# Topologically Sorted Source Nodes: [z_3], Original ATen: [aten.tanh, aten.tanh_backward]
# Source node to ATen node mapping:
# z_3 => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %tanh), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul), kwargs = {})
triton_poi_fused_tanh_tanh_backward_1 = async_compile.triton('triton_poi_fused_tanh_tanh_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_tanh_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_tanh_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp3 * tmp3
tmp5 = 1.0
tmp6 = tmp5 - tmp4
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 128), (128, 1))
assert_size_stride(primals_5, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [z_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 8192, grid=grid(8192), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 16), (1, 128), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [z_3], Original ATen: [aten.tanh, aten.tanh_backward]
triton_poi_fused_tanh_tanh_backward_1.run(buf3, primals_5, buf4, 1024, grid=grid(1024), stream=stream0)
del primals_5
return (reinterpret_tensor(buf3, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), buf4, primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class CDEFunc(torch.nn.Module):
def __init__(self, input_channels, hidden_channels):
super(CDEFunc, self).__init__()
self.input_channels = input_channels
self.hidden_channels = hidden_channels
self.linear1 = torch.nn.Linear(hidden_channels, 128)
self.linear2 = torch.nn.Linear(128, input_channels * hidden_channels)
def forward(self, z):
z = self.linear1(z)
z = z.relu()
z = self.linear2(z)
z = z.tanh()
z = z.view(*z.shape[:-1], self.hidden_channels, self.input_channels)
return z
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_channels': 4, 'hidden_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_tanh_tanh_backward_1(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp3 * tmp3
tmp5 = 1.0
tmp6 = tmp5 - tmp4
tl.store(in_out_ptr0 + x2, tmp3, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 128), (128, 1))
assert_size_stride(primals_5, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1,
primals_2, buf5, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0),
reinterpret_tensor(primals_4, (128, 16), (1, 128), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.
float32)
triton_poi_fused_tanh_tanh_backward_1[grid(1024)](buf3, primals_5,
buf4, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
return reinterpret_tensor(buf3, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 128), (128, 1), 0
), buf4, primals_4, buf5
class CDEFuncNew(torch.nn.Module):
def __init__(self, input_channels, hidden_channels):
super(CDEFuncNew, self).__init__()
self.input_channels = input_channels
self.hidden_channels = hidden_channels
self.linear1 = torch.nn.Linear(hidden_channels, 128)
self.linear2 = torch.nn.Linear(128, input_channels * hidden_channels)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| khaledsaab/NeuralCDE | CDEFunc | false | 12,671 | [
"Apache-2.0"
]
| 0 | 559d9d6fdb137afd14965725ea4845cf31e9235c | https://github.com/khaledsaab/NeuralCDE/tree/559d9d6fdb137afd14965725ea4845cf31e9235c |
NegativeSampling | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/5x/c5x3rnyccugyytvfisd523ro34i2ddgorx7wbrbsps3dyo4sl2ve.py
# Topologically Sorted Source Nodes: [log_sigmoid, log_sigmoid_1, neg, sum_1, truediv, add, sum_2, neg_1, truediv_1], Original ATen: [aten.log_sigmoid_forward, aten.neg, aten.sum, aten.div, aten.add]
# Source node to ATen node mapping:
# add => add
# log_sigmoid => abs_1, exp, full_default, log1p, minimum, neg, sub
# log_sigmoid_1 => abs_2, exp_1, full_default_1, log1p_1, minimum_1, neg_2, sub_1
# neg => neg_1
# neg_1 => neg_3
# sum_1 => sum_1
# sum_2 => sum_2
# truediv => div
# truediv_1 => div_1
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %select), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %neg_1 : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%slice_3,), kwargs = {})
# %minimum_1 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_1, %neg_1), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%neg_1,), kwargs = {})
# %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_2,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_2,), kwargs = {})
# %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_1, %log1p_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_1, [1]), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %div), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add,), kwargs = {})
# %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg_3, 4), kwargs = {})
triton_per_fused_add_div_log_sigmoid_forward_neg_sum_0 = async_compile.triton('triton_per_fused_add_div_log_sigmoid_forward_neg_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_log_sigmoid_forward_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_log_sigmoid_forward_neg_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp16 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp25 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp1 = 0.0
tmp2 = triton_helpers.minimum(tmp1, tmp0)
tmp3 = tl_math.abs(tmp0)
tmp4 = -tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = libdevice.log1p(tmp5)
tmp7 = tmp2 - tmp6
tmp9 = -tmp8
tmp10 = triton_helpers.minimum(tmp1, tmp9)
tmp11 = tl_math.abs(tmp9)
tmp12 = -tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = libdevice.log1p(tmp13)
tmp15 = tmp10 - tmp14
tmp17 = -tmp16
tmp18 = triton_helpers.minimum(tmp1, tmp17)
tmp19 = tl_math.abs(tmp17)
tmp20 = -tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = libdevice.log1p(tmp21)
tmp23 = tmp18 - tmp22
tmp24 = tmp15 + tmp23
tmp26 = -tmp25
tmp27 = triton_helpers.minimum(tmp1, tmp26)
tmp28 = tl_math.abs(tmp26)
tmp29 = -tmp28
tmp30 = tl_math.exp(tmp29)
tmp31 = libdevice.log1p(tmp30)
tmp32 = tmp27 - tmp31
tmp33 = tmp24 + tmp32
tmp34 = 0.3333333333333333
tmp35 = tmp33 * tmp34
tmp36 = tmp7 + tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = tl.sum(tmp37, 1)[:, None]
tmp40 = -tmp39
tmp41 = 0.25
tmp42 = tmp40 * tmp41
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp42, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [log_sigmoid, log_sigmoid_1, neg, sum_1, truediv, add, sum_2, neg_1, truediv_1], Original ATen: [aten.log_sigmoid_forward, aten.neg, aten.sum, aten.div, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_log_sigmoid_forward_neg_sum_0.run(buf2, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class NegativeSampling(nn.Module):
"""Negative sampling loss as proposed by T. Mikolov et al. in Distributed
Representations of Words and Phrases and their Compositionality.
"""
def __init__(self):
super(NegativeSampling, self).__init__()
self._log_sigmoid = nn.LogSigmoid()
def forward(self, scores):
"""Computes the value of the loss function.
Parameters
----------
scores: autograd.Variable of size (batch_size, num_noise_words + 1)
Sparse unnormalized log probabilities. The first element in each
row is the ground truth score (i.e. the target), other elements
are scores of samples from the noise distribution.
"""
k = scores.size()[1] - 1
return -torch.sum(self._log_sigmoid(scores[:, 0]) + torch.sum(self.
_log_sigmoid(-scores[:, 1:]), dim=1) / k) / scores.size()[0]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_log_sigmoid_forward_neg_sum_0(in_out_ptr0,
in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp16 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp25 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp1 = 0.0
tmp2 = triton_helpers.minimum(tmp1, tmp0)
tmp3 = tl_math.abs(tmp0)
tmp4 = -tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = libdevice.log1p(tmp5)
tmp7 = tmp2 - tmp6
tmp9 = -tmp8
tmp10 = triton_helpers.minimum(tmp1, tmp9)
tmp11 = tl_math.abs(tmp9)
tmp12 = -tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = libdevice.log1p(tmp13)
tmp15 = tmp10 - tmp14
tmp17 = -tmp16
tmp18 = triton_helpers.minimum(tmp1, tmp17)
tmp19 = tl_math.abs(tmp17)
tmp20 = -tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = libdevice.log1p(tmp21)
tmp23 = tmp18 - tmp22
tmp24 = tmp15 + tmp23
tmp26 = -tmp25
tmp27 = triton_helpers.minimum(tmp1, tmp26)
tmp28 = tl_math.abs(tmp26)
tmp29 = -tmp28
tmp30 = tl_math.exp(tmp29)
tmp31 = libdevice.log1p(tmp30)
tmp32 = tmp27 - tmp31
tmp33 = tmp24 + tmp32
tmp34 = 0.3333333333333333
tmp35 = tmp33 * tmp34
tmp36 = tmp7 + tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = tl.sum(tmp37, 1)[:, None]
tmp40 = -tmp39
tmp41 = 0.25
tmp42 = tmp40 * tmp41
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp42, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_per_fused_add_div_log_sigmoid_forward_neg_sum_0[grid(1)](buf2,
arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf2,
class NegativeSamplingNew(nn.Module):
"""Negative sampling loss as proposed by T. Mikolov et al. in Distributed
Representations of Words and Phrases and their Compositionality.
"""
def __init__(self):
super(NegativeSamplingNew, self).__init__()
self._log_sigmoid = nn.LogSigmoid()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| kimoyerr/my-dataloader | NegativeSampling | false | 12,672 | [
"MIT"
]
| 0 | a235e2f02d936df3f835b423dd015afa52e54066 | https://github.com/kimoyerr/my-dataloader/tree/a235e2f02d936df3f835b423dd015afa52e54066 |
SpatialAttention2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/jx/cjxwinyp4pgvwiomfmbv6hp6mb5npqkunztxjcjz5zmgstva2cwe.py
# Topologically Sorted Source Nodes: [z_1, mul], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# z_1 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [z_1, mul], Original ATen: [aten.sigmoid, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0.run(primals_2, buf0, buf1, 256, grid=grid(256), stream=stream0)
return (buf1, primals_1, primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SpatialAttention2d(nn.Module):
def __init__(self, channel):
super(SpatialAttention2d, self).__init__()
self.squeeze = nn.Conv2d(channel, 1, kernel_size=1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
z = self.squeeze(x)
z = self.sigmoid(z)
return x * z
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channel': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x3, tmp3, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0[grid(256)](primals_2, buf0, buf1,
256, XBLOCK=256, num_warps=4, num_stages=1)
return buf1, primals_1, primals_2, buf0
class SpatialAttention2dNew(nn.Module):
def __init__(self, channel):
super(SpatialAttention2dNew, self).__init__()
self.squeeze = nn.Conv2d(channel, 1, kernel_size=1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.squeeze.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| khodwe56/kaggle-birdsong-recognition | SpatialAttention2d | false | 12,673 | [
"MIT"
]
| 0 | 95a902c37355619cf02558968f000038e487db47 | https://github.com/khodwe56/kaggle-birdsong-recognition/tree/95a902c37355619cf02558968f000038e487db47 |
AnswerModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/3l/c3lo77c7wjxasxrhtr6wesb72ods2d2rxnxhbfieun7j2wukm3wn.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 128, grid=grid(128), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
return (reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 8), (8, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.init as init
class AnswerModule(nn.Module):
def __init__(self, vocab_size, hidden_size):
super(AnswerModule, self).__init__()
self.z = nn.Linear(2 * hidden_size, vocab_size)
init.xavier_normal_(self.z.state_dict()['weight'])
self.dropout = nn.Dropout(0.1)
def forward(self, M, questions):
M = self.dropout(M)
concat = torch.cat([M, questions], dim=2).squeeze(1)
z = self.z(concat)
return z
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'vocab_size': 4, 'hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.init as init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](primals_1, primals_2, buf0, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (16, 8), (
8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0),
alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
return reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(buf0, (16, 8), (8, 1), 0)
class AnswerModuleNew(nn.Module):
def __init__(self, vocab_size, hidden_size):
super(AnswerModuleNew, self).__init__()
self.z = nn.Linear(2 * hidden_size, vocab_size)
init.xavier_normal_(self.z.state_dict()['weight'])
self.dropout = nn.Dropout(0.1)
def forward(self, input_0, input_1):
primals_3 = self.z.weight
primals_4 = self.z.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| kirubarajan/Dynamic-Memory-Network-Plus | AnswerModule | false | 12,674 | [
"Apache-2.0"
]
| 0 | 0613287ef5a959c7b260afcea2c31afcfb0ea189 | https://github.com/kirubarajan/Dynamic-Memory-Network-Plus/tree/0613287ef5a959c7b260afcea2c31afcfb0ea189 |
BinaryClassifier | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2u/c2ugr235lp7hjoeji4mzlplxg2zvzygy2xvsjv2bvmzp6eggn7yk.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_2 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ki/ckinq4jozjo44rxyehsa2lhip3xyubjyvbx6rmx44eqvtqzfiasz.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# x_4 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 4), (4, 1))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (4, 2), (2, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 2), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf6, 128, grid=grid(128), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 2), (2, 1), 0), reinterpret_tensor(primals_6, (2, 4), (1, 2), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf5, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 2), (2, 1), 0), buf5, primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.data
class BinaryClassifier(nn.Module):
"""
Define a neural network that performs binary classification.
The network should accept your number of features as input, and produce
a single sigmoid value, that can be rounded to a label: 0 or 1, as output.
Notes on training:
To train a binary classifier in PyTorch, use BCELoss.
BCELoss is binary cross entropy loss, documentation: https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss
"""
def __init__(self, input_features, hidden_dim, output_dim):
"""
Initialize model with setting up the linear layers.
then make input parameters so define the layers of our model.
:param input_features: make our number for input features in our training/test data
:param hidden_dim: define number of the nodes in hidden layer(s)
:param output_dim: number of the outputs we want to produce
"""
super(BinaryClassifier, self).__init__()
self.fc1 = nn.Linear(input_features, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, int(hidden_dim // 2))
self.fc3 = nn.Linear(int(hidden_dim // 2), output_dim)
self.drop = nn.Dropout(0.25)
self.sig = nn.Sigmoid()
def forward(self, x):
"""
displaythe forward pass for our model of the input features, x.
:param x: the batch of the input features of the size (batch_size, input_features)
:return: thesingle, sigmoid-activated value as the output
"""
x = F.relu(self.fc1(x))
x = self.drop(x)
x = F.relu(self.fc2(x))
x = self.drop(x)
x = self.sig(self.fc3(x))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_features': 4, 'hidden_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 4), (4, 1))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (4, 2), (2, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 2), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(128)](buf3,
primals_5, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 2), (2, 1), 0),
reinterpret_tensor(primals_6, (2, 4), (1, 2), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
triton_poi_fused_sigmoid_2[grid(256)](buf5, primals_7, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_7
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
buf3, (64, 2), (2, 1), 0), buf5, primals_6, buf6, primals_4, buf7
class BinaryClassifierNew(nn.Module):
"""
Define a neural network that performs binary classification.
The network should accept your number of features as input, and produce
a single sigmoid value, that can be rounded to a label: 0 or 1, as output.
Notes on training:
To train a binary classifier in PyTorch, use BCELoss.
BCELoss is binary cross entropy loss, documentation: https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss
"""
def __init__(self, input_features, hidden_dim, output_dim):
"""
Initialize model with setting up the linear layers.
then make input parameters so define the layers of our model.
:param input_features: make our number for input features in our training/test data
:param hidden_dim: define number of the nodes in hidden layer(s)
:param output_dim: number of the outputs we want to produce
"""
super(BinaryClassifierNew, self).__init__()
self.fc1 = nn.Linear(input_features, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, int(hidden_dim // 2))
self.fc3 = nn.Linear(int(hidden_dim // 2), output_dim)
self.drop = nn.Dropout(0.25)
self.sig = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| khadija267/Plagiarism-Detection | BinaryClassifier | false | 12,675 | [
"MIT"
]
| 0 | 90334167a8e6406e3f1ee178e616d6aa0094b1b5 | https://github.com/khadija267/Plagiarism-Detection/tree/90334167a8e6406e3f1ee178e616d6aa0094b1b5 |
SCse | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [z_2], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# z_2 => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_2, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ad/cadccuyhl7stcp3nyqfgohiwbiv5ckfzxsye27ithwsill6dvmh4.py
# Topologically Sorted Source Nodes: [conv2d_1, z_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# z_3 => relu
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/k2/ck2mamkqpmuzem4n3p4ij6fmfpy2bcbblg6sx6wwslgqwuqq5ifh.py
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_5, %primals_6, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ja/cjafhv3pz4ruylypa4fzgtmsu3ji2wfc7gvhxz7bbv527bxiebxd.py
# Topologically Sorted Source Nodes: [z_1, mul, z_4, mul_1, add], Original ATen: [aten.sigmoid, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# mul_1 => mul_1
# z_1 => sigmoid
# z_4 => sigmoid_1
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_2,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
x4 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tl.sigmoid(tmp4)
tmp6 = tmp0 * tmp5
tmp7 = tmp3 + tmp6
tl.store(out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (1, ), (1, ))
assert_size_stride(primals_5, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf2 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [z_2], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf2, primals_2, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 1, 1), (1, 1, 1, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, z_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf4, primals_4, 4, grid=grid(4), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 1, 1), (4, 1, 1, 1))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf6, primals_6, 16, grid=grid(16), stream=stream0)
del primals_6
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [z_1, mul, z_4, mul_1, add], Original ATen: [aten.sigmoid, aten.mul, aten.add]
triton_poi_fused_add_mul_sigmoid_3.run(primals_2, buf0, buf6, buf7, 256, grid=grid(256), stream=stream0)
return (buf7, primals_1, primals_2, primals_3, primals_5, buf0, buf2, buf4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SpatialAttention2d(nn.Module):
def __init__(self, channel):
super(SpatialAttention2d, self).__init__()
self.squeeze = nn.Conv2d(channel, 1, kernel_size=1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
z = self.squeeze(x)
z = self.sigmoid(z)
return x * z
class GAB(nn.Module):
def __init__(self, input_dim, reduction=4):
super(GAB, self).__init__()
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv2d(input_dim, input_dim // reduction,
kernel_size=1, stride=1)
self.conv2 = nn.Conv2d(input_dim // reduction, input_dim,
kernel_size=1, stride=1)
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
z = self.global_avgpool(x)
z = self.relu(self.conv1(z))
z = self.sigmoid(self.conv2(z))
return x * z
class SCse(nn.Module):
def __init__(self, dim):
super(SCse, self).__init__()
self.satt = SpatialAttention2d(dim)
self.catt = GAB(dim)
def forward(self, x):
return self.satt(x) + self.catt(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
x4 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tl.sigmoid(tmp4)
tmp6 = tmp0 * tmp5
tmp7 = tmp3 + tmp6
tl.store(out_ptr0 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (1,), (1,))
assert_size_stride(primals_5, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf2 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf1
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf2, primals_2, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
buf3 = extern_kernels.convolution(buf2, primals_3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 1, 1), (1, 1, 1, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_relu_1[grid(4)](buf4, primals_4, 4,
XBLOCK=4, num_warps=1, num_stages=1)
del primals_4
buf5 = extern_kernels.convolution(buf4, primals_5, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 1, 1), (4, 1, 1, 1))
buf6 = buf5
del buf5
triton_poi_fused_convolution_2[grid(16)](buf6, primals_6, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_6
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_3[grid(256)](primals_2, buf0, buf6,
buf7, 256, XBLOCK=256, num_warps=4, num_stages=1)
return (buf7, primals_1, primals_2, primals_3, primals_5, buf0, buf2,
buf4, buf6)
class SpatialAttention2d(nn.Module):
def __init__(self, channel):
super(SpatialAttention2d, self).__init__()
self.squeeze = nn.Conv2d(channel, 1, kernel_size=1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
z = self.squeeze(x)
z = self.sigmoid(z)
return x * z
class GAB(nn.Module):
def __init__(self, input_dim, reduction=4):
super(GAB, self).__init__()
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv2d(input_dim, input_dim // reduction,
kernel_size=1, stride=1)
self.conv2 = nn.Conv2d(input_dim // reduction, input_dim,
kernel_size=1, stride=1)
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
z = self.global_avgpool(x)
z = self.relu(self.conv1(z))
z = self.sigmoid(self.conv2(z))
return x * z
class SCseNew(nn.Module):
def __init__(self, dim):
super(SCseNew, self).__init__()
self.satt = SpatialAttention2d(dim)
self.catt = GAB(dim)
def forward(self, input_0):
primals_1 = self.satt.squeeze.weight
primals_3 = self.catt.conv1.weight
primals_4 = self.catt.conv1.bias
primals_5 = self.catt.conv2.weight
primals_6 = self.catt.conv2.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| khodwe56/kaggle-birdsong-recognition | SCse | false | 12,676 | [
"MIT"
]
| 0 | 95a902c37355619cf02558968f000038e487db47 | https://github.com/khodwe56/kaggle-birdsong-recognition/tree/95a902c37355619cf02558968f000038e487db47 |
NN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/hj/chjzotk5iydxvuetxetlv36s7car7cdb24whkuqihxwcy5kkr4o2.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x_1 => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf5, primals_7, buf7, 256, grid=grid(256), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_9
return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf3, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), primals_8, buf7, primals_6, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class NN(nn.Module):
def __init__(self, input_size, h1, h2, h3, num_output):
super(NN, self).__init__()
self.fc1 = nn.Linear(input_size, h1)
self.fc2 = nn.Linear(h1, h2)
self.fc3 = nn.Linear(h2, h3)
self.fc4 = nn.Linear(h3, num_output)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.tanh(self.fc2(x))
x = torch.relu(self.fc3(x))
x = self.fc4(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'h1': 4, 'h2': 4, 'h3': 4, 'num_output': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused_tanh_1[grid(256)](buf3, primals_5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf5,
primals_7, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf6)
del primals_9
return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0
), buf3, reinterpret_tensor(buf5, (64, 4), (4, 1), 0
), primals_8, buf7, primals_6, primals_4, buf8
class NNNew(nn.Module):
def __init__(self, input_size, h1, h2, h3, num_output):
super(NNNew, self).__init__()
self.fc1 = nn.Linear(input_size, h1)
self.fc2 = nn.Linear(h1, h2)
self.fc3 = nn.Linear(h2, h3)
self.fc4 = nn.Linear(h3, num_output)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| kgarg8/hypertune | NN | false | 12,677 | [
"MIT"
]
| 0 | fbc4b87c9aefcd8449f6068232d7105975ff9dc9 | https://github.com/kgarg8/hypertune/tree/fbc4b87c9aefcd8449f6068232d7105975ff9dc9 |
Clamp | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/pf/cpfgpnkmdrryehfgbovwrc76j5c4ffdgr5wzb56wfrblevosoooy.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# x => clamp_max, clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 30), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 30.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class Clamp(nn.Module):
"""Clamp energy output"""
def forward(self, x):
x = torch.clamp(x, min=0, max=30)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 30.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ClampNew(nn.Module):
"""Clamp energy output"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| kmiec96/mlhep-2021-baseline-track_1 | Clamp | false | 12,678 | [
"Apache-2.0"
]
| 0 | 6fd2aa1529734204c522c49dba40fdc4b2bce353 | https://github.com/kmiec96/mlhep-2021-baseline-track_1/tree/6fd2aa1529734204c522c49dba40fdc4b2bce353 |
NeuralNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# hidden => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/cp/ccp5m5apf7ka2skqyfxhf2df54c52qocprpycry7jrzoptyjvbti.py
# Topologically Sorted Source Nodes: [action, mul], Original ATen: [aten.tanh, aten.mul]
# Source node to ATen node mapping:
# action => tanh
# mul => mul
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 4), kwargs = {})
triton_poi_fused_mul_tanh_1 = async_compile.triton('triton_poi_fused_mul_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 4.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf7, 256, grid=grid(256), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf6, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [action, mul], Original ATen: [aten.tanh, aten.mul]
triton_poi_fused_mul_tanh_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
return (buf5, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf4, primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class NeuralNetwork(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, action_bound):
super(NeuralNetwork, self).__init__()
self.input_layer = nn.Linear(input_dim, hidden_dim)
self.hidden_layer = nn.Linear(hidden_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
self.action_bound = action_bound
def forward(self, inp):
inp = torch.tensor(inp, dtype=torch.float)
hidden = torch.relu(self.input_layer(inp))
hidden = torch.relu(self.hidden_layer(hidden))
action = torch.tanh(self.output_layer(hidden))
return self.action_bound * action
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'hidden_dim': 4, 'output_dim': 4,
'action_bound': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 4.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_3, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3,
primals_5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_tanh_1[grid(256)](buf4, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf5, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
buf3, (64, 4), (4, 1), 0), buf4, primals_6, buf6, primals_4, buf7
class NeuralNetworkNew(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, action_bound):
super(NeuralNetworkNew, self).__init__()
self.input_layer = nn.Linear(input_dim, hidden_dim)
self.hidden_layer = nn.Linear(hidden_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
self.action_bound = action_bound
def forward(self, input_0):
primals_2 = self.input_layer.weight
primals_3 = self.input_layer.bias
primals_4 = self.hidden_layer.weight
primals_5 = self.hidden_layer.bias
primals_6 = self.output_layer.weight
primals_7 = self.output_layer.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| keyshor/homework | NeuralNetwork | false | 12,679 | [
"MIT"
]
| 0 | 687f9edf73bbac8fc492dfd82d634c19a38f5aab | https://github.com/keyshor/homework/tree/687f9edf73bbac8fc492dfd82d634c19a38f5aab |
UpSample | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/uy/cuykwspdedcweei632sohoszydcdycwgfpbqfmts2rz3pbme75y3.py
# Topologically Sorted Source Nodes: [up_x], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add]
# Source node to ATen node mapping:
# up_x => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, add_4, clamp_max_2, clamp_max_3, clamp_min, clamp_min_2, clamp_min_3, convert_element_type, convert_element_type_1, convert_element_type_3, iota, mul, mul_2, mul_3, mul_4, sub, sub_1, sub_2, sub_3, sub_4
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 1.0), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {})
# %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
# %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min, torch.int64), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0.0), kwargs = {})
# %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_4), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x2 = (xindex // 16)
x6 = xindex
x4 = (xindex // 48)
x7 = xindex % 48
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tmp11 = x0
tmp12 = tmp11.to(tl.float32)
tmp13 = tmp12 * tmp2
tmp14 = triton_helpers.maximum(tmp13, tmp4)
tmp15 = tmp14.to(tl.int32)
tmp16 = tl.load(in_ptr0 + (tmp15 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last')
tmp17 = tmp15 + tmp7
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl.load(in_ptr0 + (tmp18 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last')
tmp20 = tmp19 - tmp16
tmp21 = tmp15.to(tl.float32)
tmp22 = tmp14 - tmp21
tmp23 = triton_helpers.maximum(tmp22, tmp4)
tmp24 = triton_helpers.minimum(tmp23, tmp2)
tmp25 = tmp20 * tmp24
tmp26 = tmp16 + tmp25
tmp27 = tl.load(in_ptr0 + (tmp15 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (tmp18 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last')
tmp29 = tmp28 - tmp27
tmp30 = tmp29 * tmp24
tmp31 = tmp27 + tmp30
tmp32 = tmp26 - tmp31
tmp33 = tmp6.to(tl.float32)
tmp34 = tmp5 - tmp33
tmp35 = triton_helpers.maximum(tmp34, tmp4)
tmp36 = triton_helpers.minimum(tmp35, tmp2)
tmp37 = tmp32 * tmp36
tmp38 = tmp31 + tmp37
tl.store(out_ptr1 + (x7 + (64*x4)), tmp38, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/he/che6nd6gb4vfumohfsklsm5klcp45g4jlpyy34ahgnzt6epbx2ro.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add_4, %primals_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (64*x1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/p6/cp6kjjnbx6x6vx773fn74my6orskkocw7j5ex7lhq72nsdcqflhu.py
# Topologically Sorted Source Nodes: [conv2d, leaky_relu], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d => convolution
# leaky_relu => gt, mul_5, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_3, %primals_4, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul_5), kwargs = {})
triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_2, (4, 3, 4, 4), (48, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = reinterpret_tensor(buf3, (4, 3, 4, 4), (64, 16, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [up_x], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(primals_2, buf1, 192, grid=grid(192), stream=stream0)
del primals_2
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (64, 16, 4, 1), 48) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, buf2, 64, grid=grid(64), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, leaky_relu], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf4, primals_4, buf5, buf6, 256, grid=grid(256), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1))
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, leaky_relu_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf7, primals_6, buf8, buf9, 256, grid=grid(256), stream=stream0)
del buf7
del primals_6
return (buf9, primals_3, primals_5, buf3, buf5, buf6, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class UpSample(nn.Sequential):
def __init__(self, skip_input, output_features):
super(UpSample, self).__init__()
self.convA = nn.Conv2d(skip_input, output_features, kernel_size=3,
stride=1, padding=1)
self.leakyreluA = nn.LeakyReLU(0.2)
self.convB = nn.Conv2d(output_features, output_features,
kernel_size=3, stride=1, padding=1)
self.leakyreluB = nn.LeakyReLU(0.2)
def forward(self, x, concat_with):
up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size
(3)], mode='bilinear', align_corners=True)
return self.leakyreluB(self.convB(self.leakyreluA(self.convA(torch.
