input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. import os import subprocess import warnings from packaging.version import parse def digit_version(version_str: str, length: int = 4): """Convert a version string into a tuple of integers. This method is usually used for comparing two versions. For pre-release versions: alpha < beta < rc. Args: version_str (str): The version string. length (int): The maximum number of version levels. Default: 4. Returns: tuple[int]: The version info in digits (integers). """ assert 'parrots' not in version_str version = parse(version_str) assert version.release, f'failed to parse version {version_str}' release = list(version.release) release = release[:length] if len(release) < length: release = release + [0] * (length - len(release)) if version.is_prerelease: mapping = {'a': -3, 'b': -2, 'rc': -1} val = -4 # version.pre can be None if version.pre: if version.pre[0] not in mapping: warnings.warn(f'unknown prerelease version {version.pre[0]}, ' 'version checking may go wrong') else: val = mapping[version.pre[0]] release.extend([val, version.pre[-1]]) else: release.extend([val, 0]) elif version.is_postrelease: release.extend([1, version.post]) # type: ignore else: release.extend([0, 0]) return tuple(release) def _minimal_ext_cmd(cmd): # construct minimal environment env = {} for k in ['SYSTEMROOT', 'PATH', 'HOME']: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' out, err = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env).communicate() return out def get_git_hash(fallback='unknown', digits=None): """Get the git hash of the current repo. Args: fallback (str, optional): The fallback string when git hash is unavailable. Defaults to 'unknown'. digits (int, optional): kept digits of the hash. Defaults to None, meaning all digits are kept. Returns: str: Git commit hash. """ if digits is not None and not isinstance(digits, int): raise TypeError('digits must be None or an integer') try: out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) sha = out.strip().decode('ascii') if digits is not None: sha = sha[:digits] except OSError: sha = fallback return sha
# Copyright (c) OpenMMLab. All rights reserved. import os import subprocess import warnings from packaging.version import parse def digit_version(version_str: str, length: int = 4): """Convert a version string into a tuple of integers. This method is usually used for comparing two versions. For pre-release versions: alpha < beta < rc. Args: version_str (str): The version string. length (int): The maximum number of version levels. Default: 4. Returns: tuple[int]: The version info in digits (integers). """ assert 'parrots' not in version_str version = parse(version_str) assert version.release, f'failed to parse version {version_str}' release = list(version.release) release = release[:length] if len(release) < length: release = release + [0] * (length - len(release)) if version.is_prerelease: mapping = {'a': -3, 'b': -2, 'rc': -1} val = -4 # version.pre can be None if version.pre: if version.pre[0] not in mapping: warnings.warn(f'unknown prerelease version {version.pre[0]}, ' 'version checking may go wrong') else: val = mapping[version.pre[0]] release.extend([val, version.pre[-1]]) else: release.extend([val, 0]) elif version.is_postrelease: release.extend([1, version.post]) # type: ignore else: release.extend([0, 0]) return tuple(release) def _minimal_ext_cmd(cmd): # construct minimal environment env = {} for k in ['SYSTEMROOT', 'PATH', 'HOME']: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' out = subprocess.Popen( cmd, stdout=subprocess.PIPE, env=env).communicate()[0] return out def get_git_hash(fallback='unknown', digits=None): """Get the git hash of the current repo. Args: fallback (str, optional): The fallback string when git hash is unavailable. Defaults to 'unknown'. digits (int, optional): kept digits of the hash. Defaults to None, meaning all digits are kept. Returns: str: Git commit hash. """ if digits is not None and not isinstance(digits, int): raise TypeError('digits must be None or an integer') try: out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) sha = out.strip().decode('ascii') if digits is not None: sha = sha[:digits] except OSError: sha = fallback return sha
_base_ = [ '../_base_/models/cascade-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_20e.py', '../_base_/default_runtime.py' ]
_base_ = [ '../_base_/models/cascade_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_20e.py', '../_base_/default_runtime.py' ]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import numpy as np import pytest import torch from jina import DocumentArray, Document from ...sentence_encoder import TransformerSentenceEncoder def test_encoding_cpu(): enc = TransformerSentenceEncoder(device='cpu') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (768,) @pytest.mark.skipif(not torch.cuda.is_available(), reason='GPU is needed for this test') def test_encoding_gpu(): enc = TransformerSentenceEncoder(device='cuda') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (768,) def test_encodes_semantic_meaning(): sentences = dict() sentences['A'] = 'Hello, my name is Michael.' sentences['B'] = 'Today we are going to Disney World.' sentences['C'] = 'There are animals on the road' sentences['D'] = 'A dog is running down the road' encoder = TransformerSentenceEncoder() embeddings = {} for id_, sentence in sentences.items(): docs = DocumentArray([Document(text=sentence)]) encoder.encode(docs, parameters={}) embeddings[id_] = docs[0].embedding def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('C', 'D') assert small_distance < dist('C', 'B') assert small_distance < dist('C', 'A') assert small_distance < dist('B', 'A') @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_path'], [ (pytest.lazy_fixture('docs_with_text'), [[['r'], 10], [['c'], 0], [['cc'], 0]], ['r']), ( pytest.lazy_fixture("docs_with_chunk_text"), [[['r'], 0], [['c'], 10], [['cc'], 0]], ['c'], ), ( pytest.lazy_fixture("docs_with_chunk_chunk_text"), [[['r'], 0], [['c'], 0], [['cc'], 10]], ['cc'], ), ], ) def test_traversal_path(docs: DocumentArray, docs_per_path, traversal_path): encoder = TransformerSentenceEncoder() encoder.encode(docs, parameters={'traversal_paths': traversal_path}) for path, count in docs_per_path: assert len(docs.traverse_flat(path).get_attributes("embedding")) == count
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import numpy as np import pytest import torch from jina import DocumentArray, Document from jinahub.text.encoders.sentence_encoder import TransformerSentenceEncoder def test_encoding_cpu(): enc = TransformerSentenceEncoder(device='cpu') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (768,) @pytest.mark.skipif(not torch.cuda.is_available(), reason='GPU is needed for this test') def test_encoding_gpu(): enc = TransformerSentenceEncoder(device='cuda') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (768,) def test_encodes_semantic_meaning(): sentences = dict() sentences['A'] = 'Hello, my name is Michael.' sentences['B'] = 'Today we are going to Disney World.' sentences['C'] = 'There are animals on the road' sentences['D'] = 'A dog is running down the road' encoder = TransformerSentenceEncoder() embeddings = {} for id_, sentence in sentences.items(): docs = DocumentArray([Document(text=sentence)]) encoder.encode(docs, parameters={}) embeddings[id_] = docs[0].embedding def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('C', 'D') assert small_distance < dist('C', 'B') assert small_distance < dist('C', 'A') assert small_distance < dist('B', 'A') @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_path'], [ (pytest.lazy_fixture('docs_with_text'), [[['r'], 10], [['c'], 0], [['cc'], 0]], ['r']), ( pytest.lazy_fixture("docs_with_chunk_text"), [[['r'], 0], [['c'], 10], [['cc'], 0]], ['c'], ), ( pytest.lazy_fixture("docs_with_chunk_chunk_text"), [[['r'], 0], [['c'], 0], [['cc'], 10]], ['cc'], ), ], ) def test_traversal_path(docs: DocumentArray, docs_per_path, traversal_path): encoder = TransformerSentenceEncoder() encoder.encode(docs, parameters={'traversal_paths': traversal_path}) for path, count in docs_per_path: assert len(docs.traverse_flat(path).get_attributes("embedding")) == count
"""Callback Handler that writes to a file.""" from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, Any, Optional, TextIO, cast from langchain_core.callbacks import BaseCallbackHandler from langchain_core.utils.input import print_text if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish class FileCallbackHandler(BaseCallbackHandler): """Callback Handler that writes to a file. Parameters: filename: The file to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. """ def __init__( self, filename: str, mode: str = "a", color: Optional[str] = None ) -> None: """Initialize callback handler. Args: filename: The filename to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. Defaults to None. """ self.file = cast("TextIO", Path(filename).open(mode, encoding="utf-8")) # noqa: SIM115 self.color = color def __del__(self) -> None: """Destructor to cleanup when done.""" self.file.close() def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. Args: serialized (Dict[str, Any]): The serialized chain. inputs (Dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ if "name" in kwargs: name = kwargs["name"] else: if serialized: name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) else: name = "<unknown>" print_text( f"\n\n\033[1m> Entering new {name} chain...\033[0m", end="\n", file=self.file, ) def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: outputs (Dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ print_text("\n\033[1m> Finished chain.\033[0m", end="\n", file=self.file) def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(action.log, color=color or self.color, file=self.file) def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation. Args: output (str): The output to print. color (Optional[str], optional): The color to use for the text. Defaults to None. observation_prefix (Optional[str], optional): The observation prefix. Defaults to None. llm_prefix (Optional[str], optional): The LLM prefix. Defaults to None. **kwargs (Any): Additional keyword arguments. """ if observation_prefix is not None: print_text(f"\n{observation_prefix}", file=self.file) print_text(output, color=color or self.color, file=self.file) if llm_prefix is not None: print_text(f"\n{llm_prefix}", file=self.file) def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any ) -> None: """Run when the agent ends. Args: text (str): The text to print. color (Optional[str], optional): The color to use for the text. Defaults to None. end (str, optional): The end character. Defaults to "". **kwargs (Any): Additional keyword arguments. """ print_text(text, color=color or self.color, end=end, file=self.file) def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(finish.log, color=color or self.color, end="\n", file=self.file)
"""Callback Handler that writes to a file.""" from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, Any, Optional, TextIO, cast from langchain_core.callbacks import BaseCallbackHandler from langchain_core.utils.input import print_text if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish class FileCallbackHandler(BaseCallbackHandler): """Callback Handler that writes to a file. Parameters: filename: The file to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. """ def __init__( self, filename: str, mode: str = "a", color: Optional[str] = None ) -> None: """Initialize callback handler. Args: filename: The filename to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. Defaults to None. """ self.file = cast(TextIO, Path(filename).open(mode, encoding="utf-8")) # noqa: SIM115 self.color = color def __del__(self) -> None: """Destructor to cleanup when done.""" self.file.close() def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. Args: serialized (Dict[str, Any]): The serialized chain. inputs (Dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ if "name" in kwargs: name = kwargs["name"] else: if serialized: name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) else: name = "<unknown>" print_text( f"\n\n\033[1m> Entering new {name} chain...\033[0m", end="\n", file=self.file, ) def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: outputs (Dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ print_text("\n\033[1m> Finished chain.\033[0m", end="\n", file=self.file) def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(action.log, color=color or self.color, file=self.file) def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation. Args: output (str): The output to print. color (Optional[str], optional): The color to use for the text. Defaults to None. observation_prefix (Optional[str], optional): The observation prefix. Defaults to None. llm_prefix (Optional[str], optional): The LLM prefix. Defaults to None. **kwargs (Any): Additional keyword arguments. """ if observation_prefix is not None: print_text(f"\n{observation_prefix}", file=self.file) print_text(output, color=color or self.color, file=self.file) if llm_prefix is not None: print_text(f"\n{llm_prefix}", file=self.file) def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any ) -> None: """Run when the agent ends. Args: text (str): The text to print. color (Optional[str], optional): The color to use for the text. Defaults to None. end (str, optional): The end character. Defaults to "". **kwargs (Any): Additional keyword arguments. """ print_text(text, color=color or self.color, end=end, file=self.file) def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(finish.log, color=color or self.color, end="\n", file=self.file)
""" This example starts multiple processes (1 per GPU), which encode sentences in parallel. This gives a near linear speed-up when encoding large text collections. It also demonstrates how to stream data which is helpful in case you don't want to wait for an extremely large dataset to download, or if you want to limit the amount of memory used. More info about dataset streaming: https://huggingface.co/docs/datasets/stream """ import logging from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm from sentence_transformers import LoggingHandler, SentenceTransformer logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) # Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes. if __name__ == "__main__": # Set params data_stream_size = 16384 # Size of the data that is loaded into memory at once chunk_size = 1024 # Size of the chunks that are sent to each process encode_batch_size = 128 # Batch size of the model # Load a large dataset in streaming mode. more info: https://huggingface.co/docs/datasets/stream dataset = load_dataset("yahoo_answers_topics", split="train", streaming=True) dataloader = DataLoader(dataset.with_format("torch"), batch_size=data_stream_size) # Define the model model = SentenceTransformer("all-MiniLM-L6-v2") # Start the multi-process pool on all available CUDA devices pool = model.start_multi_process_pool() for i, batch in enumerate(tqdm(dataloader)): # Compute the embeddings using the multi-process pool sentences = batch["best_answer"] batch_emb = model.encode_multi_process(sentences, pool, chunk_size=chunk_size, batch_size=encode_batch_size) print("Embeddings computed for 1 batch. Shape:", batch_emb.shape) # Optional: Stop the processes in the pool model.stop_multi_process_pool(pool)
""" This example starts multiple processes (1 per GPU), which encode sentences in parallel. This gives a near linear speed-up when encoding large text collections. It also demonstrates how to stream data which is helpful in case you don't want to wait for an extremely large dataset to download, or if you want to limit the amount of memory used. More info about dataset streaming: https://huggingface.co/docs/datasets/stream """ import logging from torch.utils.data import DataLoader from tqdm import tqdm from datasets import load_dataset from sentence_transformers import LoggingHandler, SentenceTransformer logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) # Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes. if __name__ == "__main__": # Set params data_stream_size = 16384 # Size of the data that is loaded into memory at once chunk_size = 1024 # Size of the chunks that are sent to each process encode_batch_size = 128 # Batch size of the model # Load a large dataset in streaming mode. more info: https://huggingface.co/docs/datasets/stream dataset = load_dataset("yahoo_answers_topics", split="train", streaming=True) dataloader = DataLoader(dataset.with_format("torch"), batch_size=data_stream_size) # Define the model model = SentenceTransformer("all-MiniLM-L6-v2") # Start the multi-process pool on all available CUDA devices pool = model.start_multi_process_pool() for i, batch in enumerate(tqdm(dataloader)): # Compute the embeddings using the multi-process pool sentences = batch["best_answer"] batch_emb = model.encode_multi_process(sentences, pool, chunk_size=chunk_size, batch_size=encode_batch_size) print("Embeddings computed for 1 batch. Shape:", batch_emb.shape) # Optional: Stop the processes in the pool model.stop_multi_process_pool(pool)
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder, threshold: float = None) -> None: """ FlopsLoss implements a regularization technique to promote sparsity in sparse encoder models. It calculates the squared L2 norm of the mean embedding vector, which helps reduce the number of floating-point operations (FLOPs) required during inference by encouraging more zero values in the embeddings. It can use a threshold to ignore embeddings with too few non-zero elements. This loss is used as a regularization component within other losses like :class:`SpladeLoss` rather than being used as a standalone loss function. Args: model: SparseEncoder model to be regularized threshold: Optional threshold for the number of non-zero elements in the embeddings. If specified, only embeddings with more than this number of non-zero elements will be considered. This can help to ignore embeddings that are too sparse and may not contribute meaningfully to the loss. References: - For further details, see: https://arxiv.org/pdf/2004.05665 for the general FLOPS loss and https://arxiv.org/pdf/2504.14839 for FLOPS with thresholds, a.k.a. FLOPS with l0 masking. Relations: - Used as a component within :class:`SpladeLoss` to regularize both query and document embeddings Example: - This loss is typically used within the :class:`SpladeLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.threshold = threshold def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise NotImplementedError( "FlopsLoss is not intended to be used directly. Use it as a component within other loss functions." ) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor]) -> torch.Tensor: if self.threshold is not None: l0_norm = (embeddings != 0).sum(dim=1) mask = (l0_norm > self.threshold).float() embeddings = embeddings * mask.unsqueeze(1) return torch.sum(torch.mean(embeddings, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder, threshold: float = None) -> None: """ FlopsLoss implements a regularization technique to promote sparsity in sparse encoder models. It calculates the squared L2 norm of the mean embedding vector, which helps reduce the number of floating-point operations (FLOPs) required during inference by encouraging more zero values in the embeddings. It can use a threshold to ignore embeddings with too few non-zero elements. This loss is used as a regularization component within other losses like :class:`SpladeLoss` rather than being used as a standalone loss function. Args: model: SparseEncoder model to be regularized threshold: Optional threshold for the number of non-zero elements in the embeddings. If specified, only embeddings with more than this number of non-zero elements will be considered. This can help to ignore embeddings that are too sparse and may not contribute meaningfully to the loss. References: - For further details, see: https://arxiv.org/pdf/2004.05665 for the general FLOPS loss and https://arxiv.org/pdf/2504.14839 for FLOPS with thresholds, a.k.a. FLOPS with l0 masking. Relations: - Used as a component within :class:`SpladeLoss` to regularize both query and document embeddings Example: - This loss is typically used within the :class:`SpladeLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.threshold = threshold def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: # Compute the embeddings and distribute them to anchor and candidates (positive and optionally negatives) embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(embeddings) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor]) -> torch.Tensor: if self.threshold is not None: l0_norm = (embeddings != 0).sum(dim=1) mask = (l0_norm > self.threshold).float() embeddings = embeddings * mask.unsqueeze(1) return torch.sum(torch.mean(embeddings, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
# Copyright (c) OpenMMLab. All rights reserved. import math from mmcv.cnn import build_conv_layer, build_norm_layer from ..builder import BACKBONES from .detectors_resnet import Bottleneck as _Bottleneck from .detectors_resnet import DetectoRS_ResNet class Bottleneck(_Bottleneck): expansion = 4 def __init__(self, inplanes, planes, groups=1, base_width=4, base_channels=64, **kwargs): """Bottleneck block for ResNeXt. If style is "pytorch", the stride-two layer is the 3x3 conv layer, if it is "caffe", the stride-two layer is the first 1x1 conv layer. """ super(Bottleneck, self).__init__(inplanes, planes, **kwargs) if groups == 1: width = self.planes else: width = math.floor(self.planes * (base_width / base_channels)) * groups self.norm1_name, norm1 = build_norm_layer( self.norm_cfg, width, postfix=1) self.norm2_name, norm2 = build_norm_layer( self.norm_cfg, width, postfix=2) self.norm3_name, norm3 = build_norm_layer( self.norm_cfg, self.planes * self.expansion, postfix=3) self.conv1 = build_conv_layer( self.conv_cfg, self.inplanes, width, kernel_size=1, stride=self.conv1_stride, bias=False) self.add_module(self.norm1_name, norm1) fallback_on_stride = False self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = self.dcn.pop('fallback_on_stride', False) if self.with_sac: self.conv2 = build_conv_layer( self.sac, width, width, kernel_size=3, stride=self.conv2_stride, padding=self.dilation, dilation=self.dilation, groups=groups, bias=False) elif not self.with_dcn or fallback_on_stride: self.conv2 = build_conv_layer( self.conv_cfg, width, width, kernel_size=3, stride=self.conv2_stride, padding=self.dilation, dilation=self.dilation, groups=groups, bias=False) else: assert self.conv_cfg is None, 'conv_cfg must be None for DCN' self.conv2 = build_conv_layer( self.dcn, width, width, kernel_size=3, stride=self.conv2_stride, padding=self.dilation, dilation=self.dilation, groups=groups, bias=False) self.add_module(self.norm2_name, norm2) self.conv3 = build_conv_layer( self.conv_cfg, width, self.planes * self.expansion, kernel_size=1, bias=False) self.add_module(self.norm3_name, norm3) @BACKBONES.register_module() class DetectoRS_ResNeXt(DetectoRS_ResNet): """ResNeXt backbone for DetectoRS. Args: groups (int): The number of groups in ResNeXt. base_width (int): The base width of ResNeXt. """ arch_settings = { 50: (Bottleneck, (3, 4, 6, 3)), 101: (Bottleneck, (3, 4, 23, 3)), 152: (Bottleneck, (3, 8, 36, 3)) } def __init__(self, groups=1, base_width=4, **kwargs): self.groups = groups self.base_width = base_width super(DetectoRS_ResNeXt, self).__init__(**kwargs) def make_res_layer(self, **kwargs): return super().make_res_layer( groups=self.groups, base_width=self.base_width, base_channels=self.base_channels, **kwargs)
import math from mmcv.cnn import build_conv_layer, build_norm_layer from ..builder import BACKBONES from .detectors_resnet import Bottleneck as _Bottleneck from .detectors_resnet import DetectoRS_ResNet class Bottleneck(_Bottleneck): expansion = 4 def __init__(self, inplanes, planes, groups=1, base_width=4, base_channels=64, **kwargs): """Bottleneck block for ResNeXt. If style is "pytorch", the stride-two layer is the 3x3 conv layer, if it is "caffe", the stride-two layer is the first 1x1 conv layer. """ super(Bottleneck, self).__init__(inplanes, planes, **kwargs) if groups == 1: width = self.planes else: width = math.floor(self.planes * (base_width / base_channels)) * groups self.norm1_name, norm1 = build_norm_layer( self.norm_cfg, width, postfix=1) self.norm2_name, norm2 = build_norm_layer( self.norm_cfg, width, postfix=2) self.norm3_name, norm3 = build_norm_layer( self.norm_cfg, self.planes * self.expansion, postfix=3) self.conv1 = build_conv_layer( self.conv_cfg, self.inplanes, width, kernel_size=1, stride=self.conv1_stride, bias=False) self.add_module(self.norm1_name, norm1) fallback_on_stride = False self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = self.dcn.pop('fallback_on_stride', False) if self.with_sac: self.conv2 = build_conv_layer( self.sac, width, width, kernel_size=3, stride=self.conv2_stride, padding=self.dilation, dilation=self.dilation, groups=groups, bias=False) elif not self.with_dcn or fallback_on_stride: self.conv2 = build_conv_layer( self.conv_cfg, width, width, kernel_size=3, stride=self.conv2_stride, padding=self.dilation, dilation=self.dilation, groups=groups, bias=False) else: assert self.conv_cfg is None, 'conv_cfg must be None for DCN' self.conv2 = build_conv_layer( self.dcn, width, width, kernel_size=3, stride=self.conv2_stride, padding=self.dilation, dilation=self.dilation, groups=groups, bias=False) self.add_module(self.norm2_name, norm2) self.conv3 = build_conv_layer( self.conv_cfg, width, self.planes * self.expansion, kernel_size=1, bias=False) self.add_module(self.norm3_name, norm3) @BACKBONES.register_module() class DetectoRS_ResNeXt(DetectoRS_ResNet): """ResNeXt backbone for DetectoRS. Args: groups (int): The number of groups in ResNeXt. base_width (int): The base width of ResNeXt. """ arch_settings = { 50: (Bottleneck, (3, 4, 6, 3)), 101: (Bottleneck, (3, 4, 23, 3)), 152: (Bottleneck, (3, 8, 36, 3)) } def __init__(self, groups=1, base_width=4, **kwargs): self.groups = groups self.base_width = base_width super(DetectoRS_ResNeXt, self).__init__(**kwargs) def make_res_layer(self, **kwargs): return super().make_res_layer( groups=self.groups, base_width=self.base_width, base_channels=self.base_channels, **kwargs)