cat([up_x, concat_with], dim=1)))))
def get_inputs():
return [torch.rand([4, 3, 4, 4]), torch.rand([4, 1, 4, 4])]
def get_init_inputs():
return [[], {'skip_input': 4, 'output_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
x4 = xindex // 48
x7 = xindex % 48
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tmp11 = x0
tmp12 = tmp11.to(tl.float32)
tmp13 = tmp12 * tmp2
tmp14 = triton_helpers.maximum(tmp13, tmp4)
tmp15 = tmp14.to(tl.int32)
tmp16 = tl.load(in_ptr0 + (tmp15 + 4 * tmp10 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp17 = tmp15 + tmp7
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl.load(in_ptr0 + (tmp18 + 4 * tmp10 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp20 = tmp19 - tmp16
tmp21 = tmp15.to(tl.float32)
tmp22 = tmp14 - tmp21
tmp23 = triton_helpers.maximum(tmp22, tmp4)
tmp24 = triton_helpers.minimum(tmp23, tmp2)
tmp25 = tmp20 * tmp24
tmp26 = tmp16 + tmp25
tmp27 = tl.load(in_ptr0 + (tmp15 + 4 * tmp6 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (tmp18 + 4 * tmp6 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp29 = tmp28 - tmp27
tmp30 = tmp29 * tmp24
tmp31 = tmp27 + tmp30
tmp32 = tmp26 - tmp31
tmp33 = tmp6.to(tl.float32)
tmp34 = tmp5 - tmp33
tmp35 = triton_helpers.maximum(tmp34, tmp4)
tmp36 = triton_helpers.minimum(tmp35, tmp2)
tmp37 = tmp32 * tmp36
tmp38 = tmp31 + tmp37
tl.store(out_ptr1 + (x7 + 64 * x4), tmp38, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 64 * x1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_2, (4, 3, 4, 4), (48, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = reinterpret_tensor(buf3, (4, 3, 4, 4), (64, 16, 4, 1), 0)
get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid
(192)](primals_2, buf1, 192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (64, 16, 4, 1), 48)
triton_poi_fused_cat_1[grid(64)](primals_1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_convolution_leaky_relu_2[grid(256)](buf4,
primals_4, buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1))
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = buf4
del buf4
triton_poi_fused_convolution_leaky_relu_2[grid(256)](buf7,
primals_6, buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf7
del primals_6
return buf9, primals_3, primals_5, buf3, buf5, buf6, buf8
class UpSampleNew(nn.Sequential):
def __init__(self, skip_input, output_features):
super(UpSampleNew, self).__init__()
self.convA = nn.Conv2d(skip_input, output_features, kernel_size=3,
stride=1, padding=1)
self.leakyreluA = nn.LeakyReLU(0.2)
self.convB = nn.Conv2d(output_features, output_features,
kernel_size=3, stride=1, padding=1)
self.leakyreluB = nn.LeakyReLU(0.2)
def forward(self, input_0, input_1):
primals_3 = self.convA.weight
primals_4 = self.convA.bias
primals_5 = self.convB.weight
primals_6 = self.convB.bias
primals_2 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| kimtaehyeong/msnnff | UpSample | false | 12,680 | [
"MIT"
]
| 0 | 75586be601bbdbfafcdf4038bc08f239e119b417 | https://github.com/kimtaehyeong/msnnff/tree/75586be601bbdbfafcdf4038bc08f239e119b417 |
nn_model | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/az/cazao7d5hdb3kcfc76acvd3yerra6cq3h4spci3xujm27v6xwinj.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (1024, 4), (4, 1))
assert_size_stride(primals_2, (1024, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1024, 1024), (1024, 1))
assert_size_stride(primals_5, (1024, ), (1, ))
assert_size_stride(primals_6, (4, 1024), (1024, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 65536, grid=grid(65536), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_4, (1024, 1024), (1, 1024), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 65536, grid=grid(65536), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_6, (1024, 4), (1, 1024), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(buf3, (64, 1024), (1024, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class nn_model(nn.Module):
def __init__(self, feature_dim, num_classes):
super(nn_model, self).__init__()
self.l1 = nn.Linear(feature_dim, 1024)
self.l2 = nn.Linear(1024, 1024)
self.l3 = nn.Linear(1024, num_classes)
def forward(self, x):
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = self.l3(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'feature_dim': 4, 'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (1024, 4), (4, 1))
assert_size_stride(primals_2, (1024,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1024, 1024), (1024, 1))
assert_size_stride(primals_5, (1024,), (1,))
assert_size_stride(primals_6, (4, 1024), (1024, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024,
1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(65536)](buf1,
primals_2, buf6, 65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0
), reinterpret_tensor(primals_4, (1024, 1024), (1, 1024), 0),
out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1024), (16384, 4096, 1024,
1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(65536)](buf3,
primals_5, buf5, 65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 1024),
(1024, 1), 0), reinterpret_tensor(primals_6, (1024, 4), (1,
1024), 0), alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0
), reinterpret_tensor(buf3, (64, 1024), (1024, 1), 0
), primals_6, buf5, primals_4, buf6
class nn_modelNew(nn.Module):
def __init__(self, feature_dim, num_classes):
super(nn_modelNew, self).__init__()
self.l1 = nn.Linear(feature_dim, 1024)
self.l2 = nn.Linear(1024, 1024)
self.l3 = nn.Linear(1024, num_classes)
def forward(self, input_0):
primals_1 = self.l1.weight
primals_2 = self.l1.bias
primals_4 = self.l2.weight
primals_5 = self.l2.bias
primals_6 = self.l3.weight
primals_7 = self.l3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| kiankd/quicksand | nn_model | false | 12,681 | [
"MIT"
]
| 0 | 20f9505c843eec00e423a0e1589ebd1e6264e174 | https://github.com/kiankd/quicksand/tree/20f9505c843eec00e423a0e1589ebd1e6264e174 |
ConvMeanPool | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/zl/czlj6w7bgqv6v6jwtuat5tk6hqgjbqda2njfcgonmqvlxwg22wnk.py
# Topologically Sorted Source Nodes: [add, add_1, add_2, output_1], Original ATen: [aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# output_1 => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, %slice_8), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %slice_12), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %slice_16), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 4), kwargs = {})
triton_poi_fused_add_div_0 = async_compile.triton('triton_poi_fused_add_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2) % 2
x4 = (xindex // 4)
x2 = (xindex // 4) % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (6*x1) + (9*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (3 + (2*x0) + (9*x4)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (6*x1) + (9*x4)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (4 + (9*x4)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tmp7 = tmp6 + tmp1
tmp8 = tmp5 + tmp7
tmp10 = tmp9 + tmp1
tmp11 = tmp8 + tmp10
tmp12 = 0.25
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + (x6), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1))
buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, add_2, output_1], Original ATen: [aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_0.run(buf0, primals_2, buf1, 64, grid=grid(64), stream=stream0)
del buf0
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class MyConvo2d(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, he_init=True,
stride=1, bias=True):
super(MyConvo2d, self).__init__()
self.he_init = he_init
self.padding = int((kernel_size - 1) / 2)
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=self.padding, bias=bias)
def forward(self, input):
output = self.conv(input)
return output
class ConvMeanPool(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, he_init=True):
super(ConvMeanPool, self).__init__()
self.he_init = he_init
self.conv = MyConvo2d(input_dim, output_dim, kernel_size, he_init=
self.he_init)
def forward(self, input):
output = self.conv(input)
output = (output[:, :, ::2, ::2] + output[:, :, 1::2, ::2] + output
[:, :, ::2, 1::2] + output[:, :, 1::2, 1::2]) / 4
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2 % 2
x4 = xindex // 4
x2 = xindex // 4 % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 6 * x1 + 9 * x4), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (3 + 2 * x0 + 9 * x4), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 6 * x1 + 9 * x4), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (4 + 9 * x4), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tmp7 = tmp6 + tmp1
tmp8 = tmp5 + tmp7
tmp10 = tmp9 + tmp1
tmp11 = tmp8 + tmp10
tmp12 = 0.25
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + x6, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1))
buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_0[grid(64)](buf0, primals_2, buf1, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del primals_2
return buf1, primals_1, primals_3
class MyConvo2d(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, he_init=True,
stride=1, bias=True):
super(MyConvo2d, self).__init__()
self.he_init = he_init
self.padding = int((kernel_size - 1) / 2)
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=self.padding, bias=bias)
def forward(self, input):
output = self.conv(input)
return output
class ConvMeanPoolNew(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, he_init=True):
super(ConvMeanPoolNew, self).__init__()
self.he_init = he_init
self.conv = MyConvo2d(input_dim, output_dim, kernel_size, he_init=
self.he_init)
def forward(self, input_0):
primals_1 = self.conv.conv.weight
primals_2 = self.conv.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| kolchinski/humanception-score | ConvMeanPool | false | 12,682 | [
"MIT"
]
| 0 | da8880eec3be39574718409cfe8ca303f41c64e6 | https://github.com/kolchinski/humanception-score/tree/da8880eec3be39574718409cfe8ca303f41c64e6 |
Generator | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/u5/cu5ua3ykbptipkew3i3zng4a7a4hy4f6xs547ovdooepce7uyfwz.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
del buf1
return (buf2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Generator(nn.Module):
def __init__(self, hidden_size, output_size):
super(Generator, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.out = nn.Linear(hidden_size, output_size)
self.sm = nn.LogSoftmax(dim=1)
def forward(self, inputs):
assert inputs.size(1) == self.hidden_size
return self.sm(self.out(inputs))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x3, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=
256, num_warps=4, num_stages=1)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused__log_softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del buf1
return buf2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf2
class GeneratorNew(nn.Module):
def __init__(self, hidden_size, output_size):
super(GeneratorNew, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.out = nn.Linear(hidden_size, output_size)
self.sm = nn.LogSoftmax(dim=1)
def forward(self, input_0):
primals_2 = self.out.weight
primals_3 = self.out.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| kompotiks/Boris | Generator | false | 12,683 | [
"Apache-2.0"
]
| 0 | 2cf9487e4bc8d81206f819c0fe5c1d793d554062 | https://github.com/kompotiks/Boris/tree/2cf9487e4bc8d81206f819c0fe5c1d793d554062 |
AttentionGRUCell | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/lu/cluy2665mfjovqy3g6g6aluvvxdhqdcpfzmtdxndscg75r2od74w.py
# Topologically Sorted Source Nodes: [add, r, mul, add_1, h_tilda, mul_1, sub, mul_2, h], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# h => add_2
# h_tilda => tanh
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# r => sigmoid
# sub => sub
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %view_7), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %mul), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %tanh), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %expand), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_6), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
triton_poi_fused_add_mul_rsub_sigmoid_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x5 = xindex
x0 = xindex % 4
x2 = xindex % 16
x4 = (xindex // 64)
tmp0 = tl.load(in_out_ptr0 + (x5), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x5), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + (x2 + (16*x4)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr4 + (x5), xmask)
tmp10 = tl.load(in_ptr5 + (x5), xmask)
tmp17 = tl.load(in_ptr6 + (x5), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = tl.sigmoid(tmp6)
tmp11 = tmp7 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = libdevice.tanh(tmp12)
tmp14 = tmp8 * tmp13
tmp15 = 1.0
tmp16 = tmp15 - tmp8
tmp18 = tmp16 * tmp17
tmp19 = tmp14 + tmp18
tl.store(in_out_ptr0 + (x5), tmp7, xmask)
tl.store(out_ptr0 + (x5), tmp19, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
del primals_8
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_10
del primals_9
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, r, mul, add_1, h_tilda, mul_1, sub, mul_2, h], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_rsub_sigmoid_tanh_0.run(buf2, primals_2, buf1, primals_5, primals_11, buf3, buf4, primals_6, buf5, 256, grid=grid(256), stream=stream0)
del buf1
del primals_2
del primals_5
return (buf5, primals_11, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf2, buf3, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
class AttentionGRUCell(nn.Module):
def __init__(self, input_size, hidden_size):
super(AttentionGRUCell, self).__init__()
self.hidden_size = hidden_size
self.Wr = nn.Linear(input_size, hidden_size)
init.xavier_normal_(self.Wr.state_dict()['weight'])
self.Ur = nn.Linear(hidden_size, hidden_size)
init.xavier_normal_(self.Ur.state_dict()['weight'])
self.W = nn.Linear(input_size, hidden_size)
init.xavier_normal_(self.W.state_dict()['weight'])
self.U = nn.Linear(hidden_size, hidden_size)
init.xavier_normal_(self.U.state_dict()['weight'])
def forward(self, fact, C, g):
"""
fact.size() -> (#batch, #hidden = #embedding)
c.size() -> (#hidden, ) -> (#batch, #hidden = #embedding)
r.size() -> (#batch, #hidden = #embedding)
h_tilda.size() -> (#batch, #hidden = #embedding)
g.size() -> (#batch, )
"""
r = F.sigmoid(self.Wr(fact) + self.Ur(C))
h_tilda = F.tanh(self.W(fact) + r * self.U(C))
g = g.unsqueeze(1).expand_as(h_tilda)
h = g * h_tilda + (1 - g) * C
return h
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.init as init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_0(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x5 = xindex
x0 = xindex % 4
x2 = xindex % 16
x4 = xindex // 64
tmp0 = tl.load(in_out_ptr0 + x5, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x5, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + (x2 + 16 * x4), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr4 + x5, xmask)
tmp10 = tl.load(in_ptr5 + x5, xmask)
tmp17 = tl.load(in_ptr6 + x5, xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = tl.sigmoid(tmp6)
tmp11 = tmp7 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = libdevice.tanh(tmp12)
tmp14 = tmp8 * tmp13
tmp15 = 1.0
tmp16 = tmp15 - tmp8
tmp18 = tmp16 * tmp17
tmp19 = tmp14 + tmp18
tl.store(in_out_ptr0 + x5, tmp7, xmask)
tl.store(out_ptr0 + x5, tmp19, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf3)
del primals_7
del primals_8
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, reinterpret_tensor(primals_6, (64,
4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf4)
del primals_10
del primals_9
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_rsub_sigmoid_tanh_0[grid(256)](buf2,
primals_2, buf1, primals_5, primals_11, buf3, buf4, primals_6,
buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del primals_2
del primals_5
return buf5, primals_11, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf2, buf3, buf4
class AttentionGRUCellNew(nn.Module):
def __init__(self, input_size, hidden_size):
super(AttentionGRUCellNew, self).__init__()
self.hidden_size = hidden_size
self.Wr = nn.Linear(input_size, hidden_size)
init.xavier_normal_(self.Wr.state_dict()['weight'])
self.Ur = nn.Linear(hidden_size, hidden_size)
init.xavier_normal_(self.Ur.state_dict()['weight'])
self.W = nn.Linear(input_size, hidden_size)
init.xavier_normal_(self.W.state_dict()['weight'])
self.U = nn.Linear(hidden_size, hidden_size)
init.xavier_normal_(self.U.state_dict()['weight'])
def forward(self, input_0, input_1, input_2):
primals_1 = self.Wr.weight
primals_2 = self.Wr.bias
primals_4 = self.Ur.weight
primals_5 = self.Ur.bias
primals_7 = self.W.weight
primals_8 = self.W.bias
primals_9 = self.U.weight
primals_10 = self.U.bias
primals_3 = input_0
primals_6 = input_1
primals_11 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| kirubarajan/Dynamic-Memory-Network-Plus | AttentionGRUCell | false | 12,684 | [
"Apache-2.0"
]
| 0 | 0613287ef5a959c7b260afcea2c31afcfb0ea189 | https://github.com/kirubarajan/Dynamic-Memory-Network-Plus/tree/0613287ef5a959c7b260afcea2c31afcfb0ea189 |
FocalLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/z4/cz4rdmnjzva3wxtwkxdq32ntpuxr4xa3itqmggsv52y455k5rfxs.py
# Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha, eq, pred, sub_1, pt, sub_2, pow_1, mul_2, ce, mul_3], Original ATen: [aten.mul, aten.rsub, aten.add, aten.eq, aten.sigmoid, aten.where, aten.pow, aten.binary_cross_entropy_with_logits]
# Source node to ATen node mapping:
# alpha => add
# ce => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2
# eq => eq
# mul => mul_1
# mul_1 => mul_2
# mul_2 => mul_3
# mul_3 => mul_4
# pow_1 => pow_1
# pred => sigmoid
# pt => where
# sub => sub_3
# sub_1 => sub_4
# sub_2 => sub_5
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg1_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 0.75), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg1_1, 1), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %sigmoid, %sub_4), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %where), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_5, 2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %pow_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg0_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sub_2), kwargs = {})
triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0 = async_compile.triton('triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp9 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.75
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = tmp0 == tmp3
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp3 - tmp10
tmp12 = tl.where(tmp8, tmp10, tmp11)
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tmp7 * tmp14
tmp16 = tmp4 * tmp9
tmp17 = 0.0
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl_math.abs(tmp9)
tmp20 = -tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = libdevice.log1p(tmp21)
tmp23 = tmp18 - tmp22
tmp24 = tmp16 - tmp23
tmp25 = tmp15 * tmp24
tl.store(out_ptr0 + (x0), tmp25, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha, eq, pred, sub_1, pt, sub_2, pow_1, mul_2, ce, mul_3], Original ATen: [aten.mul, aten.rsub, aten.add, aten.eq, aten.sigmoid, aten.where, aten.pow, aten.binary_cross_entropy_with_logits]
stream0 = get_raw_stream(0)
triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.cuda
import torch.distributed
import torch.multiprocessing
class FocalLoss(nn.Module):
"""Focal Loss - https://arxiv.org/abs/1708.02002"""
def __init__(self, alpha=0.25, gamma=2):
super().__init__()
self.alpha = alpha
self.gamma = gamma
def forward(self, pred_logits, target):
pred = pred_logits.sigmoid()
ce = F.binary_cross_entropy_with_logits(pred_logits, target,
reduction='none')
alpha = target * self.alpha + (1.0 - target) * (1.0 - self.alpha)
pt = torch.where(target == 1, pred, 1 - pred)
return alpha * (1.0 - pt) ** self.gamma * ce
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.cuda
import torch.distributed
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0(
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp9 = tl.load(in_ptr1 + x0, xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.75
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = tmp0 == tmp3
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp3 - tmp10
tmp12 = tl.where(tmp8, tmp10, tmp11)
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tmp7 * tmp14
tmp16 = tmp4 * tmp9
tmp17 = 0.0
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl_math.abs(tmp9)
tmp20 = -tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = libdevice.log1p(tmp21)
tmp23 = tmp18 - tmp22
tmp24 = tmp16 - tmp23
tmp25 = tmp15 * tmp24
tl.store(out_ptr0 + x0, tmp25, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0[
grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del arg0_1
del arg1_1
return buf0,
class FocalLossNew(nn.Module):
"""Focal Loss - https://arxiv.org/abs/1708.02002"""
def __init__(self, alpha=0.25, gamma=2):
super().__init__()
self.alpha = alpha
self.gamma = gamma
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| krisk84/retinanet-examples | FocalLoss | false | 12,685 | [
"BSD-3-Clause"
]
| 0 | 174d95f3aabe1746d105c66f87aa445607f4eab8 | https://github.com/krisk84/retinanet-examples/tree/174d95f3aabe1746d105c66f87aa445607f4eab8 |
GlobalAveragePooling | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/is/cispe7zbbl4nxt2jjus6h5iou2w7htohqj7z2oz6g7nqz6vbpbqr.py
# Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# avg_pool2d => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [4, 4]), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tl.store(out_ptr0 + (x0), tmp32, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.nn.functional as F
class GlobalAveragePooling(nn.Module):
def __init__(self):
super(GlobalAveragePooling, self).__init__()
def forward(self, feat):
num_channels = feat.size(1)
return F.avg_pool2d(feat, (feat.size(2), feat.size(3))).view(-1,
num_channels)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tl.store(out_ptr0 + x0, tmp32, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 4), (4, 1), 0),
class GlobalAveragePoolingNew(nn.Module):
def __init__(self):
super(GlobalAveragePoolingNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| kristinakupf/FeatureLearningRotNet | GlobalAveragePooling | false | 12,686 | [
"MIT"
]
| 0 | d495bcfaed3e7a3ca92b7434f8ad6d7584ab173d | https://github.com/kristinakupf/FeatureLearningRotNet/tree/d495bcfaed3e7a3ca92b7434f8ad6d7584ab173d |
KLDLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/5v/c5vtwldilipwi3r3wx5rsxypbvfmsav7s7xybl5bf72d3sckrknw.py
# Topologically Sorted Source Nodes: [add, pow_1, sub, exp, sub_1, sum_1, mul], Original ATen: [aten.add, aten.pow, aten.sub, aten.exp, aten.sum, aten.mul]
# Source node to ATen node mapping:
# add => add
# exp => exp
# mul => mul
# pow_1 => pow_1
# sub => sub
# sub_1 => sub_1
# sum_1 => sum_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %pow_1), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %exp), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, -0.5), kwargs = {})
triton_per_fused_add_exp_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_exp_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_exp_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_exp_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 - tmp4
tmp6 = tl_math.exp(tmp0)
tmp7 = tmp5 - tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = -0.5
tmp12 = tmp10 * tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [add, pow_1, sub, exp, sub_1, sum_1, mul], Original ATen: [aten.add, aten.pow, aten.sub, aten.exp, aten.sum, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_add_exp_mul_pow_sub_sum_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class KLDLoss(nn.Module):
def forward(self, mu, logvar):
return -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_exp_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 - tmp4
tmp6 = tl_math.exp(tmp0)
tmp7 = tmp5 - tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = -0.5
tmp12 = tmp10 * tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_exp_mul_pow_sub_sum_0[grid(1)](buf1, arg0_1,
arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class KLDLossNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| kudoNCT/michigan_copy | KLDLoss | false | 12,687 | [
"MIT"
]
| 0 | e857b96a65b270ef2506cb9866b7e01f117c4396 | https://github.com/kudoNCT/michigan_copy/tree/e857b96a65b270ef2506cb9866b7e01f117c4396 |
GatedMaskedConv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/lk/clkvmfnc5ppj6ffcl2v3tvac6pbvz3y7mizzrdi65zokiejjhua3.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# pad => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 0], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 5
x0 = xindex % 6
x2 = (xindex // 30)
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = (-1) + x0
tmp4 = tmp3 >= tmp1
tmp5 = tl.full([1], 4, tl.int64)
tmp6 = tmp3 < tmp5
tmp7 = tmp2 & tmp4
tmp8 = tmp7 & tmp6
tmp9 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp8 & xmask, other=0.0)
tl.store(out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/pj/cpjc45ogatjtexy7be6gijiwluzdhthxjvcnnqmgqlinbpzrsmbi.py
# Topologically Sorted Source Nodes: [conv2d, pad_1], Original ATen: [aten.convolution, aten.constant_pad_nd]
# Source node to ATen node mapping:
# conv2d => convolution
# pad_1 => constant_pad_nd_1
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %constant_pad_nd_1 : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution, [0, 0, 1, 0], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_convolution_1 = async_compile.triton('triton_poi_fused_constant_pad_nd_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_convolution_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 5
x4 = (xindex // 20)
x5 = xindex % 20
x2 = (xindex // 20) % 8
x6 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.load(in_ptr0 + ((-4) + x5 + (16*x4)), tmp2 & xmask, other=0.0)
tmp4 = tl.load(in_ptr1 + (x2), tmp2 & xmask, eviction_policy='evict_last', other=0.0)
tmp5 = tmp3 + tmp4
tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype)
tmp7 = tl.where(tmp2, tmp5, tmp6)
tl.store(out_ptr0 + (x6), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/es/ceshmhutmeo5xl2yl3dxwxrpje5njiwcfwwoj52wrkr3mcl5lhub.py
# Topologically Sorted Source Nodes: [tanh, sigmoid, v_map_out], Original ATen: [aten.tanh, aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# tanh => tanh
# v_map_out => mul
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%slice_6,), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%slice_8,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_mul_sigmoid_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_tanh_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16) % 4
x2 = (xindex // 64)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (20*x1) + (160*x2)), xmask)
tmp2 = tl.load(in_ptr0 + (80 + x0 + (20*x1) + (160*x2)), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp1 * tmp3
tl.store(out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/4b/c4bwymcjfsik2yzrr5le4v2j3mroi4pfhlquggnmpgqwjxzshdbs.py
# Topologically Sorted Source Nodes: [pad_2], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# pad_2 => constant_pad_nd_2
# Graph fragment:
# %constant_pad_nd_2 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_6, [1, 0, 0, 0], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_3 = async_compile.triton('triton_poi_fused_constant_pad_nd_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp0 = (-1) + x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1)), tmp2 & xmask, other=0.0)
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/md/cmdddio6ujcwbhy6hgzu6huywjuoh3klsp37w5ygk2v4gwwrdoev.py
# Topologically Sorted Source Nodes: [tanh_1, sigmoid_1, h_out_2], Original ATen: [aten.tanh, aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# h_out_2 => mul_1
# sigmoid_1 => sigmoid_1
# tanh_1 => tanh_1
# Graph fragment:
# %tanh_1 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%slice_10,), kwargs = {})
# %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%slice_12,), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh_1, %sigmoid_1), kwargs = {})
triton_poi_fused_mul_sigmoid_tanh_4 = async_compile.triton('triton_poi_fused_mul_sigmoid_tanh_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_tanh_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_tanh_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 64)
x4 = xindex % 64
x1 = (xindex // 16) % 4
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x4 + (128*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x4 + (128*x2)), xmask)
tmp4 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (64 + x4 + (128*x2)), xmask)
tmp9 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (64 + x4 + (128*x2)), xmask)
tmp12 = tl.load(in_ptr3 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tmp10 = tmp8 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp7 * tmp15
tl.store(out_ptr0 + (x3), tmp7, xmask)
tl.store(out_ptr1 + (x3), tmp15, xmask)
tl.store(out_ptr2 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ti/ctitm3fmik35mxgmabf5id22xrqrvhqyrxpmktt2s2eg77n2c7xt.py
# Topologically Sorted Source Nodes: [h_map_out, h_map_out_1], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# h_map_out => convolution_3
# h_map_out_1 => add_1
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_1, %primals_9, %primals_10, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_3, %primals_6), kwargs = {})
triton_poi_fused_add_convolution_5 = async_compile.triton('triton_poi_fused_add_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 2, 3), (24, 6, 3, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (8, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_5, (8, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (8, 4, 1, 2), (8, 2, 2, 1))
assert_size_stride(primals_8, (8, ), (1, ))
assert_size_stride(primals_9, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 6), (120, 30, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 480, grid=grid(480), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 4, 4), (128, 16, 4, 1))
buf2 = empty_strided_cuda((4, 8, 5, 4), (160, 20, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, pad_1], Original ATen: [aten.convolution, aten.constant_pad_nd]
triton_poi_fused_constant_pad_nd_convolution_1.run(buf1, primals_3, buf2, 640, grid=grid(640), stream=stream0)