"""From https://github.com/SidU/teams-langchain-js/wiki/Connecting-IFTTT-Services. # Creating a webhook - Go to https://ifttt.com/create # Configuring the "If This" - Click on the "If This" button in the IFTTT interface. - Search for "Webhooks" in the search bar. - Choose the first option for "Receive a web request with a JSON payload." - Choose an Event Name that is specific to the service you plan to connect to. This will make it easier for you to manage the webhook URL. For example, if you're connecting to Spotify, you could use "Spotify" as your Event Name. - Click the "Create Trigger" button to save your settings and create your webhook. # Configuring the "Then That" - Tap on the "Then That" button in the IFTTT interface. - Search for the service you want to connect, such as Spotify. - Choose an action from the service, such as "Add track to a playlist". - Configure the action by specifying the necessary details, such as the playlist name, e.g., "Songs from AI". - Reference the JSON Payload received by the Webhook in your action. For the Spotify scenario, choose "{{JsonPayload}}" as your search query. - Tap the "Create Action" button to save your action settings. - Once you have finished configuring your action, click the "Finish" button to complete the setup. - Congratulations! You have successfully connected the Webhook to the desired service, and you're ready to start receiving data and triggering actions 🎉 # Finishing up - To get your webhook URL go to https://ifttt.com/maker_webhooks/settings - Copy the IFTTT key value from there. The URL is of the form https://maker.ifttt.com/use/YOUR_IFTTT_KEY. Grab the YOUR_IFTTT_KEY value. """ from typing import Optional import requests from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool class IFTTTWebhook(BaseTool): """IFTTT Webhook. Args: name: name of the tool description: description of the tool url: url to hit with the json event. """ url: str def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: body = {"this": tool_input} response = requests.post(self.url, data=body) return response.text
"""From https://github.com/SidU/teams-langchain-js/wiki/Connecting-IFTTT-Services. # Creating a webhook - Go to https://ifttt.com/create # Configuring the "If This" - Click on the "If This" button in the IFTTT interface. - Search for "Webhooks" in the search bar. - Choose the first option for "Receive a web request with a JSON payload." - Choose an Event Name that is specific to the service you plan to connect to. This will make it easier for you to manage the webhook URL. For example, if you're connecting to Spotify, you could use "Spotify" as your Event Name. - Click the "Create Trigger" button to save your settings and create your webhook. # Configuring the "Then That" - Tap on the "Then That" button in the IFTTT interface. - Search for the service you want to connect, such as Spotify. - Choose an action from the service, such as "Add track to a playlist". - Configure the action by specifying the necessary details, such as the playlist name, e.g., "Songs from AI". - Reference the JSON Payload received by the Webhook in your action. For the Spotify scenario, choose "{{JsonPayload}}" as your search query. - Tap the "Create Action" button to save your action settings. - Once you have finished configuring your action, click the "Finish" button to complete the setup. - Congratulations! You have successfully connected the Webhook to the desired service, and you're ready to start receiving data and triggering actions 🎉 # Finishing up - To get your webhook URL go to https://ifttt.com/maker_webhooks/settings - Copy the IFTTT key value from there. The URL is of the form https://maker.ifttt.com/use/YOUR_IFTTT_KEY. Grab the YOUR_IFTTT_KEY value. """ from typing import Optional import requests from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool class IFTTTWebhook(BaseTool): # type: ignore[override] """IFTTT Webhook. Args: name: name of the tool description: description of the tool url: url to hit with the json event. """ url: str def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: body = {"this": tool_input} response = requests.post(self.url, data=body) return response.text
from pathlib import Path from typing import Any, List, Union from langchain_community.document_loaders.unstructured import UnstructuredFileLoader class UnstructuredHTMLLoader(UnstructuredFileLoader): """Load `HTML` files using `Unstructured`. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredHTMLLoader loader = UnstructuredHTMLLoader( "example.html", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-html """ def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): """ Args: file_path: The path to the HTML file to load. mode: The mode to use when loading the file. Can be one of "single", "multi", or "all". Default is "single". **unstructured_kwargs: Any kwargs to pass to the unstructured. """ file_path = str(file_path) super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.html import partition_html return partition_html(filename=self.file_path, **self.unstructured_kwargs)
from pathlib import Path from typing import Any, List, Union from langchain_community.document_loaders.unstructured import UnstructuredFileLoader class UnstructuredHTMLLoader(UnstructuredFileLoader): """Load `HTML` files using `Unstructured`. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredHTMLLoader loader = UnstructuredHTMLLoader( "example.html", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-html """ def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): """ Args: file_path: The path to the HTML file to load. mode: The mode to use when loading the file. Can be one of "single", "multi", or "all". Default is "single". **unstructured_kwargs: Any kwargs to pass to the unstructured. """ file_path = str(file_path) super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.html import partition_html return partition_html(filename=self.file_path, **self.unstructured_kwargs) # type: ignore[arg-type]
__version__ = '0.19.1' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field from docarray.helper import login, logout if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.19.0' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field from docarray.helper import login, logout if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
import requests from packaging import version from typing import Union, List, Optional from llama_index.core.base.llms.types import ( ChatResponse, ) def get_max_input_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version") if version.parse(tgi_version) >= version.parse("2.1.0"): return model_info.get("max_input_tokens") else: return model_info.get("max_input_length") def get_max_total_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("max_total_tokens") def force_single_tool_call(response: ChatResponse) -> None: tool_calls = response.message.additional_kwargs.get("tool_calls", []) if len(tool_calls) > 1: response.message.additional_kwargs["tool_calls"] = [tool_calls[0]] def resolve_tool_choice( tools: Optional[List[dict]] = None, tool_choice: str = "none" ) -> Union[str, dict]: """ Resolve tool choice. Check if tool_name exists in tools. Note that unlike in OpenAI specification, 'auto' will ALWAYS choose the tool for you. Set to 'none' explicitly if do not wish to use tool. """ valid_tool_choices = ["none", "auto"] + [t["function"]["name"] for t in tools or []] if tool_choice not in valid_tool_choices: raise ValueError( f"{tool_choice} is not a valid tool_choice. Must be one of {valid_tool_choices}" ) return tool_choice
import requests from packaging import version from typing import Union, List, Optional from llama_index.core.base.llms.types import ( ChatResponse, ) def get_max_input_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version", None) if version.parse(tgi_version) >= version.parse("2.1.0"): return model_info.get("max_input_tokens", None) else: return model_info.get("max_input_length", None) def get_max_total_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("max_total_tokens", None) def force_single_tool_call(response: ChatResponse) -> None: tool_calls = response.message.additional_kwargs.get("tool_calls", []) if len(tool_calls) > 1: response.message.additional_kwargs["tool_calls"] = [tool_calls[0]] def resolve_tool_choice( tools: Optional[List[dict]] = None, tool_choice: str = "none" ) -> Union[str, dict]: """Resolve tool choice. Check if tool_name exists in tools. Note that unlike in OpenAI specification, 'auto' will ALWAYS choose the tool for you. Set to 'none' explicitly if do not wish to use tool. """ valid_tool_choices = ["none", "auto"] + [t["function"]["name"] for t in tools or []] if tool_choice not in valid_tool_choices: raise ValueError( f"{tool_choice} is not a valid tool_choice. Must be one of {valid_tool_choices}" ) return tool_choice
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from packaging import version from .. import __version__ from .constants import ( CONFIG_NAME, DEPRECATED_REVISION_ARGS, DIFFUSERS_DYNAMIC_MODULE_NAME, FLAX_WEIGHTS_NAME, GGUF_FILE_EXTENSION, HF_MODULES_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MIN_PEFT_VERSION, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_FILE_EXTENSION, SAFETENSORS_WEIGHTS_NAME, USE_PEFT_BACKEND, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .deprecation_utils import deprecate from .doc_utils import replace_example_docstring from .dynamic_modules_utils import get_class_from_dynamic_module from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video from .hub_utils import ( PushToHubMixin, _add_variant, _get_checkpoint_shard_files, _get_model_file, extract_commit_hash, http_user_agent, ) from .import_utils import ( BACKENDS_MAPPING, DIFFUSERS_SLOW_IMPORT, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_accelerate_available, is_accelerate_version, is_bitsandbytes_available, is_bitsandbytes_version, is_bs4_available, is_flax_available, is_ftfy_available, is_gguf_available, is_gguf_version, is_google_colab, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_matplotlib_available, is_note_seq_available, is_onnx_available, is_peft_available, is_peft_version, is_safetensors_available, is_scipy_available, is_sentencepiece_available, is_tensorboard_available, is_timm_available, is_torch_available, is_torch_npu_available, is_torch_version, is_torch_xla_available, is_torch_xla_version, is_torchao_available, is_torchsde_available, is_torchvision_available, is_transformers_available, is_transformers_version, is_unidecode_available, is_wandb_available, is_xformers_available, requires_backends, ) from .loading_utils import get_module_from_name, load_image, load_video from .logging import get_logger from .outputs import BaseOutput from .peft_utils import ( check_peft_version, delete_adapter_layers, get_adapter_name, get_peft_kwargs, recurse_remove_peft_layers, scale_lora_layers, set_adapter_layers, set_weights_and_activate_adapters, unscale_lora_layers, ) from .pil_utils import PIL_INTERPOLATION, make_image_grid, numpy_to_pil, pt_to_pil from .state_dict_utils import ( convert_all_state_dict_to_peft, convert_state_dict_to_diffusers, convert_state_dict_to_kohya, convert_state_dict_to_peft, convert_unet_state_dict_to_peft, ) logger = get_logger(__name__) def check_min_version(min_version): if version.parse(__version__) < version.parse(min_version): if "dev" in min_version: error_message = ( "This example requires a source install from HuggingFace diffusers (see " "`https://huggingface.co/docs/diffusers/installation#install-from-source`)," ) else: error_message = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError(error_message)
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from packaging import version from .. import __version__ from .constants import ( CONFIG_NAME, DEPRECATED_REVISION_ARGS, DIFFUSERS_DYNAMIC_MODULE_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MIN_PEFT_VERSION, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_FILE_EXTENSION, SAFETENSORS_WEIGHTS_NAME, USE_PEFT_BACKEND, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .deprecation_utils import deprecate from .doc_utils import replace_example_docstring from .dynamic_modules_utils import get_class_from_dynamic_module from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video from .hub_utils import ( PushToHubMixin, _add_variant, _get_checkpoint_shard_files, _get_model_file, extract_commit_hash, http_user_agent, ) from .import_utils import ( BACKENDS_MAPPING, DIFFUSERS_SLOW_IMPORT, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_accelerate_available, is_accelerate_version, is_bitsandbytes_available, is_bitsandbytes_version, is_bs4_available, is_flax_available, is_ftfy_available, is_google_colab, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_matplotlib_available, is_note_seq_available, is_onnx_available, is_peft_available, is_peft_version, is_safetensors_available, is_scipy_available, is_sentencepiece_available, is_tensorboard_available, is_timm_available, is_torch_available, is_torch_npu_available, is_torch_version, is_torch_xla_available, is_torch_xla_version, is_torchao_available, is_torchsde_available, is_torchvision_available, is_transformers_available, is_transformers_version, is_unidecode_available, is_wandb_available, is_xformers_available, requires_backends, ) from .loading_utils import get_module_from_name, load_image, load_video from .logging import get_logger from .outputs import BaseOutput from .peft_utils import ( check_peft_version, delete_adapter_layers, get_adapter_name, get_peft_kwargs, recurse_remove_peft_layers, scale_lora_layers, set_adapter_layers, set_weights_and_activate_adapters, unscale_lora_layers, ) from .pil_utils import PIL_INTERPOLATION, make_image_grid, numpy_to_pil, pt_to_pil from .state_dict_utils import ( convert_all_state_dict_to_peft, convert_state_dict_to_diffusers, convert_state_dict_to_kohya, convert_state_dict_to_peft, convert_unet_state_dict_to_peft, ) logger = get_logger(__name__) def check_min_version(min_version): if version.parse(__version__) < version.parse(min_version): if "dev" in min_version: error_message = ( "This example requires a source install from HuggingFace diffusers (see " "`https://huggingface.co/docs/diffusers/installation#install-from-source`)," ) else: error_message = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError(error_message)
_base_ = './mask-rcnn_r101_fpn_1x_coco.py' model = dict( # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], bgr_to_rgb=False), backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d'))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './mask-rcnn_r101_fpn_1x_coco.py' model = dict( # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], bgr_to_rgb=False), backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) """ Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 Model Sparsity: Active Dimensions: 113.6, Sparsity Ratio: 0.9963 """ # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) """ Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 Model Sparsity Stats: Row Non-Zero Mean: 113.6150016784668, Row Sparsity Mean: 0.9962776005268097 """ # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455
import dataclasses from collections import defaultdict from typing import TYPE_CHECKING, Type, List if TYPE_CHECKING: from docarray.typing import T from docarray.document.strawberry_type import StrawberryDocument class StrawberryMixin: """Provide helper functions to convert to/from a Strawberry model""" def to_strawberry_type(self) -> 'StrawberryDocument': """Convert a Document object into a Strawberry type.""" from docarray.document.strawberry_type import StrawberryDocument as SD from docarray.document.strawberry_type import _NameScoreItem, _NamedScore _p_dict = {} for f in self.non_empty_fields: v = getattr(self, f) if f in ('matches', 'chunks'): _p_dict[f] = v.to_strawberry_type() elif f in ('scores', 'evaluations'): _p_dict[f] = [ _NameScoreItem(k, _NamedScore(**v.to_dict())) for k, v in v.items() ] else: _p_dict[f] = v return SD(**_p_dict) @classmethod def from_strawberry_type(cls: Type['T'], model) -> 'T': """Build a Document object from a Strawberry model :param model: the Strawberry data model object that represents a Document :return: a Document object """ from docarray import Document fields = {} _field_chunks, _field_matches = None, None if model.chunks: _field_chunks = [Document.from_strawberry_type(d) for d in model.chunks] if model.matches: _field_matches = [Document.from_strawberry_type(d) for d in model.matches] for field in dataclasses.fields(model): f_name = field.name value = getattr(model, f_name) if value is None: continue if f_name == 'scores' or f_name == 'evaluations': from docarray.score import NamedScore from docarray.document.strawberry_type import _NameScoreItem value: List[_NameScoreItem] fields[f_name] = defaultdict(NamedScore) for v in value: fields[f_name][v.name] = NamedScore(**dataclasses.asdict(v.score)) else: fields[f_name] = value d = Document(**fields) if _field_chunks: d.chunks = _field_chunks if _field_matches: d.matches = _field_matches return d
import dataclasses from collections import defaultdict from typing import TYPE_CHECKING, Type, List if TYPE_CHECKING: from ...typing import T from ..strawberry_type import StrawberryDocument class StrawberryMixin: """Provide helper functions to convert to/from a Strawberry model""" def to_strawberry_type(self) -> 'StrawberryDocument': """Convert a Document object into a Strawberry type.""" from ..strawberry_type import StrawberryDocument as SD from ..strawberry_type import _NameScoreItem, _NamedScore _p_dict = {} for f in self.non_empty_fields: v = getattr(self, f) if f in ('matches', 'chunks'): _p_dict[f] = v.to_strawberry_type() elif f in ('scores', 'evaluations'): _p_dict[f] = [ _NameScoreItem(k, _NamedScore(**v.to_dict())) for k, v in v.items() ] else: _p_dict[f] = v return SD(**_p_dict) @classmethod def from_strawberry_type(cls: Type['T'], model) -> 'T': """Build a Document object from a Strawberry model :param model: the Strawberry data model object that represents a Document :return: a Document object """ from ... import Document fields = {} _field_chunks, _field_matches = None, None if model.chunks: _field_chunks = [Document.from_strawberry_type(d) for d in model.chunks] if model.matches: _field_matches = [Document.from_strawberry_type(d) for d in model.matches] for field in dataclasses.fields(model): f_name = field.name value = getattr(model, f_name) if value is None: continue if f_name == 'scores' or f_name == 'evaluations': from docarray.score import NamedScore from ..strawberry_type import _NameScoreItem value: List[_NameScoreItem] fields[f_name] = defaultdict(NamedScore) for v in value: fields[f_name][v.name] = NamedScore(**dataclasses.asdict(v.score)) else: fields[f_name] = value d = Document(**fields) if _field_chunks: d.chunks = _field_chunks if _field_matches: d.matches = _field_matches return d
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .mean_teacher_hook import MeanTeacherHook from .memory_profiler_hook import MemoryProfilerHook from .num_class_check_hook import NumClassCheckHook from .set_epoch_info_hook import SetEpochInfoHook from .sync_norm_hook import SyncNormHook from .visualization_hook import DetVisualizationHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'YOLOXModeSwitchHook', 'SyncNormHook', 'CheckInvalidLossHook', 'SetEpochInfoHook', 'MemoryProfilerHook', 'DetVisualizationHook', 'NumClassCheckHook', 'MeanTeacherHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .memory_profiler_hook import MemoryProfilerHook from .num_class_check_hook import NumClassCheckHook from .set_epoch_info_hook import SetEpochInfoHook from .sync_norm_hook import SyncNormHook from .visualization_hook import DetVisualizationHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'YOLOXModeSwitchHook', 'SyncNormHook', 'CheckInvalidLossHook', 'SetEpochInfoHook', 'MemoryProfilerHook', 'DetVisualizationHook', 'NumClassCheckHook' ]
from enum import Enum from typing import Literal from pydantic import BaseModel, SecretStr from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput from backend.integrations.providers import ProviderName Slant3DCredentialsInput = CredentialsMetaInput[ Literal[ProviderName.SLANT3D], Literal["api_key"] ] def Slant3DCredentialsField() -> Slant3DCredentialsInput: return CredentialsField(description="Slant3D API key for authentication") TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="slant3d", api_key=SecretStr("mock-slant3d-api-key"), title="Mock Slant3D API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.title, } class CustomerDetails(BaseModel): name: str email: str phone: str address: str city: str state: str zip: str country_iso: str = "US" is_residential: bool = True class Color(Enum): WHITE = "white" BLACK = "black" class Profile(Enum): PLA = "PLA" PETG = "PETG" class OrderItem(BaseModel): # filename: str file_url: str quantity: str # String as per API spec color: Color = Color.WHITE profile: Profile = Profile.PLA # image_url: str = "" # sku: str = "" class Filament(BaseModel): filament: str hexColor: str colorTag: str profile: str
from enum import Enum from typing import Literal from pydantic import BaseModel, SecretStr from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput Slant3DCredentialsInput = CredentialsMetaInput[Literal["slant3d"], Literal["api_key"]] def Slant3DCredentialsField() -> Slant3DCredentialsInput: return CredentialsField( provider="slant3d", supported_credential_types={"api_key"}, description="Slant3D API key for authentication", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="slant3d", api_key=SecretStr("mock-slant3d-api-key"), title="Mock Slant3D API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.title, } class CustomerDetails(BaseModel): name: str email: str phone: str address: str city: str state: str zip: str country_iso: str = "US" is_residential: bool = True class Color(Enum): WHITE = "white" BLACK = "black" class Profile(Enum): PLA = "PLA" PETG = "PETG" class OrderItem(BaseModel): # filename: str file_url: str quantity: str # String as per API spec color: Color = Color.WHITE profile: Profile = Profile.PLA # image_url: str = "" # sku: str = "" class Filament(BaseModel): filament: str hexColor: str colorTag: str profile: str
import sys from collections.abc import Mapping import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import Formatter class NumpyFormatter(Formatter[Mapping, np.ndarray, Mapping]): def __init__(self, features=None, **np_array_kwargs): super().__init__(features=features) self.np_array_kwargs = np_array_kwargs def _consolidate(self, column): if isinstance(column, list): if column and all( isinstance(x, np.ndarray) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return np.stack(column) else: # don't use np.array(column, dtype=object) # since it fails in certain cases # see https://stackoverflow.com/q/51005699 out = np.empty(len(column), dtype=object) out[:] = column return out return column def _tensorize(self, value): if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value elif isinstance(value, np.number): return value default_dtype = {} if isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": np.int64} elif isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": np.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): return np.asarray(value, **self.np_array_kwargs) return np.array(value, **{**default_dtype, **self.np_array_kwargs}) def _recursive_tensorize(self, data_struct: dict): # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> np.ndarray: column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
import sys import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import Formatter class NumpyFormatter(Formatter[dict, np.ndarray, dict]): def __init__(self, features=None, decoded=True, **np_array_kwargs): super().__init__(features=features, decoded=decoded) self.np_array_kwargs = np_array_kwargs def _consolidate(self, column): if isinstance(column, list): if column and all( isinstance(x, np.ndarray) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return np.stack(column) else: # don't use np.array(column, dtype=object) # since it fails in certain cases # see https://stackoverflow.com/q/51005699 out = np.empty(len(column), dtype=object) out[:] = column return out return column def _tensorize(self, value): if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value elif isinstance(value, np.number): return value default_dtype = {} if isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": np.int64} elif isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": np.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): return np.asarray(value, **self.np_array_kwargs) return np.array(value, **{**default_dtype, **self.np_array_kwargs}) def _recursive_tensorize(self, data_struct: dict): # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct) def format_row(self, pa_table: pa.Table) -> dict: row = self.numpy_arrow_extractor().extract_row(pa_table) if self.decoded: row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> np.ndarray: column = self.numpy_arrow_extractor().extract_column(pa_table) if self.decoded: column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> dict: batch = self.numpy_arrow_extractor().extract_batch(pa_table) if self.decoded: batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
import csv import gzip import logging import math import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Training parameters model_name = "distilbert-base-uncased" train_batch_size = 128 num_epochs = 1 max_seq_length = 32 # Save path to store our model model_save_path = "output/training_stsb_simcse-{}-{}-{}".format( model_name, train_batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Check if dataset exists. If not, download and extract it sts_dataset_path = "data/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Here we define our SentenceTransformer model word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = "data/wiki1m_for_simcse.txt" if not os.path.exists(wikipedia_dataset_path): util.http_get( "https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt", wikipedia_dataset_path, ) # train_samples is a list of InputExample objects where we pass the same sentence twice to texts, i.e. texts=[sent, sent] train_samples = [] with open(wikipedia_dataset_path, "r", encoding="utf8") as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_samples.append(InputExample(texts=[line, line])) # Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( dev_samples, batch_size=train_batch_size, name="sts-dev" ) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( test_samples, batch_size=train_batch_size, name="sts-test" ) # We train our model using the MultipleNegativesRankingLoss train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size, drop_last=True) train_loss = losses.MultipleNegativesRankingLoss(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up evaluation_steps = int(len(train_dataloader) * 0.1) # Evaluate every 10% of the data logging.info("Training sentences: {}".format(len(train_samples))) logging.info("Warmup-steps: {}".format(warmup_steps)) logging.info("Performance before training") dev_evaluator(model) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=evaluation_steps, warmup_steps=warmup_steps, output_path=model_save_path, optimizer_params={"lr": 5e-5}, use_amp=True, # Set to True, if your GPU supports FP16 cores ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator(model, output_path=model_save_path)
from torch.utils.data import DataLoader import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Training parameters model_name = "distilbert-base-uncased" train_batch_size = 128 num_epochs = 1 max_seq_length = 32 # Save path to store our model model_save_path = "output/training_stsb_simcse-{}-{}-{}".format( model_name, train_batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Check if dataset exists. If not, download and extract it sts_dataset_path = "data/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Here we define our SentenceTransformer model word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = "data/wiki1m_for_simcse.txt" if not os.path.exists(wikipedia_dataset_path): util.http_get( "https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt", wikipedia_dataset_path, ) # train_samples is a list of InputExample objects where we pass the same sentence twice to texts, i.e. texts=[sent, sent] train_samples = [] with open(wikipedia_dataset_path, "r", encoding="utf8") as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_samples.append(InputExample(texts=[line, line])) # Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( dev_samples, batch_size=train_batch_size, name="sts-dev" ) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( test_samples, batch_size=train_batch_size, name="sts-test" ) # We train our model using the MultipleNegativesRankingLoss train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size, drop_last=True) train_loss = losses.MultipleNegativesRankingLoss(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up evaluation_steps = int(len(train_dataloader) * 0.1) # Evaluate every 10% of the data logging.info("Training sentences: {}".format(len(train_samples))) logging.info("Warmup-steps: {}".format(warmup_steps)) logging.info("Performance before training") dev_evaluator(model) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=evaluation_steps, warmup_steps=warmup_steps, output_path=model_save_path, optimizer_params={"lr": 5e-5}, use_amp=True, # Set to True, if your GPU supports FP16 cores ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator(model, output_path=model_save_path)
import datetime import prisma.fields import prisma.models import pytest import backend.server.v2.library.model as library_model from backend.util import json @pytest.mark.asyncio async def test_agent_preset_from_db(): # Create mock DB agent db_agent = prisma.models.AgentPreset( id="test-agent-123", createdAt=datetime.datetime.now(), updatedAt=datetime.datetime.now(), agentId="agent-123", agentVersion=1, name="Test Agent", description="Test agent description", isActive=True, userId="test-user-123", isDeleted=False, InputPresets=[ prisma.models.AgentNodeExecutionInputOutput( id="input-123", time=datetime.datetime.now(), name="input1", data=json.dumps({"type": "string", "value": "test value"}), # type: ignore ) ], ) # Convert to LibraryAgentPreset agent = library_model.LibraryAgentPreset.from_db(db_agent) assert agent.id == "test-agent-123" assert agent.agent_version == 1 assert agent.is_active is True assert agent.name == "Test Agent" assert agent.description == "Test agent description" assert agent.inputs == {"input1": {"type": "string", "value": "test value"}}
import datetime import prisma.fields import prisma.models import backend.server.v2.library.model as library_model def test_agent_preset_from_db(): # Create mock DB agent db_agent = prisma.models.AgentPreset( id="test-agent-123", createdAt=datetime.datetime.now(), updatedAt=datetime.datetime.now(), agentId="agent-123", agentVersion=1, name="Test Agent", description="Test agent description", isActive=True, userId="test-user-123", isDeleted=False, InputPresets=[ prisma.models.AgentNodeExecutionInputOutput( id="input-123", time=datetime.datetime.now(), name="input1", data=prisma.fields.Json({"type": "string", "value": "test value"}), ) ], ) # Convert to LibraryAgentPreset agent = library_model.LibraryAgentPreset.from_db(db_agent) assert agent.id == "test-agent-123" assert agent.agent_version == 1 assert agent.is_active is True assert agent.name == "Test Agent" assert agent.description == "Test agent description" assert agent.inputs == {"input1": {"type": "string", "value": "test value"}}
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .two_stage import TwoStageDetector @MODELS.register_module() class MaskScoringRCNN(TwoStageDetector): """Mask Scoring RCNN. https://arxiv.org/abs/1903.00241 """ def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(MaskScoringRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class MaskScoringRCNN(TwoStageDetector): """Mask Scoring RCNN. https://arxiv.org/abs/1903.00241 """ def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(MaskScoringRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from .coco_api import COCO, COCOeval, COCOPanoptic from .panoptic_evaluation import pq_compute_multi_core, pq_compute_single_core __all__ = [ 'COCO', 'COCOeval', 'pq_compute_multi_core', 'pq_compute_single_core', 'COCOPanoptic' ]
# Copyright (c) OpenMMLab. All rights reserved. from .coco_api import COCO, COCOeval from .panoptic_evaluation import pq_compute_multi_core, pq_compute_single_core __all__ = [ 'COCO', 'COCOeval', 'pq_compute_multi_core', 'pq_compute_single_core' ]
""" This script contains an example how to perform semantic search with Elasticsearch. You need Elasticsearch up and running locally: https://www.elastic.co/guide/en/elasticsearch/reference/current/run-elasticsearch-locally.html Further, you need the Python Elasticsearch Client installed: https://elasticsearch-py.readthedocs.io/, e.g.: ``` pip install elasticsearch ``` This script was created for `elasticsearch` v8.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_elasticsearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus print("Start encoding corpus...") start_time = time.time() corpus_embeddings = sparse_model.encode_document( corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True ) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode_query(queries, convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using Elasticsearch results, search_time, corpus_index = semantic_search_elasticsearch( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
""" This script contains an example how to perform semantic search with Elasticsearch. You need Elasticsearch up and running locally: https://www.elastic.co/guide/en/elasticsearch/reference/current/run-elasticsearch-locally.html Further, you need the Python Elasticsearch Client installed: https://elasticsearch-py.readthedocs.io/, e.g.: ``` pip install elasticsearch ``` This script was created for `elasticsearch` v8.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_elasticsearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus print("Start encoding corpus...") start_time = time.time() corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using Elasticsearch results, search_time, corpus_index = semantic_search_elasticsearch( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model settings preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d'))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x train_cfg = dict(max_epochs=24) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model settings preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d'))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x train_cfg = dict(by_epoch=True, max_epochs=24) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
from __future__ import annotations from typing import Any, List, Literal, Optional from langchain_core.embeddings import Embeddings from langchain_community.vectorstores.docarray.base import ( DocArrayIndex, _check_docarray_import, ) class DocArrayHnswSearch(DocArrayIndex): """`HnswLib` storage using `DocArray` package. To use it, you should have the ``docarray`` package with version >=0.32.0 installed. You can install it with `pip install docarray`. """ @classmethod def from_params( cls, embedding: Embeddings, work_dir: str, n_dim: int, dist_metric: Literal["cosine", "ip", "l2"] = "cosine", max_elements: int = 1024, index: bool = True, ef_construction: int = 200, ef: int = 10, M: int = 16, allow_replace_deleted: bool = True, num_threads: int = 1, **kwargs: Any, ) -> DocArrayHnswSearch: """Initialize DocArrayHnswSearch store. Args: embedding (Embeddings): Embedding function. work_dir (str): path to the location where all the data will be stored. n_dim (int): dimension of an embedding. dist_metric (str): Distance metric for DocArrayHnswSearch can be one of: "cosine", "ip", and "l2". Defaults to "cosine". max_elements (int): Maximum number of vectors that can be stored. Defaults to 1024. index (bool): Whether an index should be built for this field. Defaults to True. ef_construction (int): defines a construction time/accuracy trade-off. Defaults to 200. ef (int): parameter controlling query time/accuracy trade-off. Defaults to 10. M (int): parameter that defines the maximum number of outgoing connections in the graph. Defaults to 16. allow_replace_deleted (bool): Enables replacing of deleted elements with new added ones. Defaults to True. num_threads (int): Sets the number of cpu threads to use. Defaults to 1. **kwargs: Other keyword arguments to be passed to the get_doc_cls method. """ _check_docarray_import() from docarray.index import HnswDocumentIndex doc_cls = cls._get_doc_cls( dim=n_dim, space=dist_metric, max_elements=max_elements, index=index, ef_construction=ef_construction, ef=ef, M=M, allow_replace_deleted=allow_replace_deleted, num_threads=num_threads, **kwargs, ) doc_index = HnswDocumentIndex[doc_cls](work_dir=work_dir) return cls(doc_index, embedding) @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, work_dir: Optional[str] = None, n_dim: Optional[int] = None, **kwargs: Any, ) -> DocArrayHnswSearch: """Create an DocArrayHnswSearch store and insert data. Args: texts (List[str]): Text data. embedding (Embeddings): Embedding function. metadatas (Optional[List[dict]]): Metadata for each text if it exists. Defaults to None. work_dir (str): path to the location where all the data will be stored. n_dim (int): dimension of an embedding. **kwargs: Other keyword arguments to be passed to the __init__ method. Returns: DocArrayHnswSearch Vector Store """ if work_dir is None: raise ValueError("`work_dir` parameter has not been set.") if n_dim is None: raise ValueError("`n_dim` parameter has not been set.") store = cls.from_params(embedding, work_dir, n_dim, **kwargs) store.add_texts(texts=texts, metadatas=metadatas) return store
from __future__ import annotations from typing import Any, List, Literal, Optional from langchain_core.embeddings import Embeddings from langchain_community.vectorstores.docarray.base import ( DocArrayIndex, _check_docarray_import, ) class DocArrayHnswSearch(DocArrayIndex): """`HnswLib` storage using `DocArray` package. To use it, you should have the ``docarray`` package with version >=0.32.0 installed. You can install it with `pip install docarray`. """ @classmethod def from_params( cls, embedding: Embeddings, work_dir: str, n_dim: int, dist_metric: Literal["cosine", "ip", "l2"] = "cosine", max_elements: int = 1024, index: bool = True, ef_construction: int = 200, ef: int = 10, M: int = 16, allow_replace_deleted: bool = True, num_threads: int = 1, **kwargs: Any, ) -> DocArrayHnswSearch: """Initialize DocArrayHnswSearch store. Args: embedding (Embeddings): Embedding function. work_dir (str): path to the location where all the data will be stored. n_dim (int): dimension of an embedding. dist_metric (str): Distance metric for DocArrayHnswSearch can be one of: "cosine", "ip", and "l2". Defaults to "cosine". max_elements (int): Maximum number of vectors that can be stored. Defaults to 1024. index (bool): Whether an index should be built for this field. Defaults to True. ef_construction (int): defines a construction time/accuracy trade-off. Defaults to 200. ef (int): parameter controlling query time/accuracy trade-off. Defaults to 10. M (int): parameter that defines the maximum number of outgoing connections in the graph. Defaults to 16. allow_replace_deleted (bool): Enables replacing of deleted elements with new added ones. Defaults to True. num_threads (int): Sets the number of cpu threads to use. Defaults to 1. **kwargs: Other keyword arguments to be passed to the get_doc_cls method. """ _check_docarray_import() from docarray.index import HnswDocumentIndex doc_cls = cls._get_doc_cls( dim=n_dim, space=dist_metric, max_elements=max_elements, index=index, ef_construction=ef_construction, ef=ef, M=M, allow_replace_deleted=allow_replace_deleted, num_threads=num_threads, **kwargs, ) doc_index = HnswDocumentIndex[doc_cls](work_dir=work_dir) # type: ignore return cls(doc_index, embedding) @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, work_dir: Optional[str] = None, n_dim: Optional[int] = None, **kwargs: Any, ) -> DocArrayHnswSearch: """Create an DocArrayHnswSearch store and insert data. Args: texts (List[str]): Text data. embedding (Embeddings): Embedding function. metadatas (Optional[List[dict]]): Metadata for each text if it exists. Defaults to None. work_dir (str): path to the location where all the data will be stored. n_dim (int): dimension of an embedding. **kwargs: Other keyword arguments to be passed to the __init__ method. Returns: DocArrayHnswSearch Vector Store """ if work_dir is None: raise ValueError("`work_dir` parameter has not been set.") if n_dim is None: raise ValueError("`n_dim` parameter has not been set.") store = cls.from_params(embedding, work_dir, n_dim, **kwargs) store.add_texts(texts=texts, metadatas=metadatas) return store
"""langchain-core version information and utilities.""" VERSION = "0.3.54"
"""langchain-core version information and utilities.""" VERSION = "0.3.53"
import torch from torchaudio.models import Conformer from torchaudio_unittest.common_utils import TestBaseMixin, torch_script class ConformerTestImpl(TestBaseMixin): def _gen_model(self): conformer = ( Conformer( input_dim=80, num_heads=4, ffn_dim=128, num_layers=4, depthwise_conv_kernel_size=31, dropout=0.1, ) .to(device=self.device, dtype=self.dtype) .eval() ) return conformer def _gen_inputs(self, input_dim, batch_size, num_frames): lengths = torch.randint(1, num_frames, (batch_size,)).to(device=self.device, dtype=self.dtype) input = torch.rand(batch_size, int(lengths.max()), input_dim).to(device=self.device, dtype=self.dtype) return input, lengths def setUp(self): super().setUp() def test_torchscript_consistency_forward(self): r"""Verify that scripting Conformer does not change the behavior of method `forward`.""" input_dim = 80 batch_size = 10 num_frames = 400 conformer = self._gen_model() input, lengths = self._gen_inputs(input_dim, batch_size, num_frames) scripted = torch_script(conformer) ref_out, ref_len = conformer(input, lengths) scripted_out, scripted_len = scripted(input, lengths) self.assertEqual(ref_out, scripted_out) self.assertEqual(ref_len, scripted_len)
import torch from torchaudio.models import Conformer from torchaudio_unittest.common_utils import TestBaseMixin, torch_script class ConformerTestImpl(TestBaseMixin): def _gen_model(self): conformer = ( Conformer( input_dim=80, num_heads=4, ffn_dim=128, num_layers=4, depthwise_conv_kernel_size=31, dropout=0.1, ) .to(device=self.device, dtype=self.dtype) .eval() ) return conformer def _gen_inputs(self, input_dim, batch_size, num_frames): lengths = torch.randint(1, num_frames, (batch_size,)).to(device=self.device, dtype=self.dtype) input = torch.rand(batch_size, int(lengths.max()), input_dim).to(device=self.device, dtype=self.dtype) return input, lengths def setUp(self): super().setUp() torch.random.manual_seed(31) def test_torchscript_consistency_forward(self): r"""Verify that scripting Conformer does not change the behavior of method `forward`.""" input_dim = 80 batch_size = 10 num_frames = 400 conformer = self._gen_model() input, lengths = self._gen_inputs(input_dim, batch_size, num_frames) scripted = torch_script(conformer) ref_out, ref_len = conformer(input, lengths) scripted_out, scripted_len = scripted(input, lengths) self.assertEqual(ref_out, scripted_out) self.assertEqual(ref_len, scripted_len)
"""Firebase Realtime Database Loader.""" from typing import Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class FirebaseRealtimeDatabaseReader(BaseReader): """ Firebase Realtime Database reader. Retrieves data from Firebase Realtime Database and converts it into the Document used by LlamaIndex. Args: database_url (str): Firebase Realtime Database URL. service_account_key_path (Optional[str]): Path to the service account key file. """ def __init__( self, database_url: str, service_account_key_path: Optional[str] = None, ) -> None: """Initialize with parameters.""" try: import firebase_admin from firebase_admin import credentials except ImportError: raise ImportError( "`firebase_admin` package not found, please run `pip install" " firebase-admin`" ) if not firebase_admin._apps: if service_account_key_path: cred = credentials.Certificate(service_account_key_path) firebase_admin.initialize_app( cred, options={"databaseURL": database_url} ) else: firebase_admin.initialize_app(options={"databaseURL": database_url}) def load_data(self, path: str, field: Optional[str] = None) -> List[Document]: """ Load data from Firebase Realtime Database and convert it into documents. Args: path (str): Path to the data in the Firebase Realtime Database. field (str, Optional): Key to pick data from Returns: List[Document]: A list of documents. """ try: from firebase_admin import db except ImportError: raise ImportError( "`firebase_admin` package not found, please run `pip install" " firebase-admin`" ) ref = db.reference(path) data = ref.get() documents = [] if isinstance(data, Dict): for key in data: entry = data[key] extra_info = { "document_id": key, } if type(entry) is Dict and field in entry: text = entry[field] else: text = str(entry) document = Document(text=text, extra_info=extra_info) documents.append(document) elif isinstance(data, str): documents.append(Document(text=data)) return documents