del buf1
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh, sigmoid, v_map_out], Original ATen: [aten.tanh, aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_tanh_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [vh], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(buf2, (4, 8, 4, 4), (160, 20, 4, 1), 0), primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 8, 4, 4), (128, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad_2], Original ATen: [aten.constant_pad_nd]
triton_poi_fused_constant_pad_nd_3.run(primals_6, buf5, 320, grid=grid(320), stream=stream0)
# Topologically Sorted Source Nodes: [h_out], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 8, 4, 4), (128, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh_1, sigmoid_1, h_out_2], Original ATen: [aten.tanh, aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_tanh_4.run(buf6, primals_8, buf4, primals_5, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0)
del buf4
del buf6
del primals_5
del primals_8
# Topologically Sorted Source Nodes: [h_map_out], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [h_map_out, h_map_out_1], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_5.run(buf11, primals_10, primals_6, 256, grid=grid(256), stream=stream0)
del primals_10
del primals_6
return (buf3, buf11, primals_2, primals_4, primals_7, primals_9, buf0, reinterpret_tensor(buf2, (4, 8, 4, 4), (160, 20, 4, 1), 0), buf5, buf7, buf8, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4, 2, 3), (24, 6, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 8, 1, 1), (8, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((8, 4, 1, 2), (8, 2, 2, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch import nn
import torch.nn.functional as F
class GatedMaskedConv2d(nn.Module):
def __init__(self, in_dim, out_dim=None, kernel_size=3, mask='B'):
super(GatedMaskedConv2d, self).__init__()
if out_dim is None:
out_dim = in_dim
self.dim = out_dim
self.size = kernel_size
self.mask = mask
pad = self.size // 2
self.v_conv = nn.Conv2d(in_dim, 2 * self.dim, kernel_size=(pad + 1,
self.size))
self.v_pad1 = nn.ConstantPad2d((pad, pad, pad, 0), 0)
self.v_pad2 = nn.ConstantPad2d((0, 0, 1, 0), 0)
self.vh_conv = nn.Conv2d(2 * self.dim, 2 * self.dim, kernel_size=1)
self.h_conv = nn.Conv2d(in_dim, 2 * self.dim, kernel_size=(1, pad + 1))
self.h_pad1 = nn.ConstantPad2d((self.size // 2, 0, 0, 0), 0)
self.h_pad2 = nn.ConstantPad2d((1, 0, 0, 0), 0)
self.h_conv_res = nn.Conv2d(self.dim, self.dim, 1)
def forward(self, v_map, h_map):
v_out = self.v_pad2(self.v_conv(self.v_pad1(v_map)))[:, :, :-1, :]
v_map_out = F.tanh(v_out[:, :self.dim]) * F.sigmoid(v_out[:, self.dim:]
)
vh = self.vh_conv(v_out)
h_out = self.h_conv(self.h_pad1(h_map))
if self.mask == 'A':
h_out = self.h_pad2(h_out)[:, :, :, :-1]
h_out = h_out + vh
h_out = F.tanh(h_out[:, :self.dim]) * F.sigmoid(h_out[:, self.dim:])
h_map_out = self.h_conv_res(h_out)
if self.mask == 'B':
h_map_out = h_map_out + h_map
return v_map_out, h_map_out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 5
x0 = xindex % 6
x2 = xindex // 30
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = -1 + x0
tmp4 = tmp3 >= tmp1
tmp5 = tl.full([1], 4, tl.int64)
tmp6 = tmp3 < tmp5
tmp7 = tmp2 & tmp4
tmp8 = tmp7 & tmp6
tmp9 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp8 & xmask,
other=0.0)
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_constant_pad_nd_convolution_1(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 5
x4 = xindex // 20
x5 = xindex % 20
x2 = xindex // 20 % 8
x6 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.load(in_ptr0 + (-4 + x5 + 16 * x4), tmp2 & xmask, other=0.0)
tmp4 = tl.load(in_ptr1 + x2, tmp2 & xmask, eviction_policy='evict_last',
other=0.0)
tmp5 = tmp3 + tmp4
tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype)
tmp7 = tl.where(tmp2, tmp5, tmp6)
tl.store(out_ptr0 + x6, tmp7, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_tanh_2(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16 % 4
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 20 * x1 + 160 * x2), xmask)
tmp2 = tl.load(in_ptr0 + (80 + x0 + 20 * x1 + 160 * x2), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp1 * tmp3
tl.store(out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_constant_pad_nd_3(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp0 = -1 + x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1), tmp2 & xmask, other=0.0)
tl.store(out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_tanh_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 64
x4 = xindex % 64
x1 = xindex // 16 % 4
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x4 + 128 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x4 + 128 * x2), xmask)
tmp4 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (64 + x4 + 128 * x2), xmask)
tmp9 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (64 + x4 + 128 * x2), xmask)
tmp12 = tl.load(in_ptr3 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tmp10 = tmp8 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp7 * tmp15
tl.store(out_ptr0 + x3, tmp7, xmask)
tl.store(out_ptr1 + x3, tmp15, xmask)
tl.store(out_ptr2 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused_add_convolution_5(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 2, 3), (24, 6, 3, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (8, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_5, (8,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (8, 4, 1, 2), (8, 2, 2, 1))
assert_size_stride(primals_8, (8,), (1,))
assert_size_stride(primals_9, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 6), (120, 30, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(480)](primals_1, buf0, 480,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 4, 4), (128, 16, 4, 1))
buf2 = empty_strided_cuda((4, 8, 5, 4), (160, 20, 4, 1), torch.float32)
triton_poi_fused_constant_pad_nd_convolution_1[grid(640)](buf1,
primals_3, buf2, 640, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_tanh_2[grid(256)](buf2, buf3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(reinterpret_tensor(buf2, (4, 8, 4,
4), (160, 20, 4, 1), 0), primals_4, stride=(1, 1), padding=(0,
0), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf4, (4, 8, 4, 4), (128, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
triton_poi_fused_constant_pad_nd_3[grid(320)](primals_6, buf5, 320,
XBLOCK=256, num_warps=4, num_stages=1)
buf6 = extern_kernels.convolution(buf5, primals_7, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 8, 4, 4), (128, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_tanh_4[grid(256)](buf6, primals_8,
buf4, primals_5, buf7, buf8, buf9, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf4
del buf6
del primals_5
del primals_8
buf10 = extern_kernels.convolution(buf9, primals_9, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1))
buf11 = buf10
del buf10
triton_poi_fused_add_convolution_5[grid(256)](buf11, primals_10,
primals_6, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_10
del primals_6
return (buf3, buf11, primals_2, primals_4, primals_7, primals_9, buf0,
reinterpret_tensor(buf2, (4, 8, 4, 4), (160, 20, 4, 1), 0), buf5,
buf7, buf8, buf9)
class GatedMaskedConv2dNew(nn.Module):
def __init__(self, in_dim, out_dim=None, kernel_size=3, mask='B'):
super(GatedMaskedConv2dNew, self).__init__()
if out_dim is None:
out_dim = in_dim
self.dim = out_dim
self.size = kernel_size
self.mask = mask
pad = self.size // 2
self.v_conv = nn.Conv2d(in_dim, 2 * self.dim, kernel_size=(pad + 1,
self.size))
self.v_pad1 = nn.ConstantPad2d((pad, pad, pad, 0), 0)
self.v_pad2 = nn.ConstantPad2d((0, 0, 1, 0), 0)
self.vh_conv = nn.Conv2d(2 * self.dim, 2 * self.dim, kernel_size=1)
self.h_conv = nn.Conv2d(in_dim, 2 * self.dim, kernel_size=(1, pad + 1))
self.h_pad1 = nn.ConstantPad2d((self.size // 2, 0, 0, 0), 0)
self.h_pad2 = nn.ConstantPad2d((1, 0, 0, 0), 0)
self.h_conv_res = nn.Conv2d(self.dim, self.dim, 1)
def forward(self, input_0, input_1):
primals_2 = self.v_conv.weight
primals_3 = self.v_conv.bias
primals_4 = self.vh_conv.weight
primals_5 = self.vh_conv.bias
primals_7 = self.h_conv.weight
primals_8 = self.h_conv.bias
primals_9 = self.h_conv_res.weight
primals_10 = self.h_conv_res.bias
primals_1 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0], output[1]
| kj141/vae-lagging-encoder | GatedMaskedConv2d | false | 12,688 | [
"MIT"
]
| 0 | 79dda8baed0129bc8234b7602332a54210164fbc | https://github.com/kj141/vae-lagging-encoder/tree/79dda8baed0129bc8234b7602332a54210164fbc |
DuelingDQN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/hy/chyn4ucj7uhqavrcrhxk2c5izzfdiw63bn3glmpyn3tpx5bpigdc.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_2), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/b7/cb7yiqdigd2vu5it7f2y6axob3bgvkx2ecs3nmymezsrlxsu2jhl.py
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# v => relu_2
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_7), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/pf/cpfaffniytsvapzbt4cn2nrmt3t4gkebunfzmckizel5dlo2qgjo.py
# Topologically Sorted Source Nodes: [add, x_2], Original ATen: [aten.add, aten.sub]
# Source node to ATen node mapping:
# add => add
# x_2 => sub
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %addmm_5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %expand_1), kwargs = {})
triton_poi_fused_add_sub_2 = async_compile.triton('triton_poi_fused_add_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_sub_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + (x2), xmask)
tmp6 = tl.load(in_ptr2 + (4*x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp0 + tmp2
tmp5 = tmp3 + tmp4
tmp8 = tmp6 + tmp7
tmp10 = tmp8 + tmp9
tmp12 = tmp10 + tmp11
tmp13 = 4.0
tmp14 = tmp12 / tmp13
tmp15 = tmp5 - tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (128, 128), (128, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (32, 128), (128, 1))
assert_size_stride(primals_7, (32, ), (1, ))
assert_size_stride(primals_8, (1, 32), (32, 1))
assert_size_stride(primals_9, (1, ), (1, ))
assert_size_stride(primals_10, (32, 128), (128, 1))
assert_size_stride(primals_11, (32, ), (1, ))
assert_size_stride(primals_12, (4, 32), (32, 1))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_2, 512, grid=grid(512), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
triton_poi_fused_relu_0.run(buf3, primals_5, 512, grid=grid(512), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (128, 32), (1, 128), 0), out=buf4)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf5, primals_7, 128, grid=grid(128), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf5, reinterpret_tensor(primals_8, (32, 1), (1, 32), 0), out=buf6)
buf7 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf3, reinterpret_tensor(primals_10, (128, 32), (1, 128), 0), out=buf7)
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf8, primals_11, 128, grid=grid(128), stream=stream0)
del primals_11
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_13, buf8, reinterpret_tensor(primals_12, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf9)
del primals_13
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, x_2], Original ATen: [aten.add, aten.sub]
triton_poi_fused_add_sub_2.run(buf6, primals_9, buf9, buf10, 16, grid=grid(16), stream=stream0)
del buf6
del buf9
del primals_9
return (buf10, primals_3, buf1, buf3, buf5, buf8, primals_12, primals_10, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((32, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((32, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class DuelingDQN(nn.Module):
def __init__(self, state_size, action_size, seed):
super(DuelingDQN, self).__init__()
torch.manual_seed(seed)
self.state_size = state_size
self.action_size = action_size
self.fc1 = nn.Linear(state_size, 128)
self.fc2 = nn.Linear(128, 128)
self.value_fc1 = nn.Linear(128, 32)
self.value_activation = nn.Linear(32, 1)
self.advantage_fc1 = nn.Linear(128, 32)
self.advantage_activation = nn.Linear(32, action_size)
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
v = F.relu(self.value_fc1(x))
v = self.value_activation(v).expand(x.size(0), self.action_size)
a = F.relu(self.advantage_fc1(x))
a = self.advantage_activation(a)
x = v + a - a.mean(1).unsqueeze(1).expand(x.size(0), self.action_size)
return x
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_sub_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + x2, xmask)
tmp6 = tl.load(in_ptr2 + 4 * x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp3 = tmp0 + tmp2
tmp5 = tmp3 + tmp4
tmp8 = tmp6 + tmp7
tmp10 = tmp8 + tmp9
tmp12 = tmp10 + tmp11
tmp13 = 4.0
tmp14 = tmp12 / tmp13
tmp15 = tmp5 - tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (128, 128), (128, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (32, 128), (128, 1))
assert_size_stride(primals_7, (32,), (1,))
assert_size_stride(primals_8, (1, 32), (32, 1))
assert_size_stride(primals_9, (1,), (1,))
assert_size_stride(primals_10, (32, 128), (128, 1))
assert_size_stride(primals_11, (32,), (1,))
assert_size_stride(primals_12, (4, 32), (32, 1))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 128),
(1, 4), 0), out=buf0)
del primals_1
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(512)](buf1, primals_2, 512, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (128, 128), (
1, 128), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_0[grid(512)](buf3, primals_5, 512, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (128, 32), (1,
128), 0), out=buf4)
buf5 = buf4
del buf4
triton_poi_fused_relu_1[grid(128)](buf5, primals_7, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(buf5, reinterpret_tensor(primals_8, (32, 1), (1,
32), 0), out=buf6)
buf7 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
extern_kernels.mm(buf3, reinterpret_tensor(primals_10, (128, 32), (
1, 128), 0), out=buf7)
buf8 = buf7
del buf7
triton_poi_fused_relu_1[grid(128)](buf8, primals_11, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_11
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_13, buf8, reinterpret_tensor(
primals_12, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf9)
del primals_13
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_sub_2[grid(16)](buf6, primals_9, buf9, buf10,
16, XBLOCK=16, num_warps=1, num_stages=1)
del buf6
del buf9
del primals_9
return (buf10, primals_3, buf1, buf3, buf5, buf8, primals_12,
primals_10, primals_8, primals_6, primals_4)
class DuelingDQNNew(nn.Module):
def __init__(self, state_size, action_size, seed):
super(DuelingDQNNew, self).__init__()
torch.manual_seed(seed)
self.state_size = state_size
self.action_size = action_size
self.fc1 = nn.Linear(state_size, 128)
self.fc2 = nn.Linear(128, 128)
self.value_fc1 = nn.Linear(128, 32)
self.value_activation = nn.Linear(32, 1)
self.advantage_fc1 = nn.Linear(128, 32)
self.advantage_activation = nn.Linear(32, action_size)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.value_fc1.weight
primals_7 = self.value_fc1.bias
primals_8 = self.value_activation.weight
primals_9 = self.value_activation.bias
primals_10 = self.advantage_fc1.weight
primals_11 = self.advantage_fc1.bias
primals_12 = self.advantage_activation.weight
primals_13 = self.advantage_activation.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| kscharpf/drlnd_p1_navigation | DuelingDQN | false | 12,689 | [
"MIT"
]
| 0 | 7f5e2aebcabb9d94c45a2fa7e9e8baec5c4b7a00 | https://github.com/kscharpf/drlnd_p1_navigation/tree/7f5e2aebcabb9d94c45a2fa7e9e8baec5c4b7a00 |
SmoothL1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/6j/c6jfepznpyw27icx3r43btm73cvmjgsugaqhhbluj37jhqqgggsz.py
# Topologically Sorted Source Nodes: [sub, x, ge, l1, pow_1, mul, l2, where], Original ATen: [aten.sub, aten.abs, aten.ge, aten.pow, aten.mul, aten.div, aten.where]
# Source node to ATen node mapping:
# ge => ge
# l1 => sub_1
# l2 => div
# mul => mul
# pow_1 => pow_1
# sub => sub
# where => where
# x => abs_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%abs_1, 0.11), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.055), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 0.11), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ge, %sub_1, %div), kwargs = {})
triton_poi_fused_abs_div_ge_mul_pow_sub_where_0 = async_compile.triton('triton_poi_fused_abs_div_ge_mul_pow_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_div_ge_mul_pow_sub_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_div_ge_mul_pow_sub_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.11
tmp5 = tmp3 >= tmp4
tmp6 = 0.055
tmp7 = tmp3 - tmp6
tmp8 = tmp3 * tmp3
tmp9 = 0.5
tmp10 = tmp8 * tmp9
tmp11 = 9.090909090909092
tmp12 = tmp10 * tmp11
tmp13 = tl.where(tmp5, tmp7, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, x, ge, l1, pow_1, mul, l2, where], Original ATen: [aten.sub, aten.abs, aten.ge, aten.pow, aten.mul, aten.div, aten.where]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_div_ge_mul_pow_sub_where_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
import torch.distributed
import torch.multiprocessing
class SmoothL1Loss(nn.Module):
"""Smooth L1 Loss"""
def __init__(self, beta=0.11):
super().__init__()
self.beta = beta
def forward(self, pred, target):
x = (pred - target).abs()
l1 = x - 0.5 * self.beta
l2 = 0.5 * x ** 2 / self.beta
return torch.where(x >= self.beta, l1, l2)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.cuda
import torch.distributed
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_div_ge_mul_pow_sub_where_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.11
tmp5 = tmp3 >= tmp4
tmp6 = 0.055
tmp7 = tmp3 - tmp6
tmp8 = tmp3 * tmp3
tmp9 = 0.5
tmp10 = tmp8 * tmp9
tmp11 = 9.090909090909092
tmp12 = tmp10 * tmp11
tmp13 = tl.where(tmp5, tmp7, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_div_ge_mul_pow_sub_where_0[grid(256)](arg0_1,
arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SmoothL1LossNew(nn.Module):
"""Smooth L1 Loss"""
def __init__(self, beta=0.11):
super().__init__()
self.beta = beta
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| krisk84/retinanet-examples | SmoothL1Loss | false | 12,690 | [
"BSD-3-Clause"
]
| 0 | 174d95f3aabe1746d105c66f87aa445607f4eab8 | https://github.com/krisk84/retinanet-examples/tree/174d95f3aabe1746d105c66f87aa445607f4eab8 |
GELU | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/nh/cnhx37tsffx4r7taj3xi72s7yfpnnccem24fupfbht6b7bzliavu.py
# Topologically Sorted Source Nodes: [gelu], Original ATen: [aten.gelu]
# Source node to ATen node mapping:
# gelu => add, erf, mul, mul_1, mul_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_gelu_0 = async_compile.triton('triton_poi_fused_gelu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gelu], Original ATen: [aten.gelu]
stream0 = get_raw_stream(0)
triton_poi_fused_gelu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import functional as F
class GELU(nn.Module):
def forward(self, input):
return F.gelu(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_gelu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class GELUNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| kwonyos/decision-transformer | GELU | false | 12,691 | [
"MIT"
]
| 0 | c3ad7df28a897a016dd24c5337cb871d1f33f456 | https://github.com/kwonyos/decision-transformer/tree/c3ad7df28a897a016dd24c5337cb871d1f33f456 |
WeightedFeatureFusion | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/fs/cfs4xkoaiu25wxx5ko6j355loos24sadbddfu2644hsgmchy36go.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x => add
# x_1 => add_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %select), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %select_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (256 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tmp2 + tmp1
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (5, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((5, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class WeightedFeatureFusion(nn.Module):
def __init__(self, layers, weight=False):
super(WeightedFeatureFusion, self).__init__()
self.layers = layers
self.weight = weight
self.n = len(layers) + 1
if weight:
self.w = nn.Parameter(torch.zeros(self.n), requires_grad=True)
def forward(self, x, outputs):
if self.weight:
w = torch.sigmoid(self.w) * (2 / self.n)
x = x * w[0]
nx = x.shape[1]
for i in range(self.n - 1):
a = outputs[self.layers[i]] * w[i + 1] if self.weight else outputs[
self.layers[i]]
na = a.shape[1]
if nx == na:
x = x + a
elif nx > na:
x[:, :na] = x[:, :na] + a
else:
x = x + a[:, :nx]
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([5, 4, 4, 4])]
def get_init_inputs():
return [[], {'layers': [4, 4]}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + (256 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tmp2 + tmp1
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (5, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK
=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class WeightedFeatureFusionNew(nn.Module):
def __init__(self, layers, weight=False):
super(WeightedFeatureFusionNew, self).__init__()
self.layers = layers
self.weight = weight
self.n = len(layers) + 1
if weight:
self.w = nn.Parameter(torch.zeros(self.n), requires_grad=True)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ks1320/Traffic-Surveillance-System | WeightedFeatureFusion | false | 12,692 | [
"MIT"
]
| 0 | fa1eb2a3a3d494c798fa2eeb0528ef48b1978332 | https://github.com/ks1320/Traffic-Surveillance-System/tree/fa1eb2a3a3d494c798fa2eeb0528ef48b1978332 |
Reorg | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/l5/cl5b6spvyoawk3rk5eatjxs6crkxt5h56dutf76hem45gsxd2mev.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_2, %slice_4, %slice_6, %slice_8], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 4) % 16
x0 = xindex % 2
x1 = (xindex // 2) % 2
x3 = (xindex // 64)
x4 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2) + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1) + (16*((-4) + x2)) + (64*x3)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1) + (16*((-8) + x2)) + (64*x3)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1) + (16*((-12) + x2)) + (64*x3)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x4), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class Reorg(nn.Module):
def forward(self, x):
return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2,
1::2], x[..., 1::2, 1::2]], 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 4 % 16
x0 = xindex % 2
x1 = xindex // 2 % 2
x3 = xindex // 64
x4 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2 + 64 * x3), tmp4 &
xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1 + 16 * (-4 + x2) + 64 *
x3), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1 + 16 * (-8 + x2) + 64 *
x3), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1 + 16 * (-12 + x2) + 64 *
x3), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x4, tmp22, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ReorgNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| ks1320/Traffic-Surveillance-System | Reorg | false | 12,693 | [
"MIT"
]
| 0 | fa1eb2a3a3d494c798fa2eeb0528ef48b1978332 | https://github.com/ks1320/Traffic-Surveillance-System/tree/fa1eb2a3a3d494c798fa2eeb0528ef48b1978332 |
GCN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/l4/cl4boort6vfsvh6h6bfd4lck36kbmtipkqcrnhckuuxer6sfib77.py
# Topologically Sorted Source Nodes: [temp_1], Original ATen: [aten.zeros]
# Source node to ATen node mapping:
# temp_1 => full
# Graph fragment:
# %full : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_zeros_0 = async_compile.triton('triton_poi_fused_zeros_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/wq/cwqkfc7efcgiuv6rsa3stkinyzeft7fq5wl4uyfa53emahjnunte.py
# Topologically Sorted Source Nodes: [temp_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# temp_3 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [temp_1], Original ATen: [aten.zeros]
stream0 = get_raw_stream(0)
triton_poi_fused_zeros_0.run(buf0, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [temp_1], Original ATen: [aten._sparse_addmm]
buf1 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), beta=0)
del primals_1
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (4, 4), (1, 4), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf3)
del primals_3
buf4 = buf3; del buf3 # reuse
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
# Topologically Sorted Source Nodes: [temp_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf4, primals_4, buf8, 16, grid=grid(16), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [temp_5], Original ATen: [aten._sparse_addmm]
buf5 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(buf4, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), beta=0)
del buf0
buf6 = buf5
del buf5
buf7 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [temp_6], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(buf6, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_6
return (buf7, reinterpret_tensor(buf2, (4, 4), (1, 4), 0), reinterpret_tensor(buf6, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), primals_2, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class GCN(nn.Module):
def __init__(self, dim_nd, dim_ft, dim_hd, dim_ot, drop_rate=0.5):
super(GCN, self).__init__()
self.lin1 = nn.Linear(dim_ft, dim_hd)
self.lin2 = nn.Linear(dim_hd, dim_ot)
self.act1 = F.relu
self.act2 = nn.Softmax
self.drop1 = nn.Dropout(p=drop_rate)
self.drop2 = nn.Dropout(p=drop_rate)
def forward(self, A, X):
temp = self.drop1(X)
temp = torch.sparse.mm(A, temp)
temp = self.lin1(temp)
temp = self.act1(temp)
temp = self.drop2(temp)
temp = torch.sparse.mm(A, temp)
temp = self.lin2(temp)
output = temp
return output
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'dim_nd': 4, 'dim_ft': 4, 'dim_hd': 4, 'dim_ot': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_zeros_0[grid(16)](buf0, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf1 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor(buf0,
(4, 4), (1, 4), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4
), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), beta=0)
del primals_1
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (4, 4), (1, 4), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf3)
del primals_3
buf4 = buf3
del buf3
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(16)](buf4,
primals_4, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_4
buf5 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor(buf0,
(4, 4), (1, 4), 0), reinterpret_tensor(buf4, (4, 4), (1, 4), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), beta=0)
del buf0
buf6 = buf5
del buf5
buf7 = buf4
del buf4
extern_kernels.addmm(primals_6, reinterpret_tensor(buf6, (4, 4), (1,
4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha
=1, beta=1, out=buf7)
del primals_6
return buf7, reinterpret_tensor(buf2, (4, 4), (1, 4), 0
), reinterpret_tensor(buf6, (4, 4), (1, 4), 0), reinterpret_tensor(
primals_5, (4, 4), (1, 4), 0), primals_2, buf8
class GCNNew(nn.Module):
def __init__(self, dim_nd, dim_ft, dim_hd, dim_ot, drop_rate=0.5):
super(GCNNew, self).__init__()
self.lin1 = nn.Linear(dim_ft, dim_hd)
self.lin2 = nn.Linear(dim_hd, dim_ot)
self.act1 = F.relu
self.act2 = nn.Softmax
self.drop1 = nn.Dropout(p=drop_rate)
self.drop2 = nn.Dropout(p=drop_rate)
def forward(self, input_0, input_1):
primals_1 = self.lin1.weight
primals_4 = self.lin1.bias
primals_2 = self.lin2.weight
primals_6 = self.lin2.bias
primals_3 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| lanseyege/Graph | GCN | false | 12,694 | [
"MIT"
]
| 0 | ec94502ea59d2b68de095d8160f37aa22d26f8cb | https://github.com/lanseyege/Graph/tree/ec94502ea59d2b68de095d8160f37aa22d26f8cb |
DQN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/sn/csnsms5tdtjok5uxcwcbko2ioqfann3pwnmkfhlujgvnsujd5bud.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 156800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 1225) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/f4/cf4q74veoggsxdgdkl43ap6cyqfylpfk3qs7wdqoebyfzzb36dvw.py
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/jd/cjdph23oasfased5f2dfu7kch7qcwjhegz6fxsrsn22yzjy3qj2u.py
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 196) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/b5/cb5bmriikeb3z65rmk4n4vz3fvd4pzjrhfemonu665rzgwpxeamm.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_4 => relu_3
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_3 = async_compile.triton('triton_poi_fused_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (32, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 4, 144, 144), (82944, 20736, 144, 1))
assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (512, 3136), (3136, 1))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (4, 512), (512, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 35, 35), (39200, 1225, 35, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 156800, grid=grid(156800), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 16, 16), (16384, 256, 16, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 65536, grid=grid(65536), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 14, 14), (12544, 196, 14, 1))
buf5 = buf4; del buf4 # reuse
buf9 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_2.run(buf5, primals_7, buf9, 50176, grid=grid(50176), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0), reinterpret_tensor(primals_8, (3136, 512), (1, 3136), 0), out=buf6)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
triton_poi_fused_relu_3.run(buf7, primals_9, 8192, grid=grid(8192), stream=stream0)
del primals_9
buf8 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, buf7, reinterpret_tensor(primals_10, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf8)
del primals_11
return (buf8, primals_1, primals_3, primals_4, primals_6, buf1, buf3, reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0), buf7, primals_10, primals_8, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 144, 144), (82944, 20736, 144, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 3136), (3136, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class DQN(nn.Module):
"""Initialize a deep Q-learning network
Hints:
-----
Original paper for DQN
https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
This is just a hint. You can build your own structure.