"""Firebase Realtime Database Loader.""" from typing import Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class FirebaseRealtimeDatabaseReader(BaseReader): """Firebase Realtime Database reader. Retrieves data from Firebase Realtime Database and converts it into the Document used by LlamaIndex. Args: database_url (str): Firebase Realtime Database URL. service_account_key_path (Optional[str]): Path to the service account key file. """ def __init__( self, database_url: str, service_account_key_path: Optional[str] = None, ) -> None: """Initialize with parameters.""" try: import firebase_admin from firebase_admin import credentials except ImportError: raise ImportError( "`firebase_admin` package not found, please run `pip install" " firebase-admin`" ) if not firebase_admin._apps: if service_account_key_path: cred = credentials.Certificate(service_account_key_path) firebase_admin.initialize_app( cred, options={"databaseURL": database_url} ) else: firebase_admin.initialize_app(options={"databaseURL": database_url}) def load_data(self, path: str, field: Optional[str] = None) -> List[Document]: """Load data from Firebase Realtime Database and convert it into documents. Args: path (str): Path to the data in the Firebase Realtime Database. field (str, Optional): Key to pick data from Returns: List[Document]: A list of documents. """ try: from firebase_admin import db except ImportError: raise ImportError( "`firebase_admin` package not found, please run `pip install" " firebase-admin`" ) ref = db.reference(path) data = ref.get() documents = [] if isinstance(data, Dict): for key in data: entry = data[key] extra_info = { "document_id": key, } if type(entry) is Dict and field in entry: text = entry[field] else: text = str(entry) document = Document(text=text, extra_info=extra_info) documents.append(document) elif isinstance(data, str): documents.append(Document(text=data)) return documents
from functools import lru_cache as _lru_cache from typing import Optional, TYPE_CHECKING import torch from torch.library import Library as _Library __all__ = ["is_built", "is_available", "is_macos13_or_newer", "is_macos_or_newer"] def is_built() -> bool: r"""Return whether PyTorch is built with MPS support. Note that this doesn't necessarily mean MPS is available; just that if this PyTorch binary were run a machine with working MPS drivers and devices, we would be able to use it. """ return torch._C._has_mps @_lru_cache def is_available() -> bool: r"""Return a bool indicating if MPS is currently available.""" return torch._C._mps_is_available() @_lru_cache def is_macos_or_newer(major: int, minor: int) -> bool: r"""Return a bool indicating whether MPS is running on given MacOS or newer.""" return torch._C._mps_is_on_macos_or_newer(major, minor) @_lru_cache def is_macos13_or_newer(minor: int = 0) -> bool: r"""Return a bool indicating whether MPS is running on MacOS 13 or newer.""" return torch._C._mps_is_on_macos_or_newer(13, minor) _lib: Optional[_Library] = None def _init() -> None: r"""Register prims as implementation of var_mean and group_norm.""" global _lib if _lib is not None or not is_built(): return from torch._decomp.decompositions import native_group_norm_backward from torch._refs import native_group_norm _lib = _Library("aten", "IMPL") # noqa: TOR901 _lib.impl("native_group_norm", native_group_norm, "MPS") _lib.impl("native_group_norm_backward", native_group_norm_backward, "MPS")
# mypy: allow-untyped-defs from functools import lru_cache as _lru_cache from typing import Optional, TYPE_CHECKING import torch from torch.library import Library as _Library __all__ = ["is_built", "is_available", "is_macos13_or_newer", "is_macos_or_newer"] def is_built() -> bool: r"""Return whether PyTorch is built with MPS support. Note that this doesn't necessarily mean MPS is available; just that if this PyTorch binary were run a machine with working MPS drivers and devices, we would be able to use it. """ return torch._C._has_mps @_lru_cache def is_available() -> bool: r"""Return a bool indicating if MPS is currently available.""" return torch._C._mps_is_available() @_lru_cache def is_macos_or_newer(major: int, minor: int) -> bool: r"""Return a bool indicating whether MPS is running on given MacOS or newer.""" return torch._C._mps_is_on_macos_or_newer(major, minor) @_lru_cache def is_macos13_or_newer(minor: int = 0) -> bool: r"""Return a bool indicating whether MPS is running on MacOS 13 or newer.""" return torch._C._mps_is_on_macos_or_newer(13, minor) _lib: Optional[_Library] = None def _init(): r"""Register prims as implementation of var_mean and group_norm.""" global _lib if _lib is not None or not is_built(): return from torch._decomp.decompositions import native_group_norm_backward from torch._refs import native_group_norm _lib = _Library("aten", "IMPL") # noqa: TOR901 _lib.impl("native_group_norm", native_group_norm, "MPS") _lib.impl("native_group_norm_backward", native_group_norm_backward, "MPS")
__version__ = '0.39.2' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
__version__ = '0.39.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
""" Script to generate meta.json to store metadata for a nightly build of XGBoost Python package. """ import json import pathlib from argparse import ArgumentParser def main(args): wheel_path = pathlib.Path(args.wheel_path).expanduser().resolve() if not wheel_path.exists(): raise ValueError(f"Wheel cannot be found at path {wheel_path}") if not wheel_path.is_file(): raise ValueError(f"Path {wheel_path} is not a valid file") wheel_dir, wheel_name = wheel_path.parent, wheel_path.name meta_path = pathlib.Path(args.meta_path) if not meta_path.exists(): raise ValueError(f"Path {meta_path} does not exist") if not meta_path.is_dir(): raise ValueError(f"Path {meta_path} is not a valid directory") tokens = wheel_name.split("-") assert len(tokens) == 5 version = tokens[1].split("+")[0] meta_info = { "wheel_name": wheel_name, "platform_tag": args.platform_tag, "version": version, "commit_id": args.commit_hash, } with open(meta_path / "meta.json", "w") as f: json.dump(meta_info, f, indent=4) if __name__ == "__main__": parser = ArgumentParser( description="Format meta.json encoding the latest nightly version of the Python wheel" ) parser.add_argument( "--wheel-path", type=str, required=True, help="Path to the wheel" ) parser.add_argument( "--commit-hash", type=str, required=True, help="Git commit hash" ) parser.add_argument( "--platform-tag", type=str, required=True, help="Platform tag (e.g. manylinux_2_28_x86_64)", ) parser.add_argument( "--meta-path", type=str, required=True, help="Directory to place meta.json" ) parsed_args = parser.parse_args() main(parsed_args)
""" Script to generate meta.json to store metadata for a nightly build of XGBoost Python package. """ import json import pathlib from argparse import ArgumentParser def main(args): wheel_path = pathlib.Path(args.wheel_path).expanduser().resolve() if not wheel_path.exists(): raise ValueError(f"Wheel cannot be found at path {wheel_path}") if not wheel_path.is_file(): raise ValueError(f"Path {wheel_path} is not a valid file") wheel_dir, wheel_name = wheel_path.parent, wheel_path.name meta_path = pathlib.Path(args.meta_path) if not meta_path.exists(): raise ValueError(f"Path {meta_path} does not exist") if not meta_path.is_dir(): raise ValueError(f"Path {meta_path} is not a valid directory") tokens = wheel_name.split("-") assert len(tokens) == 5 version = tokens[1].split("+")[0] meta_info = { "wheel_name": wheel_name, "platform_tag": args.platform_tag, "version": version, "commit_id": args.commit_hash, } with open(meta_path / "meta.json", "w") as f: json.dump(meta_info, f, indent=4) if __name__ == "__main__": parser = ArgumentParser( description="Format meta.json encoding the latest nightly version of the Python wheel" ) parser.add_argument( "--wheel-path", type=str, required=True, help="Path to the wheel" ) parser.add_argument( "--commit-hash", type=str, required=True, help="Git commit hash" ) parser.add_argument( "--platform-tag", type=str, required=True, help="Platform tag (e.g. manylinux2014_x86_64)", ) parser.add_argument( "--meta-path", type=str, required=True, help="Directory to place meta.json" ) parsed_args = parser.parse_args() main(parsed_args)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .two_stage import TwoStageDetector @MODELS.register_module() class GridRCNN(TwoStageDetector): """Grid R-CNN. This detector is the implementation of: - Grid R-CNN (https://arxiv.org/abs/1811.12030) - Grid R-CNN Plus: Faster and Better (https://arxiv.org/abs/1906.05688) """ def __init__(self, backbone: ConfigType, rpn_head: ConfigType, roi_head: ConfigType, train_cfg: ConfigType, test_cfg: ConfigType, neck: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core.utils import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .two_stage import TwoStageDetector @MODELS.register_module() class GridRCNN(TwoStageDetector): """Grid R-CNN. This detector is the implementation of: - Grid R-CNN (https://arxiv.org/abs/1811.12030) - Grid R-CNN Plus: Faster and Better (https://arxiv.org/abs/1906.05688) """ def __init__(self, backbone: ConfigType, rpn_head: ConfigType, roi_head: ConfigType, train_cfg: ConfigType, test_cfg: ConfigType, neck: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
_base_ = './rtmdet_s_8xb32-300e_coco.py' checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa model = dict( backbone=dict( deepen_factor=0.167, widen_factor=0.375, init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), neck=dict(in_channels=[96, 192, 384], out_channels=96, num_csp_blocks=1), bbox_head=dict(in_channels=96, feat_channels=96, exp_on_reg=False)) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='CachedMosaic', img_scale=(640, 640), pad_val=114.0, max_cached_images=20, random_pop=False), dict( type='RandomResize', scale=(1280, 1280), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type='CachedMixUp', img_scale=(640, 640), ratio_range=(1.0, 1.0), max_cached_images=10, random_pop=False, pad_val=(114, 114, 114), prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './rtmdet_s_8xb32-300e_coco.py' checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa model = dict( backbone=dict( deepen_factor=0.167, widen_factor=0.375, init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), neck=dict(in_channels=[96, 192, 384], out_channels=96, num_csp_blocks=1), bbox_head=dict(in_channels=96, feat_channels=96, exp_on_reg=False)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='CachedMosaic', img_scale=(640, 640), pad_val=114.0, max_cached_images=20, random_pop=False), dict( type='RandomResize', scale=(1280, 1280), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type='CachedMixUp', img_scale=(640, 640), ratio_range=(1.0, 1.0), max_cached_images=10, random_pop=False, pad_val=(114, 114, 114), prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.optimizers import legacy from keras.api.optimizers import schedules from keras.src.optimizers import deserialize from keras.src.optimizers import get from keras.src.optimizers import serialize from keras.src.optimizers.adadelta import Adadelta from keras.src.optimizers.adafactor import Adafactor from keras.src.optimizers.adagrad import Adagrad from keras.src.optimizers.adam import Adam from keras.src.optimizers.adamax import Adamax from keras.src.optimizers.adamw import AdamW from keras.src.optimizers.ftrl import Ftrl from keras.src.optimizers.lamb import Lamb from keras.src.optimizers.lion import Lion from keras.src.optimizers.loss_scale_optimizer import LossScaleOptimizer from keras.src.optimizers.muon import Muon from keras.src.optimizers.nadam import Nadam from keras.src.optimizers.optimizer import Optimizer from keras.src.optimizers.rmsprop import RMSprop from keras.src.optimizers.sgd import SGD
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.optimizers import legacy from keras.api.optimizers import schedules from keras.src.optimizers import deserialize from keras.src.optimizers import get from keras.src.optimizers import serialize from keras.src.optimizers.adadelta import Adadelta from keras.src.optimizers.adafactor import Adafactor from keras.src.optimizers.adagrad import Adagrad from keras.src.optimizers.adam import Adam from keras.src.optimizers.adamax import Adamax from keras.src.optimizers.adamw import AdamW from keras.src.optimizers.ftrl import Ftrl from keras.src.optimizers.lamb import Lamb from keras.src.optimizers.lion import Lion from keras.src.optimizers.loss_scale_optimizer import LossScaleOptimizer from keras.src.optimizers.nadam import Nadam from keras.src.optimizers.optimizer import Optimizer from keras.src.optimizers.rmsprop import RMSprop from keras.src.optimizers.sgd import SGD
import numpy as np import pytest from keras.src import backend from keras.src import layers from keras.src import testing class GaussianNoiseTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_gaussian_noise_basics(self): self.run_layer_test( layers.GaussianNoise, init_kwargs={ "stddev": 0.2, }, input_shape=(2, 3), call_kwargs={"training": True}, expected_output_shape=(2, 3), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=1, expected_num_losses=0, supports_masking=True, assert_built_after_instantiation=True, ) def test_gaussian_noise_correctness(self): inputs = np.ones((20, 500)) layer = layers.GaussianNoise(0.3, seed=1337) outputs = layer(inputs, training=True) self.assertAllClose( np.std(backend.convert_to_numpy(outputs)), 0.3, atol=0.02 )
import numpy as np import pytest from keras.src import backend from keras.src import layers from keras.src import testing class GaussianNoiseTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_gaussian_noise_basics(self): self.run_layer_test( layers.GaussianNoise, init_kwargs={ "stddev": 0.2, }, input_shape=(2, 3), call_kwargs={"training": True}, expected_output_shape=(2, 3), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=1, expected_num_losses=0, supports_masking=True, ) def test_gaussian_noise_correctness(self): inputs = np.ones((20, 500)) layer = layers.GaussianNoise(0.3, seed=1337) outputs = layer(inputs, training=True) self.assertAllClose( np.std(backend.convert_to_numpy(outputs)), 0.3, atol=0.02 )
import pytest from xgboost import testing as tm from xgboost.testing.ordinal import ( run_cat_container, run_cat_container_iter, run_cat_container_mixed, ) pytestmark = pytest.mark.skipif(**tm.no_multiple(tm.no_arrow(), tm.no_pandas())) def test_cat_container() -> None: run_cat_container("cpu") def test_cat_container_mixed() -> None: run_cat_container_mixed("cpu") def test_cat_container_iter() -> None: run_cat_container_iter("cpu")
import pytest from xgboost import testing as tm from xgboost.testing.ordinal import run_cat_container, run_cat_container_mixed pytestmark = pytest.mark.skipif(**tm.no_multiple(tm.no_arrow(), tm.no_pandas())) def test_cat_container() -> None: run_cat_container("cpu") def test_cat_container_mixed() -> None: run_cat_container_mixed("cpu")
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from functools import partial from typing import TYPE_CHECKING, Optional import pyarrow as pa from .. import config from ..features import Features from ..features.features import decode_nested_example from ..utils.py_utils import no_op_if_value_is_null from .formatting import BaseArrowExtractor, TableFormatter if TYPE_CHECKING: import polars as pl class PolarsArrowExtractor(BaseArrowExtractor["pl.DataFrame", "pl.Series", "pl.DataFrame"]): def extract_row(self, pa_table: pa.Table) -> "pl.DataFrame": if config.POLARS_AVAILABLE: if "polars" not in sys.modules: import polars else: polars = sys.modules["polars"] return polars.from_arrow(pa_table.slice(length=1)) else: raise ValueError("Polars needs to be installed to be able to return Polars dataframes.") def extract_column(self, pa_table: pa.Table) -> "pl.Series": if config.POLARS_AVAILABLE: if "polars" not in sys.modules: import polars else: polars = sys.modules["polars"] return polars.from_arrow(pa_table.select([0]))[pa_table.column_names[0]] else: raise ValueError("Polars needs to be installed to be able to return Polars dataframes.") def extract_batch(self, pa_table: pa.Table) -> "pl.DataFrame": if config.POLARS_AVAILABLE: if "polars" not in sys.modules: import polars else: polars = sys.modules["polars"] return polars.from_arrow(pa_table) else: raise ValueError("Polars needs to be installed to be able to return Polars dataframes.") class PolarsFeaturesDecoder: def __init__(self, features: Optional[Features]): self.features = features import polars as pl # noqa: F401 - import pl at initialization def decode_row(self, row: "pl.DataFrame") -> "pl.DataFrame": decode = ( { column_name: no_op_if_value_is_null(partial(decode_nested_example, feature)) for column_name, feature in self.features.items() if self.features._column_requires_decoding[column_name] } if self.features else {} ) if decode: row[list(decode.keys())] = row.map_rows(decode) return row def decode_column(self, column: "pl.Series", column_name: str) -> "pl.Series": decode = ( no_op_if_value_is_null(partial(decode_nested_example, self.features[column_name])) if self.features and column_name in self.features and self.features._column_requires_decoding[column_name] else None ) if decode: column = column.map_elements(decode) return column def decode_batch(self, batch: "pl.DataFrame") -> "pl.DataFrame": return self.decode_row(batch) class PolarsFormatter(TableFormatter["pl.DataFrame", "pl.Series", "pl.DataFrame"]): table_type = "polars dataframe" column_type = "polars series" def __init__(self, features=None, **np_array_kwargs): super().__init__(features=features) self.np_array_kwargs = np_array_kwargs self.polars_arrow_extractor = PolarsArrowExtractor self.polars_features_decoder = PolarsFeaturesDecoder(features) import polars as pl # noqa: F401 - import pl at initialization def format_row(self, pa_table: pa.Table) -> "pl.DataFrame": row = self.polars_arrow_extractor().extract_row(pa_table) row = self.polars_features_decoder.decode_row(row) return row def format_column(self, pa_table: pa.Table) -> "pl.Series": column = self.polars_arrow_extractor().extract_column(pa_table) column = self.polars_features_decoder.decode_column(column, pa_table.column_names[0]) return column def format_batch(self, pa_table: pa.Table) -> "pl.DataFrame": row = self.polars_arrow_extractor().extract_batch(pa_table) row = self.polars_features_decoder.decode_batch(row) return row
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from collections.abc import Mapping from functools import partial from typing import TYPE_CHECKING, Optional import pyarrow as pa from .. import config from ..features import Features from ..features.features import decode_nested_example from ..utils.py_utils import no_op_if_value_is_null from .formatting import BaseArrowExtractor, TensorFormatter if TYPE_CHECKING: import polars as pl class PolarsArrowExtractor(BaseArrowExtractor["pl.DataFrame", "pl.Series", "pl.DataFrame"]): def extract_row(self, pa_table: pa.Table) -> "pl.DataFrame": if config.POLARS_AVAILABLE: if "polars" not in sys.modules: import polars else: polars = sys.modules["polars"] return polars.from_arrow(pa_table.slice(length=1)) else: raise ValueError("Polars needs to be installed to be able to return Polars dataframes.") def extract_column(self, pa_table: pa.Table) -> "pl.Series": if config.POLARS_AVAILABLE: if "polars" not in sys.modules: import polars else: polars = sys.modules["polars"] return polars.from_arrow(pa_table.select([0]))[pa_table.column_names[0]] else: raise ValueError("Polars needs to be installed to be able to return Polars dataframes.") def extract_batch(self, pa_table: pa.Table) -> "pl.DataFrame": if config.POLARS_AVAILABLE: if "polars" not in sys.modules: import polars else: polars = sys.modules["polars"] return polars.from_arrow(pa_table) else: raise ValueError("Polars needs to be installed to be able to return Polars dataframes.") class PolarsFeaturesDecoder: def __init__(self, features: Optional[Features]): self.features = features import polars as pl # noqa: F401 - import pl at initialization def decode_row(self, row: "pl.DataFrame") -> "pl.DataFrame": decode = ( { column_name: no_op_if_value_is_null(partial(decode_nested_example, feature)) for column_name, feature in self.features.items() if self.features._column_requires_decoding[column_name] } if self.features else {} ) if decode: row[list(decode.keys())] = row.map_rows(decode) return row def decode_column(self, column: "pl.Series", column_name: str) -> "pl.Series": decode = ( no_op_if_value_is_null(partial(decode_nested_example, self.features[column_name])) if self.features and column_name in self.features and self.features._column_requires_decoding[column_name] else None ) if decode: column = column.map_elements(decode) return column def decode_batch(self, batch: "pl.DataFrame") -> "pl.DataFrame": return self.decode_row(batch) class PolarsFormatter(TensorFormatter[Mapping, "pl.DataFrame", Mapping]): def __init__(self, features=None, **np_array_kwargs): super().__init__(features=features) self.np_array_kwargs = np_array_kwargs self.polars_arrow_extractor = PolarsArrowExtractor self.polars_features_decoder = PolarsFeaturesDecoder(features) import polars as pl # noqa: F401 - import pl at initialization def format_row(self, pa_table: pa.Table) -> "pl.DataFrame": row = self.polars_arrow_extractor().extract_row(pa_table) row = self.polars_features_decoder.decode_row(row) return row def format_column(self, pa_table: pa.Table) -> "pl.Series": column = self.polars_arrow_extractor().extract_column(pa_table) column = self.polars_features_decoder.decode_column(column, pa_table.column_names[0]) return column def format_batch(self, pa_table: pa.Table) -> "pl.DataFrame": row = self.polars_arrow_extractor().extract_batch(pa_table) row = self.polars_features_decoder.decode_batch(row) return row