"""
def __init__(self, gamma, ddqn=False, in_channels=4, num_actions=4):
"""
Parameters:
-----------
in_channels: number of channel of input.
i.e The number of most recent frames stacked together, here we use 4 frames, which means each state in Breakout is composed of 4 frames.
num_actions: number of action-value to output, one-to-one correspondence to action in game.
You can add additional arguments as you need.
In the constructor we instantiate modules and assign them as
member variables.
"""
super(DQN, self).__init__()
self.gamma = gamma
self.ddqn = ddqn
self.in_channels = in_channels
self.num_actions = num_actions
self.pool = nn.MaxPool2d(2, 2)
self.conv_1 = nn.Conv2d(self.in_channels, 32, kernel_size=8, stride=4)
self.conv_2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
self.conv_3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
self.fc_1 = nn.Linear(64 * 7 * 7, 512)
self.output_layer = nn.Linear(512, self.num_actions)
def forward(self, x):
"""
In the forward function we accept a Tensor of input data and we must return
a Tensor of output data. We can use Modules defined in the constructor as
well as arbitrary operators on Tensors.
"""
"""Execute a forward propagation step for the neural network.
Args:
x: An observation in the form of a (4, 84, 84) tensor.
"""
x = F.relu(self.conv_1(x))
x = F.relu(self.conv_2(x))
x = F.relu(self.conv_3(x))
x = x.reshape(-1, 64 * 7 * 7)
x = F.relu(self.fc_1(x))
x = self.output_layer(x)
return x
def compute_loss(self, tensor_lst, target_network, criterion):
"""Computes loss between target-Q function and current Q-function.
Args:
tensor_lst: A list of 5 tensors - current states, current actions, current rewards,
terminal state booleans, and next states.
Returns:
Loss values in the form of a PyTorch tensor.
"""
obs, act, rew, done, next_obs = tensor_lst
with torch.no_grad():
if self.ddqn:
next_state_training_q_vals = self(next_obs)
max_training_q_vals_ind = next_state_training_q_vals.argmax(dim
=1, keepdim=True)
next_state_target_q_vals = target_network(next_obs)
max_target_q_vals = torch.gather(input=
next_state_target_q_vals, dim=1, index=
max_training_q_vals_ind)
target_q_vals = rew + self.gamma * (1 - done
) * max_target_q_vals
else:
next_state_target_q_vals = target_network(next_obs)
max_target_q_vals = next_state_target_q_vals.max(dim=1,
keepdim=True)[0]
target_q_vals = rew + self.gamma * (1 - done
) * max_target_q_vals
q_vals = self(obs)
actual_q_vals = torch.gather(input=q_vals, dim=1, index=act)
return criterion(actual_q_vals, target_q_vals)
def get_inputs():
return [torch.rand([4, 4, 144, 144])]
def get_init_inputs():
return [[], {'gamma': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 156800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 1225 % 32
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 196 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (32, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 144, 144), (82944, 20736, 144, 1))
assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (512, 3136), (3136, 1))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (4, 512), (512, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4,
4), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 35, 35), (39200, 1225, 35, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(156800)](buf1, primals_2,
156800, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 16, 16), (16384, 256, 16, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(65536)](buf3, primals_5,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 14, 14), (12544, 196, 14, 1))
buf5 = buf4
del buf4
buf9 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_2[grid(50176)](
buf5, primals_7, buf9, 50176, XBLOCK=256, num_warps=4, num_stages=1
)
del primals_7
buf6 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0
), reinterpret_tensor(primals_8, (3136, 512), (1, 3136), 0),
out=buf6)
buf7 = buf6
del buf6
triton_poi_fused_relu_3[grid(8192)](buf7, primals_9, 8192, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_9
buf8 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_11, buf7, reinterpret_tensor(
primals_10, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf8)
del primals_11
return (buf8, primals_1, primals_3, primals_4, primals_6, buf1, buf3,
reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0), buf7,
primals_10, primals_8, buf9)
class DQNNew(nn.Module):
"""Initialize a deep Q-learning network
Hints:
-----
Original paper for DQN
https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
This is just a hint. You can build your own structure.
"""
def __init__(self, gamma, ddqn=False, in_channels=4, num_actions=4):
"""
Parameters:
-----------
in_channels: number of channel of input.
i.e The number of most recent frames stacked together, here we use 4 frames, which means each state in Breakout is composed of 4 frames.
num_actions: number of action-value to output, one-to-one correspondence to action in game.
You can add additional arguments as you need.
In the constructor we instantiate modules and assign them as
member variables.
"""
super(DQNNew, self).__init__()
self.gamma = gamma
self.ddqn = ddqn
self.in_channels = in_channels
self.num_actions = num_actions
self.pool = nn.MaxPool2d(2, 2)
self.conv_1 = nn.Conv2d(self.in_channels, 32, kernel_size=8, stride=4)
self.conv_2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
self.conv_3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
self.fc_1 = nn.Linear(64 * 7 * 7, 512)
self.output_layer = nn.Linear(512, self.num_actions)
def compute_loss(self, tensor_lst, target_network, criterion):
"""Computes loss between target-Q function and current Q-function.
Args:
tensor_lst: A list of 5 tensors - current states, current actions, current rewards,
terminal state booleans, and next states.
Returns:
Loss values in the form of a PyTorch tensor.
"""
obs, act, rew, done, next_obs = tensor_lst
with torch.no_grad():
if self.ddqn:
next_state_training_q_vals = self(next_obs)
max_training_q_vals_ind = next_state_training_q_vals.argmax(dim
=1, keepdim=True)
next_state_target_q_vals = target_network(next_obs)
max_target_q_vals = torch.gather(input=
next_state_target_q_vals, dim=1, index=
max_training_q_vals_ind)
target_q_vals = rew + self.gamma * (1 - done
) * max_target_q_vals
else:
next_state_target_q_vals = target_network(next_obs)
max_target_q_vals = next_state_target_q_vals.max(dim=1,
keepdim=True)[0]
target_q_vals = rew + self.gamma * (1 - done
) * max_target_q_vals
q_vals = self(obs)
actual_q_vals = torch.gather(input=q_vals, dim=1, index=act)
return criterion(actual_q_vals, target_q_vals)
def forward(self, input_0):
primals_1 = self.conv_1.weight
primals_2 = self.conv_1.bias
primals_4 = self.conv_2.weight
primals_5 = self.conv_2.bias
primals_6 = self.conv_3.weight
primals_7 = self.conv_3.bias
primals_8 = self.fc_1.weight
primals_9 = self.fc_1.bias
primals_10 = self.output_layer.weight
primals_11 = self.output_layer.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| khaiyichin/DS595-RL-Projects | DQN | false | 12,695 | [
"MIT"
]
| 0 | 4add6b2adc2cb9f7cdb783d50b005ecd1b4aada3 | https://github.com/khaiyichin/DS595-RL-Projects/tree/4add6b2adc2cb9f7cdb783d50b005ecd1b4aada3 |
BasicBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/fv/cfvfxpmpur3qlmurffwz4u56tgvw75i4lbjvzd25ortunbobyxnh.py
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten._native_batch_norm_legit, aten.relu]
# Source node to ATen node mapping:
# out_1 => add, rsqrt, var_mean
# out_2 => relu
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
triton_per_fused__native_batch_norm_legit_relu_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_relu_0(in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 16.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp24 = tl.full([1, 1], 0, tl.int32)
tmp25 = triton_helpers.maximum(tmp24, tmp23)
tl.store(out_ptr2 + (r1 + (16*x0)), tmp25, xmask)
tl.store(out_ptr3 + (x0), tmp22, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/lk/clk53igo2wowtd6pq5zu23svybsi67ef5dmegrb3qnpketcev22z.py
# Topologically Sorted Source Nodes: [out_4, out_6], Original ATen: [aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_4 => add_1, rsqrt_1, var_mean_1
# out_6 => relu_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_5, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_8,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_16, 0), kwargs = {})
triton_per_fused__native_batch_norm_legit_relu_threshold_backward_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 16.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 + tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tmp28 = 0.0
tmp29 = tmp27 <= tmp28
tl.store(out_ptr2 + (r1 + (16*x0)), tmp27, xmask)
tl.store(out_ptr3 + (r1 + (16*x0)), tmp29, xmask)
tl.store(out_ptr4 + (x0), tmp22, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten._native_batch_norm_legit, aten.relu]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_relu_0.run(buf0, buf1, buf5, buf4, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf10 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [out_4, out_6], Original ATen: [aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
triton_per_fused__native_batch_norm_legit_relu_threshold_backward_1.run(buf6, primals_1, buf7, buf11, buf12, buf10, 16, 16, grid=grid(16), stream=stream0)
return (buf11, primals_1, primals_2, primals_3, buf0, reinterpret_tensor(buf4, (16, ), (1, ), 0), buf5, buf6, reinterpret_tensor(buf10, (16, ), (1, ), 0), buf12, reinterpret_tensor(buf7, (1, 16, 1, 1), (16, 1, 1, 1), 0), reinterpret_tensor(buf1, (1, 16, 1, 1), (16, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=False)
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
class BasicBlock(nn.Module):
expansion = 1
__constants__ = ['downsample']
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=
1, base_width=64, dilation=1, norm_model='instance'):
super(BasicBlock, self).__init__()
if 'instance' == norm_model:
norm_layer = nn.InstanceNorm2d
else:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError(
'BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError(
'Dilation > 1 not supported in BasicBlock')
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.stride = stride
if stride != 1 or inplanes != planes:
self.downsample = nn.Sequential(conv1x1(inplanes, planes,
stride), norm_layer(planes))
else:
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inplanes': 4, 'planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_relu_0(in_ptr0, out_ptr0,
out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 16.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp24 = tl.full([1, 1], 0, tl.int32)
tmp25 = triton_helpers.maximum(tmp24, tmp23)
tl.store(out_ptr2 + (r1 + 16 * x0), tmp25, xmask)
tl.store(out_ptr3 + x0, tmp22, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_relu_threshold_backward_1(in_ptr0
, in_ptr1, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 16.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 + tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tmp28 = 0.0
tmp29 = tmp27 <= tmp28
tl.store(out_ptr2 + (r1 + 16 * x0), tmp27, xmask)
tl.store(out_ptr3 + (r1 + 16 * x0), tmp29, xmask)
tl.store(out_ptr4 + x0, tmp22, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_relu_0[grid(16)](buf0,
buf1, buf5, buf4, 16, 16, XBLOCK=8, num_warps=2, num_stages=1)
buf6 = extern_kernels.convolution(buf5, primals_3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf10 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
triton_per_fused__native_batch_norm_legit_relu_threshold_backward_1[
grid(16)](buf6, primals_1, buf7, buf11, buf12, buf10, 16, 16,
XBLOCK=1, num_warps=2, num_stages=1)
return buf11, primals_1, primals_2, primals_3, buf0, reinterpret_tensor(
buf4, (16,), (1,), 0), buf5, buf6, reinterpret_tensor(buf10, (16,),
(1,), 0), buf12, reinterpret_tensor(buf7, (1, 16, 1, 1), (16, 1, 1,
1), 0), reinterpret_tensor(buf1, (1, 16, 1, 1), (16, 1, 1, 1), 0)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=False)
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
class BasicBlockNew(nn.Module):
expansion = 1
__constants__ = ['downsample']
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=
1, base_width=64, dilation=1, norm_model='instance'):
super(BasicBlockNew, self).__init__()
if 'instance' == norm_model:
norm_layer = nn.InstanceNorm2d
else:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError(
'BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError(
'Dilation > 1 not supported in BasicBlock')
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.stride = stride
if stride != 1 or inplanes != planes:
self.downsample = nn.Sequential(conv1x1(inplanes, planes,
stride), norm_layer(planes))
else:
self.downsample = downsample
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv2.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| kudoNCT/michigan_copy | BasicBlock | false | 12,696 | [
"MIT"
]
| 0 | e857b96a65b270ef2506cb9866b7e01f117c4396 | https://github.com/kudoNCT/michigan_copy/tree/e857b96a65b270ef2506cb9866b7e01f117c4396 |
FeaturePyramidNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/fp/cfp5jrxxyxrvhcpoq5tio3p5tkhj5ugdrpyur3x4v6meatzih7jn.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/7u/c7uvmjdpe24ml4xacimpqeftnz5qbzwwxfcng6bdrqmwamnyk7ss.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (64*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (4*x2) + (256*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/a5/ca5rooc2sujjgcaib3xl3m5z2la47xrbulj6xmbbyvv4xwpw3s6w.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 256], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (256*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (4*x2) + (1024*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/rw/crwxihz2xdn6vknnrjr5if7hyms65a7dv6ub7vsls72ck5xfuwfz.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 65536
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/qg/cqgn2jt4v5tmejshiwcthgkyxdgowdb3qkqsaksyfh4thcwnz6hg.py
# Topologically Sorted Source Nodes: [P5_upsampled_x], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# P5_upsampled_x => add, add_1, convert_element_type, convert_element_type_1, iota, mul, mul_1
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota, 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {})
# %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_4 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/oi/coik5p6vp7gpgli2c742eorprieg3ksiwhta5jh2rgrjqcmzhvdb.py
# Topologically Sorted Source Nodes: [P4_upsampled_x], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# P4_upsampled_x => add_5, add_6, convert_element_type_4, convert_element_type_5, iota_2, mul_4, mul_5
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0), kwargs = {})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_5, torch.float32), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, 0.5), kwargs = {})
# %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_5, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_5 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2d/c2dwrwxe3kh7pkzyoat4x7ctodoe4q4o5pydqbfgjk276hr4ckom.py
# Topologically Sorted Source Nodes: [P5_x, P5_upsampled_x, P4_x, P4_x_1, P4_upsampled_x, P3_x, P3_x_1], Original ATen: [aten.convolution, aten._unsafe_index, aten.add]
# Source node to ATen node mapping:
# P3_x => convolution_4
# P3_x_1 => add_9
# P4_upsampled_x => _unsafe_index_1
# P4_x => convolution_2
# P4_x_1 => add_4
# P5_upsampled_x => _unsafe_index
# P5_x => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_8, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %convolution_2), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%add_4, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {})
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_13, %primals_11, %primals_12, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_9 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_4, %_unsafe_index_1), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_6 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*i64', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 256
x2 = (xindex // 4096) % 16
x1 = (xindex // 256) % 16
x3 = (xindex // 65536)
tmp0 = tl.load(in_out_ptr0 + (x4), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tl.full([XBLOCK], 8, tl.int32)
tmp5 = tmp3 + tmp4
tmp6 = tmp3 < 0
tmp7 = tl.where(tmp6, tmp5, tmp3)
tmp9 = tmp8 + tmp4
tmp10 = tmp8 < 0
tmp11 = tl.where(tmp10, tmp9, tmp8)
tmp12 = tl.load(in_ptr2 + (tmp7), None, eviction_policy='evict_last')
tmp13 = tl.full([XBLOCK], 4, tl.int32)
tmp14 = tmp12 + tmp13
tmp15 = tmp12 < 0
tmp16 = tl.where(tmp15, tmp14, tmp12)
tmp17 = tl.load(in_ptr2 + (tmp11), None, eviction_policy='evict_last')
tmp18 = tmp17 + tmp13
tmp19 = tmp17 < 0
tmp20 = tl.where(tmp19, tmp18, tmp17)
tmp21 = tl.load(in_ptr3 + (x0 + (256*tmp20) + (1024*tmp16) + (4096*x3)), None)
tmp23 = tmp21 + tmp22
tmp24 = tl.load(in_ptr5 + (x0 + (256*tmp11) + (2048*tmp7) + (16384*x3)), None)
tmp26 = tmp24 + tmp25
tmp27 = tmp23 + tmp26
tmp28 = tmp2 + tmp27
tl.store(in_out_ptr0 + (x4), tmp28, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/tz/ctzskgnn2nzm5hhtqatyoshow3yewob26uy34ey7cz35h72rrkbc.py
# Topologically Sorted Source Nodes: [P3_x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# P3_x_2 => convolution_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_9, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = (yindex // 256)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (65536*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (256*y3)), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (256, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (256, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_9, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_10, (256, ), (1, ))
assert_size_stride(primals_11, (256, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_12, (256, ), (1, ))
assert_size_stride(primals_13, (4, 4, 16, 16), (1024, 256, 16, 1))
assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (256, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((4, 4, 8, 8), (256, 1, 32, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_8, buf1, 16, 64, grid=grid(16, 64), stream=stream0)
del primals_8
buf2 = empty_strided_cuda((4, 4, 16, 16), (1024, 1, 64, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_13, buf2, 16, 256, grid=grid(16, 256), stream=stream0)
del primals_13
buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_14, buf3, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_14
# Topologically Sorted Source Nodes: [P5_x], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 4, 4), (4096, 1, 1024, 256))
buf5 = empty_strided_cuda((8, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [P5_upsampled_x], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_4.run(buf5, 8, grid=grid(8), stream=stream0)
# Topologically Sorted Source Nodes: [P4_x], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 8, 8), (16384, 1, 2048, 256))
buf7 = empty_strided_cuda((16, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [P4_upsampled_x], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_5.run(buf7, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [P3_x], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf2, primals_11, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [P5_x, P5_upsampled_x, P4_x, P4_x_1, P4_upsampled_x, P3_x, P3_x_1], Original ATen: [aten.convolution, aten._unsafe_index, aten.add]
triton_poi_fused__unsafe_index_add_convolution_6.run(buf9, primals_12, buf7, buf5, buf4, primals_2, buf6, primals_7, 262144, grid=grid(262144), stream=stream0)
del buf4
del buf6
del primals_12
del primals_2
del primals_7
# Topologically Sorted Source Nodes: [P3_x_2], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf11 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [P3_x_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf10, primals_15, buf11, 1024, 256, grid=grid(1024, 256), stream=stream0)
del buf10
del primals_15
return (buf11, primals_1, buf0, primals_6, buf1, primals_11, buf2, buf3, buf5, buf7, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4, 16, 16), (1024, 256, 16, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class FeaturePyramidNetwork(nn.Module):
def __init__(self, C3_feature, C4_feature, C5_feature, feature_size=256):
super(FeaturePyramidNetwork, self).__init__()
self.P5_1 = nn.Conv2d(C5_feature, feature_size, kernel_size=1,
stride=1, padding=0)
self.P5_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P5_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
stride=1, padding=1)
self.P4_1 = nn.Conv2d(C4_feature, feature_size, kernel_size=1,
stride=1, padding=0)
self.P4_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P4_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
stride=1, padding=1)
self.P3_1 = nn.Conv2d(C3_feature, feature_size, kernel_size=1,
stride=1, padding=0)
self.P3_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
stride=1, padding=1)
def forward(self, C3, C4, C5):
P5_x = self.P5_1(C5)
P5_upsampled_x = self.P5_upsampled(P5_x)
P5_x = self.P5_2(P5_x)
P4_x = self.P4_1(C4)
P4_x = P5_upsampled_x + P4_x
P4_upsampled_x = self.P4_upsampled(P4_x)
P4_x = self.P4_2(P4_x)
P3_x = self.P3_1(C3)
P3_x = P3_x + P4_upsampled_x
P3_x = self.P3_2(P3_x)
return P3_x
def get_inputs():
return [torch.rand([4, 4, 16, 16]), torch.rand([4, 4, 8, 8]), torch.
rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'C3_feature': 4, 'C4_feature': 4, 'C5_feature': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 64 * y3), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (y0 + 4 * x2 + 256 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 256 * y3), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + 4 * x2 + 1024 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_6(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 256
x2 = xindex // 4096 % 16
x1 = xindex // 256 % 16
x3 = xindex // 65536
tmp0 = tl.load(in_out_ptr0 + x4, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tl.full([XBLOCK], 8, tl.int32)
tmp5 = tmp3 + tmp4
tmp6 = tmp3 < 0
tmp7 = tl.where(tmp6, tmp5, tmp3)
tmp9 = tmp8 + tmp4
tmp10 = tmp8 < 0
tmp11 = tl.where(tmp10, tmp9, tmp8)
tmp12 = tl.load(in_ptr2 + tmp7, None, eviction_policy='evict_last')
tmp13 = tl.full([XBLOCK], 4, tl.int32)
tmp14 = tmp12 + tmp13
tmp15 = tmp12 < 0
tmp16 = tl.where(tmp15, tmp14, tmp12)
tmp17 = tl.load(in_ptr2 + tmp11, None, eviction_policy='evict_last')
tmp18 = tmp17 + tmp13
tmp19 = tmp17 < 0
tmp20 = tl.where(tmp19, tmp18, tmp17)
tmp21 = tl.load(in_ptr3 + (x0 + 256 * tmp20 + 1024 * tmp16 + 4096 * x3),
None)
tmp23 = tmp21 + tmp22
tmp24 = tl.load(in_ptr5 + (x0 + 256 * tmp11 + 2048 * tmp7 + 16384 * x3),
None)
tmp26 = tmp24 + tmp25
tmp27 = tmp23 + tmp26
tmp28 = tmp2 + tmp27
tl.store(in_out_ptr0 + x4, tmp28, None)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 65536 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 256 * y3), tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (256, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (256, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_9, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_10, (256,), (1,))
assert_size_stride(primals_11, (256, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_12, (256,), (1,))
assert_size_stride(primals_13, (4, 4, 16, 16), (1024, 256, 16, 1))
assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (256,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 16)](primals_3, buf0, 16, 16, XBLOCK=16,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((4, 4, 8, 8), (256, 1, 32, 4), torch.float32)
triton_poi_fused_1[grid(16, 64)](primals_8, buf1, 16, 64, XBLOCK=64,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_8
buf2 = empty_strided_cuda((4, 4, 16, 16), (1024, 1, 64, 4), torch.