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData from parameterized import parameterized from mmdet.models.roi_heads.mask_heads import MaskIoUHead from mmdet.models.utils import unpack_gt_instances from mmdet.structures.mask import mask_target from mmdet.testing import (demo_mm_inputs, demo_mm_proposals, demo_mm_sampling_results) class TestMaskIoUHead(TestCase): @parameterized.expand(['cpu', 'cuda']) def test_mask_iou_head_loss_and_target(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') mask_iou_head = MaskIoUHead(num_classes=4) mask_iou_head.to(device=device) s = 256 image_shapes = [(3, s, s)] packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[1], num_classes=4, with_mask=True) proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100, device=device) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device=device)) proposals_list[i] = proposals_list[i].to(device=device) train_cfg = ConfigDict(dict(mask_size=28, mask_thr_binary=0.5)) # prepare ground truth data_samples = [ inputs['data_sample'].to(device=device) for inputs in packed_inputs ] (batch_gt_instances, batch_gt_instances_ignore, _) = unpack_gt_instances(data_samples) sampling_results = demo_mm_sampling_results( proposals_list=proposals_list, batch_gt_instances=batch_gt_instances, batch_gt_instances_ignore=batch_gt_instances_ignore) # prepare mask feats, pred and target pos_proposals = [res.pos_priors for res in sampling_results] pos_assigned_gt_inds = [ res.pos_assigned_gt_inds for res in sampling_results ] gt_masks = [res.masks for res in batch_gt_instances] mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds, gt_masks, train_cfg) mask_feats = torch.rand((mask_targets.size(0), 256, 14, 14)).to(device) mask_preds = torch.rand((mask_targets.size(0), 4, 28, 28)).to(device) pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) pos_mask_pred = mask_preds[range(mask_preds.size(0)), pos_labels] mask_iou_pred = mask_iou_head(mask_feats, pos_mask_pred) pos_mask_iou_pred = mask_iou_pred[range(mask_iou_pred.size(0)), pos_labels] mask_iou_head.loss_and_target(pos_mask_iou_pred, pos_mask_pred, mask_targets, sampling_results, batch_gt_instances, train_cfg) @parameterized.expand(['cpu', 'cuda']) def test_mask_iou_head_predict_by_feat(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') mask_iou_head = MaskIoUHead(num_classes=4) mask_iou_head.to(device=device) s = 128 num_samples = 2 num_classes = 4 img_metas = { 'img_shape': (s, s, 3), 'scale_factor': (1, 1), 'ori_shape': (s, s, 3) } results = InstanceData(metainfo=img_metas) results.bboxes = torch.rand((num_samples, 4)).to(device) results.scores = torch.rand((num_samples, )).to(device) results.labels = torch.randint( num_classes, (num_samples, ), dtype=torch.long).to(device) mask_feats = torch.rand((num_samples, 256, 14, 14)).to(device) mask_preds = torch.rand((num_samples, num_classes, 28, 28)).to(device) mask_iou_preds = mask_iou_head( mask_feats, mask_preds[range(results.labels.size(0)), results.labels]) mask_iou_head.predict_by_feat( mask_iou_preds=[mask_iou_preds], results_list=[results])
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData from parameterized import parameterized from mmdet.data_elements.mask import mask_target from mmdet.models.roi_heads.mask_heads import MaskIoUHead from mmdet.models.utils import unpack_gt_instances from mmdet.testing import (demo_mm_inputs, demo_mm_proposals, demo_mm_sampling_results) class TestMaskIoUHead(TestCase): @parameterized.expand(['cpu', 'cuda']) def test_mask_iou_head_loss_and_target(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') mask_iou_head = MaskIoUHead(num_classes=4) mask_iou_head.to(device=device) s = 256 image_shapes = [(3, s, s)] packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[1], num_classes=4, with_mask=True) proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100, device=device) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device=device)) proposals_list[i] = proposals_list[i].to(device=device) train_cfg = ConfigDict(dict(mask_size=28, mask_thr_binary=0.5)) # prepare ground truth data_samples = [ inputs['data_sample'].to(device=device) for inputs in packed_inputs ] (batch_gt_instances, batch_gt_instances_ignore, _) = unpack_gt_instances(data_samples) sampling_results = demo_mm_sampling_results( proposals_list=proposals_list, batch_gt_instances=batch_gt_instances, batch_gt_instances_ignore=batch_gt_instances_ignore) # prepare mask feats, pred and target pos_proposals = [res.pos_priors for res in sampling_results] pos_assigned_gt_inds = [ res.pos_assigned_gt_inds for res in sampling_results ] gt_masks = [res.masks for res in batch_gt_instances] mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds, gt_masks, train_cfg) mask_feats = torch.rand((mask_targets.size(0), 256, 14, 14)).to(device) mask_preds = torch.rand((mask_targets.size(0), 4, 28, 28)).to(device) pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) pos_mask_pred = mask_preds[range(mask_preds.size(0)), pos_labels] mask_iou_pred = mask_iou_head(mask_feats, pos_mask_pred) pos_mask_iou_pred = mask_iou_pred[range(mask_iou_pred.size(0)), pos_labels] mask_iou_head.loss_and_target(pos_mask_iou_pred, pos_mask_pred, mask_targets, sampling_results, batch_gt_instances, train_cfg) @parameterized.expand(['cpu', 'cuda']) def test_mask_iou_head_predict_by_feat(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') mask_iou_head = MaskIoUHead(num_classes=4) mask_iou_head.to(device=device) s = 128 num_samples = 2 num_classes = 4 img_metas = { 'img_shape': (s, s, 3), 'scale_factor': (1, 1), 'ori_shape': (s, s, 3) } results = InstanceData(metainfo=img_metas) results.bboxes = torch.rand((num_samples, 4)).to(device) results.scores = torch.rand((num_samples, )).to(device) results.labels = torch.randint( num_classes, (num_samples, ), dtype=torch.long).to(device) mask_feats = torch.rand((num_samples, 256, 14, 14)).to(device) mask_preds = torch.rand((num_samples, num_classes, 28, 28)).to(device) mask_iou_preds = mask_iou_head( mask_feats, mask_preds[range(results.labels.size(0)), results.labels]) mask_iou_head.predict_by_feat( mask_iou_preds=[mask_iou_preds], results_list=[results])
import json import re from typing import TypeVar import yaml from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser from pydantic import BaseModel, ValidationError from langchain.output_parsers.format_instructions import YAML_FORMAT_INSTRUCTIONS T = TypeVar("T", bound=BaseModel) class YamlOutputParser(BaseOutputParser[T]): """Parse YAML output using a pydantic model.""" pydantic_object: type[T] """The pydantic model to parse.""" pattern: re.Pattern = re.compile( r"^```(?:ya?ml)?(?P<yaml>[^`]*)", re.MULTILINE | re.DOTALL ) """Regex pattern to match yaml code blocks within triple backticks with optional yaml or yml prefix.""" def parse(self, text: str) -> T: try: # Greedy search for 1st yaml candidate. match = re.search(self.pattern, text.strip()) # If no backticks were present, try to parse the entire output as yaml. yaml_str = match.group("yaml") if match else text json_object = yaml.safe_load(yaml_str) if hasattr(self.pydantic_object, "model_validate"): return self.pydantic_object.model_validate(json_object) return self.pydantic_object.parse_obj(json_object) except (yaml.YAMLError, ValidationError) as e: name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {text}. Got: {e}" raise OutputParserException(msg, llm_output=text) from e def get_format_instructions(self) -> str: # Copy schema to avoid altering original Pydantic schema. schema = dict(self.pydantic_object.schema().items()) # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure yaml in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema) return YAML_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "yaml" @property def OutputType(self) -> type[T]: return self.pydantic_object
import json import re from typing import TypeVar import yaml from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser from pydantic import BaseModel, ValidationError from langchain.output_parsers.format_instructions import YAML_FORMAT_INSTRUCTIONS T = TypeVar("T", bound=BaseModel) class YamlOutputParser(BaseOutputParser[T]): """Parse YAML output using a pydantic model.""" pydantic_object: type[T] """The pydantic model to parse.""" pattern: re.Pattern = re.compile( r"^```(?:ya?ml)?(?P<yaml>[^`]*)", re.MULTILINE | re.DOTALL ) """Regex pattern to match yaml code blocks within triple backticks with optional yaml or yml prefix.""" def parse(self, text: str) -> T: try: # Greedy search for 1st yaml candidate. match = re.search(self.pattern, text.strip()) # If no backticks were present, try to parse the entire output as yaml. yaml_str = match.group("yaml") if match else text json_object = yaml.safe_load(yaml_str) if hasattr(self.pydantic_object, "model_validate"): return self.pydantic_object.model_validate(json_object) else: return self.pydantic_object.parse_obj(json_object) except (yaml.YAMLError, ValidationError) as e: name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {text}. Got: {e}" raise OutputParserException(msg, llm_output=text) from e def get_format_instructions(self) -> str: # Copy schema to avoid altering original Pydantic schema. schema = dict(self.pydantic_object.schema().items()) # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure yaml in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema) return YAML_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "yaml" @property def OutputType(self) -> type[T]: return self.pydantic_object
import time import pytest from jina import Document, DocumentArray, Executor, Flow, requests @pytest.mark.parametrize( 'shards, expected_response', [(1, ['slow', 'fast']), (2, ['fast', 'slow'])] ) def test_non_blocking_gateway(shards, expected_response): class FastSlowExecutor(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @requests(on=['/custom']) def encode(self, docs: DocumentArray, *args, **kwargs): assert len(docs) == 1 if docs[0].text == 'slow': time.sleep(2) response = [] def fill_responses(resp): assert len(resp.data.docs) == 1 response.append(resp.data.docs[0].text) data = DocumentArray([Document(text='slow'), Document(text='fast')]) f = Flow().add(uses=FastSlowExecutor, shards=shards, polling='ANY') with f: f.post(on='/custom', inputs=data, request_size=1) # first request is not to be trusted because of discovery endpoint f.post(on='/custom', inputs=data, request_size=1, on_done=fill_responses) assert response == expected_response
import time import pytest from jina import Document, DocumentArray, Executor, Flow, requests @pytest.mark.parametrize( 'shards, expected_response', [(1, ['slow', 'fast']), (2, ['fast', 'slow'])] ) def test_non_blocking_gateway(shards, expected_response): class FastSlowExecutor(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @requests(on=['/custom']) def encode(self, docs: DocumentArray, *args, **kwargs): assert len(docs) == 1 if docs[0].text == 'slow': time.sleep(2) response = [] def fill_responses(resp): assert len(resp.data.docs) == 1 response.append(resp.data.docs[0].text) data = DocumentArray([Document(text='slow'), Document(text='fast')]) f = Flow().add(uses=FastSlowExecutor, shards=shards, polling='ANY') with f: f.post(on='/custom', inputs=data, request_size=1, on_done=fill_responses) assert response == expected_response
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.llms import AI21 from langchain_community.llms.ai21 import AI21PenaltyData # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "AI21PenaltyData": "langchain_community.llms.ai21", "AI21": "langchain_community.llms", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AI21", "AI21PenaltyData", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.llms import AI21 from langchain_community.llms.ai21 import AI21PenaltyData # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "AI21PenaltyData": "langchain_community.llms.ai21", "AI21": "langchain_community.llms", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AI21PenaltyData", "AI21", ]
import pathlib from argparse import ArgumentParser import sentencepiece as spm from lightning import ConformerRNNTModule from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.plugins import DDPPlugin from transforms import get_data_module def run_train(args): seed_everything(1) checkpoint_dir = args.exp_dir / "checkpoints" checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/val_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) train_checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/train_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, train_checkpoint, lr_monitor, ] trainer = Trainer( default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.nodes, gpus=args.gpus, accelerator="gpu", strategy=DDPPlugin(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, ) sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path)) model = ConformerRNNTModule(sp_model) data_module = get_data_module(str(args.librispeech_path), str(args.global_stats_path), str(args.sp_model_path)) trainer.fit(model, data_module, ckpt_path=args.checkpoint_path) def cli_main(): parser = ArgumentParser() parser.add_argument( "--checkpoint-path", default=None, type=pathlib.Path, help="Path to checkpoint to use for evaluation.", ) parser.add_argument( "--exp-dir", default=pathlib.Path("./exp"), type=pathlib.Path, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--global-stats-path", default=pathlib.Path("global_stats.json"), type=pathlib.Path, help="Path to JSON file containing feature means and stddevs.", ) parser.add_argument( "--librispeech-path", type=pathlib.Path, help="Path to LibriSpeech datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=pathlib.Path, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--nodes", default=4, type=int, help="Number of nodes to use for training. (Default: 4)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=120, type=int, help="Number of epochs to train for. (Default: 120)", ) args = parser.parse_args() run_train(args) if __name__ == "__main__": cli_main()
import pathlib from argparse import ArgumentParser from lightning import ConformerRNNTModule from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.plugins import DDPPlugin from transforms import get_data_module def run_train(args): seed_everything(1) checkpoint_dir = args.exp_dir / "checkpoints" checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/val_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) train_checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/train_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, train_checkpoint, lr_monitor, ] trainer = Trainer( default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.nodes, gpus=args.gpus, accelerator="gpu", strategy=DDPPlugin(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, ) model = ConformerRNNTModule(str(args.sp_model_path)) data_module = get_data_module(str(args.librispeech_path), str(args.global_stats_path), str(args.sp_model_path)) trainer.fit(model, data_module, ckpt_path=args.checkpoint_path) def cli_main(): parser = ArgumentParser() parser.add_argument( "--checkpoint-path", default=None, type=pathlib.Path, help="Path to checkpoint to use for evaluation.", ) parser.add_argument( "--exp-dir", default=pathlib.Path("./exp"), type=pathlib.Path, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--global-stats-path", default=pathlib.Path("global_stats.json"), type=pathlib.Path, help="Path to JSON file containing feature means and stddevs.", ) parser.add_argument( "--librispeech-path", type=pathlib.Path, help="Path to LibriSpeech datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=pathlib.Path, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--nodes", default=4, type=int, help="Number of nodes to use for training. (Default: 4)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=120, type=int, help="Number of epochs to train for. (Default: 120)", ) args = parser.parse_args() run_train(args) if __name__ == "__main__": cli_main()
"""Optimization related classes and functions.""" import logging from typing import Any, Dict, List, Optional, Literal from llama_index.core.bridge.pydantic import Field, PrivateAttr from llama_index.core.postprocessor.types import BaseNodePostprocessor from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode logger = logging.getLogger(__name__) DEFAULT_INSTRUCTION_STR = "Given the context, please answer the final question" def format_metadata(nodes=List[NodeWithScore]): return {node.node.id_: node.metadata for node in nodes} class LongLLMLinguaPostprocessor(BaseNodePostprocessor): """Optimization of nodes. Compress using LongLLMLingua paper. """ instruction_str: str = Field( default=DEFAULT_INSTRUCTION_STR, description="Instruction string." ) target_token: int = Field( default=-1, description="Target number of compressed tokens." ) use_llmlingua2: bool = Field( default=False, description="Whether to use the llmlingua2 approach" ) rank_method: str = Field(default="longllmlingua", description="Ranking method.") additional_compress_kwargs: Dict[str, Any] = Field( default_factory=dict, description="Additional compress kwargs." ) _llm_lingua: Any = PrivateAttr() def __init__( self, model_name: str = "NousResearch/Llama-2-7b-hf", device_map: Literal["cuda", "cpu", "mps"] = "cuda", model_config: Optional[dict] = {}, open_api_config: Optional[dict] = {}, instruction_str: str = DEFAULT_INSTRUCTION_STR, target_token: float = -1, rank_method: str = "longllmlingua", additional_compress_kwargs: Optional[Dict[str, Any]] = {}, use_llmlingua2: bool = False, ): """LongLLMLingua Compressor for Node Context.""" from llmlingua import PromptCompressor super().__init__( instruction_str=instruction_str, target_token=target_token, rank_method=rank_method, additional_compress_kwargs=additional_compress_kwargs, use_llmlingua2=use_llmlingua2, ) open_api_config = open_api_config or {} additional_compress_kwargs = additional_compress_kwargs or {} if self.use_llmlingua2 is True: assert ( model_name == "microsoft/llmlingua-2-xlm-roberta-large-meetingbank" ), 'Must use "microsoft/llmlingua-2-xlm-roberta-large-meetingbank" as the model name for llmlingua2' self._llm_lingua = PromptCompressor( model_name=model_name, device_map=device_map, model_config=model_config, open_api_config=open_api_config, use_llmlingua2=self.use_llmlingua2, ) @classmethod def class_name(cls) -> str: return "LongLLMLinguaPostprocessor" def _postprocess_nodes( self, nodes: List[NodeWithScore], query_bundle: Optional[QueryBundle] = None, ) -> List[NodeWithScore]: """Optimize a node text given the query by shortening the node text.""" if query_bundle is None: raise ValueError("Query bundle is required.") # The prompt compression for llmlingua2 works on raw texts, that's why it's better to just extract metadata texts. context_texts = [n.text for n in nodes] # Preserve metadata for prompt compressed nodes metadata = format_metadata(nodes) new_context_texts = "".join(context_texts) # You can use it this way, although the question-aware fine-grained compression hasn't been enabled. compressed_prompt = self._llm_lingua.compress_prompt( new_context_texts, # ! Replace the previous context_list instruction=self.instruction_str, question=query_bundle.query_str, # target_token=2000, target_token=self.target_token, rank_method=self.rank_method, **self.additional_compress_kwargs, ) compressed_prompt_txt = compressed_prompt["compressed_prompt"] # separate out the question and instruction (appended to top and bottom) compressed_prompt_txt_list = compressed_prompt_txt.split("\n\n") if self.use_llmlingua2 is False: compressed_prompt_txt_list = compressed_prompt_txt_list[1:-1] # return nodes for each list keys_to_exclude = list(metadata.keys()) return [ NodeWithScore( node=TextNode( text=t, metadata=metadata, excluded_llm_metadata_keys=keys_to_exclude, excluded_embed_metadata_keys=keys_to_exclude, ) ) for t in compressed_prompt_txt_list ]
"""Optimization related classes and functions.""" import logging from typing import Any, Dict, List, Optional from llama_index.core.bridge.pydantic import Field, PrivateAttr from llama_index.core.postprocessor.types import BaseNodePostprocessor from llama_index.core.schema import MetadataMode, NodeWithScore, QueryBundle, TextNode logger = logging.getLogger(__name__) DEFAULT_INSTRUCTION_STR = "Given the context, please answer the final question" class LongLLMLinguaPostprocessor(BaseNodePostprocessor): """Optimization of nodes. Compress using LongLLMLingua paper. """ metadata_mode: MetadataMode = Field( default=MetadataMode.ALL, description="Metadata mode." ) instruction_str: str = Field( default=DEFAULT_INSTRUCTION_STR, description="Instruction string." ) target_token: int = Field( default=300, description="Target number of compressed tokens." ) rank_method: str = Field(default="longllmlingua", description="Ranking method.") additional_compress_kwargs: Dict[str, Any] = Field( default_factory=dict, description="Additional compress kwargs." ) _llm_lingua: Any = PrivateAttr() def __init__( self, model_name: str = "NousResearch/Llama-2-7b-hf", device_map: str = "cuda", model_config: Optional[dict] = {}, open_api_config: Optional[dict] = {}, metadata_mode: MetadataMode = MetadataMode.ALL, instruction_str: str = DEFAULT_INSTRUCTION_STR, target_token: int = 300, rank_method: str = "longllmlingua", additional_compress_kwargs: Optional[Dict[str, Any]] = None, ): """LongLLMLingua Compressor for Node Context.""" from llmlingua import PromptCompressor super().__init__( metadata_mode=metadata_mode, instruction_str=instruction_str, target_token=target_token, rank_method=rank_method, additional_compress_kwargs=additional_compress_kwargs, ) open_api_config = open_api_config or {} additional_compress_kwargs = additional_compress_kwargs or {} self._llm_lingua = PromptCompressor( model_name=model_name, device_map=device_map, model_config=model_config, open_api_config=open_api_config, ) @classmethod def class_name(cls) -> str: return "LongLLMLinguaPostprocessor" def _postprocess_nodes( self, nodes: List[NodeWithScore], query_bundle: Optional[QueryBundle] = None, ) -> List[NodeWithScore]: """Optimize a node text given the query by shortening the node text.""" if query_bundle is None: raise ValueError("Query bundle is required.") context_texts = [n.get_content(metadata_mode=self.metadata_mode) for n in nodes] # split by "\n\n" (recommended by LongLLMLingua authors) new_context_texts = [ c for context in context_texts for c in context.split("\n\n") ] # You can use it this way, although the question-aware fine-grained compression hasn't been enabled. compressed_prompt = self._llm_lingua.compress_prompt( new_context_texts, # ! Replace the previous context_list instruction=self.instruction_str, question=query_bundle.query_str, # target_token=2000, target_token=self.target_token, rank_method=self.rank_method, **self.additional_compress_kwargs, ) compressed_prompt_txt = compressed_prompt["compressed_prompt"] # separate out the question and instruction (appended to top and bottom) compressed_prompt_txt_list = compressed_prompt_txt.split("\n\n") compressed_prompt_txt_list = compressed_prompt_txt_list[1:-1] # return nodes for each list return [ NodeWithScore(node=TextNode(text=t)) for t in compressed_prompt_txt_list ]
""" Checkpoint functionality for machine learning models. This module provides classes for saving and loading model checkpoints in a distributed training environment. It includes functionality for coordinating checkpoint operations across multiple processes and customizing the checkpoint process through hooks. Key components: - Checkpointer: Main class for orchestrating checkpoint operations (save, load) - CheckpointWriter: Handles writing state dictionaries to storage - CheckpointReader: Handles reading state dictionaries from storage read - Barrier: Synchronization mechanism for distributed checkpointing - RankInfo: Information about the current rank in a distributed environment """ from .barriers import ( Barrier, BarrierConfig, create_barrier_from_config, TCPStoreBarrier, ) from .builder import make_async_checkpointer, make_sync_checkpointer from .checkpoint_reader import CheckpointReader from .checkpoint_writer import CheckpointWriter, CheckpointWriterConfig, WriterHook from .checkpointer import AsyncCheckpointer, Checkpointer, SyncCheckpointer from .config import CheckpointerConfig from .staging import CheckpointStager, CheckpointStagerConfig, DefaultStager from .types import RankInfo, STATE_DICT from .utils import wrap_future __all__ = [ "Barrier", "TCPStoreBarrier", "CheckpointReader", "CheckpointWriter", "CheckpointWriterConfig", "WriterHook", "Checkpointer", "SyncCheckpointer", "AsyncCheckpointer", "CheckpointerConfig", "BarrierConfig", "create_barrier_from_config", "CheckpointStager", "CheckpointStagerConfig", "DefaultStager", "RankInfo", "STATE_DICT", "wrap_future", "make_sync_checkpointer", "make_async_checkpointer", ]