float32)
triton_poi_fused_2[grid(16, 256)](primals_13, buf2, 16, 256, XBLOCK
=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_13
buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_3[grid(65536, 9)](primals_14, buf3, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_14
buf4 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 4, 4), (4096, 1, 1024, 256))
buf5 = empty_strided_cuda((8,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_4[grid(8)](buf5, 8, XBLOCK
=8, num_warps=1, num_stages=1)
buf6 = extern_kernels.convolution(buf1, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 8, 8), (16384, 1, 2048, 256))
buf7 = empty_strided_cuda((16,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_5[grid(16)](buf7, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf8 = extern_kernels.convolution(buf2, primals_11, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf9 = buf8
del buf8
triton_poi_fused__unsafe_index_add_convolution_6[grid(262144)](buf9,
primals_12, buf7, buf5, buf4, primals_2, buf6, primals_7,
262144, XBLOCK=1024, num_warps=4, num_stages=1)
del buf4
del buf6
del primals_12
del primals_2
del primals_7
buf10 = extern_kernels.convolution(buf9, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf11 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1),
torch.float32)
triton_poi_fused_convolution_7[grid(1024, 256)](buf10, primals_15,
buf11, 1024, 256, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf10
del primals_15
return (buf11, primals_1, buf0, primals_6, buf1, primals_11, buf2, buf3,
buf5, buf7, buf9)
class FeaturePyramidNetworkNew(nn.Module):
def __init__(self, C3_feature, C4_feature, C5_feature, feature_size=256):
super(FeaturePyramidNetworkNew, self).__init__()
self.P5_1 = nn.Conv2d(C5_feature, feature_size, kernel_size=1,
stride=1, padding=0)
self.P5_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P5_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
stride=1, padding=1)
self.P4_1 = nn.Conv2d(C4_feature, feature_size, kernel_size=1,
stride=1, padding=0)
self.P4_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P4_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
stride=1, padding=1)
self.P3_1 = nn.Conv2d(C3_feature, feature_size, kernel_size=1,
stride=1, padding=0)
self.P3_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
stride=1, padding=1)
def forward(self, input_0, input_1, input_2):
primals_1 = self.P5_1.weight
primals_2 = self.P5_1.bias
primals_4 = self.P5_2.weight
primals_5 = self.P5_2.bias
primals_6 = self.P4_1.weight
primals_7 = self.P4_1.bias
primals_9 = self.P4_2.weight
primals_10 = self.P4_2.bias
primals_11 = self.P3_1.weight
primals_12 = self.P3_1.bias
primals_14 = self.P3_2.weight
primals_15 = self.P3_2.bias
primals_13 = input_0
primals_8 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0]
| kiyohiro8/SemanticReasoningNetworks | FeaturePyramidNetwork | false | 12,697 | [
"MIT"
]
| 0 | 9dc20706a2234511789a7a2fa07cc3b77c64bf81 | https://github.com/kiyohiro8/SemanticReasoningNetworks/tree/9dc20706a2234511789a7a2fa07cc3b77c64bf81 |
_Hswish | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/jj/cjjcpa4jfom3kmx4ufnxtda3bmq466cpemkegyhzep2ymmlsg35l.py
# Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div]
# Source node to ATen node mapping:
# add => add
# hardtanh => clamp_max, clamp_min
# mul => mul
# truediv => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %clamp_max), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6.0), kwargs = {})
triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = 0.16666666666666666
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class _Hswish(nn.Module):
def __init__(self, inplace=True):
super(_Hswish, self).__init__()
self.relu6 = nn.ReLU6(inplace)
def forward(self, x):
return x * self.relu6(x + 3.0) / 6.0
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = 0.16666666666666666
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0,
256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class _HswishNew(nn.Module):
def __init__(self, inplace=True):
super(_HswishNew, self).__init__()
self.relu6 = nn.ReLU6(inplace)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| hzwangjl/Lightweight-Segmentation | _Hswish | false | 12,698 | [
"Apache-2.0"
]
| 0 | 3a476719bdfee653ac1e1617c22714b7ee932cef | https://github.com/hzwangjl/Lightweight-Segmentation/tree/3a476719bdfee653ac1e1617c22714b7ee932cef |
AR | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ay/caylcn737p2wwjm32cacv462xdgdut6ho32ptwxfu34t3i2tr75z.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x_1 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ob/cobtm4z6tqthirp5npt5j3cxa4jheh2rs6tj46lbtaa3xmkk3spe.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x_1 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.add]
triton_poi_fused_add_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
return (reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 1, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
from typing import *
class AR(nn.Module):
def __init__(self, window):
super(AR, self).__init__()
self.linear = nn.Linear(window, 1)
def forward(self, x):
x = torch.transpose(x, 1, 2)
x = self.linear(x)
x = torch.transpose(x, 1, 2)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'window': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
from typing import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](primals_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_add_1[grid(64)](buf2, primals_3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_3
return reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 1, 4, 1), 0
), reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
class ARNew(nn.Module):
def __init__(self, window):
super(ARNew, self).__init__()
self.linear = nn.Linear(window, 1)
def forward(self, input_0):
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| kuleshov/multivariate-deep-learning | AR | false | 12,699 | [
"MIT"
]
| 0 | c87bf321a13fdb44c22decf6f685296b8f637a67 | https://github.com/kuleshov/multivariate-deep-learning/tree/c87bf321a13fdb44c22decf6f685296b8f637a67 |
SoftNLL | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ug/cugeeyor3h3pksbthqmiju2ox34arhybyzvkkikhf3du4yulpajg.py
# Topologically Sorted Source Nodes: [log, mul, sum_1, mean, neg], Original ATen: [aten.log, aten.mul, aten.sum, aten.mean, aten.neg]
# Source node to ATen node mapping:
# log => log
# mean => mean
# mul => mul
# neg => neg
# sum_1 => sum_1
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log, %arg1_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {})
triton_per_fused_log_mean_mul_neg_sum_0 = async_compile.triton('triton_per_fused_log_mean_mul_neg_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_mean_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_log_mean_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp2 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp4 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp6 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp9 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp11 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp14 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp16 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = tl_math.log(tmp0)
tmp3 = tmp1 * tmp2
tmp5 = tl_math.log(tmp4)
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tmp10 = tl_math.log(tmp9)
tmp12 = tmp10 * tmp11
tmp13 = tmp8 + tmp12
tmp15 = tl_math.log(tmp14)
tmp17 = tmp15 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = tl.sum(tmp19, 1)[:, None]
tmp22 = 64.0
tmp23 = tmp21 / tmp22
tmp24 = -tmp23
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp24, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [log, mul, sum_1, mean, neg], Original ATen: [aten.log, aten.mul, aten.sum, aten.mean, aten.neg]
stream0 = get_raw_stream(0)
triton_per_fused_log_mean_mul_neg_sum_0.run(buf1, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SoftNLL(nn.Module):
def __init__(self):
"""The `soft' version of negative_log_likelihood, where y is a distribution
over classes rather than a one-hot coding
"""
super(SoftNLL, self).__init__()
def forward(self, input, target):
return -torch.mean(torch.sum(torch.log(input) * target, dim=1))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_log_mean_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp2 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp4 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp6 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp9 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp11 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp14 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp16 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = tl_math.log(tmp0)
tmp3 = tmp1 * tmp2
tmp5 = tl_math.log(tmp4)
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tmp10 = tl_math.log(tmp9)
tmp12 = tmp10 * tmp11
tmp13 = tmp8 + tmp12
tmp15 = tl_math.log(tmp14)
tmp17 = tmp15 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = tl.sum(tmp19, 1)[:, None]
tmp22 = 64.0
tmp23 = tmp21 / tmp22
tmp24 = -tmp23
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp24, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_log_mean_mul_neg_sum_0[grid(1)](buf1, arg0_1,
arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class SoftNLLNew(nn.Module):
def __init__(self):
"""The `soft' version of negative_log_likelihood, where y is a distribution
over classes rather than a one-hot coding
"""
super(SoftNLLNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| lehgtrung/gcn-over-pruned-trees | SoftNLL | false | 12,700 | [
"Apache-2.0"
]
| 0 | ebf0de0948883009a9bebb8ff336e8d6fe50a26f | https://github.com/lehgtrung/gcn-over-pruned-trees/tree/ebf0de0948883009a9bebb8ff336e8d6fe50a26f |
GlobalMaxPool1d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/l7/cl7te2znkphosjjgl5c32tkhoiehr4feuczsseen53wz7j4ifolb.py
# Topologically Sorted Source Nodes: [max_pool1d], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool1d => _low_memory_max_pool2d_with_offsets
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze, [1, 4], [1, 4], [0, 0], [1, 1], False), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [max_pool1d], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class GlobalMaxPool1d(nn.Module):
"""Performs global max pooling over the entire length of a batched 1D tensor
# Arguments
input: Input tensor
"""
def forward(self, input):
return nn.functional.max_pool1d(input, kernel_size=input.size()[2:]
).view(-1, input.size(1))
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(16)](arg0_1, buf0,
16, XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 4), (4, 1), 0),
class GlobalMaxPool1dNew(nn.Module):
"""Performs global max pooling over the entire length of a batched 1D tensor
# Arguments
input: Input tensor
"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| liaoweiduo/few-shot | GlobalMaxPool1d | false | 12,701 | [
"MIT"
]
| 0 | 24d54fa3b472194b8cdab0ec6017bc5f649380a0 | https://github.com/liaoweiduo/few-shot/tree/24d54fa3b472194b8cdab0ec6017bc5f649380a0 |
LearnedPositionalEmbedding | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/5i/c5iybmnijeaxq3pumkl5crtkns462pwdrh72bxy4lcvnlh3r4364.py
# Topologically Sorted Source Nodes: [ne, mask, cumsum], Original ATen: [aten.ne, aten._to_copy, aten.cumsum]
# Source node to ATen node mapping:
# cumsum => cumsum
# mask => convert_element_type
# ne => ne
# Graph fragment:
# %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%primals_1, 4), kwargs = {})
# %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne, torch.int32), kwargs = {})
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%convert_element_type, 1), kwargs = {})
triton_per_fused__to_copy_cumsum_ne_0 = async_compile.triton('triton_per_fused__to_copy_cumsum_ne_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[64, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_cumsum_ne_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_cumsum_ne_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (64*x1)), xmask, other=0.0)
tmp1 = 4.0
tmp2 = tmp0 != tmp1
tmp3 = tmp2.to(tl.int32)
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4.to(tl.int64)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp7, = tl.associative_scan((tmp6,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (x0 + (16*r2) + (64*x1)), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ft/cftxaavy7b7scxgnrhfsvfnicvimxnf3kpckow5nzkyed3meyoli.py
# Topologically Sorted Source Nodes: [ne, mask, type_as, mul, long, positions], Original ATen: [aten.ne, aten._to_copy, aten.mul, aten.add]
# Source node to ATen node mapping:
# long => convert_element_type_2
# mask => convert_element_type
# mul => mul
# ne => ne
# positions => add
# type_as => convert_element_type_1
# Graph fragment:
# %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%primals_1, 4), kwargs = {})
# %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne, torch.int32), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%cumsum, torch.int32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %convert_element_type), kwargs = {})
# %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul, torch.int64), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 4), kwargs = {})
triton_poi_fused__to_copy_add_mul_ne_1 = async_compile.triton('triton_poi_fused__to_copy_add_mul_ne_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_mul_ne_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_mul_ne_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0.to(tl.int32)
tmp3 = 4.0
tmp4 = tmp2 != tmp3
tmp5 = tmp4.to(tl.int32)
tmp6 = tmp1 * tmp5
tmp7 = tmp6.to(tl.int64)
tmp8 = tl.full([1], 4, tl.int64)
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/in/cinglqnf6mtochspmiolvr3bqay6yiivzgqlihpkdlbd5p4ccw54.py
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.embedding]
# Source node to ATen node mapping:
# embedding => embedding
# Graph fragment:
# %embedding : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_2, %add, 4), kwargs = {})
triton_poi_fused_embedding_2 = async_compile.triton('triton_poi_fused_embedding_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_embedding_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_embedding_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 9, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 9)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 9")
tmp6 = tl.load(in_ptr1 + (x0 + (4*tmp4)), xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (9, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [ne, mask, cumsum], Original ATen: [aten.ne, aten._to_copy, aten.cumsum]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_cumsum_ne_0.run(primals_1, buf0, 64, 4, grid=grid(64), stream=stream0)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [ne, mask, type_as, mul, long, positions], Original ATen: [aten.ne, aten._to_copy, aten.mul, aten.add]
triton_poi_fused__to_copy_add_mul_ne_1.run(buf1, primals_1, 256, grid=grid(256), stream=stream0)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.embedding]
triton_poi_fused_embedding_2.run(buf1, primals_2, buf2, 1024, grid=grid(1024), stream=stream0)
del primals_2
return (buf2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((9, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class LearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(self, num_embeddings: 'int', embedding_dim: 'int',
padding_idx: 'int'):
if padding_idx is not None:
num_embeddings_ = num_embeddings + padding_idx + 1
else:
num_embeddings_ = num_embeddings
super().__init__(num_embeddings_, embedding_dim, padding_idx)
self.max_positions = num_embeddings
def forward(self, input: 'torch.Tensor'):
"""Input is expected to be of size [bsz x seqlen]."""
if input.size(1) > self.max_positions:
raise ValueError(
f'Sequence length {input.size(1)} above maximum sequence length of {self.max_positions}'
)
mask = input.ne(self.padding_idx).int()
positions = (torch.cumsum(mask, dim=1).type_as(mask) * mask).long(
) + self.padding_idx
return F.embedding(positions, self.weight, self.padding_idx, self.
max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_embeddings': 4, 'embedding_dim': 4, 'padding_idx': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused__to_copy_cumsum_ne_0(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 64 * x1), xmask, other=0.0)
tmp1 = 4.0
tmp2 = tmp0 != tmp1
tmp3 = tmp2.to(tl.int32)
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4.to(tl.int64)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp7, = tl.associative_scan((tmp6,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (x0 + 16 * r2 + 64 * x1), tmp7, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_mul_ne_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0.to(tl.int32)
tmp3 = 4.0
tmp4 = tmp2 != tmp3
tmp5 = tmp4.to(tl.int32)
tmp6 = tmp1 * tmp5
tmp7 = tmp6.to(tl.int64)
tmp8 = tl.full([1], 4, tl.int64)
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_embedding_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 9, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 9) | ~xmask,
'index out of bounds: 0 <= tmp4 < 9')
tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4), xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (9, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
get_raw_stream(0)
triton_per_fused__to_copy_cumsum_ne_0[grid(64)](primals_1, buf0, 64,
4, XBLOCK=32, num_warps=2, num_stages=1)
buf1 = buf0
del buf0
triton_poi_fused__to_copy_add_mul_ne_1[grid(256)](buf1, primals_1,
256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_embedding_2[grid(1024)](buf1, primals_2, buf2,
1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return buf2, buf1
class LearnedPositionalEmbeddingNew(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(self, num_embeddings: 'int', embedding_dim: 'int',
padding_idx: 'int'):
if padding_idx is not None:
num_embeddings_ = num_embeddings + padding_idx + 1
else:
num_embeddings_ = num_embeddings
super().__init__(num_embeddings_, embedding_dim, padding_idx)
self.max_positions = num_embeddings
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| leeharry92/esm | LearnedPositionalEmbedding | false | 12,702 | [
"MIT"
]
| 0 | 7d0feccf03ebbdeba4e7ba0f21d934099a0223ce | https://github.com/leeharry92/esm/tree/7d0feccf03ebbdeba4e7ba0f21d934099a0223ce |
MSELoss2d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/qz/cqza6p5fjiie2hfiu5dfjqqugrnzziwuwxzlhzy2aa7khopxjbym.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/m4/cm4xtb3bnuq3knchbeowql4btzwa7fgl5fl2ojphcrhtylwyafoa.py
# Topologically Sorted Source Nodes: [softmax, loss], Original ATen: [aten._softmax, aten.mse_loss]
# Source node to ATen node mapping:
# loss => mean, pow_1, sub_1
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
triton_per_fused__softmax_mse_loss_1 = async_compile.triton('triton_per_fused__softmax_mse_loss_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_mse_loss_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_mse_loss_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r3), None)
tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (r3), None)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp10 = tmp8 - tmp9
tmp11 = tmp10 * tmp10
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = 256.0
tmp16 = tmp14 / tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [softmax, loss], Original ATen: [aten._softmax, aten.mse_loss]
triton_per_fused__softmax_mse_loss_1.run(buf2, buf0, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg1_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class MSELoss2d(nn.Module):
def __init__(self, size_average=None, reduce=None, reduction='mean',
ignore_index=255):
super(MSELoss2d, self).__init__()
self.MSE = nn.MSELoss(size_average=size_average, reduce=reduce,
reduction=reduction)
def forward(self, output, target):
loss = self.MSE(torch.softmax(output, dim=1), target)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_per_fused__softmax_mse_loss_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = rindex // 64
tmp0 = tl.load(in_ptr0 + r3, None)
tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr1 + r3, None)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp10 = tmp8 - tmp9
tmp11 = tmp10 * tmp10
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = 256.0
tmp16 = tmp14 / tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__softmax_mse_loss_1[grid(1)](buf2, buf0, arg1_1, 1,
256, num_warps=2, num_stages=1)
del arg1_1
del buf0
return buf2,
class MSELoss2dNew(nn.Module):
def __init__(self, size_average=None, reduce=None, reduction='mean',
ignore_index=255):
super(MSELoss2dNew, self).__init__()
self.MSE = nn.MSELoss(size_average=size_average, reduce=reduce,
reduction=reduction)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| leo-hao/DACS | MSELoss2d | false | 12,703 | [
"MIT"
]
| 0 | 9fe9bc077a9a0e0fd2b118bfc2d522c2b6fb624e | https://github.com/leo-hao/DACS/tree/9fe9bc077a9a0e0fd2b118bfc2d522c2b6fb624e |
ShiftedConv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/bi/cbirdtqu75ekpesssmflsmp3pefzvdh6ju6mdlels6qajyoqabvh.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x_1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%full_default, %permute], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 112
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 7
x1 = (xindex // 7) % 4
x2 = (xindex // 28)
x3 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = 0.0
tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype)
tmp7 = tl.where(tmp4, tmp5, tmp6)
tmp8 = tmp0 >= tmp3
tmp9 = tl.full([1], 7, tl.int64)
tmp10 = tmp0 < tmp9
tmp11 = tl.load(in_ptr0 + (x1 + (4*((-3) + x0)) + (16*x2)), tmp8 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.where(tmp4, tmp7, tmp11)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/2v/c2vq3pqmx7c3oxfp7p5dhdjlsuc23intbs2hzh7vg3guwwm2uicn.py
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.mul]
# Source node to ATen node mapping:
# x_2 => convolution
# x_3 => mul
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.3535533905932738), kwargs = {})
triton_poi_fused_convolution_mul_1 = async_compile.triton('triton_poi_fused_convolution_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.3535533905932738
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, buf0, 112, grid=grid(112), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.mul]
triton_poi_fused_convolution_mul_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
return (reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
from numpy import prod
def getLayerNormalizationFactor(x):
"""
Get He's constant for the given layer
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
"""
size = x.weight.size()
fan_in = prod(size[1:])
return math.sqrt(2.0 / fan_in)
class ConstrainedLayer(nn.Module):
"""
A handy refactor that allows the user to:
- initialize one layer's bias to zero
- apply He's initialization at runtime
"""
def __init__(self, module, equalized=True, lrMul=1.0, initBiasToZero=True):
"""
equalized (bool): if true, the layer's weight should evolve within
the range (-1, 1)
initBiasToZero (bool): if true, bias will be initialized to zero
"""
super(ConstrainedLayer, self).__init__()
self.module = module
self.equalized = equalized
if initBiasToZero and module.bias is not None:
self.module.bias.data.fill_(0)
if self.equalized:
self.module.weight.data.normal_(0, 1)
self.weight = getLayerNormalizationFactor(self.module) * lrMul
def forward(self, x):
x = self.module(x)
if self.equalized:
x *= self.weight
return x
class EqualizedConv1d(ConstrainedLayer):
def __init__(self, nChannelsPrevious, nChannels, kernelSize, padding=0,
bias=True, stride=1, **kwargs):
"""
A nn.Conv2d module with specific constraints
Args:
nChannelsPrevious (int): number of channels in the previous layer
nChannels (int): number of channels of the current layer
kernelSize (int): size of the convolutional kernel
padding (int): convolution's padding
bias (bool): with bias ?
"""
ConstrainedLayer.__init__(self, nn.Conv1d(nChannelsPrevious,
nChannels, kernelSize, padding=padding, bias=bias, stride=
stride), **kwargs)
class ShiftedConv(nn.Module):
def __init__(self, dimOutputAR, dimOutputEncoder, kernelSize):
super(ShiftedConv, self).__init__()
self.module = EqualizedConv1d(dimOutputAR, dimOutputEncoder,
kernelSize, equalized=True, padding=0)
self.kernelSize = kernelSize
def forward(self, x):
N, _S, C = x.size()
x = x.permute(0, 2, 1)
padding = torch.zeros(N, C, self.kernelSize - 1, device=x.device)
x = torch.cat([padding, x], dim=2)
x = self.module(x)
x = x.permute(0, 2, 1)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dimOutputAR': 4, 'dimOutputEncoder': 4, 'kernelSize': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
from numpy import prod
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 112
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 7
x1 = xindex // 7 % 4
x2 = xindex // 28
x3 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = 0.0
tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype)
tmp7 = tl.where(tmp4, tmp5, tmp6)
tmp8 = tmp0 >= tmp3
tl.full([1], 7, tl.int64)
tmp11 = tl.load(in_ptr0 + (x1 + 4 * (-3 + x0) + 16 * x2), tmp8 & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = tl.where(tmp4, tmp7, tmp11)
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused_convolution_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.3535533905932738
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(112)](primals_1, buf0, 112, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_mul_1[grid(64)](buf2, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
return reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf0
def getLayerNormalizationFactor(x):
"""
Get He's constant for the given layer
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
"""
size = x.weight.size()
fan_in = prod(size[1:])
return math.sqrt(2.0 / fan_in)
class ConstrainedLayer(nn.Module):
"""
A handy refactor that allows the user to:
- initialize one layer's bias to zero
- apply He's initialization at runtime
"""
def __init__(self, module, equalized=True, lrMul=1.0, initBiasToZero=True):
"""
equalized (bool): if true, the layer's weight should evolve within
the range (-1, 1)
initBiasToZero (bool): if true, bias will be initialized to zero
"""
super(ConstrainedLayer, self).__init__()
self.module = module
self.equalized = equalized
if initBiasToZero and module.bias is not None:
self.module.bias.data.fill_(0)
if self.equalized:
self.module.weight.data.normal_(0, 1)
self.weight = getLayerNormalizationFactor(self.module) * lrMul
def forward(self, x):
x = self.module(x)
if self.equalized:
x *= self.weight
return x
class EqualizedConv1d(ConstrainedLayer):
def __init__(self, nChannelsPrevious, nChannels, kernelSize, padding=0,
bias=True, stride=1, **kwargs):
"""
A nn.Conv2d module with specific constraints
Args:
nChannelsPrevious (int): number of channels in the previous layer
nChannels (int): number of channels of the current layer
kernelSize (int): size of the convolutional kernel
padding (int): convolution's padding
bias (bool): with bias ?
"""
ConstrainedLayer.__init__(self, nn.Conv1d(nChannelsPrevious,
nChannels, kernelSize, padding=padding, bias=bias, stride=
stride), **kwargs)
class ShiftedConvNew(nn.Module):
def __init__(self, dimOutputAR, dimOutputEncoder, kernelSize):
super(ShiftedConvNew, self).__init__()
self.module = EqualizedConv1d(dimOutputAR, dimOutputEncoder,
kernelSize, equalized=True, padding=0)
self.kernelSize = kernelSize
def forward(self, input_0):
primals_1 = self.module.module.weight
primals_3 = self.module.module.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| leo19941227/CPC_audio | ShiftedConv | false | 12,704 | [
"MIT"
]
| 0 | 2d0051915f4b4a5f773e4510cd5535e1fcb433d8 | https://github.com/leo19941227/CPC_audio/tree/2d0051915f4b4a5f773e4510cd5535e1fcb433d8 |
_Hsigmoid | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/gl/cgljna3wfarubemgd6d2p3bgazvfhdxtrcu7luu5yza3rrfkty2s.py
# Topologically Sorted Source Nodes: [add, hardtanh, truediv], Original ATen: [aten.add, aten.hardtanh, aten.div]
# Source node to ATen node mapping:
# add => add
# hardtanh => clamp_max, clamp_min
# truediv => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {})
triton_poi_fused_add_div_hardtanh_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, hardtanh, truediv], Original ATen: [aten.add, aten.hardtanh, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class _Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(_Hsigmoid, self).__init__()
self.relu6 = nn.ReLU6(inplace)
def forward(self, x):
return self.relu6(x + 3.0) / 6.0
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class _HsigmoidNew(nn.Module):
def __init__(self, inplace=True):
super(_HsigmoidNew, self).__init__()
self.relu6 = nn.ReLU6(inplace)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| hzwangjl/Lightweight-Segmentation | _Hsigmoid | false | 12,705 | [
"Apache-2.0"
]
| 0 | 3a476719bdfee653ac1e1617c22714b7ee932cef | https://github.com/hzwangjl/Lightweight-Segmentation/tree/3a476719bdfee653ac1e1617c22714b7ee932cef |
TransposedConvModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/2o/c2osclrsohpe3tpndjv4ekqsr45ydz7qlxpbgdi5flkzlbs6sptt.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1440
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 36) % 10
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/mg/cmgsufzfcy5kkzrqdwhutk2rm5vnoeldyqqow7ed43pwacyq4p76.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_2 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2560
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 10
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (10, 10, 3, 3), (90, 9, 3, 1))
assert_size_stride(primals_2, (10, ), (1, ))
assert_size_stride(primals_3, (4, 10, 4, 4), (160, 16, 4, 1))
assert_size_stride(primals_4, (10, 10, 3, 3), (90, 9, 3, 1))
assert_size_stride(primals_5, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 10, 6, 6), (360, 36, 6, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 1440, grid=grid(1440), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 10, 8, 8), (640, 64, 8, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 2560, grid=grid(2560), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((10, 10, 3, 3), (90, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 10, 4, 4), (160, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((10, 10, 3, 3), (90, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.utils.data
import torch.utils.tensorboard._pytorch_graph
import torch.onnx.symbolic_caffe2
class TransposedConvModel(torch.nn.Module):
def __init__(self):
super(TransposedConvModel, self).__init__()
self.conv1 = torch.nn.ConvTranspose2d(10, 10, 3)
self.relu1 = torch.nn.ReLU()
self.conv2 = torch.nn.ConvTranspose2d(10, 10, 3)
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.conv2(x)
return x
def get_inputs():
return [torch.rand([4, 10, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn
import torch.utils.data
import torch.utils.tensorboard._pytorch_graph
import torch.onnx.symbolic_caffe2
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1440
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 36 % 10
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 2560
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 10
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (10, 10, 3, 3), (90, 9, 3, 1))
assert_size_stride(primals_2, (10,), (1,))
assert_size_stride(primals_3, (4, 10, 4, 4), (160, 16, 4, 1))
assert_size_stride(primals_4, (10, 10, 3, 3), (90, 9, 3, 1))
assert_size_stride(primals_5, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 10, 6, 6), (360, 36, 6, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(1440)](buf1, primals_2,
1440, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 10, 8, 8), (640, 64, 8, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(2560)](buf3, primals_5, 2560,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1
class TransposedConvModelNew(torch.nn.Module):
def __init__(self):
super(TransposedConvModelNew, self).__init__()
self.conv1 = torch.nn.ConvTranspose2d(10, 10, 3)
self.relu1 = torch.nn.ReLU()
self.conv2 = torch.nn.ConvTranspose2d(10, 10, 3)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| arjunsuresh/aimet | TransposedConvModel | false | 12,706 | [
"BSD-3-Clause"
]
| 0 | f6e09cb07a91eed3a5e6b8e19e6b065303af5a39 | https://github.com/arjunsuresh/aimet/tree/f6e09cb07a91eed3a5e6b8e19e6b065303af5a39 |
ln_mod | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/mo/cmorwi4rssg3yydylx6zgmrgf5eup5jag7rkdb4oyttging7iaei.py
# Topologically Sorted Source Nodes: [std, pow_1, add, sqrt, truediv, mul], Original ATen: [aten.std, aten.pow, aten.add, aten.sqrt, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mul => mul
# pow_1 => pow_1
# sqrt => sqrt_1
# std => sqrt, var
# truediv => div
# Graph fragment:
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%arg0_1, [-1]), kwargs = {correction: 0.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1e-05), kwargs = {})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %sqrt_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %arg1_1), kwargs = {})
triton_poi_fused_add_div_mul_pow_sqrt_std_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_std_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_std_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_std_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp1 - tmp9
tmp11 = tmp10 * tmp10
tmp12 = tmp2 - tmp9
tmp13 = tmp12 * tmp12
tmp14 = tmp11 + tmp13
tmp15 = tmp4 - tmp9
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp6 - tmp9
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp20 / tmp8
tmp22 = libdevice.sqrt(tmp21)
tmp23 = tmp22 * tmp22
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = tmp0 / tmp26
tmp29 = tmp27 * tmp28
tl.store(out_ptr0 + (x2), tmp29, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [std, pow_1, add, sqrt, truediv, mul], Original ATen: [aten.std, aten.pow, aten.add, aten.sqrt, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sqrt_std_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
class ln_mod(nn.Module):
def __init__(self, nx, eps=1e-05):
super().__init__()
self.eps = eps
self.weight = Parameter(torch.Tensor(nx))
def forward(self, x):
return x / torch.sqrt(torch.std(x, axis=-1, unbiased=False, keepdim
=True) ** 2 + self.eps) * self.weight.data[..., :]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'nx': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn.parameter import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_std_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp1 - tmp9
tmp11 = tmp10 * tmp10
tmp12 = tmp2 - tmp9
tmp13 = tmp12 * tmp12
tmp14 = tmp11 + tmp13
tmp15 = tmp4 - tmp9
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp6 - tmp9
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp20 / tmp8
tmp22 = libdevice.sqrt(tmp21)
tmp23 = tmp22 * tmp22
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = tmp0 / tmp26
tmp29 = tmp27 * tmp28
tl.store(out_ptr0 + x2, tmp29, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sqrt_std_0[grid(256)](arg0_1,
arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class ln_modNew(nn.Module):
def __init__(self, nx, eps=1e-05):
super().__init__()
self.eps = eps
self.weight = Parameter(torch.Tensor(nx))
def forward(self, input_0):
arg1_1 = self.weight
arg0_1 = input_0
output = call([arg0_1, arg1_1])
return output[0]
| lienghongky/image-gpt2 | ln_mod | false | 12,707 | [
"MIT"
]
| 0 | ef9f3c61d4a09cbb75114dd067d0014948e82d7b | https://github.com/lienghongky/image-gpt2/tree/ef9f3c61d4a09cbb75114dd067d0014948e82d7b |
TemperatureHolder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/xp/cxpd2bcgjjguvsbnowhprcscim22tcfdskii4vimpwk2r73oeben.py
# Topologically Sorted Source Nodes: [exp], Original ATen: [aten.exp]
# Source node to ATen node mapping:
# exp => exp
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_1,), kwargs = {})
triton_poi_fused_exp_0 = async_compile.triton('triton_poi_fused_exp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl_math.exp(tmp1)
tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, = args
args.clear()
assert_size_stride(primals_1, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [exp], Original ATen: [aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_exp_0.run(primals_1, buf0, 1, grid=grid(1), stream=stream0)
del primals_1
return (buf0, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class TemperatureHolder(nn.Module):
"""Module that holds a temperature as a learnable value.
Args:
initial_log_temperature (float): Initial value of log(temperature).
"""
def __init__(self, initial_log_temperature=0):
super().__init__()
self.log_temperature = nn.Parameter(torch.tensor(
initial_log_temperature, dtype=torch.float32))
def forward(self):
"""Return a temperature as a torch.Tensor."""
return torch.exp(self.log_temperature)
def get_inputs():
return []
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl_math.exp(tmp1)
tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp2, None)
def call(args):
primals_1, = args
args.clear()
assert_size_stride(primals_1, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_poi_fused_exp_0[grid(1)](primals_1, buf0, 1, XBLOCK=1,
num_warps=1, num_stages=1)
del primals_1
return buf0, buf0
class TemperatureHolderNew(nn.Module):
"""Module that holds a temperature as a learnable value.
Args:
initial_log_temperature (float): Initial value of log(temperature).
"""
def __init__(self, initial_log_temperature=0):
super().__init__()
self.log_temperature = nn.Parameter(torch.tensor(
initial_log_temperature, dtype=torch.float32))
def forward(self):
primals_1 = self.log_temperature
output = call([primals_1])
return output[0]
| lin826/pfrl | TemperatureHolder | false | 12,708 | [
"MIT"
]
| 0 | 62d7f13b854f1879211a386fd870a7db982cc8ec | https://github.com/lin826/pfrl/tree/62d7f13b854f1879211a386fd870a7db982cc8ec |
InnerProductNetwork | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/4j/c4jap2mmmjx3sc7h5t72pmbjcbecx7tmbl4pp62ydyuz7rfnbxw5.py
# Topologically Sorted Source Nodes: [getitem, getitem_1, mul, sum_1], Original ATen: [aten.index, aten.mul, aten.sum]
# Source node to ATen node mapping:
# getitem => index
# getitem_1 => index_1
# mul => mul
# sum_1 => sum_1
# Graph fragment:
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [None, %lift_fresh_copy]), kwargs = {})
# %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [None, %lift_fresh_copy_1]), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %index_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {})
triton_poi_fused_index_mul_sum_0 = async_compile.triton('triton_poi_fused_index_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_mul_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 6
x0 = xindex % 4
x2 = (xindex // 24)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 3, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 2, tl.int64)
tmp6 = tmp0 < tmp5
tmp7 = tl.full([1], 0, tl.int64)
tmp8 = tl.where(tmp6, tmp7, tmp7)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tl.full([1], 4, tl.int64)
tmp11 = tmp0 < tmp10
tmp12 = tl.full([1], 5, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.where(tmp13, tmp3, tmp5)
tmp15 = tl.where(tmp11, tmp3, tmp14)
tmp16 = tl.where(tmp2, tmp9, tmp15)
tmp17 = tl.load(in_ptr0 + (x0 + (16*tmp16) + (64*x2)), xmask)
tmp18 = tl.where(tmp6, tmp5, tmp1)
tmp19 = tl.where(tmp4, tmp3, tmp18)
tmp20 = tl.where(tmp13, tmp1, tmp1)
tmp21 = tl.where(tmp11, tmp5, tmp20)
tmp22 = tl.where(tmp2, tmp19, tmp21)
tmp23 = tl.load(in_ptr0 + (x0 + (16*tmp22) + (64*x2)), xmask)
tmp24 = tmp17 * tmp23
tmp25 = tl.load(in_ptr0 + (4 + x0 + (16*tmp16) + (64*x2)), xmask)
tmp26 = tl.load(in_ptr0 + (4 + x0 + (16*tmp22) + (64*x2)), xmask)
tmp27 = tmp25 * tmp26
tmp28 = tmp24 + tmp27
tmp29 = tl.load(in_ptr0 + (8 + x0 + (16*tmp16) + (64*x2)), xmask)
tmp30 = tl.load(in_ptr0 + (8 + x0 + (16*tmp22) + (64*x2)), xmask)
tmp31 = tmp29 * tmp30
tmp32 = tmp28 + tmp31
tmp33 = tl.load(in_ptr0 + (12 + x0 + (16*tmp16) + (64*x2)), xmask)
tmp34 = tl.load(in_ptr0 + (12 + x0 + (16*tmp22) + (64*x2)), xmask)
tmp35 = tmp33 * tmp34
tmp36 = tmp32 + tmp35
tl.store(out_ptr0 + (x3), tmp36, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 4), (24, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [getitem, getitem_1, mul, sum_1], Original ATen: [aten.index, aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_index_mul_sum_0.run(arg0_1, buf0, 96, grid=grid(96), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
class InnerProductNetwork(torch.nn.Module):
def forward(self, x):
"""
:param x: Float tensor of size ``(batch_size, num_fields, embed_dim)``
"""
num_fields = x.shape[1]
row, col = list(), list()
for i in range(num_fields - 1):
for j in range(i + 1, num_fields):
row.append(i), col.append(j)
return torch.sum(x[:, row] * x[:, col], dim=2)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_index_mul_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 6
x0 = xindex % 4
x2 = xindex // 24
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 3, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 2, tl.int64)
tmp6 = tmp0 < tmp5
tmp7 = tl.full([1], 0, tl.int64)
tmp8 = tl.where(tmp6, tmp7, tmp7)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tl.full([1], 4, tl.int64)
tmp11 = tmp0 < tmp10
tmp12 = tl.full([1], 5, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.where(tmp13, tmp3, tmp5)
tmp15 = tl.where(tmp11, tmp3, tmp14)
tmp16 = tl.where(tmp2, tmp9, tmp15)
tmp17 = tl.load(in_ptr0 + (x0 + 16 * tmp16 + 64 * x2), xmask)
tmp18 = tl.where(tmp6, tmp5, tmp1)
tmp19 = tl.where(tmp4, tmp3, tmp18)
tmp20 = tl.where(tmp13, tmp1, tmp1)
tmp21 = tl.where(tmp11, tmp5, tmp20)
tmp22 = tl.where(tmp2, tmp19, tmp21)
tmp23 = tl.load(in_ptr0 + (x0 + 16 * tmp22 + 64 * x2), xmask)
tmp24 = tmp17 * tmp23
tmp25 = tl.load(in_ptr0 + (4 + x0 + 16 * tmp16 + 64 * x2), xmask)
tmp26 = tl.load(in_ptr0 + (4 + x0 + 16 * tmp22 + 64 * x2), xmask)
tmp27 = tmp25 * tmp26
tmp28 = tmp24 + tmp27
tmp29 = tl.load(in_ptr0 + (8 + x0 + 16 * tmp16 + 64 * x2), xmask)
tmp30 = tl.load(in_ptr0 + (8 + x0 + 16 * tmp22 + 64 * x2), xmask)
tmp31 = tmp29 * tmp30
tmp32 = tmp28 + tmp31
tmp33 = tl.load(in_ptr0 + (12 + x0 + 16 * tmp16 + 64 * x2), xmask)
tmp34 = tl.load(in_ptr0 + (12 + x0 + 16 * tmp22 + 64 * x2), xmask)
tmp35 = tmp33 * tmp34
tmp36 = tmp32 + tmp35
tl.store(out_ptr0 + x3, tmp36, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 4), (24, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_index_mul_sum_0[grid(96)](arg0_1, buf0, 96, XBLOCK
=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class InnerProductNetworkNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| lipmedusea/pytorch | InnerProductNetwork | false | 12,709 | [
"MIT"
]
| 0 | 5d94694b9e1193a93dd7f75ea2042b5a1cf178bc | https://github.com/lipmedusea/pytorch/tree/5d94694b9e1193a93dd7f75ea2042b5a1cf178bc |
FCLateActionSAQFunction | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/lg/clgg7lidrsfgaud7ua7lulq4csdjjfhoa5iu6ldcldqvnqeoprch.py
# Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# h_1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 8, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/p5/cp5tfqfwrfwxlkkeq5u27dwcgidea534dshg3prbpaz2f7xapt3e.py
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 8), (8, 1))
assert_size_stride(primals_6, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_3, primals_4, buf1, 32, grid=grid(32), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, buf1, reinterpret_tensor(primals_5, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf0, primals_3, buf4, 16, grid=grid(16), stream=stream0)
del buf0
del primals_3
return (buf3, primals_1, buf1, primals_5, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import nn
from abc import ABCMeta
from abc import abstractmethod
import torch.nn.functional as F
def init_lecun_normal(tensor, scale=1.0):
"""Initializes the tensor with LeCunNormal."""
fan_in = torch.nn.init._calculate_correct_fan(tensor, 'fan_in')
std = scale * np.sqrt(1.0 / fan_in)
with torch.no_grad():
return tensor.normal_(0, std)
@torch.no_grad()
def init_chainer_default(layer):
"""Initializes the layer with the chainer default.
weights with LeCunNormal(scale=1.0) and zeros as biases
"""
assert isinstance(layer, nn.Module)
if isinstance(layer, (nn.Linear, nn.Conv2d)):
init_lecun_normal(layer.weight)
if layer.bias is not None:
nn.init.zeros_(layer.bias)
return layer
class MLP(nn.Module):
"""Multi-Layer Perceptron"""
def __init__(self, in_size, out_size, hidden_sizes, nonlinearity=F.relu,
last_wscale=1):
self.in_size = in_size
self.out_size = out_size
self.hidden_sizes = hidden_sizes
self.nonlinearity = nonlinearity
super().__init__()
if hidden_sizes:
self.hidden_layers = nn.ModuleList()
self.hidden_layers.append(nn.Linear(in_size, hidden_sizes[0]))
for hin, hout in zip(hidden_sizes, hidden_sizes[1:]):
self.hidden_layers.append(nn.Linear(hin, hout))
self.hidden_layers.apply(init_chainer_default)
self.output = nn.Linear(hidden_sizes[-1], out_size)
else:
self.output = nn.Linear(in_size, out_size)
init_lecun_normal(self.output.weight, scale=last_wscale)
nn.init.zeros_(self.output.bias)
def forward(self, x):
h = x
if self.hidden_sizes:
for l in self.hidden_layers:
h = self.nonlinearity(l(h))
return self.output(h)
class StateActionQFunction(object, metaclass=ABCMeta):
"""Abstract Q-function with state and action input."""
@abstractmethod
def __call__(self, x, a):
"""Evaluates Q-function
Args:
x (ndarray): state input
a (ndarray): action input
Returns:
Q-value for state x and action a
"""
raise NotImplementedError()
class FCLateActionSAQFunction(nn.Module, StateActionQFunction):
"""Fully-connected (s,a)-input Q-function with late action input.
Actions are not included until the second hidden layer and not normalized.
This architecture is used in the DDPG paper:
http://arxiv.org/abs/1509.02971
Args:
n_dim_obs (int): Number of dimensions of observation space.
n_dim_action (int): Number of dimensions of action space.
n_hidden_channels (int): Number of hidden channels.
n_hidden_layers (int): Number of hidden layers. It must be greater than
or equal to 1.
nonlinearity (callable): Nonlinearity between layers. It must accept a
Variable as an argument and return a Variable with the same shape.
Nonlinearities with learnable parameters such as PReLU are not
supported.
last_wscale (float): Scale of weight initialization of the last layer.
"""
def __init__(self, n_dim_obs, n_dim_action, n_hidden_channels,
n_hidden_layers, nonlinearity=F.relu, last_wscale=1.0):
assert n_hidden_layers >= 1
self.n_input_channels = n_dim_obs + n_dim_action
self.n_hidden_layers = n_hidden_layers
self.n_hidden_channels = n_hidden_channels
self.nonlinearity = nonlinearity
super().__init__()
self.obs_mlp = MLP(in_size=n_dim_obs, out_size=n_hidden_channels,
hidden_sizes=[])
self.mlp = MLP(in_size=n_hidden_channels + n_dim_action, out_size=1,
hidden_sizes=[self.n_hidden_channels] * (self.n_hidden_layers -
1), nonlinearity=nonlinearity, last_wscale=last_wscale)
self.output = self.mlp.output
def forward(self, state, action):
h = self.nonlinearity(self.obs_mlp(state))
h = torch.cat((h, action), dim=1)
return self.mlp(h)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'n_dim_obs': 4, 'n_dim_action': 4, 'n_hidden_channels': 4,
'n_hidden_layers': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
from torch import nn
from abc import ABCMeta
from abc import abstractmethod
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp15 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp12 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 8), (8, 1))
assert_size_stride(primals_6, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4),
(1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](buf0, primals_3, primals_4, buf1,
32, XBLOCK=32, num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_6, buf1, reinterpret_tensor(primals_5,
(8, 1), (1, 8), 0), alpha=1, beta=1, out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(16)](buf0,
primals_3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf0
del primals_3
return buf3, primals_1, buf1, primals_5, buf4
def init_lecun_normal(tensor, scale=1.0):
"""Initializes the tensor with LeCunNormal."""
fan_in = torch.nn.init._calculate_correct_fan(tensor, 'fan_in')
std = scale * np.sqrt(1.0 / fan_in)
with torch.no_grad():
return tensor.normal_(0, std)
@torch.no_grad()
def init_chainer_default(layer):
"""Initializes the layer with the chainer default.
weights with LeCunNormal(scale=1.0) and zeros as biases
"""
assert isinstance(layer, nn.Module)
if isinstance(layer, (nn.Linear, nn.Conv2d)):
init_lecun_normal(layer.weight)
if layer.bias is not None:
nn.init.zeros_(layer.bias)
return layer
class MLP(nn.Module):
"""Multi-Layer Perceptron"""
def __init__(self, in_size, out_size, hidden_sizes, nonlinearity=F.relu,
last_wscale=1):
self.in_size = in_size
self.out_size = out_size
self.hidden_sizes = hidden_sizes
self.nonlinearity = nonlinearity
super().__init__()
if hidden_sizes:
self.hidden_layers = nn.ModuleList()
self.hidden_layers.append(nn.Linear(in_size, hidden_sizes[0]))
for hin, hout in zip(hidden_sizes, hidden_sizes[1:]):
self.hidden_layers.append(nn.Linear(hin, hout))
self.hidden_layers.apply(init_chainer_default)
self.output = nn.Linear(hidden_sizes[-1], out_size)
else:
self.output = nn.Linear(in_size, out_size)
init_lecun_normal(self.output.weight, scale=last_wscale)
nn.init.zeros_(self.output.bias)
def forward(self, x):
h = x
if self.hidden_sizes:
for l in self.hidden_layers:
h = self.nonlinearity(l(h))
return self.output(h)
class StateActionQFunction(object, metaclass=ABCMeta):
"""Abstract Q-function with state and action input."""
@abstractmethod
def __call__(self, x, a):
"""Evaluates Q-function
Args:
x (ndarray): state input
a (ndarray): action input
Returns:
Q-value for state x and action a
"""
raise NotImplementedError()
class FCLateActionSAQFunctionNew(nn.Module, StateActionQFunction):
"""Fully-connected (s,a)-input Q-function with late action input.
Actions are not included until the second hidden layer and not normalized.
This architecture is used in the DDPG paper:
http://arxiv.org/abs/1509.02971
Args:
n_dim_obs (int): Number of dimensions of observation space.
n_dim_action (int): Number of dimensions of action space.
n_hidden_channels (int): Number of hidden channels.
n_hidden_layers (int): Number of hidden layers. It must be greater than
or equal to 1.
nonlinearity (callable): Nonlinearity between layers. It must accept a
Variable as an argument and return a Variable with the same shape.
Nonlinearities with learnable parameters such as PReLU are not
supported.
last_wscale (float): Scale of weight initialization of the last layer.
"""
def __init__(self, n_dim_obs, n_dim_action, n_hidden_channels,
n_hidden_layers, nonlinearity=F.relu, last_wscale=1.0):
assert n_hidden_layers >= 1
self.n_input_channels = n_dim_obs + n_dim_action
self.n_hidden_layers = n_hidden_layers
self.n_hidden_channels = n_hidden_channels
self.nonlinearity = nonlinearity
super().__init__()
self.obs_mlp = MLP(in_size=n_dim_obs, out_size=n_hidden_channels,
hidden_sizes=[])
self.mlp = MLP(in_size=n_hidden_channels + n_dim_action, out_size=1,
hidden_sizes=[self.n_hidden_channels] * (self.n_hidden_layers -
1), nonlinearity=nonlinearity, last_wscale=last_wscale)
self.output = self.mlp.output
def forward(self, input_0, input_1):
primals_1 = self.obs_mlp.output.weight
primals_3 = self.obs_mlp.output.bias
primals_5 = self.mlp.output.weight
primals_6 = self.mlp.output.bias
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| lin826/pfrl | FCLateActionSAQFunction | false | 12,710 | [
"MIT"
]
| 0 | 62d7f13b854f1879211a386fd870a7db982cc8ec | https://github.com/lin826/pfrl/tree/62d7f13b854f1879211a386fd870a7db982cc8ec |
TimeEncode | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/lo/clokukz4nbskqkm6bzg3ygkvygtaf7ckpqlwtxkl4gnncd7hhrnk.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.cos]
# Source node to ATen node mapping:
# output => cos
# Graph fragment:
# %cos : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%view_1,), kwargs = {})
triton_poi_fused_cos_0 = async_compile.triton('triton_poi_fused_cos_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cos_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cos_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.cos(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 1), (1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 1), (1, 1), 0), reinterpret_tensor(primals_2, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.cos]
stream0 = get_raw_stream(0)
triton_poi_fused_cos_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
return (buf1, reinterpret_tensor(primals_1, (16, 1), (1, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
class TimeEncode(torch.nn.Module):
def __init__(self, dimension):
super(TimeEncode, self).__init__()
self.dimension = dimension
self.w = torch.nn.Linear(1, dimension)
self.w.weight = torch.nn.Parameter(torch.from_numpy(1 / 10 ** np.
linspace(0, 9, dimension)).float().reshape(dimension, -1))
self.w.bias = torch.nn.Parameter(torch.zeros(dimension).float())
def forward(self, t):
t = t.unsqueeze(dim=2)
output = torch.cos(self.w(t))
return output
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'dimension': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cos_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.cos(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 1), (1, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16,
1), (1, 1), 0), reinterpret_tensor(primals_2, (1, 4), (1, 1), 0
), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cos_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
return buf1, reinterpret_tensor(primals_1, (16, 1), (1, 1), 0), buf0
class TimeEncodeNew(torch.nn.Module):
def __init__(self, dimension):
super(TimeEncodeNew, self).__init__()
self.dimension = dimension
self.w = torch.nn.Linear(1, dimension)
self.w.weight = torch.nn.Parameter(torch.from_numpy(1 / 10 ** np.
linspace(0, 9, dimension)).float().reshape(dimension, -1))
self.w.bias = torch.nn.Parameter(torch.zeros(dimension).float())
def forward(self, input_0):
primals_2 = self.w.weight
primals_3 = self.w.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| linhthi/tgn | TimeEncode | false | 12,711 | [
"Apache-2.0"
]
| 0 | bb83f82d89aba07d07da3b173803fb0df32ebbbc | https://github.com/linhthi/tgn/tree/bb83f82d89aba07d07da3b173803fb0df32ebbbc |
MergeLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/5b/c5br3r4gpi7zzaygqfdgcqeerwiekt2d2t2wkw4sj54lam6radgq.py
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# h => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
return (buf3, buf0, buf2, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class MergeLayer(torch.nn.Module):
def __init__(self, dim1, dim2, dim3, dim4):
super().__init__()
self.fc1 = torch.nn.Linear(dim1 + dim2, dim3)
self.fc2 = torch.nn.Linear(dim3, dim4)
self.act = torch.nn.ReLU()
torch.nn.init.xavier_normal_(self.fc1.weight)
torch.nn.init.xavier_normal_(self.fc2.weight)
def forward(self, x1, x2):
x = torch.cat([x1, x2], dim=1)
h = self.act(self.fc1(x))
return self.fc2(h)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'dim1': 4, 'dim2': 4, 'dim3': 4, 'dim4': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8
), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(16)](buf2, primals_4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
return buf3, buf0, buf2, primals_5
class MergeLayerNew(torch.nn.Module):
def __init__(self, dim1, dim2, dim3, dim4):
super().__init__()
self.fc1 = torch.nn.Linear(dim1 + dim2, dim3)
self.fc2 = torch.nn.Linear(dim3, dim4)
self.act = torch.nn.ReLU()
torch.nn.init.xavier_normal_(self.fc1.weight)
torch.nn.init.xavier_normal_(self.fc2.weight)
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_1 = self.fc2.weight
primals_6 = self.fc2.bias
primals_2 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| linhthi/tgn | MergeLayer | false | 12,712 | [
"Apache-2.0"
]
| 0 | bb83f82d89aba07d07da3b173803fb0df32ebbbc | https://github.com/linhthi/tgn/tree/bb83f82d89aba07d07da3b173803fb0df32ebbbc |
MLP | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/y3/cy3bfx7suhzmqovrmgwr7kipqmduyq6otbqkuvdqlaprgg7g2dgl.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 80
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/rn/crnqz7p4p2tzqanql5i55teqzlggwe7o5pppywh36vjdillkofmn.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_2 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (80, 4), (4, 1))
assert_size_stride(primals_2, (80, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (10, 80), (80, 1))
assert_size_stride(primals_5, (10, ), (1, ))
assert_size_stride(primals_6, (1, 10), (10, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 80), (80, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 80), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 80), (1280, 320, 80, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 80), (1280, 320, 80, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 5120, grid=grid(5120), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 80), (80, 1), 0), reinterpret_tensor(primals_4, (80, 10), (1, 80), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 10), (160, 40, 10, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf6, 640, grid=grid(640), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 10), (10, 1), 0), reinterpret_tensor(primals_6, (10, 1), (1, 10), 0), alpha=1, beta=1, out=buf5)
del primals_7
return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 80), (80, 1), 0), reinterpret_tensor(buf3, (64, 10), (10, 1), 0), primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((80, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((80, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((10, 80), (80, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 10), (10, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class MLP(torch.nn.Module):
def __init__(self, dim, drop=0.3):
super().__init__()
self.fc_1 = torch.nn.Linear(dim, 80)
self.fc_2 = torch.nn.Linear(80, 10)
self.fc_3 = torch.nn.Linear(10, 1)
self.act = torch.nn.ReLU()
self.dropout = torch.nn.Dropout(p=drop, inplace=False)
def forward(self, x):
x = self.act(self.fc_1(x))
x = self.dropout(x)
x = self.act(self.fc_2(x))
x = self.dropout(x)
return self.fc_3(x).squeeze(dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 80
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (80, 4), (4, 1))
assert_size_stride(primals_2, (80,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (10, 80), (80, 1))
assert_size_stride(primals_5, (10,), (1,))
assert_size_stride(primals_6, (1, 10), (10, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 80), (80, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 80), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 80), (1280, 320, 80, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 80), (1280, 320, 80, 1), torch.bool
)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(5120)](buf1,
primals_2, buf7, 5120, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 80), (80, 1), 0),
reinterpret_tensor(primals_4, (80, 10), (1, 80), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 10), (160, 40, 10, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(640)](buf3,
primals_5, buf6, 640, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 10),
(10, 1), 0), reinterpret_tensor(primals_6, (10, 1), (1, 10), 0),
alpha=1, beta=1, out=buf5)
del primals_7
return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 80), (80, 1), 0), reinterpret_tensor(
buf3, (64, 10), (10, 1), 0), primals_6, buf6, primals_4, buf7
class MLPNew(torch.nn.Module):
def __init__(self, dim, drop=0.3):
super().__init__()
self.fc_1 = torch.nn.Linear(dim, 80)
self.fc_2 = torch.nn.Linear(80, 10)
self.fc_3 = torch.nn.Linear(10, 1)
self.act = torch.nn.ReLU()
self.dropout = torch.nn.Dropout(p=drop, inplace=False)
def forward(self, input_0):
primals_1 = self.fc_1.weight
primals_2 = self.fc_1.bias
primals_4 = self.fc_2.weight
primals_5 = self.fc_2.bias
primals_6 = self.fc_3.weight
primals_7 = self.fc_3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| linhthi/tgn | MLP | false | 12,713 | [
"Apache-2.0"
]
| 0 | bb83f82d89aba07d07da3b173803fb0df32ebbbc | https://github.com/linhthi/tgn/tree/bb83f82d89aba07d07da3b173803fb0df32ebbbc |
ModuleForDdpCommHook | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/3j/c3jyortvllaykpler373rz7oktpwexjmntais526ul7ro2uxfxcg.py
# Topologically Sorted Source Nodes: [add, add_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %add), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x2), xmask)
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 2, 2), (16, 4, 2, 1))
assert_size_stride(primals_2, (4, 4, 2, 2), (16, 4, 2, 1))
assert_size_stride(primals_3, (2, 2), (2, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_3, primals_1, primals_2, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
del primals_2
del primals_3
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2, 2), (2, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.utils.data.distributed
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.cuda
import torch.cuda.nccl
import torch.backends.cudnn
import torch.backends.mkl
class Task(nn.Module):
def __init__(self):
super().__init__()
self.p = nn.Parameter(torch.ones(2, 2))
def forward(self, x):
return self.p + x
class ModuleForDdpCommHook(nn.Module):
def __init__(self):
super().__init__()
self.t0 = Task()
def forward(self, x, rank):
return self.t0(x + rank)
def get_inputs():
return [torch.rand([4, 4, 2, 2]), torch.rand([4, 4, 2, 2])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn
import torch.utils.data.distributed
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.cuda
import torch.cuda.nccl
import torch.backends.cudnn
import torch.backends.mkl
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x2, xmask)
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 2, 2), (16, 4, 2, 1))
assert_size_stride(primals_2, (4, 4, 2, 2), (16, 4, 2, 1))
assert_size_stride(primals_3, (2, 2), (2, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(64)](primals_3, primals_1, primals_2,
buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_1
del primals_2
del primals_3
return buf0,
class Task(nn.Module):
def __init__(self):
super().__init__()
self.p = nn.Parameter(torch.ones(2, 2))
def forward(self, x):
return self.p + x
class ModuleForDdpCommHookNew(nn.Module):
def __init__(self):
super().__init__()
self.t0 = Task()
def forward(self, input_0, input_1):
primals_3 = self.t0.p
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
| lipovsek/bagua | ModuleForDdpCommHook | false | 12,714 | [
"MIT"
]
| 0 | d8b03333ab6cf3745279311b9da76e99d5c2c00a | https://github.com/lipovsek/bagua/tree/d8b03333ab6cf3745279311b9da76e99d5c2c00a |
RMSEFeaturesLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/rm/crmbqjlvwuv2i5s3eme655nd5recp2ij4cgbsj7qduncqtixqhk4.py
# Topologically Sorted Source Nodes: [mse_loss], Original ATen: [aten.mse_loss]
# Source node to ATen node mapping:
# mse_loss => pow_1, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {})
triton_per_fused_mse_loss_0 = async_compile.triton('triton_per_fused_mse_loss_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mse_loss_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mse_loss_0(in_ptr0, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [mse_loss], Original ATen: [aten.mse_loss]
stream0 = get_raw_stream(0)
triton_per_fused_mse_loss_0.run(arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
def rmseOnFeatures(feature_difference):
gt = torch.zeros_like(feature_difference)
return torch.nn.functional.mse_loss(feature_difference, gt,
size_average=False)
class RMSEFeaturesLoss(nn.Module):
def __init__(self):
super(RMSEFeaturesLoss, self).__init__()
def forward(self, feature_difference):
return rmseOnFeatures(feature_difference)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mse_loss_0(in_ptr0, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp4, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_mse_loss_0[grid(1)](arg0_1, buf0, 1, 256,
num_warps=2, num_stages=1)
del arg0_1
return buf0,
def rmseOnFeatures(feature_difference):
gt = torch.zeros_like(feature_difference)
return torch.nn.functional.mse_loss(feature_difference, gt,
size_average=False)
class RMSEFeaturesLossNew(nn.Module):
def __init__(self):
super(RMSEFeaturesLossNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| liruihui/learning3d | RMSEFeaturesLoss | false | 12,715 | [
"MIT"
]
| 0 | d513fb0956926f92c185594d4e236d26ecc7e81e | https://github.com/liruihui/learning3d/tree/d513fb0956926f92c185594d4e236d26ecc7e81e |
LNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/wq/cwq4v2t2casrvnd4kuih7ltbgx5737ucaocshzecbzd5g64pkqnq.py
# Topologically Sorted Source Nodes: [lnn_out], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# lnn_out => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl_math.abs(tmp0)
tmp2 = 1e-07
tmp3 = tmp1 + tmp2
tmp4 = libdevice.log1p(tmp3)
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/bm/cbmeb2qgbivgi5ugwn3lxt7jt7xsbz2udthbkyvylpkqrid3yapc.py
# Topologically Sorted Source Nodes: [lnn_out, lnn_exp, relu], Original ATen: [aten.clone, aten.expm1, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# lnn_exp => expm1
# lnn_out => clone_1
# relu => relu
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%clone_1,), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%expm1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_clone_expm1_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_clone_expm1_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_expm1_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_expm1_relu_threshold_backward_1(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = libdevice.expm1(tmp0)
tmp2 = tl.full([1, 1], 0, tl.int32)
tmp3 = triton_helpers.maximum(tmp2, tmp1)
tmp4 = 0.0
tmp5 = tmp3 <= tmp4
tl.store(out_ptr0 + (x2 + (4*y3)), tmp3, xmask & ymask)
tl.store(out_ptr1 + (x2 + (4*y3)), tmp5, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [lnn_out], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [lnn_out], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [lnn_out, lnn_exp, relu], Original ATen: [aten.clone, aten.expm1, aten.relu, aten.threshold_backward]
triton_poi_fused_clone_expm1_relu_threshold_backward_1.run(buf1, buf2, buf3, 64, 4, grid=grid(64, 4), stream=stream0)
return (reinterpret_tensor(buf2, (16, 16), (16, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.utils.data
import torch.nn.functional as F
class LNN(torch.nn.Module):
"""
A pytorch implementation of LNN layer
Input shape
- A 3D tensor with shape: ``(batch_size,field_size,embedding_size)``.