""" Checkpoint functionality for machine learning models. This module provides classes for saving and loading model checkpoints in a distributed training environment. It includes functionality for coordinating checkpoint operations across multiple processes and customizing the checkpoint process through hooks. Key components: - Checkpointer: Main class for orchestrating checkpoint operations (save, load) - CheckpointWriter: Handles writing state dictionaries to storage - CheckpointReader: Handles reading state dictionaries from storage read - Barrier: Synchronization mechanism for distributed checkpointing - RankInfo: Information about the current rank in a distributed environment """ from .barriers import ( Barrier, BarrierConfig, create_barrier_from_config, TCPStoreBarrier, ) from .checkpoint_reader import CheckpointReader from .checkpoint_writer import CheckpointWriter, CheckpointWriterConfig, WriterHook from .types import RankInfo, STATE_DICT __all__ = [ "Barrier", "TCPStoreBarrier", "CheckpointReader", "CheckpointWriter", "CheckpointWriterConfig", "WriterHook", "BarrierConfig", "create_barrier_from_config", "RankInfo", "STATE_DICT", ]
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/fuse_modules.py`, while adding an import statement here. """ # TODO: These functions are not used outside the `fuse_modules.py` # Keeping here for now, need to remove them later. from torch.ao.quantization.fuse_modules import ( _fuse_modules, _get_module, _set_module, fuse_known_modules, fuse_modules, get_fuser_method, ) # for backward compatiblity from torch.ao.quantization.fuser_method_mappings import fuse_conv_bn, fuse_conv_bn_relu
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/fuse_modules.py`, while adding an import statement here. """ # TODO: These functions are not used outside the `fuse_modules.py` # Keeping here for now, need to remove them later. from torch.ao.quantization.fuse_modules import ( _fuse_modules, _get_module, _set_module, fuse_known_modules, fuse_modules, get_fuser_method, ) # for backward compatibility from torch.ao.quantization.fuser_method_mappings import fuse_conv_bn, fuse_conv_bn_relu
import warnings from typing import Any, Union import numpy as np import PIL.Image import torch from torchvision.transforms import functional as _F from torchvision.transforms.v2 import Transform class ToTensor(Transform): """[DEPRECATED] Use ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`` instead. Convert a PIL Image or ndarray to tensor and scale the values accordingly. .. warning:: :class:`v2.ToTensor` is deprecated and will be removed in a future release. Please use instead ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])``. Output is equivalent up to float precision. This transform does not support torchscript. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling. .. note:: Because the input image is scaled to [0.0, 1.0], this transformation should not be used when transforming target image masks. See the `references`_ for implementing the transforms for image masks. .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation """ _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`." "Output is equivalent up to float precision." ) super().__init__() def transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt)
import warnings from typing import Any, Dict, Union import numpy as np import PIL.Image import torch from torchvision.transforms import functional as _F from torchvision.transforms.v2 import Transform class ToTensor(Transform): """[DEPRECATED] Use ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`` instead. Convert a PIL Image or ndarray to tensor and scale the values accordingly. .. warning:: :class:`v2.ToTensor` is deprecated and will be removed in a future release. Please use instead ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])``. Output is equivalent up to float precision. This transform does not support torchscript. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling. .. note:: Because the input image is scaled to [0.0, 1.0], this transformation should not be used when transforming target image masks. See the `references`_ for implementing the transforms for image masks. .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation """ _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`." "Output is equivalent up to float precision." ) super().__init__() def transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt)
from functools import wraps from typing import Any, Callable, Concatenate, Coroutine, ParamSpec, TypeVar, cast from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, NodeExecutionEntry, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_executions_in_timerange, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import get_graph, get_node from backend.data.notifications import ( create_or_add_to_user_notification_batch, empty_user_notification_batch, get_user_notification_batch, get_user_notification_last_message_in_batch, ) from backend.data.user import ( get_active_user_ids_in_timerange, get_active_users_ids, get_user_by_id, get_user_integrations, get_user_metadata, get_user_notification_preference, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, register_pydantic_serializers from backend.util.settings import Config P = ParamSpec("P") R = TypeVar("R") config = Config() class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) @staticmethod def exposed_run_and_wait( f: Callable[P, Coroutine[None, None, R]] ) -> Callable[Concatenate[object, P], R]: @expose @wraps(f) def wrapper(self, *args: P.args, **kwargs: P.kwargs) -> R: coroutine = f(*args, **kwargs) res = self.run_and_wait(coroutine) return res # Register serializers for annotations on bare function register_pydantic_serializers(f) return wrapper # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) get_executions_in_timerange = exposed_run_and_wait(get_executions_in_timerange) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) # Credits user_credit_model = get_user_credit_model() spend_credits = cast( Callable[[Any, NodeExecutionEntry, float, float], int], exposed_run_and_wait(user_credit_model.spend_credits), ) # User + User Metadata + User Integrations + User Notification Preferences get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations) get_active_user_ids_in_timerange = exposed_run_and_wait( get_active_user_ids_in_timerange ) get_user_by_id = exposed_run_and_wait(get_user_by_id) get_user_notification_preference = exposed_run_and_wait( get_user_notification_preference ) get_active_users_ids = exposed_run_and_wait(get_active_users_ids) # Notifications create_or_add_to_user_notification_batch = exposed_run_and_wait( create_or_add_to_user_notification_batch ) get_user_notification_last_message_in_batch = exposed_run_and_wait( get_user_notification_last_message_in_batch ) empty_user_notification_batch = exposed_run_and_wait(empty_user_notification_batch) get_user_notification_batch = exposed_run_and_wait(get_user_notification_batch)
from functools import wraps from typing import Any, Callable, Concatenate, Coroutine, ParamSpec, TypeVar, cast from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, NodeExecutionEntry, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import get_graph, get_node from backend.data.user import ( get_user_integrations, get_user_metadata, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, register_pydantic_serializers from backend.util.settings import Config P = ParamSpec("P") R = TypeVar("R") config = Config() class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) @staticmethod def exposed_run_and_wait( f: Callable[P, Coroutine[None, None, R]] ) -> Callable[Concatenate[object, P], R]: @expose @wraps(f) def wrapper(self, *args: P.args, **kwargs: P.kwargs) -> R: coroutine = f(*args, **kwargs) res = self.run_and_wait(coroutine) return res # Register serializers for annotations on bare function register_pydantic_serializers(f) return wrapper # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) # Credits user_credit_model = get_user_credit_model() spend_credits = cast( Callable[[Any, NodeExecutionEntry, float, float], int], exposed_run_and_wait(user_credit_model.spend_credits), ) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations)
from importlib import import_module from .logging import get_logger logger = get_logger(__name__) class _PatchedModuleObj: """Set all the modules components as attributes of the _PatchedModuleObj object.""" def __init__(self, module, attrs=None): attrs = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__"): setattr(self, key, getattr(module, key)) self._original_module = module._original_module if isinstance(module, _PatchedModuleObj) else module class patch_submodule: """ Patch a submodule attribute of an object, by keeping all other submodules intact at all levels. Example:: >>> import importlib >>> from datasets.load import dataset_module_factory >>> from datasets.streaming import patch_submodule, xjoin >>> >>> dataset_module = dataset_module_factory("snli") >>> snli_module = importlib.import_module(dataset_module.module_path) >>> patcher = patch_submodule(snli_module, "os.path.join", xjoin) >>> patcher.start() >>> assert snli_module.os.path.join is xjoin """ _active_patches = [] def __init__(self, obj, target: str, new, attrs=None): self.obj = obj self.target = target self.new = new self.key = target.split(".")[0] self.original = {} self.attrs = attrs or [] def __enter__(self): *submodules, target_attr = self.target.split(".") # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(submodules)): try: submodule = import_module(".".join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): obj_attr = getattr(self.obj, attr) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( isinstance(obj_attr, _PatchedModuleObj) and obj_attr._original_module is submodule ): self.original[attr] = obj_attr # patch at top level setattr(self.obj, attr, _PatchedModuleObj(obj_attr, attrs=self.attrs)) patched = getattr(self.obj, attr) # construct lower levels patches for key in submodules[i + 1 :]: setattr(patched, key, _PatchedModuleObj(getattr(patched, key, None), attrs=self.attrs)) patched = getattr(patched, key) # finally set the target attribute setattr(patched, target_attr, self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: attr_value = getattr(import_module(".".join(submodules)), target_attr) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj, attr) is attr_value: self.original[attr] = getattr(self.obj, attr) setattr(self.obj, attr, self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" self.original[target_attr] = globals()["__builtins__"][target_attr] setattr(self.obj, target_attr, self.new) else: raise RuntimeError(f"Tried to patch attribute {target_attr} instead of a submodule.") def __exit__(self, *exc_info): for attr in list(self.original): setattr(self.obj, attr, self.original.pop(attr)) def start(self): """Activate a patch.""" self.__enter__() self._active_patches.append(self) def stop(self): """Stop an active patch.""" try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
from importlib import import_module from .logging import get_logger logger = get_logger(__name__) class _PatchedModuleObj: """Set all the modules components as attributes of the _PatchedModuleObj object.""" def __init__(self, module, attrs=None): attrs = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__"): setattr(self, key, getattr(module, key)) self._original_module = module._original_module if isinstance(module, _PatchedModuleObj) else module class patch_submodule: """ Patch a submodule attribute of an object, by keeping all other submodules intact at all levels. Example:: >>> import importlib >>> from datasets.load import dataset_module_factory >>> from datasets.streaming import patch_submodule, xjoin >>> >>> dataset_module = dataset_module_factory("snli") >>> snli_module = importlib.import_module(dataset_module.module_path) >>> patcher = patch_submodule(snli_module, "os.path.join", xjoin) >>> patcher.start() >>> assert snli_module.os.path.join is xjoin """ _active_patches = [] def __init__(self, obj, target: str, new, attrs=None): self.obj = obj self.target = target self.new = new self.key = target.split(".")[0] self.original = {} self.attrs = attrs or [] def __enter__(self): *submodules, target_attr = self.target.split(".") # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(submodules)): try: submodule = import_module(".".join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): obj_attr = getattr(self.obj, attr) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(obj_attr, _PatchedModuleObj) and obj_attr._original_module is submodule) ): self.original[attr] = obj_attr # patch at top level setattr(self.obj, attr, _PatchedModuleObj(obj_attr, attrs=self.attrs)) patched = getattr(self.obj, attr) # construct lower levels patches for key in submodules[i + 1 :]: setattr(patched, key, _PatchedModuleObj(getattr(patched, key, None), attrs=self.attrs)) patched = getattr(patched, key) # finally set the target attribute setattr(patched, target_attr, self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: attr_value = getattr(import_module(".".join(submodules)), target_attr) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj, attr) is attr_value: self.original[attr] = getattr(self.obj, attr) setattr(self.obj, attr, self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" self.original[target_attr] = globals()["__builtins__"][target_attr] setattr(self.obj, target_attr, self.new) else: raise RuntimeError(f"Tried to patch attribute {target_attr} instead of a submodule.") def __exit__(self, *exc_info): for attr in list(self.original): setattr(self.obj, attr, self.original.pop(attr)) def start(self): """Activate a patch.""" self.__enter__() self._active_patches.append(self) def stop(self): """Stop an active patch.""" try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
# coding: utf-8 """Get the most recent status of workflow for the current PR. [usage] python get_workflow_status.py TRIGGER_PHRASE TRIGGER_PHRASE: Code phrase that triggers workflow. """ import json from os import environ from sys import argv, exit from time import sleep try: from urllib import request except ImportError: import urllib2 as request def get_runs(trigger_phrase): """Get all triggering workflow comments in the current PR. Parameters ---------- trigger_phrase : str Code phrase that triggers workflow. Returns ------- pr_runs : list List of comment objects sorted by the time of creation in decreasing order. """ pr_runs = [] if environ.get("GITHUB_EVENT_NAME", "") == "pull_request": pr_number = int(environ.get("GITHUB_REF").split('/')[-2]) page = 1 while True: req = request.Request( url="{}/repos/microsoft/LightGBM/issues/{}/comments?page={}&per_page=100".format( environ.get("GITHUB_API_URL"), pr_number, page ), headers={"Accept": "application/vnd.github.v3+json"} ) url = request.urlopen(req) data = json.loads(url.read().decode('utf-8')) url.close() if not data: break runs_on_page = [i for i in data if i['author_association'].lower() in {'owner', 'member', 'collaborator'} and i['body'].startswith('/gha run {}'.format(trigger_phrase))] pr_runs.extend(runs_on_page) page += 1 return pr_runs[::-1] def get_status(runs): """Get the most recent status of workflow for the current PR. Parameters ---------- runs : list List of comment objects sorted by the time of creation in decreasing order. Returns ------- status : str The most recent status of workflow. Can be 'success', 'failure' or 'in-progress'. """ status = 'success' for run in runs: body = run['body'] if "Status: " in body: if "Status: skipped" in body: continue if "Status: failure" in body: status = 'failure' break if "Status: success" in body: status = 'success' break else: status = 'in-progress' break return status if __name__ == "__main__": trigger_phrase = argv[1] while True: status = get_status(get_runs(trigger_phrase)) if status != 'in-progress': break sleep(60) if status == 'failure': exit(1)
# coding: utf-8 """Get the most recent status of workflow for the current PR. [usage] python get_workflow_status.py TRIGGER_PHRASE TRIGGER_PHRASE: Code phrase that triggers workflow. """ import json from os import environ from sys import argv, exit from time import sleep try: from urllib import request except ImportError: import urllib2 as request def get_runs(trigger_phrase): """Get all triggering workflow comments in the current PR. Parameters ---------- trigger_phrase : str Code phrase that triggers workflow. Returns ------- pr_runs : list List of comment objects sorted by the time of creation in decreasing order. """ pr_runs = [] if environ.get("GITHUB_EVENT_NAME", "") == "pull_request": pr_number = int(environ.get("GITHUB_REF").split('/')[-2]) req = request.Request(url="{}/repos/microsoft/LightGBM/issues/{}/comments".format(environ.get("GITHUB_API_URL"), pr_number), headers={"Accept": "application/vnd.github.v3+json"}) url = request.urlopen(req) data = json.loads(url.read().decode('utf-8')) url.close() pr_runs = [i for i in data if i['author_association'].lower() in {'owner', 'member', 'collaborator'} and i['body'].startswith('/gha run {}'.format(trigger_phrase))] return pr_runs[::-1] def get_status(runs): """Get the most recent status of workflow for the current PR. Parameters ---------- runs : list List of comment objects sorted by the time of creation in decreasing order. Returns ------- status : str The most recent status of workflow. Can be 'success', 'failure' or 'in-progress'. """ status = 'success' for run in runs: body = run['body'] if "Status: " in body: if "Status: skipped" in body: continue if "Status: failure" in body: status = 'failure' break if "Status: success" in body: status = 'success' break else: status = 'in-progress' break return status if __name__ == "__main__": trigger_phrase = argv[1] while True: status = get_status(get_runs(trigger_phrase)) if status != 'in-progress': break sleep(60) if status == 'failure': exit(1)
# Copyright (c) OpenMMLab. All rights reserved. from .backbones import * # noqa: F401,F403 from .builder import (BACKBONES, DETECTORS, HEADS, LOSSES, NECKS, ROI_EXTRACTORS, SHARED_HEADS, build_backbone, build_detector, build_head, build_loss, build_neck, build_roi_extractor, build_shared_head) from .dense_heads import * # noqa: F401,F403 from .detectors import * # noqa: F401,F403 from .losses import * # noqa: F401,F403 from .necks import * # noqa: F401,F403 from .plugins import * # noqa: F401,F403 from .roi_heads import * # noqa: F401,F403 from .seg_heads import * # noqa: F401,F403 __all__ = [ 'BACKBONES', 'NECKS', 'ROI_EXTRACTORS', 'SHARED_HEADS', 'HEADS', 'LOSSES', 'DETECTORS', 'build_backbone', 'build_neck', 'build_roi_extractor', 'build_shared_head', 'build_head', 'build_loss', 'build_detector' ]
from .backbones import * # noqa: F401,F403 from .builder import (BACKBONES, DETECTORS, HEADS, LOSSES, NECKS, ROI_EXTRACTORS, SHARED_HEADS, build_backbone, build_detector, build_head, build_loss, build_neck, build_roi_extractor, build_shared_head) from .dense_heads import * # noqa: F401,F403 from .detectors import * # noqa: F401,F403 from .losses import * # noqa: F401,F403 from .necks import * # noqa: F401,F403 from .plugins import * # noqa: F401,F403 from .roi_heads import * # noqa: F401,F403 from .seg_heads import * # noqa: F401,F403 __all__ = [ 'BACKBONES', 'NECKS', 'ROI_EXTRACTORS', 'SHARED_HEADS', 'HEADS', 'LOSSES', 'DETECTORS', 'build_backbone', 'build_neck', 'build_roi_extractor', 'build_shared_head', 'build_head', 'build_loss', 'build_detector' ]
# ruff: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.17.1.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# ruff: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.17.0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseMSEEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model student_model = SparseEncoder("prithivida/Splade_PP_en_v1") teacher_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load any dataset with some texts dataset = load_dataset("sentence-transformers/stsb", split="validation") sentences = dataset["sentence1"] + dataset["sentence2"] # Given queries, a corpus and a mapping with relevant documents, the SparseMSEEvaluator computes different MSE metrics. mse_evaluator = SparseMSEEvaluator( source_sentences=sentences, target_sentences=sentences, teacher_model=teacher_model, name="stsb-dev", ) results = mse_evaluator(student_model) """ MSE evaluation (lower = better) on the stsb-dev dataset: MSE (*100): 0.035540 Model Sparsity Stats: Row Non-Zero Mean: 55.60933303833008, Row Sparsity Mean: 0.9981780648231506 """ # Print the results print(f"Primary metric: {mse_evaluator.primary_metric}") # => Primary metric: stsb-dev_negative_mse print(f"Primary metric value: {results[mse_evaluator.primary_metric]:.4f}") # => Primary metric value: -0.0355
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseMSEEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model student_model = SparseEncoder("prithivida/Splade_PP_en_v1") teacher_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load any dataset with some texts dataset = load_dataset("sentence-transformers/stsb", split="validation") sentences = dataset["sentence1"] + dataset["sentence2"] # Given queries, a corpus and a mapping with relevant documents, the SparseMSEEvaluator computes different MSE metrics. mse_evaluator = SparseMSEEvaluator( source_sentences=sentences, target_sentences=sentences, teacher_model=teacher_model, name="stsb-dev", ) results = mse_evaluator(student_model) """ MSE evaluation (lower = better) on the stsb-dev dataset: MSE (*100): 0.035540 """ # Print the results print(f"Primary metric: {mse_evaluator.primary_metric}") # => Primary metric: stsb-dev_negative_mse print(f"Primary metric value: {results[mse_evaluator.primary_metric]:.4f}") # => Primary metric value: -0.0355
import grpc from grpc_health.v1 import health, health_pb2, health_pb2_grpc from grpc_reflection.v1alpha import reflection from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway from jina.constants import __default_host__ from jina.proto import jina_pb2, jina_pb2_grpc class DummyResponseModel(BaseModel): protocol: str class MultiProtocolGateway(Gateway): def __init__(self, **kwargs): super().__init__(**kwargs) self.http_port = self.ports[0] self.grpc_port = self.ports[1] self.health_servicer = health.HealthServicer(experimental_non_blocking=True) async def _setup_http_server(self): from fastapi import FastAPI app = FastAPI( title='HTTP Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return {'protocol': 'http'} self.http_server = Server( Config(app, host=__default_host__, port=self.http_port) ) async def _setup_grpc_server(self): self.grpc_server = grpc.aio.server() jina_pb2_grpc.add_JinaRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) service_names = ( jina_pb2.DESCRIPTOR.services_by_name['JinaRPC'].full_name, reflection.SERVICE_NAME, ) # Mark all services as healthy. health_pb2_grpc.add_HealthServicer_to_server( self.health_servicer, self.grpc_server ) for service in service_names: self.health_servicer.set(service, health_pb2.HealthCheckResponse.SERVING) reflection.enable_server_reflection(service_names, self.grpc_server) self.grpc_server.add_insecure_port(f'{__default_host__}:{self.grpc_port}') await self.grpc_server.start() async def setup_server(self): await self._setup_http_server() await self._setup_grpc_server() async def run_server(self): await self.http_server.serve() await self.grpc_server.wait_for_termination() async def shutdown(self): self.http_server.should_exit = True await self.grpc_server.stop(0) await self.http_server.shutdown() self.health_servicer.enter_graceful_shutdown() @property def _should_exit(self) -> bool: return self.http_server.should_exit