Output shape
- 2D tensor with shape:``(batch_size,LNN_dim*embedding_size)``.
Arguments
- **in_features** : Embedding of feature.
- **num_fields**: int.The field size of feature.
- **LNN_dim**: int.The number of Logarithmic neuron.
- **bias**: bool.Whether or not use bias in LNN.
"""
def __init__(self, num_fields, embed_dim, LNN_dim, bias=False):
super(LNN, self).__init__()
self.num_fields = num_fields
self.embed_dim = embed_dim
self.LNN_dim = LNN_dim
self.lnn_output_dim = LNN_dim * embed_dim
self.weight = torch.nn.Parameter(torch.Tensor(LNN_dim, num_fields))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(LNN_dim, embed_dim))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, x):
"""
:param x: Long tensor of size ``(batch_size, num_fields, embedding_size)``
"""
embed_x_abs = torch.abs(x)
embed_x_afn = torch.add(embed_x_abs, 1e-07)
embed_x_log = torch.log1p(embed_x_afn)
lnn_out = torch.matmul(self.weight, embed_x_log)
if self.bias is not None:
lnn_out += self.bias
lnn_exp = torch.expm1(lnn_out)
output = F.relu(lnn_exp).contiguous().view(-1, self.lnn_output_dim)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_fields': 4, 'embed_dim': 4, 'LNN_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl_math.abs(tmp0)
tmp2 = 1e-07
tmp3 = tmp1 + tmp2
tmp4 = libdevice.log1p(tmp3)
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_expm1_relu_threshold_backward_1(in_ptr0,
out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.
constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = libdevice.expm1(tmp0)
tmp2 = tl.full([1, 1], 0, tl.int32)
tmp3 = triton_helpers.maximum(tmp2, tmp1)
tmp4 = 0.0
tmp5 = tmp3 <= tmp4
tl.store(out_ptr0 + (x2 + 4 * y3), tmp3, xmask & ymask)
tl.store(out_ptr1 + (x2 + 4 * y3), tmp5, xmask & ymask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](primals_1, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_clone_expm1_relu_threshold_backward_1[grid(64, 4)](
buf1, buf2, buf3, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4,
num_stages=1)
return reinterpret_tensor(buf2, (16, 16), (16, 1), 0), reinterpret_tensor(
buf0, (64, 4), (4, 1), 0), buf1, buf3
class LNNNew(torch.nn.Module):
"""
A pytorch implementation of LNN layer
Input shape
- A 3D tensor with shape: ``(batch_size,field_size,embedding_size)``.
Output shape
- 2D tensor with shape:``(batch_size,LNN_dim*embedding_size)``.
Arguments
- **in_features** : Embedding of feature.
- **num_fields**: int.The field size of feature.
- **LNN_dim**: int.The number of Logarithmic neuron.
- **bias**: bool.Whether or not use bias in LNN.
"""
def __init__(self, num_fields, embed_dim, LNN_dim, bias=False):
super(LNNNew, self).__init__()
self.num_fields = num_fields
self.embed_dim = embed_dim
self.LNN_dim = LNN_dim
self.lnn_output_dim = LNN_dim * embed_dim
self.weight = torch.nn.Parameter(torch.Tensor(LNN_dim, num_fields))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(LNN_dim, embed_dim))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| lipmedusea/pytorch | LNN | false | 12,716 | [
"MIT"
]
| 0 | 5d94694b9e1193a93dd7f75ea2042b5a1cf178bc | https://github.com/lipmedusea/pytorch/tree/5d94694b9e1193a93dd7f75ea2042b5a1cf178bc |
ConvNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/4j/c4jl5m5y24onp52mw7qcvibjgpz2yys33yfj3idumydodmt4ojyk.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 254016
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3969) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/kx/ckx3dr2mk7yu7dobko5u5xgzcvgu2sbmviszgl2xoxawvzg7a5hf.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 492032
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3844) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/w3/cw3faaaz7gty2gm7f4xovy33nk7gnjdtullauud6hfrckqbvdjvs.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 238144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3721) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/a2/ca2lfs3rl4afomtng753d7cmatdcwn3fjki3ped72ucym7wkdbcw.py
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 115200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3600) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 8, 64, 64), (32768, 4096, 64, 1))
assert_size_stride(primals_2, (16, 8, 2, 2), (32, 4, 2, 1))
assert_size_stride(primals_3, (16, ), (1, ))
assert_size_stride(primals_4, (32, 16, 2, 2), (64, 4, 2, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (16, 32, 2, 2), (128, 4, 2, 1))
assert_size_stride(primals_7, (16, ), (1, ))
assert_size_stride(primals_8, (8, 16, 2, 2), (64, 4, 2, 1))
assert_size_stride(primals_9, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 63, 63), (63504, 3969, 63, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 254016, grid=grid(254016), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 32, 62, 62), (123008, 3844, 62, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 492032, grid=grid(492032), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 61, 61), (59536, 3721, 61, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_7, 238144, grid=grid(238144), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 8, 60, 60), (28800, 3600, 60, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf7, primals_9, 115200, grid=grid(115200), stream=stream0)
del primals_9
return (buf7, primals_1, primals_2, primals_4, primals_6, primals_8, buf1, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 8, 64, 64), (32768, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 8, 2, 2), (32, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 16, 2, 2), (64, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, 32, 2, 2), (128, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((8, 16, 2, 2), (64, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.utils.data.distributed
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.cuda
import torch.cuda.nccl
import torch.backends.cudnn
import torch.backends.mkl
class ConvNet(nn.Module):
def __init__(self, gpus, layouts, dtypes):
super(ConvNet, self).__init__()
self.dtypes = dtypes
if isinstance(gpus, list):
self.layer_gpus = gpus
else:
gpus = [gpus] * 4
self.conv0 = torch.nn.Conv2d(8, 16, (2, 2))
self.conv1 = torch.nn.Conv2d(16, 32, (2, 2))
self.conv2 = torch.nn.Conv2d(32, 16, (2, 2))
self.conv3 = torch.nn.Conv2d(16, 8, (2, 2))
def forward(self, x):
x = x
self.layer_gpus if hasattr(self, 'layer_gpus') else [x.device] * 4
x = self.conv0(x)
x = self.conv1(x)
x = self.conv2(x)
return self.conv3(x)
def get_inputs():
return [torch.rand([4, 8, 64, 64])]
def get_init_inputs():
return [[], {'gpus': False, 'layouts': 4, 'dtypes': torch.float32}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn
import torch.utils.data.distributed
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.cuda
import torch.cuda.nccl
import torch.backends.cudnn
import torch.backends.mkl
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 254016
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3969 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 492032
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3844 % 32
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 238144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3721 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 115200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3600 % 8
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 8, 64, 64), (32768, 4096, 64, 1))
assert_size_stride(primals_2, (16, 8, 2, 2), (32, 4, 2, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (32, 16, 2, 2), (64, 4, 2, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (16, 32, 2, 2), (128, 4, 2, 1))
assert_size_stride(primals_7, (16,), (1,))
assert_size_stride(primals_8, (8, 16, 2, 2), (64, 4, 2, 1))
assert_size_stride(primals_9, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 63, 63), (63504, 3969, 63, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(254016)](buf1, primals_3,
254016, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 32, 62, 62), (123008, 3844, 62, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(492032)](buf3, primals_5,
492032, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 61, 61), (59536, 3721, 61, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(238144)](buf5, primals_7,
238144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 8, 60, 60), (28800, 3600, 60, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_3[grid(115200)](buf7, primals_9,
115200, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_9
return (buf7, primals_1, primals_2, primals_4, primals_6, primals_8,
buf1, buf3, buf5)
class ConvNetNew(nn.Module):
def __init__(self, gpus, layouts, dtypes):
super(ConvNetNew, self).__init__()
self.dtypes = dtypes
if isinstance(gpus, list):
self.layer_gpus = gpus
else:
gpus = [gpus] * 4
self.conv0 = torch.nn.Conv2d(8, 16, (2, 2))
self.conv1 = torch.nn.Conv2d(16, 32, (2, 2))
self.conv2 = torch.nn.Conv2d(32, 16, (2, 2))
self.conv3 = torch.nn.Conv2d(16, 8, (2, 2))
def forward(self, input_0):
primals_2 = self.conv0.weight
primals_3 = self.conv0.bias
primals_4 = self.conv1.weight
primals_5 = self.conv1.bias
primals_6 = self.conv2.weight
primals_7 = self.conv2.bias
primals_8 = self.conv3.weight
primals_9 = self.conv3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| lipovsek/bagua | ConvNet | false | 12,717 | [
"MIT"
]
| 0 | d8b03333ab6cf3745279311b9da76e99d5c2c00a | https://github.com/lipovsek/bagua/tree/d8b03333ab6cf3745279311b9da76e99d5c2c00a |
Task | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/cq/ccqfqpgzxaos3bswguvdn3wt2ewpdl4jaru3enf3c7svmx3j3ar2.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (2, 2), (2, 1))
assert_size_stride(primals_2, (4, 4, 2, 2), (16, 4, 2, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
del primals_2
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.utils.data.distributed
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.cuda
import torch.cuda.nccl
import torch.backends.cudnn
import torch.backends.mkl
class Task(nn.Module):
def __init__(self):
super().__init__()
self.p = nn.Parameter(torch.ones(2, 2))
def forward(self, x):
return self.p + x
def get_inputs():
return [torch.rand([4, 4, 2, 2])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn
import torch.utils.data.distributed
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.cuda
import torch.cuda.nccl
import torch.backends.cudnn
import torch.backends.mkl
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (2, 2), (2, 1))
assert_size_stride(primals_2, (4, 4, 2, 2), (16, 4, 2, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(64)](primals_1, primals_2, buf0, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_1
del primals_2
return buf0,
class TaskNew(nn.Module):
def __init__(self):
super().__init__()
self.p = nn.Parameter(torch.ones(2, 2))
def forward(self, input_0):
primals_1 = self.p
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| lipovsek/bagua | Task | false | 12,718 | [
"MIT"
]
| 0 | d8b03333ab6cf3745279311b9da76e99d5c2c00a | https://github.com/lipovsek/bagua/tree/d8b03333ab6cf3745279311b9da76e99d5c2c00a |
EncoderLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# z => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# z => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/uq/cuq3l3e5tz3kz7sbro3jn6wnkgn4cskirh6kyc2yt5ejf4nvbq5p.py
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn => exp, sum_1
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_9, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr1 + (48 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp0 * tmp5
tmp7 = tmp6 * tmp3
tmp8 = triton_helpers.maximum(tmp4, tmp7)
tmp10 = tmp0 * tmp9
tmp11 = tmp10 * tmp3
tmp12 = triton_helpers.maximum(tmp8, tmp11)
tmp14 = tmp0 * tmp13
tmp15 = tmp14 * tmp3
tmp16 = triton_helpers.maximum(tmp12, tmp15)
tmp17 = tmp4 - tmp16
tmp18 = tmp17 * tmp3
tmp19 = tl_math.exp(tmp18)
tmp20 = tmp7 - tmp16
tmp21 = tmp20 * tmp3
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp19 + tmp22
tmp24 = tmp11 - tmp16
tmp25 = tmp24 * tmp3
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 + tmp26
tmp28 = tmp15 - tmp16
tmp29 = tmp28 * tmp3
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp27 + tmp30
tl.store(out_ptr0 + (x2), tmp16, xmask)
tl.store(out_ptr1 + (x2), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/g6/cg6sum6t4wd6e5aoymddynswsuo7ca7h72owwdamt362sig44bv3.py
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn => div, exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_9, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = (xindex // 64)
x3 = xindex % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr3 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp3
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tl.store(out_ptr0 + (x4), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/lc/clc6qc6q57vscjt6xptfqnhjvnfsnxc5d6kouoflkvjdpfd7zuu3.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# a => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_14,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/zq/czqeiybdb6mlnwo4hmrayt3c44g7hbps2ftgdd7x2mv3sr2mwjbn.py
# Topologically Sorted Source Nodes: [a, x_8, z_1], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# a => add_2
# x_8 => add_3
# z_1 => var_mean_1
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_16, %primals_11), kwargs = {})
# %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %add_2), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (1))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp13 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr2 + (2))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp20 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr2 + (3))
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp10 = tmp7 + tmp9
tmp11 = tmp6 + tmp10
tmp12 = tmp5 + tmp11
tmp17 = tmp14 + tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp12 + tmp18
tmp24 = tmp21 + tmp23
tmp25 = tmp20 + tmp24
tmp26 = tmp19 + tmp25
tmp27 = 4.0
tmp28 = tmp26 / tmp27
tmp29 = tmp5 - tmp28
tmp30 = tmp29 * tmp29
tmp31 = tmp11 - tmp28
tmp32 = tmp31 * tmp31
tmp33 = tmp30 + tmp32
tmp34 = tmp18 - tmp28
tmp35 = tmp34 * tmp34
tmp36 = tmp33 + tmp35
tmp37 = tmp25 - tmp28
tmp38 = tmp37 * tmp37
tmp39 = tmp36 + tmp38
tmp40 = tmp39 / tmp27
tl.store(out_ptr0 + (x0), tmp28, xmask)
tl.store(out_ptr1 + (x0), tmp40, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6l/c6l5kzogqt6qgowb3zqvwwwqezmjn5mmwq5w672exeszre3xha3f.py
# Topologically Sorted Source Nodes: [a, x_8, z_1], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# a => add_2
# x_8 => add_3
# z_1 => add_4, add_5, mul_4, mul_5, rsqrt_1, sub_2
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_16, %primals_11), kwargs = {})
# %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %add_2), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_3), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %primals_12), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, %primals_13), kwargs = {})
triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr6 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp6 = tmp4 - tmp5
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp6 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/c3/cc3chnm2jhwvm7bnvjd72vechcjm6nnwiwrdrtx3myjitgefk3he.py
# Topologically Sorted Source Nodes: [g], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# g => expm1, gt, mul_6, mul_8, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_18, 0), kwargs = {})
# %mul_6 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_18, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_6,), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul_6, %mul_8), kwargs = {})
triton_poi_fused_elu_7 = async_compile.triton('triton_poi_fused_elu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/fe/cfekjdsthatxjbbhgpigh2n2waatgzwuthjkuqadgzag4jvzvepw.py
# Topologically Sorted Source Nodes: [a, x_8, x_10], Original ATen: [aten.add]
# Source node to ATen node mapping:
# a => add_2
# x_10 => add_6
# x_8 => add_3
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_16, %primals_11), kwargs = {})
# %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %add_2), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %view_20), kwargs = {})
triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_out_ptr0 + (x2), xmask)
tmp6 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tl.store(in_out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, 4), (4, 1))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (4, 4), (4, 1))
assert_size_stride(primals_17, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 64, grid=grid(64), stream=stream0)
del primals_1
del primals_2
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_9
buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf3, buf4, buf6, buf7, 64, grid=grid(64), stream=stream0)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf3, buf4, buf6, buf7, buf8, 256, grid=grid(256), stream=stream0)
buf9 = reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (1, 64, 16), 0), reinterpret_tensor(buf5, (16, 4, 1), (1, 16, 0), 0), out=buf9)
buf10 = reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf9, buf10, 4, 16, grid=grid(4, 16), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf11)
buf12 = buf1; del buf1 # reuse
buf13 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [a, x_8, z_1], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_5.run(primals_3, buf11, primals_11, buf12, buf13, 16, grid=grid(16), stream=stream0)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a, x_8, z_1], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_6.run(primals_3, buf11, primals_11, buf12, buf13, primals_12, primals_13, buf14, 64, grid=grid(64), stream=stream0)
del buf12
del buf13
del primals_13
buf15 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_15, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del primals_15
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [g], Original ATen: [aten.elu]
triton_poi_fused_elu_7.run(buf15, buf16, 64, grid=grid(64), stream=stream0)
buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf17)
buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0); del buf17 # reuse
# Topologically Sorted Source Nodes: [a, x_8, x_10], Original ATen: [aten.add]
triton_poi_fused_add_8.run(buf18, primals_3, buf11, primals_11, primals_17, 64, grid=grid(64), stream=stream0)
del primals_17
return (buf18, buf8, primals_3, primals_11, primals_12, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf3, buf4, buf8, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf15, reinterpret_tensor(buf16, (16, 4), (4, 1), 0), primals_16, primals_14, primals_10, reinterpret_tensor(buf5, (16, 1, 4), (1, 1, 16), 0), primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
from typing import Optional
from typing import List
class FeedForward(nn.Module):
"""
## FFN module
"""
def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1,
activation=nn.ReLU(), is_gated: 'bool'=False, bias: 'bool'=True,
bias_gate: 'bool'=True):
"""
* d_model is the number of features
* d_ff is the number of features in the hidden layer of the FFN
* dropout is dropout probability for the hidden layer
* is_gated specifies whether the hidden layer is gated
* bias1 specified whether the first fully connected layer should have a learnable bias
* bias2 specified whether the second fully connected layer should have a learnable bias
* bias_gate specified whether the fully connected layer for the gate should have a learnable bias
"""
super(FeedForward, self).__init__()
self.layer1 = nn.Linear(d_model, d_ff, bias=bias)
self.layer2 = nn.Linear(d_ff, d_model, bias=bias)
self.dropout = nn.Dropout(dropout)
self.activation = activation
self.is_gated = is_gated
if is_gated:
self.linear_v = nn.Linear(d_model, d_ff, bias=bias_gate)
def forward(self, x: 'torch.Tensor'):
g = self.activation(self.layer1(x))
if self.is_gated:
x = g * self.linear_v(x)
else:
x = g
x = self.dropout(x)
return self.layer2(x)
class PrepareForMultiHeadAttention(nn.Module):
"""
## Prepare for multi-head attention
这个linear transform作用是把query,key,value映射到同一个低维空间内
This module does a linear transformation and splits the vector into given
number of heads for multi-head attention.
This is used to transform **key**, **query**, and **value** vectors.
"""
def __init__(self, d_model: 'int', heads: 'int', d_k: 'int', bias: 'bool'):
super(PrepareForMultiHeadAttention, self).__init__()
self.linear = nn.Linear(d_model, heads * d_k, bias=bias)
self.heads = heads
self.d_k = d_k
def forward(self, x: 'torch.Tensor'):
head_shape = x.shape[:-1]
x = self.linear(x)
x = x.view(*head_shape, self.heads, self.d_k)
return x
class MultiHeadAttention(nn.Module):
"""
This computes scaled multi-headed attention for given query, key and value vectors.
compute similatiry between query and key, use this as attention efficient multiply value
It uses dot-product of query and key as the indicator of how matching they are.
Before taking the $softmax$ the dot-products are scaled by $\\frac{1}{\\sqrt{d_k}}$.
This is done to avoid large dot-product values causing softmax to
give very small gradients when $d_k$ is large.
Softmax is calculated along the axis of of the sequence (or time).
"""
def __init__(self, heads: 'int', d_model: 'int', dropout_prob: 'float'=
0.1, bias: 'bool'=True):
"""
* heads is the number of heads.
* d_model is the number of features in the query, key and value vectors.
"""
super(MultiHeadAttention, self).__init__()
self.d_k = d_model // heads
self.heads = heads
self.query = PrepareForMultiHeadAttention(d_model, heads, self.d_k,
bias=bias)
self.key = PrepareForMultiHeadAttention(d_model, heads, self.d_k,
bias=bias)
self.value = PrepareForMultiHeadAttention(d_model, heads, self.d_k,
bias=True)
self.softmax = nn.Softmax(dim=1)
self.output = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout_prob)
self.scale = 1 / math.sqrt(self.d_k)
self.attn = None
def get_scores(self, query: 'torch.Tensor', key: 'torch.Tensor'):
"""
### Calculate scores between queries and keys,使用的是点积的方法
还可以有cosine,MLP等计算相似度的方法
"""
return torch.einsum('ibhd,jbhd->ijbh', query, key)
def prepare_mask(self, mask: 'torch.Tensor', query_shape: 'List[int]',
key_shape: 'List[int]'):
"""
mask has shape [seq_len_q, seq_len_k, batch_size], where first dimension is the query dimension.
If the query dimension is equal to $1$ it will be broadcasted.
"""
assert mask.shape[0] == 1 or mask.shape[0] == query_shape[0]
assert mask.shape[1] == key_shape[0]
assert mask.shape[2] == 1 or mask.shape[2] == query_shape[1]
mask = mask.unsqueeze(-1)
return mask
def forward(self, *, query: torch.Tensor, key: torch.Tensor, value:
torch.Tensor, mask: Optional[torch.Tensor]=None):
seq_len, batch_size, _ = query.shape
if mask is not None:
mask = self.prepare_mask(mask, query.shape, key.shape)
query = self.query(query)
key = self.key(key)
value = self.value(value)
scores = self.get_scores(query, key)
scores = scores * self.scale
if mask is not None:
scores = scores.masked_fill(mask == 0, float('-inf'))
attn = self.softmax(scores)
attn = self.dropout(attn)
x = torch.einsum('ijbh,jbhd->ibhd', attn, value)
self.attn = attn.detach()
x = x.reshape(seq_len, batch_size, -1)
return self.output(x)
class EncoderLayer(nn.Module):
def __init__(self, d_model: 'int', d_ff: 'int', heads: 'int', bias:
'bool'=True, is_gated: 'bool'=False, bias_gate: 'bool'=True,
activation=nn.ELU(), dropout_prob: 'float'=0.1):
super(EncoderLayer, self).__init__()
self.attn = MultiHeadAttention(heads, d_model, dropout_prob, bias)
self.feed_forward = FeedForward(d_model, d_ff, dropout_prob,
activation, is_gated, bias, bias_gate)
self.dropout = nn.Dropout(dropout_prob)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
def forward(self, x):
z = self.norm1(x)
a = self.attn(query=z, key=z, value=z)
x = x + self.dropout(a)
z = self.norm2(x)
a = self.feed_forward(z)
x = x + self.dropout(a)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'd_ff': 4, 'heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.nn as nn
from typing import Optional
from typing import List
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr1 + (48 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp0 * tmp5
tmp7 = tmp6 * tmp3
tmp8 = triton_helpers.maximum(tmp4, tmp7)
tmp10 = tmp0 * tmp9
tmp11 = tmp10 * tmp3
tmp12 = triton_helpers.maximum(tmp8, tmp11)
tmp14 = tmp0 * tmp13
tmp15 = tmp14 * tmp3
tmp16 = triton_helpers.maximum(tmp12, tmp15)
tmp17 = tmp4 - tmp16
tmp18 = tmp17 * tmp3
tmp19 = tl_math.exp(tmp18)
tmp20 = tmp7 - tmp16
tmp21 = tmp20 * tmp3
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp19 + tmp22
tmp24 = tmp11 - tmp16
tmp25 = tmp24 * tmp3
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 + tmp26
tmp28 = tmp15 - tmp16
tmp29 = tmp28 * tmp3
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp27 + tmp30
tl.store(out_ptr0 + x2, tmp16, xmask)
tl.store(out_ptr1 + x2, tmp31, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex // 64
x3 = xindex % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr3 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp3
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tl.store(out_ptr0 + x4, tmp10, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + 1)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp13 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr2 + 2)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp20 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp21 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr2 + 3)
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp10 = tmp7 + tmp9
tmp11 = tmp6 + tmp10
tmp12 = tmp5 + tmp11
tmp17 = tmp14 + tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp12 + tmp18
tmp24 = tmp21 + tmp23
tmp25 = tmp20 + tmp24
tmp26 = tmp19 + tmp25
tmp27 = 4.0
tmp28 = tmp26 / tmp27
tmp29 = tmp5 - tmp28
tmp30 = tmp29 * tmp29
tmp31 = tmp11 - tmp28
tmp32 = tmp31 * tmp31
tmp33 = tmp30 + tmp32
tmp34 = tmp18 - tmp28
tmp35 = tmp34 * tmp34
tmp36 = tmp33 + tmp35
tmp37 = tmp25 - tmp28
tmp38 = tmp37 * tmp37
tmp39 = tmp36 + tmp38
tmp40 = tmp39 / tmp27
tl.store(out_ptr0 + x0, tmp28, xmask)
tl.store(out_ptr1 + x0, tmp40, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp6 = tmp4 - tmp5
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp6 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_elu_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_out_ptr0 + x2, xmask)
tmp6 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tl.store(in_out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4, 4), (4, 1))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (4, 4), (4, 1))
assert_size_stride(primals_17, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(16)](primals_3, buf0,
buf1, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](primals_3, buf0,
buf1, primals_1, primals_2, buf2, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_1
del primals_2
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf2, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf2, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf5)
del primals_9
buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(64)](buf3, buf4, buf6, buf7, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(256)](buf3, buf4, buf6, buf7, buf8,
256, XBLOCK=128, num_warps=4, num_stages=1)
buf9 = reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 1), 0)
del buf7
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (1, 64, 16),
0), reinterpret_tensor(buf5, (16, 4, 1), (1, 16, 0), 0), out=buf9)
buf10 = reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0)
del buf6
triton_poi_fused_clone_4[grid(4, 16)](buf9, buf10, 4, 16, XBLOCK=16,
YBLOCK=4, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0)
del buf9
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf11)
buf12 = buf1
del buf1
buf13 = buf0
del buf0
triton_poi_fused_add_native_layer_norm_5[grid(16)](primals_3, buf11,
primals_11, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_6[grid(64)](primals_3, buf11,
primals_11, buf12, buf13, primals_12, primals_13, buf14, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf12
del buf13
del primals_13
buf15 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_15, reinterpret_tensor(buf14, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf15)
del primals_15
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_elu_7[grid(64)](buf15, buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf17)
buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0)
del buf17
triton_poi_fused_add_8[grid(64)](buf18, primals_3, buf11,
primals_11, primals_17, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_17
return buf18, buf8, primals_3, primals_11, primals_12, reinterpret_tensor(
buf2, (16, 4), (4, 1), 0), buf3, buf4, buf8, reinterpret_tensor(buf10,
(16, 4), (4, 1), 0), buf11, reinterpret_tensor(buf14, (16, 4), (4,
1), 0), buf15, reinterpret_tensor(buf16, (16, 4), (4, 1), 0
), primals_16, primals_14, primals_10, reinterpret_tensor(buf5, (16,
1, 4), (1, 1, 16), 0), primals_8, primals_6, primals_4
class FeedForward(nn.Module):
"""
## FFN module
"""
def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1,
activation=nn.ReLU(), is_gated: 'bool'=False, bias: 'bool'=True,
bias_gate: 'bool'=True):
"""
* d_model is the number of features
* d_ff is the number of features in the hidden layer of the FFN
* dropout is dropout probability for the hidden layer
* is_gated specifies whether the hidden layer is gated
* bias1 specified whether the first fully connected layer should have a learnable bias
* bias2 specified whether the second fully connected layer should have a learnable bias
* bias_gate specified whether the fully connected layer for the gate should have a learnable bias
"""
super(FeedForward, self).__init__()
self.layer1 = nn.Linear(d_model, d_ff, bias=bias)
self.layer2 = nn.Linear(d_ff, d_model, bias=bias)
self.dropout = nn.Dropout(dropout)
self.activation = activation
self.is_gated = is_gated
if is_gated:
self.linear_v = nn.Linear(d_model, d_ff, bias=bias_gate)
def forward(self, x: 'torch.Tensor'):
g = self.activation(self.layer1(x))
if self.is_gated:
x = g * self.linear_v(x)
else:
x = g
x = self.dropout(x)
return self.layer2(x)
class PrepareForMultiHeadAttention(nn.Module):
"""
## Prepare for multi-head attention
这个linear transform作用是把query,key,value映射到同一个低维空间内
This module does a linear transformation and splits the vector into given
number of heads for multi-head attention.