import grpc from grpc_health.v1 import health, health_pb2, health_pb2_grpc from grpc_reflection.v1alpha import reflection from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.proto import jina_pb2, jina_pb2_grpc class DummyResponseModel(BaseModel): protocol: str class MultiProtocolGateway(Gateway): def __init__(self, **kwargs): super().__init__(**kwargs) self.http_port = self.ports[0] self.grpc_port = self.ports[1] self.health_servicer = health.HealthServicer(experimental_non_blocking=True) async def _setup_http_server(self): from fastapi import FastAPI app = FastAPI( title='HTTP Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return {'protocol': 'http'} self.http_server = Server( Config(app, host=__default_host__, port=self.http_port) ) async def _setup_grpc_server(self): self.grpc_server = grpc.aio.server() jina_pb2_grpc.add_JinaRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) service_names = ( jina_pb2.DESCRIPTOR.services_by_name['JinaRPC'].full_name, reflection.SERVICE_NAME, ) # Mark all services as healthy. health_pb2_grpc.add_HealthServicer_to_server( self.health_servicer, self.grpc_server ) for service in service_names: self.health_servicer.set(service, health_pb2.HealthCheckResponse.SERVING) reflection.enable_server_reflection(service_names, self.grpc_server) self.grpc_server.add_insecure_port(f'{__default_host__}:{self.grpc_port}') await self.grpc_server.start() async def setup_server(self): await self._setup_http_server() await self._setup_grpc_server() async def run_server(self): await self.http_server.serve() await self.grpc_server.wait_for_termination() async def shutdown(self): self.http_server.should_exit = True await self.grpc_server.stop(0) await self.http_server.shutdown() self.health_servicer.enter_graceful_shutdown() @property def _should_exit(self) -> bool: return self.http_server.should_exit
import click from .cmd_exec import cmd_exec from .info import info @click.group(short_help="Manage packages in the monorepo") def pkg(): pass # pragma: no cover pkg.add_command(info) pkg.add_command(cmd_exec, name="exec")
import click from .cmd_exec import cmd_exec from .info import info @click.group(short_help="Manage packages in the monorepo") def pkg(): pass pkg.add_command(info) pkg.add_command(cmd_exec, name="exec")
from typing import Any, Mapping, Optional from llama_index.readers.airbyte_cdk.base import AirbyteCDKReader, RecordHandler class AirbyteSalesforceReader(AirbyteCDKReader): """ AirbyteSalesforceReader reader. Retrieve documents from Salesforce Args: config: The config object for the salesforce source. """ def __init__( self, config: Mapping[str, Any], record_handler: Optional[RecordHandler] = None, ) -> None: """Initialize with parameters.""" import source_salesforce super().__init__( source_class=source_salesforce.SourceSalesforce, config=config, record_handler=record_handler, )
from typing import Any, Mapping, Optional from llama_index.readers.airbyte_cdk.base import AirbyteCDKReader, RecordHandler class AirbyteSalesforceReader(AirbyteCDKReader): """AirbyteSalesforceReader reader. Retrieve documents from Salesforce Args: config: The config object for the salesforce source. """ def __init__( self, config: Mapping[str, Any], record_handler: Optional[RecordHandler] = None, ) -> None: """Initialize with parameters.""" import source_salesforce super().__init__( source_class=source_salesforce.SourceSalesforce, config=config, record_handler=record_handler, )
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = '0.40.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level from docarray.utils._internal.pydantic import is_pydantic_v2 def unpickle_doclist(doc_type, b): return DocList[doc_type].from_bytes(b, protocol="protobuf") def unpickle_docvec(doc_type, tensor_type, b): return DocVec[doc_type].from_bytes(b, protocol="protobuf", tensor_type=tensor_type) if is_pydantic_v2: # Register the pickle functions def register_serializers(): import copyreg from functools import partial unpickle_doc_fn = partial(BaseDoc.from_bytes, protocol="protobuf") def pickle_doc(doc): b = doc.to_bytes(protocol='protobuf') return unpickle_doc_fn, (doc.__class__, b) # Register BaseDoc serialization copyreg.pickle(BaseDoc, pickle_doc) # For DocList, we need to hook into __reduce__ since it's a generic def pickle_doclist(doc_list): b = doc_list.to_bytes(protocol='protobuf') doc_type = doc_list.doc_type return unpickle_doclist, (doc_type, b) # Replace DocList.__reduce__ with a method that returns the correct format def doclist_reduce(self): return pickle_doclist(self) DocList.__reduce__ = doclist_reduce # For DocVec, we need to hook into __reduce__ since it's a generic def pickle_docvec(doc_vec): b = doc_vec.to_bytes(protocol='protobuf') doc_type = doc_vec.doc_type tensor_type = doc_vec.tensor_type return unpickle_docvec, (doc_type, tensor_type, b) # Replace DocList.__reduce__ with a method that returns the correct format def docvec_reduce(self): return pickle_docvec(self) DocVec.__reduce__ = docvec_reduce register_serializers() __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = '0.40.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
from base64 import b64encode from urllib.parse import urlencode from backend.data.model import OAuth2Credentials from backend.integrations.providers import ProviderName from backend.util.request import requests from .base import BaseOAuthHandler class NotionOAuthHandler(BaseOAuthHandler): """ Based on the documentation at https://developers.notion.com/docs/authorization Notes: - Notion uses non-expiring access tokens and therefore doesn't have a refresh flow - Notion doesn't use scopes """ PROVIDER_NAME = ProviderName.NOTION def __init__(self, client_id: str, client_secret: str, redirect_uri: str): self.client_id = client_id self.client_secret = client_secret self.redirect_uri = redirect_uri self.auth_base_url = "https://api.notion.com/v1/oauth/authorize" self.token_url = "https://api.notion.com/v1/oauth/token" def get_login_url(self, scopes: list[str], state: str) -> str: params = { "client_id": self.client_id, "redirect_uri": self.redirect_uri, "response_type": "code", "owner": "user", "state": state, } return f"{self.auth_base_url}?{urlencode(params)}" def exchange_code_for_tokens( self, code: str, scopes: list[str] ) -> OAuth2Credentials: request_body = { "grant_type": "authorization_code", "code": code, "redirect_uri": self.redirect_uri, } auth_str = b64encode(f"{self.client_id}:{self.client_secret}".encode()).decode() headers = { "Authorization": f"Basic {auth_str}", "Accept": "application/json", } response = requests.post(self.token_url, json=request_body, headers=headers) token_data = response.json() # Email is only available for non-bot users email = ( token_data["owner"]["person"]["email"] if "person" in token_data["owner"] and "email" in token_data["owner"]["person"] else None ) return OAuth2Credentials( provider=self.PROVIDER_NAME, title=token_data.get("workspace_name"), username=email, access_token=token_data["access_token"], refresh_token=None, access_token_expires_at=None, # Notion tokens don't expire refresh_token_expires_at=None, scopes=[], metadata={ "owner": token_data["owner"], "bot_id": token_data["bot_id"], "workspace_id": token_data["workspace_id"], "workspace_name": token_data.get("workspace_name"), "workspace_icon": token_data.get("workspace_icon"), }, ) def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: # Notion doesn't support token revocation return False def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: # Notion doesn't support token refresh return credentials def needs_refresh(self, credentials: OAuth2Credentials) -> bool: # Notion access tokens don't expire return False
from base64 import b64encode from urllib.parse import urlencode from backend.data.model import OAuth2Credentials from backend.util.request import requests from .base import BaseOAuthHandler class NotionOAuthHandler(BaseOAuthHandler): """ Based on the documentation at https://developers.notion.com/docs/authorization Notes: - Notion uses non-expiring access tokens and therefore doesn't have a refresh flow - Notion doesn't use scopes """ PROVIDER_NAME = "notion" def __init__(self, client_id: str, client_secret: str, redirect_uri: str): self.client_id = client_id self.client_secret = client_secret self.redirect_uri = redirect_uri self.auth_base_url = "https://api.notion.com/v1/oauth/authorize" self.token_url = "https://api.notion.com/v1/oauth/token" def get_login_url(self, scopes: list[str], state: str) -> str: params = { "client_id": self.client_id, "redirect_uri": self.redirect_uri, "response_type": "code", "owner": "user", "state": state, } return f"{self.auth_base_url}?{urlencode(params)}" def exchange_code_for_tokens( self, code: str, scopes: list[str] ) -> OAuth2Credentials: request_body = { "grant_type": "authorization_code", "code": code, "redirect_uri": self.redirect_uri, } auth_str = b64encode(f"{self.client_id}:{self.client_secret}".encode()).decode() headers = { "Authorization": f"Basic {auth_str}", "Accept": "application/json", } response = requests.post(self.token_url, json=request_body, headers=headers) token_data = response.json() # Email is only available for non-bot users email = ( token_data["owner"]["person"]["email"] if "person" in token_data["owner"] and "email" in token_data["owner"]["person"] else None ) return OAuth2Credentials( provider=self.PROVIDER_NAME, title=token_data.get("workspace_name"), username=email, access_token=token_data["access_token"], refresh_token=None, access_token_expires_at=None, # Notion tokens don't expire refresh_token_expires_at=None, scopes=[], metadata={ "owner": token_data["owner"], "bot_id": token_data["bot_id"], "workspace_id": token_data["workspace_id"], "workspace_name": token_data.get("workspace_name"), "workspace_icon": token_data.get("workspace_icon"), }, ) def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: # Notion doesn't support token revocation return False def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: # Notion doesn't support token refresh return credentials def needs_refresh(self, credentials: OAuth2Credentials) -> bool: # Notion access tokens don't expire return False
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( # use caffe img_norm preprocess_cfg=preprocess_cfg, backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( bbox_roi_extractor=dict( roi_layer=dict( type='RoIAlign', output_size=7, sampling_ratio=2, aligned=False)), bbox_head=dict( loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), mask_roi_extractor=dict( roi_layer=dict( type='RoIAlign', output_size=14, sampling_ratio=2, aligned=False))))
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( bbox_roi_extractor=dict( roi_layer=dict( type='RoIAlign', output_size=7, sampling_ratio=2, aligned=False)), bbox_head=dict( loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), mask_roi_extractor=dict( roi_layer=dict( type='RoIAlign', output_size=14, sampling_ratio=2, aligned=False)))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
from __future__ import annotations __version__ = "3.5.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments from sentence_transformers.util import mine_hard_negatives # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", "mine_hard_negatives", ]
from __future__ import annotations __version__ = "3.5.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", ]
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='[email protected]', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, install_requires=['numpy', 'rich>=12.0.0', 'jina-hubble-sdk>=0.13.1'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'grpcio>=1.46.0,<1.48.1', 'grpcio-reflection>=1.46.0,<1.48.1', 'grpcio-health-checking>=1.46.0,<1.48.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client~=0.10.3', ], 'annlite': [ 'annlite', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'benchmark': [ 'pandas', 'seaborn', ], 'test': [ 'protobuf>=3.13.0,<=3.20.0', # pip dependency resolution does not respect this restriction from paddle 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov==3.0.0', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='[email protected]', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, install_requires=['numpy', 'rich>=12.0.0', 'jina-hubble-sdk>=0.13.1'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client==0.8.0', ], 'annlite': [ 'annlite', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'benchmark': [ 'pandas', 'seaborn', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov==3.0.0', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
# Copyright (c) OpenMMLab. All rights reserved. import os from typing import Callable, Optional import torch.nn as nn from torch.nn.parallel import DistributedDataParallel from mmengine.device import get_device from mmengine.dist import init_dist, is_distributed, master_only from mmengine.model import convert_sync_batchnorm, is_model_wrapper from mmengine.registry import MODEL_WRAPPERS, STRATEGIES from .single_device import SingleDeviceStrategy @STRATEGIES.register_module() class DDPStrategy(SingleDeviceStrategy): """Distribution strategy for distributed data parallel training. Args: model_wrapper (dict): Dict for model wrapper. Defaults to None. sync_bn (str): Type of sync batch norm. Defaults to None. Options are 'torch' and 'mmcv'. **kwargs: Other arguments for :class:`BaseStrategy`. """ def __init__( self, *, model_wrapper: Optional[dict] = None, sync_bn: Optional[str] = None, **kwargs, ): super().__init__(**kwargs) self.model_wrapper = model_wrapper self.sync_bn = sync_bn def _setup_distributed( # type: ignore self, launcher: str = 'pytorch', backend: str = 'nccl', **kwargs, ): """Setup distributed environment. Args: launcher (str): Way to launcher multi processes. Supported launchers are 'pytorch', 'mpi' and 'slurm'. backend (str): Communication Backends. Supported backends are 'nccl', 'gloo' and 'mpi'. Defaults to 'nccl'. **kwargs: Other arguments for :func:`init_dist`. """ if not is_distributed(): init_dist(launcher, backend, **kwargs) def convert_model(self, model: nn.Module) -> nn.Module: """Convert all ``BatchNorm`` layers in the model to ``SyncBatchNorm`` (SyncBN) or ``mmcv.ops.sync_bn.SyncBatchNorm`` (MMSyncBN) layers. Args: model (nn.Module): Model to be converted. Returns: nn.Module: Converted model. """ if self.sync_bn is not None: try: model = convert_sync_batchnorm(model, self.sync_bn) except ValueError as e: self.logger.error('cfg.sync_bn should be "torch" or ' f'"mmcv", but got {self.sync_bn}') raise e return model def _wrap_model(self, model: nn.Module) -> DistributedDataParallel: """Wrap the model to :obj:``MMDistributedDataParallel`` or other custom distributed data-parallel module wrappers. Args: model (nn.Module): Model to be wrapped. Returns: nn.Module or DistributedDataParallel: nn.Module or subclass of ``DistributedDataParallel``. """ if is_model_wrapper(model): return model model = model.to(get_device()) model = self.convert_model(model) if self.model_wrapper is None: # set broadcast_buffers as False to keep compatibility with # OpenMMLab repos self.model_wrapper = dict( type='MMDistributedDataParallel', broadcast_buffers=False) default_args = dict( type='MMDistributedDataParallel', module=model, device_ids=[int(os.environ['LOCAL_RANK'])]) model = MODEL_WRAPPERS.build( self.model_wrapper, default_args=default_args) return model @master_only def save_checkpoint( self, filename: str, *, save_optimizer: bool = True, save_param_scheduler: bool = True, extra_ckpt: Optional[dict] = None, callback: Optional[Callable] = None, ) -> None: super().save_checkpoint( filename=filename, save_optimizer=save_optimizer, save_param_scheduler=save_param_scheduler, extra_ckpt=extra_ckpt, callback=callback)
# Copyright (c) OpenMMLab. All rights reserved. import os from typing import Callable, Optional import torch.nn as nn from torch.nn.parallel import DistributedDataParallel from mmengine.device import get_device from mmengine.dist import init_dist, is_distributed, master_only from mmengine.model import convert_sync_batchnorm, is_model_wrapper from mmengine.registry import MODEL_WRAPPERS, STRATEGIES from .single_device import SingleDeviceStrategy @STRATEGIES.register_module() class DDPStrategy(SingleDeviceStrategy): """Distribution strategy for distributed data parallel training. Args: model_wrapper (dict): Dict for model wrapper. Defaults to None. sync_bn (str): Type of sync batch norm. Defaults to None. Options are 'torch' and 'mmcv'. **kwargs: Other arguments for :class:`BaseStrategy`. """ def __init__( self, *, model_wrapper: Optional[dict] = None, sync_bn: Optional[str] = None, **kwargs, ): super().__init__(**kwargs) self.model_wrapper = model_wrapper self.sync_bn = sync_bn def _setup_distributed( # type: ignore self, launcher: str = 'pytorch', backend: str = 'nccl', **kwargs, ): """Setup distributed environment. Args: launcher (str): Way to launcher multi processes. Supported launchers are 'pytorch', 'mpi' and 'slurm'. backend (str): Communication Backends. Supported backends are 'nccl', 'gloo' and 'mpi'. Defaults to 'nccl'. **kwargs: Other arguments for :func:`init_dist`. """ if not is_distributed(): init_dist(launcher, backend, **kwargs) def convert_model(self, model: nn.Module) -> nn.Module: """convert all ``BatchNorm`` layers in the model to ``SyncBatchNorm`` (SyncBN) or ``mmcv.ops.sync_bn.SyncBatchNorm`` (MMSyncBN) layers. Args: model (nn.Module): Model to be converted. Returns: nn.Module: Converted model. """ if self.sync_bn is not None: try: model = convert_sync_batchnorm(model, self.sync_bn) except ValueError as e: self.logger.error('cfg.sync_bn should be "torch" or ' f'"mmcv", but got {self.sync_bn}') raise e return model def _wrap_model(self, model: nn.Module) -> DistributedDataParallel: """Wrap the model to :obj:``MMDistributedDataParallel`` or other custom distributed data-parallel module wrappers. Args: model (nn.Module): Model to be wrapped. Returns: nn.Module or DistributedDataParallel: nn.Module or subclass of ``DistributedDataParallel``. """ if is_model_wrapper(model): return model model = model.to(get_device()) model = self.convert_model(model) if self.model_wrapper is None: # set broadcast_buffers as False to keep compatibility with # OpenMMLab repos self.model_wrapper = dict( type='MMDistributedDataParallel', broadcast_buffers=False) default_args = dict( type='MMDistributedDataParallel', module=model, device_ids=[int(os.environ['LOCAL_RANK'])]) model = MODEL_WRAPPERS.build( self.model_wrapper, default_args=default_args) return model @master_only def save_checkpoint( self, filename: str, *, save_optimizer: bool = True, save_param_scheduler: bool = True, extra_ckpt: Optional[dict] = None, callback: Optional[Callable] = None, ) -> None: super().save_checkpoint( filename=filename, save_optimizer=save_optimizer, save_param_scheduler=save_param_scheduler, extra_ckpt=extra_ckpt, callback=callback)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union import torch from mmengine.registry import HOOKS from ..device import is_cuda_available, is_musa_available from .hook import Hook DATA_BATCH = Optional[Union[dict, tuple, list]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (dict or tuple or list, optional): Data from dataloader. outputs (dict or sequence, optional): Outputs from model. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: if is_cuda_available(): torch.cuda.empty_cache() elif is_musa_available(): torch.musa.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: if is_cuda_available(): torch.cuda.empty_cache() elif is_musa_available(): torch.musa.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: if is_cuda_available(): torch.cuda.empty_cache() elif is_musa_available(): torch.musa.empty_cache()
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union import torch from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Union[dict, tuple, list]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (dict or tuple or list, optional): Data from dataloader. outputs (dict or sequence, optional): Outputs from model. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: torch.cuda.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: torch.cuda.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: torch.cuda.empty_cache()
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.point_cloud.points_and_colors import PointsAndColors T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a file containing point cloud information. Can be remote (web) URL, or a local file path. """ def load( self: T, samples: int, multiple_geometries: bool = False, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'PointsAndColors': """ Load the data from the url into an `NdArray` containing point cloud information. --- ```python import numpy as np from docarray import BaseDoc from docarray.typing import PointCloud3DUrl class MyDoc(BaseDoc): point_cloud_url: PointCloud3DUrl doc = MyDoc(point_cloud_url="thttps://people.sc.fsu.edu/~jburkardt/data/obj/al.obj") # point_cloud = doc.point_cloud_url.load(samples=100) # assert isinstance(point_cloud, np.ndarray) # assert point_cloud.shape == (100, 3) ``` --- :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :param skip_materials: Skip materials if True, else load. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: np.ndarray representing the point cloud """ from docarray.documents.point_cloud.points_and_colors import PointsAndColors if not trimesh_args: trimesh_args = {} if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance( force='scene', skip_materials=skip_materials, **trimesh_args ) point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh', **trimesh_args) point_cloud = np.array(mesh.sample(samples)) points = parse_obj_as(NdArray, point_cloud) return PointsAndColors(points=points, colors=None) def display( self, samples: int = 10000, ) -> None: """ Plot point cloud from url. First, it loads the point cloud into a `PointsAndColors` object, and then calls display on it. The following is therefore equivalent: --- ```python import numpy as np from docarray import BaseDoc from docarray.documents import PointCloud3D pc = PointCloud3D(url="https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj") # option 1 # pc.url.display() # option 2 (equivalent) # pc.url.load(samples=10000).display() ``` --- :param samples: number of points to sample from the mesh. """ self.load(samples=samples, skip_materials=False).display()
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.point_cloud.points_and_colors import PointsAndColors T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a file containing point cloud information. Can be remote (web) URL, or a local file path. """ def load( self: T, samples: int, multiple_geometries: bool = False, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'PointsAndColors': """ Load the data from the url into an NdArray containing point cloud information. --- ```python import numpy as np from docarray import BaseDoc from docarray.typing import PointCloud3DUrl class MyDoc(BaseDoc): point_cloud_url: PointCloud3DUrl doc = MyDoc(point_cloud_url="toydata/tetrahedron.obj") # point_cloud = doc.point_cloud_url.load(samples=100) # assert isinstance(point_cloud, np.ndarray) # assert point_cloud.shape == (100, 3) ``` --- :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :param skip_materials: Skip materials if True, else load. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: np.ndarray representing the point cloud """ from docarray.documents.point_cloud.points_and_colors import PointsAndColors if not trimesh_args: trimesh_args = {} if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance( force='scene', skip_materials=skip_materials, **trimesh_args ) point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh', **trimesh_args) point_cloud = np.array(mesh.sample(samples)) points = parse_obj_as(NdArray, point_cloud) return PointsAndColors(points=points, colors=None) def display( self, samples: int = 10000, ) -> None: """ Plot point cloud from url. First, it loads the point cloud into a `PointsAndColors` object, and then calls display on it. The following is therefore equivalent: .. code-block:: python import numpy as np from docarray import BaseDoc from docarray.documents import PointCloud3D pc = PointCloud3D("toydata/tetrahedron.obj") # option 1 pc.url.display() # option 2 (equivalent) pc.url.load(samples=10000).display() :param samples: number of points to sample from the mesh. """ self.load(samples=samples, skip_materials=False).display()