This is used to transform **key**, **query**, and **value** vectors.
"""
def __init__(self, d_model: 'int', heads: 'int', d_k: 'int', bias: 'bool'):
super(PrepareForMultiHeadAttention, self).__init__()
self.linear = nn.Linear(d_model, heads * d_k, bias=bias)
self.heads = heads
self.d_k = d_k
def forward(self, x: 'torch.Tensor'):
head_shape = x.shape[:-1]
x = self.linear(x)
x = x.view(*head_shape, self.heads, self.d_k)
return x
class MultiHeadAttention(nn.Module):
"""
This computes scaled multi-headed attention for given query, key and value vectors.
compute similatiry between query and key, use this as attention efficient multiply value
It uses dot-product of query and key as the indicator of how matching they are.
Before taking the $softmax$ the dot-products are scaled by $\\frac{1}{\\sqrt{d_k}}$.
This is done to avoid large dot-product values causing softmax to
give very small gradients when $d_k$ is large.
Softmax is calculated along the axis of of the sequence (or time).
"""
def __init__(self, heads: 'int', d_model: 'int', dropout_prob: 'float'=
0.1, bias: 'bool'=True):
"""
* heads is the number of heads.
* d_model is the number of features in the query, key and value vectors.
"""
super(MultiHeadAttention, self).__init__()
self.d_k = d_model // heads
self.heads = heads
self.query = PrepareForMultiHeadAttention(d_model, heads, self.d_k,
bias=bias)
self.key = PrepareForMultiHeadAttention(d_model, heads, self.d_k,
bias=bias)
self.value = PrepareForMultiHeadAttention(d_model, heads, self.d_k,
bias=True)
self.softmax = nn.Softmax(dim=1)
self.output = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout_prob)
self.scale = 1 / math.sqrt(self.d_k)
self.attn = None
def get_scores(self, query: 'torch.Tensor', key: 'torch.Tensor'):
"""
### Calculate scores between queries and keys,使用的是点积的方法
还可以有cosine,MLP等计算相似度的方法
"""
return torch.einsum('ibhd,jbhd->ijbh', query, key)
def prepare_mask(self, mask: 'torch.Tensor', query_shape: 'List[int]',
key_shape: 'List[int]'):
"""
mask has shape [seq_len_q, seq_len_k, batch_size], where first dimension is the query dimension.
If the query dimension is equal to $1$ it will be broadcasted.
"""
assert mask.shape[0] == 1 or mask.shape[0] == query_shape[0]
assert mask.shape[1] == key_shape[0]
assert mask.shape[2] == 1 or mask.shape[2] == query_shape[1]
mask = mask.unsqueeze(-1)
return mask
def forward(self, *, query: torch.Tensor, key: torch.Tensor, value:
torch.Tensor, mask: Optional[torch.Tensor]=None):
seq_len, batch_size, _ = query.shape
if mask is not None:
mask = self.prepare_mask(mask, query.shape, key.shape)
query = self.query(query)
key = self.key(key)
value = self.value(value)
scores = self.get_scores(query, key)
scores = scores * self.scale
if mask is not None:
scores = scores.masked_fill(mask == 0, float('-inf'))
attn = self.softmax(scores)
attn = self.dropout(attn)
x = torch.einsum('ijbh,jbhd->ibhd', attn, value)
self.attn = attn.detach()
x = x.reshape(seq_len, batch_size, -1)
return self.output(x)
class EncoderLayerNew(nn.Module):
def __init__(self, d_model: 'int', d_ff: 'int', heads: 'int', bias:
'bool'=True, is_gated: 'bool'=False, bias_gate: 'bool'=True,
activation=nn.ELU(), dropout_prob: 'float'=0.1):
super(EncoderLayerNew, self).__init__()
self.attn = MultiHeadAttention(heads, d_model, dropout_prob, bias)
self.feed_forward = FeedForward(d_model, d_ff, dropout_prob,
activation, is_gated, bias, bias_gate)
self.dropout = nn.Dropout(dropout_prob)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
def forward(self, input_0):
primals_4 = self.attn.query.linear.weight
primals_1 = self.attn.query.linear.bias
primals_6 = self.attn.key.linear.weight
primals_2 = self.attn.key.linear.bias
primals_8 = self.attn.value.linear.weight
primals_5 = self.attn.value.linear.bias
primals_10 = self.attn.output.weight
primals_7 = self.attn.output.bias
primals_14 = self.feed_forward.layer1.weight
primals_9 = self.feed_forward.layer1.bias
primals_16 = self.feed_forward.layer2.weight
primals_11 = self.feed_forward.layer2.bias
primals_12 = self.norm1.weight
primals_13 = self.norm1.bias
primals_15 = self.norm2.weight
primals_17 = self.norm2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17])
return output[0]
| jamesYu365/Transfomer-example | EncoderLayer | false | 12,720 | [
"MIT"
]
| 0 | a867f72f539de9746668da411f524dab45ddf12f | https://github.com/jamesYu365/Transfomer-example/tree/a867f72f539de9746668da411f524dab45ddf12f |
AGRUCell | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/by/cbypqeb7lfdlbth5j2ww7h2bluyiqc2nrbnc76btfynxntusq5wb.py
# Topologically Sorted Source Nodes: [add, reset_gate, mul, add_1, new_state, sub, mul_1, mul_2, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub, aten.tanh_backward]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# hy => add_2
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# new_state => tanh
# reset_gate => sigmoid
# sub => sub
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, %getitem_3), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %getitem_5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, %mul), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %view), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_6), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %tanh), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %tanh), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_4), kwargs = {})
triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (12*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (12*x1)), xmask)
tmp6 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr4 + (x2), xmask)
tmp11 = tl.load(in_ptr0 + (8 + x0 + (12*x1)), xmask)
tmp12 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (8 + x0 + (12*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tmp7 = 1.0
tmp8 = tmp7 - tmp6
tmp10 = tmp8 * tmp9
tmp13 = tmp11 + tmp12
tmp15 = tmp5 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = libdevice.tanh(tmp16)
tmp18 = tmp6 * tmp17
tmp19 = tmp10 + tmp18
tmp20 = tmp17 * tmp17
tmp21 = tmp7 - tmp20
tl.store(out_ptr0 + (x2), tmp5, xmask)
tl.store(out_ptr1 + (x2), tmp19, xmask)
tl.store(out_ptr2 + (x2), tmp21, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (12, 4), (4, 1))
assert_size_stride(primals_2, (12, ), (1, ))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12, ), (1, ))
assert_size_stride(primals_6, (16, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [gh], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, reset_gate, mul, add_1, new_state, sub, mul_1, mul_2, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub, aten.tanh_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0.run(buf0, primals_2, buf1, primals_7, primals_6, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0)
del buf0
del primals_2
return (buf3, primals_3, primals_6, primals_7, reinterpret_tensor(buf1, (16, 4), (12, 1), 8), buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.metrics import *
class AGRUCell(nn.Module):
""" Attention based GRU (AGRU)
Reference:
- Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1809.03672, 2018.
"""
def __init__(self, input_size, hidden_size, bias=True):
super(AGRUCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.weight_ih = nn.Parameter(torch.Tensor(3 * hidden_size, input_size)
)
self.register_parameter('weight_ih', self.weight_ih)
self.weight_hh = nn.Parameter(torch.Tensor(3 * hidden_size,
hidden_size))
self.register_parameter('weight_hh', self.weight_hh)
if bias:
self.bias_ih = nn.Parameter(torch.Tensor(3 * hidden_size))
self.register_parameter('bias_ih', self.bias_ih)
self.bias_hh = nn.Parameter(torch.Tensor(3 * hidden_size))
self.register_parameter('bias_hh', self.bias_hh)
for tensor in [self.bias_ih, self.bias_hh]:
nn.init.zeros_(tensor)
else:
self.register_parameter('bias_ih', None)
self.register_parameter('bias_hh', None)
def forward(self, input, hx, att_score):
gi = F.linear(input, self.weight_ih, self.bias_ih)
gh = F.linear(hx, self.weight_hh, self.bias_hh)
i_r, _i_z, i_n = gi.chunk(3, 1)
h_r, _h_z, h_n = gh.chunk(3, 1)
reset_gate = torch.sigmoid(i_r + h_r)
new_state = torch.tanh(i_n + reset_gate * h_n)
att_score = att_score.view(-1, 1)
hy = (1.0 - att_score) * hx + att_score * new_state
return hy
def get_inputs():
return [torch.rand([16, 4]), torch.rand([16, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from sklearn.metrics import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 12 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 12 * x1), xmask)
tmp6 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr4 + x2, xmask)
tmp11 = tl.load(in_ptr0 + (8 + x0 + 12 * x1), xmask)
tmp12 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (8 + x0 + 12 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tmp7 = 1.0
tmp8 = tmp7 - tmp6
tmp10 = tmp8 * tmp9
tmp13 = tmp11 + tmp12
tmp15 = tmp5 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = libdevice.tanh(tmp16)
tmp18 = tmp6 * tmp17
tmp19 = tmp10 + tmp18
tmp20 = tmp17 * tmp17
tmp21 = tmp7 - tmp20
tl.store(out_ptr0 + x2, tmp5, xmask)
tl.store(out_ptr1 + x2, tmp19, xmask)
tl.store(out_ptr2 + x2, tmp21, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (12, 4), (4, 1))
assert_size_stride(primals_2, (12,), (1,))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12,), (1,))
assert_size_stride(primals_6, (16, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 12),
(1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor(
primals_4, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0[grid(64)](
buf0, primals_2, buf1, primals_7, primals_6, buf2, buf3, buf4,
64, XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del primals_2
return buf3, primals_3, primals_6, primals_7, reinterpret_tensor(buf1,
(16, 4), (12, 1), 8), buf2, buf4
class AGRUCellNew(nn.Module):
""" Attention based GRU (AGRU)
Reference:
- Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1809.03672, 2018.
"""
def __init__(self, input_size, hidden_size, bias=True):
super(AGRUCellNew, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.weight_ih = nn.Parameter(torch.Tensor(3 * hidden_size, input_size)
)
self.register_parameter('weight_ih', self.weight_ih)
self.weight_hh = nn.Parameter(torch.Tensor(3 * hidden_size,
hidden_size))
self.register_parameter('weight_hh', self.weight_hh)
if bias:
self.bias_ih = nn.Parameter(torch.Tensor(3 * hidden_size))
self.register_parameter('bias_ih', self.bias_ih)
self.bias_hh = nn.Parameter(torch.Tensor(3 * hidden_size))
self.register_parameter('bias_hh', self.bias_hh)
for tensor in [self.bias_ih, self.bias_hh]:
nn.init.zeros_(tensor)
else:
self.register_parameter('bias_ih', None)
self.register_parameter('bias_hh', None)
def forward(self, input_0, input_1, input_2):
primals_1 = self.weight_ih
primals_4 = self.weight_hh
primals_2 = self.bias_ih
primals_5 = self.bias_hh
primals_3 = input_0
primals_6 = input_1
primals_7 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| liyunrui/DeepCTR-Torch | AGRUCell | false | 12,721 | [
"Apache-2.0"
]
| 0 | 392fd6d39d9ca0ac854022136cdb4d5c68e3a592 | https://github.com/liyunrui/DeepCTR-Torch/tree/392fd6d39d9ca0ac854022136cdb4d5c68e3a592 |
CosineBasisLinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/vm/cvmxb4fm3754gb5xbvn445attxbnlnqmgxmnql4g235hqqjxgk4t.py
# Topologically Sorted Source Nodes: [arange, i_pi, mul_1, embedding], Original ATen: [aten.arange, aten.mul, aten.cos]
# Source node to ATen node mapping:
# arange => add, convert_element_type, iota, mul
# embedding => cos
# i_pi => mul_1
# mul_1 => mul_2
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota, 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 3.141592653589793), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %mul_1), kwargs = {})
# %cos : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%mul_2,), kwargs = {})
triton_poi_fused_arange_cos_mul_0 = async_compile.triton('triton_poi_fused_arange_cos_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_cos_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_arange_cos_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = 1 + x0
tmp2 = tmp1.to(tl.float32)
tmp3 = 3.141592653589793
tmp4 = tmp2 * tmp3
tmp5 = tmp0 * tmp4
tmp6 = tl_math.cos(tmp5)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [arange, i_pi, mul_1, embedding], Original ATen: [aten.arange, aten.mul, aten.cos]
stream0 = get_raw_stream(0)
triton_poi_fused_arange_cos_mul_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((256, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (256, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_2
del primals_3
return (reinterpret_tensor(buf1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), reinterpret_tensor(buf0, (256, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import nn
def cosine_basis_functions(x, n_basis_functions=64):
"""Cosine basis functions used to embed quantile thresholds.
Args:
x (torch.Tensor): Input.
n_basis_functions (int): Number of cosine basis functions.
Returns:
ndarray: Embedding with shape of (x.shape + (n_basis_functions,)).
"""
i_pi = torch.arange(1, n_basis_functions + 1, dtype=torch.float, device
=x.device) * np.pi
embedding = torch.cos(x[..., None] * i_pi)
assert embedding.shape == x.shape + (n_basis_functions,)
return embedding
class CosineBasisLinear(nn.Module):
"""Linear layer following cosine basis functions.
Args:
n_basis_functions (int): Number of cosine basis functions.
out_size (int): Output size.
"""
def __init__(self, n_basis_functions, out_size):
super().__init__()
self.linear = nn.Linear(n_basis_functions, out_size)
self.n_basis_functions = n_basis_functions
self.out_size = out_size
def forward(self, x):
"""Evaluate.
Args:
x (torch.Tensor): Input.
Returns:
torch.Tensor: Output with shape of (x.shape + (out_size,)).
"""
h = cosine_basis_functions(x, self.n_basis_functions)
h = h.reshape(-1, self.n_basis_functions)
out = self.linear(h)
out = out.reshape(*x.shape, self.out_size)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_basis_functions': 4, 'out_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_arange_cos_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = 1 + x0
tmp2 = tmp1.to(tl.float32)
tmp3 = 3.141592653589793
tmp4 = tmp2 * tmp3
tmp5 = tmp0 * tmp4
tmp6 = tl_math.cos(tmp5)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_arange_cos_mul_0[grid(1024)](primals_1, buf0, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((256, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (256, 4),
(4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del primals_2
del primals_3
return reinterpret_tensor(buf1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (256, 4), (4, 1), 0)
def cosine_basis_functions(x, n_basis_functions=64):
"""Cosine basis functions used to embed quantile thresholds.
Args:
x (torch.Tensor): Input.
n_basis_functions (int): Number of cosine basis functions.
Returns:
ndarray: Embedding with shape of (x.shape + (n_basis_functions,)).
"""
i_pi = torch.arange(1, n_basis_functions + 1, dtype=torch.float, device
=x.device) * np.pi
embedding = torch.cos(x[..., None] * i_pi)
assert embedding.shape == x.shape + (n_basis_functions,)
return embedding
class CosineBasisLinearNew(nn.Module):
"""Linear layer following cosine basis functions.
Args:
n_basis_functions (int): Number of cosine basis functions.
out_size (int): Output size.
"""
def __init__(self, n_basis_functions, out_size):
super().__init__()
self.linear = nn.Linear(n_basis_functions, out_size)
self.n_basis_functions = n_basis_functions
self.out_size = out_size
def forward(self, input_0):
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| lin826/pfrl | CosineBasisLinear | false | 12,722 | [
"MIT"
]
| 0 | 62d7f13b854f1879211a386fd870a7db982cc8ec | https://github.com/lin826/pfrl/tree/62d7f13b854f1879211a386fd870a7db982cc8ec |
FM | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/5v/c5vqsotjiyyydjenxs3ttprtusysjuigcmpcuavw4a5cbsh4movc.py
# Topologically Sorted Source Nodes: [sum_1, square_of_sum, mul, sum_of_square, cross_term, sum_3, cross_term_1], Original ATen: [aten.sum, aten.pow, aten.mul, aten.sub]
# Source node to ATen node mapping:
# cross_term => sub
# cross_term_1 => mul_1
# mul => mul
# square_of_sum => pow_1
# sum_1 => sum_1
# sum_3 => sum_3
# sum_of_square => sum_2
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [1], True), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_1, %sum_2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub, [2]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_3, 0.5), kwargs = {})
triton_poi_fused_mul_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp16 = tl.load(in_ptr0 + (4 + x0 + (64*x1)), xmask)
tmp17 = tl.load(in_ptr0 + (20 + x0 + (64*x1)), xmask)
tmp19 = tl.load(in_ptr0 + (36 + x0 + (64*x1)), xmask)
tmp21 = tl.load(in_ptr0 + (52 + x0 + (64*x1)), xmask)
tmp33 = tl.load(in_ptr0 + (8 + x0 + (64*x1)), xmask)
tmp34 = tl.load(in_ptr0 + (24 + x0 + (64*x1)), xmask)
tmp36 = tl.load(in_ptr0 + (40 + x0 + (64*x1)), xmask)
tmp38 = tl.load(in_ptr0 + (56 + x0 + (64*x1)), xmask)
tmp50 = tl.load(in_ptr0 + (12 + x0 + (64*x1)), xmask)
tmp51 = tl.load(in_ptr0 + (28 + x0 + (64*x1)), xmask)
tmp53 = tl.load(in_ptr0 + (44 + x0 + (64*x1)), xmask)
tmp55 = tl.load(in_ptr0 + (60 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp0 * tmp0
tmp9 = tmp1 * tmp1
tmp10 = tmp8 + tmp9
tmp11 = tmp3 * tmp3
tmp12 = tmp10 + tmp11
tmp13 = tmp5 * tmp5
tmp14 = tmp12 + tmp13
tmp15 = tmp7 - tmp14
tmp18 = tmp16 + tmp17
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp23 = tmp22 * tmp22
tmp24 = tmp16 * tmp16
tmp25 = tmp17 * tmp17
tmp26 = tmp24 + tmp25
tmp27 = tmp19 * tmp19
tmp28 = tmp26 + tmp27
tmp29 = tmp21 * tmp21
tmp30 = tmp28 + tmp29
tmp31 = tmp23 - tmp30
tmp32 = tmp15 + tmp31
tmp35 = tmp33 + tmp34
tmp37 = tmp35 + tmp36
tmp39 = tmp37 + tmp38
tmp40 = tmp39 * tmp39
tmp41 = tmp33 * tmp33
tmp42 = tmp34 * tmp34
tmp43 = tmp41 + tmp42
tmp44 = tmp36 * tmp36
tmp45 = tmp43 + tmp44
tmp46 = tmp38 * tmp38
tmp47 = tmp45 + tmp46
tmp48 = tmp40 - tmp47
tmp49 = tmp32 + tmp48
tmp52 = tmp50 + tmp51
tmp54 = tmp52 + tmp53
tmp56 = tmp54 + tmp55
tmp57 = tmp56 * tmp56
tmp58 = tmp50 * tmp50
tmp59 = tmp51 * tmp51
tmp60 = tmp58 + tmp59
tmp61 = tmp53 * tmp53
tmp62 = tmp60 + tmp61
tmp63 = tmp55 * tmp55
tmp64 = tmp62 + tmp63
tmp65 = tmp57 - tmp64
tmp66 = tmp49 + tmp65
tmp67 = 0.5
tmp68 = tmp66 * tmp67
tl.store(in_out_ptr0 + (x2), tmp68, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [sum_1, square_of_sum, mul, sum_of_square, cross_term, sum_3, cross_term_1], Original ATen: [aten.sum, aten.pow, aten.mul, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_pow_sub_sum_0.run(buf1, arg0_1, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from sklearn.metrics import *
class FM(nn.Module):
"""Factorization Machine models pairwise (order-2) feature interactions
without linear term and bias.
Input shape
- 3D tensor with shape: ``(batch_size,field_size,embedding_size)``.
Output shape
- 2D tensor with shape: ``(batch_size, 1)``.
References
- [Factorization Machines](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf)
"""
def __init__(self):
super(FM, self).__init__()
def forward(self, inputs):
fm_input = inputs
square_of_sum = torch.pow(torch.sum(fm_input, dim=1, keepdim=True), 2)
sum_of_square = torch.sum(fm_input * fm_input, dim=1, keepdim=True)
cross_term = square_of_sum - sum_of_square
cross_term = 0.5 * torch.sum(cross_term, dim=2, keepdim=False)
return cross_term
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from sklearn.metrics import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp16 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), xmask)
tmp17 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), xmask)
tmp19 = tl.load(in_ptr0 + (36 + x0 + 64 * x1), xmask)
tmp21 = tl.load(in_ptr0 + (52 + x0 + 64 * x1), xmask)
tmp33 = tl.load(in_ptr0 + (8 + x0 + 64 * x1), xmask)
tmp34 = tl.load(in_ptr0 + (24 + x0 + 64 * x1), xmask)
tmp36 = tl.load(in_ptr0 + (40 + x0 + 64 * x1), xmask)
tmp38 = tl.load(in_ptr0 + (56 + x0 + 64 * x1), xmask)
tmp50 = tl.load(in_ptr0 + (12 + x0 + 64 * x1), xmask)
tmp51 = tl.load(in_ptr0 + (28 + x0 + 64 * x1), xmask)
tmp53 = tl.load(in_ptr0 + (44 + x0 + 64 * x1), xmask)
tmp55 = tl.load(in_ptr0 + (60 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp0 * tmp0
tmp9 = tmp1 * tmp1
tmp10 = tmp8 + tmp9
tmp11 = tmp3 * tmp3
tmp12 = tmp10 + tmp11
tmp13 = tmp5 * tmp5
tmp14 = tmp12 + tmp13
tmp15 = tmp7 - tmp14
tmp18 = tmp16 + tmp17
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp23 = tmp22 * tmp22
tmp24 = tmp16 * tmp16
tmp25 = tmp17 * tmp17
tmp26 = tmp24 + tmp25
tmp27 = tmp19 * tmp19
tmp28 = tmp26 + tmp27
tmp29 = tmp21 * tmp21
tmp30 = tmp28 + tmp29
tmp31 = tmp23 - tmp30
tmp32 = tmp15 + tmp31
tmp35 = tmp33 + tmp34
tmp37 = tmp35 + tmp36
tmp39 = tmp37 + tmp38
tmp40 = tmp39 * tmp39
tmp41 = tmp33 * tmp33
tmp42 = tmp34 * tmp34
tmp43 = tmp41 + tmp42
tmp44 = tmp36 * tmp36
tmp45 = tmp43 + tmp44
tmp46 = tmp38 * tmp38
tmp47 = tmp45 + tmp46
tmp48 = tmp40 - tmp47
tmp49 = tmp32 + tmp48
tmp52 = tmp50 + tmp51
tmp54 = tmp52 + tmp53
tmp56 = tmp54 + tmp55
tmp57 = tmp56 * tmp56
tmp58 = tmp50 * tmp50
tmp59 = tmp51 * tmp51
tmp60 = tmp58 + tmp59
tmp61 = tmp53 * tmp53
tmp62 = tmp60 + tmp61
tmp63 = tmp55 * tmp55
tmp64 = tmp62 + tmp63
tmp65 = tmp57 - tmp64
tmp66 = tmp49 + tmp65
tmp67 = 0.5
tmp68 = tmp66 * tmp67
tl.store(in_out_ptr0 + x2, tmp68, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_pow_sub_sum_0[grid(16)](buf1, arg0_1, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
return buf1,
class FMNew(nn.Module):
"""Factorization Machine models pairwise (order-2) feature interactions
without linear term and bias.
Input shape
- 3D tensor with shape: ``(batch_size,field_size,embedding_size)``.
Output shape
- 2D tensor with shape: ``(batch_size, 1)``.
References
- [Factorization Machines](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf)
"""
def __init__(self):
super(FMNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| liyunrui/DeepCTR-Torch | FM | false | 12,723 | [
"Apache-2.0"
]
| 0 | 392fd6d39d9ca0ac854022136cdb4d5c68e3a592 | https://github.com/liyunrui/DeepCTR-Torch/tree/392fd6d39d9ca0ac854022136cdb4d5c68e3a592 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.