""" ================================ ROC Curve with Visualization API ================================ Scikit-learn defines a simple API for creating visualizations for machine learning. The key features of this API is to allow for quick plotting and visual adjustments without recalculation. In this example, we will demonstrate how to use the visualization API by comparing ROC curves. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Load Data and Train a SVC # ------------------------- # First, we load the wine dataset and convert it to a binary classification # problem. Then, we train a support vector classifier on a training dataset. import matplotlib.pyplot as plt from sklearn.datasets import load_wine from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import RocCurveDisplay from sklearn.model_selection import train_test_split from sklearn.svm import SVC X, y = load_wine(return_X_y=True) y = y == 2 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) svc = SVC(random_state=42) svc.fit(X_train, y_train) # %% # Plotting the ROC Curve # ---------------------- # Next, we plot the ROC curve with a single call to # :func:`sklearn.metrics.RocCurveDisplay.from_estimator`. The returned # `svc_disp` object allows us to continue using the already computed ROC curve # for the SVC in future plots. svc_disp = RocCurveDisplay.from_estimator(svc, X_test, y_test) plt.show() # %% # Training a Random Forest and Plotting the ROC Curve # --------------------------------------------------- # We train a random forest classifier and create a plot comparing it to the SVC # ROC curve. Notice how `svc_disp` uses # :func:`~sklearn.metrics.RocCurveDisplay.plot` to plot the SVC ROC curve # without recomputing the values of the roc curve itself. Furthermore, we # pass `alpha=0.8` to the plot functions to adjust the alpha values of the # curves. rfc = RandomForestClassifier(n_estimators=10, random_state=42) rfc.fit(X_train, y_train) ax = plt.gca() rfc_disp = RocCurveDisplay.from_estimator( rfc, X_test, y_test, ax=ax, curve_kwargs=dict(alpha=0.8) ) svc_disp.plot(ax=ax, curve_kwargs=dict(alpha=0.8)) plt.show()
""" ================================ ROC Curve with Visualization API ================================ Scikit-learn defines a simple API for creating visualizations for machine learning. The key features of this API is to allow for quick plotting and visual adjustments without recalculation. In this example, we will demonstrate how to use the visualization API by comparing ROC curves. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Load Data and Train a SVC # ------------------------- # First, we load the wine dataset and convert it to a binary classification # problem. Then, we train a support vector classifier on a training dataset. import matplotlib.pyplot as plt from sklearn.datasets import load_wine from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import RocCurveDisplay from sklearn.model_selection import train_test_split from sklearn.svm import SVC X, y = load_wine(return_X_y=True) y = y == 2 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) svc = SVC(random_state=42) svc.fit(X_train, y_train) # %% # Plotting the ROC Curve # ---------------------- # Next, we plot the ROC curve with a single call to # :func:`sklearn.metrics.RocCurveDisplay.from_estimator`. The returned # `svc_disp` object allows us to continue using the already computed ROC curve # for the SVC in future plots. svc_disp = RocCurveDisplay.from_estimator(svc, X_test, y_test) plt.show() # %% # Training a Random Forest and Plotting the ROC Curve # --------------------------------------------------- # We train a random forest classifier and create a plot comparing it to the SVC # ROC curve. Notice how `svc_disp` uses # :func:`~sklearn.metrics.RocCurveDisplay.plot` to plot the SVC ROC curve # without recomputing the values of the roc curve itself. Furthermore, we # pass `alpha=0.8` to the plot functions to adjust the alpha values of the # curves. rfc = RandomForestClassifier(n_estimators=10, random_state=42) rfc.fit(X_train, y_train) ax = plt.gca() rfc_disp = RocCurveDisplay.from_estimator(rfc, X_test, y_test, ax=ax, alpha=0.8) svc_disp.plot(ax=ax, alpha=0.8) plt.show()
"""Argparser module for WorkerRuntime""" from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.runtimes.grpc_channel import ( mixin_grpc_channel_options_parser, ) from jina.parsers.orchestrate.runtimes.runtime import mixin_base_runtime_parser def mixin_worker_runtime_parser(parser): """Mixing in arguments required by :class:`WorkerRuntime` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='WorkerRuntime') from jina.constants import __default_executor__ gp.add_argument( '--uses', type=str, default=__default_executor__, help=''' The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface ''', ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `with` configuration in `uses` ''', ) gp.add_argument( '--uses-metas', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `metas` configuration in `uses` ''', ) gp.add_argument( '--uses-requests', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `requests` configuration in `uses` ''', ) gp.add_argument( '--uses-dynamic-batching', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `dynamic_batching` configuration in `uses` ''', ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=''' The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/concepts/executor/executor-files/>`__ ''', ) gp.add_argument( '--output-array-type', type=str, default=None, help=''' The type of array `tensor` and `embedding` will be serialized to. Supports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found `here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`. Defaults to retaining whatever type is returned by the Executor. ''', ) gp.add_argument( '--exit-on-exceptions', type=str, default=[], nargs='*', help='List of exceptions that will cause the Executor to shut down.', ) gp.add_argument( '--no-reduce', '--disable-reduce', action='store_true', default=False, help='Disable the built-in reduction mechanism. Set this if the reduction is to be handled by the Executor itself by operating on a `docs_matrix` or `docs_map`', ) mixin_base_runtime_parser(gp) mixin_grpc_channel_options_parser(gp)
"""Argparser module for WorkerRuntime""" from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.runtimes.runtime import mixin_base_runtime_parser def mixin_worker_runtime_parser(parser): """Mixing in arguments required by :class:`WorkerRuntime` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='WorkerRuntime') from jina.constants import __default_executor__ gp.add_argument( '--uses', type=str, default=__default_executor__, help=''' The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface ''', ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `with` configuration in `uses` ''', ) gp.add_argument( '--uses-metas', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `metas` configuration in `uses` ''', ) gp.add_argument( '--uses-requests', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `requests` configuration in `uses` ''', ) gp.add_argument( '--uses-dynamic-batching', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `dynamic_batching` configuration in `uses` ''', ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=''' The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/concepts/executor/executor-files/>`__ ''', ) gp.add_argument( '--output-array-type', type=str, default=None, help=''' The type of array `tensor` and `embedding` will be serialized to. Supports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found `here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`. Defaults to retaining whatever type is returned by the Executor. ''', ) gp.add_argument( '--exit-on-exceptions', type=str, default=[], nargs='*', help='List of exceptions that will cause the Executor to shut down.', ) gp.add_argument( '--no-reduce', '--disable-reduce', action='store_true', default=False, help='Disable the built-in reduction mechanism. Set this if the reduction is to be handled by the Executor itself by operating on a `docs_matrix` or `docs_map`', ) mixin_base_runtime_parser(gp)
import pathlib from typing import Any, Union from torchdata.datapipes.iter import IterDataPipe, Mapper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from torchvision.prototype.tv_tensors import Label from .._api import register_dataset, register_info NAME = "eurosat" @register_info(NAME) def _info() -> dict[str, Any]: return dict( categories=( "AnnualCrop", "Forest", "HerbaceousVegetation", "Highway", "Industrial", "Pasture", "PermanentCrop", "Residential", "River", "SeaLake", ) ) @register_dataset(NAME) class EuroSAT(Dataset): """EuroSAT Dataset. homepage="https://github.com/phelber/eurosat", """ def __init__(self, root: Union[str, pathlib.Path], *, skip_integrity_check: bool = False) -> None: self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> list[OnlineResource]: return [ HttpResource( "https://madm.dfki.de/files/sentinel/EuroSAT.zip", sha256="8ebea626349354c5328b142b96d0430e647051f26efc2dc974c843f25ecf70bd", ) ] def _prepare_sample(self, data: tuple[str, Any]) -> dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _datapipe(self, resource_dps: list[IterDataPipe]) -> IterDataPipe[dict[str, Any]]: dp = resource_dps[0] dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 27_000
import pathlib from typing import Any, Dict, List, Tuple, Union from torchdata.datapipes.iter import IterDataPipe, Mapper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from torchvision.prototype.tv_tensors import Label from .._api import register_dataset, register_info NAME = "eurosat" @register_info(NAME) def _info() -> Dict[str, Any]: return dict( categories=( "AnnualCrop", "Forest", "HerbaceousVegetation", "Highway", "Industrial", "Pasture", "PermanentCrop", "Residential", "River", "SeaLake", ) ) @register_dataset(NAME) class EuroSAT(Dataset): """EuroSAT Dataset. homepage="https://github.com/phelber/eurosat", """ def __init__(self, root: Union[str, pathlib.Path], *, skip_integrity_check: bool = False) -> None: self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: return [ HttpResource( "https://madm.dfki.de/files/sentinel/EuroSAT.zip", sha256="8ebea626349354c5328b142b96d0430e647051f26efc2dc974c843f25ecf70bd", ) ] def _prepare_sample(self, data: Tuple[str, Any]) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 27_000
import json import os from typing import Dict import torch from torch import Tensor, nn class LayerNorm(nn.Module): def __init__(self, dimension: int): super(LayerNorm, self).__init__() self.dimension = dimension self.norm = nn.LayerNorm(dimension) def forward(self, features: Dict[str, Tensor]): features["sentence_embedding"] = self.norm(features["sentence_embedding"]) return features def get_sentence_embedding_dimension(self): return self.dimension def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump({"dimension": self.dimension}, fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = LayerNorm(**config) model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
import torch from torch import Tensor from torch import nn from typing import Dict import os import json class LayerNorm(nn.Module): def __init__(self, dimension: int): super(LayerNorm, self).__init__() self.dimension = dimension self.norm = nn.LayerNorm(dimension) def forward(self, features: Dict[str, Tensor]): features["sentence_embedding"] = self.norm(features["sentence_embedding"]) return features def get_sentence_embedding_dimension(self): return self.dimension def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump({"dimension": self.dimension}, fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = LayerNorm(**config) model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
import os # When using jax.experimental.enable_x64 in unit test, we want to keep the # default dtype with 32 bits, aligning it with Keras's default. os.environ["JAX_DEFAULT_DTYPE_BITS"] = "32" try: # When using torch and tensorflow, torch needs to be imported first, # otherwise it will segfault upon import. This should force the torch # import to happen first for all tests. import torch # noqa: F401 except ImportError: pass import pytest # noqa: E402 from keras.src.backend import backend # noqa: E402 def pytest_configure(config): config.addinivalue_line( "markers", "requires_trainable_backend: mark test for trainable backend only", ) def pytest_collection_modifyitems(config, items): with open( "keras/src/backend/openvino/excluded_concrete_tests.txt", "r" ) as file: openvino_skipped_tests = file.readlines() # it is necessary to check if stripped line is not empty # and exclude such lines openvino_skipped_tests = [ line.strip() for line in openvino_skipped_tests if line.strip() ] requires_trainable_backend = pytest.mark.skipif( backend() == "numpy" or backend() == "openvino", reason="Trainer not implemented for NumPy and OpenVINO backend.", ) for item in items: if "requires_trainable_backend" in item.keywords: item.add_marker(requires_trainable_backend) # also, skip concrete tests for openvino, listed in the special file # this is more granular mechanism to exclude tests rather # than using --ignore option for skipped_test in openvino_skipped_tests: if skipped_test in item.nodeid: item.add_marker( skip_if_backend( "openvino", "Not supported operation by openvino backend", ) ) def skip_if_backend(given_backend, reason): return pytest.mark.skipif(backend() == given_backend, reason=reason)
import os # When using jax.experimental.enable_x64 in unit test, we want to keep the # default dtype with 32 bits, aligning it with Keras's default. os.environ["JAX_DEFAULT_DTYPE_BITS"] = "32" try: # When using torch and tensorflow, torch needs to be imported first, # otherwise it will segfault upon import. This should force the torch # import to happen first for all tests. import torch # noqa: F401 except ImportError: pass import pytest # noqa: E402 from keras.src.backend import backend # noqa: E402 def pytest_configure(config): config.addinivalue_line( "markers", "requires_trainable_backend: mark test for trainable backend only", ) def pytest_collection_modifyitems(config, items): requires_trainable_backend = pytest.mark.skipif( backend() == "numpy" or backend() == "openvino", reason="Trainer not implemented for NumPy and OpenVINO backend.", ) for item in items: if "requires_trainable_backend" in item.keywords: item.add_marker(requires_trainable_backend) def skip_if_backend(given_backend, reason): return pytest.mark.skipif(backend() == given_backend, reason=reason)
# Copyright (c) OpenMMLab. All rights reserved. from .det_data_sample import DetDataSample, OptSampleList, SampleList from .track_data_sample import (OptTrackSampleList, TrackDataSample, TrackSampleList) __all__ = [ 'DetDataSample', 'SampleList', 'OptSampleList', 'TrackDataSample', 'TrackSampleList', 'OptTrackSampleList' ]
# Copyright (c) OpenMMLab. All rights reserved. from .det_data_sample import DetDataSample, OptSampleList, SampleList __all__ = ['DetDataSample', 'SampleList', 'OptSampleList']
import PIL.Image import torch from torchvision import tv_tensors from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.RandomErase` for details.""" if torch.jit.is_scripting(): return erase_image(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, tv_tensors.Image) def erase_image( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def _erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, tv_tensors.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
import PIL.Image import torch from torchvision import tv_tensors from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: """[BETA] See :class:`~torchvision.transforms.v2.RandomErase` for details.""" if torch.jit.is_scripting(): return erase_image(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, tv_tensors.Image) def erase_image( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def _erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, tv_tensors.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
from enum import Enum from fsspec import AbstractFileSystem from pathlib import Path from typing import Any, Dict, Iterable, Optional, Protocol, runtime_checkable import json import uuid from docling.document_converter import DocumentConverter from docling_core.types import DoclingDocument as DLDocument from llama_index.core.readers.base import BasePydanticReader from llama_index.core import Document as LIDocument from pydantic import Field class DoclingReader(BasePydanticReader): """Docling Reader. Extracts PDF, DOCX, and other document formats into LlamaIndex Documents as either Markdown or JSON-serialized Docling native format. Args: export_type (Literal["markdown", "json"], optional): The type to export to. Defaults to "markdown". doc_converter (DocumentConverter, optional): The Docling converter to use. Default factory: `DocumentConverter`. md_export_kwargs (Dict[str, Any], optional): Kwargs to use in case of markdown export. Defaults to `{"image_placeholder": ""}`. id_func: (DocIDGenCallable, optional): Doc ID generation function to use. Default: `_uuid4_doc_id_gen` """ class ExportType(str, Enum): MARKDOWN = "markdown" JSON = "json" @runtime_checkable class DocIDGenCallable(Protocol): def __call__(self, doc: DLDocument, file_path: str | Path) -> str: ... @staticmethod def _uuid4_doc_id_gen(doc: DLDocument, file_path: str | Path) -> str: return str(uuid.uuid4()) export_type: ExportType = ExportType.MARKDOWN doc_converter: DocumentConverter = Field(default_factory=DocumentConverter) md_export_kwargs: Dict[str, Any] = {"image_placeholder": ""} id_func: DocIDGenCallable = _uuid4_doc_id_gen def lazy_load_data( self, file_path: str | Path | Iterable[str] | Iterable[Path], extra_info: dict | None = None, fs: Optional[AbstractFileSystem] = None, ) -> Iterable[LIDocument]: """Lazily load from given source. Args: file_path (str | Path | Iterable[str] | Iterable[Path]): Document file source as single str (URL or local file) or pathlib.Path — or iterable thereof extra_info (dict | None, optional): Any pre-existing metadata to include. Defaults to None. Returns: Iterable[LIDocument]: Iterable over the created LlamaIndex documents. """ file_paths = ( file_path if isinstance(file_path, Iterable) and not isinstance(file_path, str) else [file_path] ) for source in file_paths: dl_doc = self.doc_converter.convert(str(source)).document text: str if self.export_type == self.ExportType.MARKDOWN: text = dl_doc.export_to_markdown(**self.md_export_kwargs) elif self.export_type == self.ExportType.JSON: text = json.dumps(dl_doc.export_to_dict()) else: raise ValueError(f"Unexpected export type: {self.export_type}") li_doc = LIDocument( doc_id=self.id_func(doc=dl_doc, file_path=source), text=text, ) li_doc.metadata = extra_info or {} yield li_doc
from enum import Enum import json from pathlib import Path from typing import Any, Dict, Iterable, Protocol, runtime_checkable import uuid from docling.document_converter import DocumentConverter from docling_core.types import DoclingDocument as DLDocument from llama_index.core.readers.base import BasePydanticReader from llama_index.core import Document as LIDocument from pydantic import Field class DoclingReader(BasePydanticReader): """Docling Reader. Extracts PDF, DOCX, and other document formats into LlamaIndex Documents as either Markdown or JSON-serialized Docling native format. Args: export_type (Literal["markdown", "json"], optional): The type to export to. Defaults to "markdown". doc_converter (DocumentConverter, optional): The Docling converter to use. Default factory: `DocumentConverter`. md_export_kwargs (Dict[str, Any], optional): Kwargs to use in case of markdown export. Defaults to `{"image_placeholder": ""}`. id_func: (DocIDGenCallable, optional): Doc ID generation function to use. Default: `_uuid4_doc_id_gen` """ class ExportType(str, Enum): MARKDOWN = "markdown" JSON = "json" @runtime_checkable class DocIDGenCallable(Protocol): def __call__(self, doc: DLDocument, file_path: str | Path) -> str: ... @staticmethod def _uuid4_doc_id_gen(doc: DLDocument, file_path: str | Path) -> str: return str(uuid.uuid4()) export_type: ExportType = ExportType.MARKDOWN doc_converter: DocumentConverter = Field(default_factory=DocumentConverter) md_export_kwargs: Dict[str, Any] = {"image_placeholder": ""} id_func: DocIDGenCallable = _uuid4_doc_id_gen def lazy_load_data( self, file_path: str | Path | Iterable[str] | Iterable[Path], extra_info: dict | None = None, ) -> Iterable[LIDocument]: """Lazily load from given source. Args: file_path (str | Path | Iterable[str] | Iterable[Path]): Document file source as single str (URL or local file) or pathlib.Path — or iterable thereof extra_info (dict | None, optional): Any pre-existing metadata to include. Defaults to None. Returns: Iterable[LIDocument]: Iterable over the created LlamaIndex documents. """ file_paths = ( file_path if isinstance(file_path, Iterable) and not isinstance(file_path, str) else [file_path] ) for source in file_paths: dl_doc = self.doc_converter.convert(source).document text: str if self.export_type == self.ExportType.MARKDOWN: text = dl_doc.export_to_markdown(**self.md_export_kwargs) elif self.export_type == self.ExportType.JSON: text = json.dumps(dl_doc.export_to_dict()) else: raise ValueError(f"Unexpected export type: {self.export_type}") li_doc = LIDocument( doc_id=self.id_func(doc=dl_doc, file_path=source), text=text, ) li_doc.metadata = extra_info or {} yield li_doc
import os import pytest from catboost_ranker import CatboostRanker from jina import Flow @pytest.fixture def flow(): return Flow().add( uses=CatboostRanker, uses_with={ 'query_features': ['brand', 'price'], 'match_features': ['brand', 'price'], 'relevance_label': 'relevance', }, ) def test_train_dump_load_search_flow( flow, documents_to_train_price_sensitive_model, tmpdir, documents_without_label_random_brand, ): model_path = str(tmpdir) + '/model.cbm' with flow as f: f.post('/train', inputs=documents_to_train_price_sensitive_model) rv = f.search(documents_without_label_random_brand, return_results=True) relevances_before_dump = [] for doc in rv[0].data.docs: for match in doc.matches: assert isinstance(match.scores['relevance'].value, float) relevances_before_dump.append(match.scores['relevance'].value) f.post('/dump', parameters={'model_path': model_path}) assert os.path.exists(model_path) f.post('/load', parameters={'model_path': model_path}) # ensure after load produce the same result rv = f.search(documents_without_label_random_brand, return_results=True) relevances_after_dump = [] for doc in rv[0].data.docs: for match in doc.matches: assert isinstance(match.scores['relevance'].value, float) relevances_after_dump.append(match.scores['relevance'].value) assert relevances_before_dump == relevances_after_dump
import os import pytest from jina import Flow from ...catboost_ranker import CatboostRanker @pytest.fixture def flow(): return Flow().add( uses=CatboostRanker, uses_with={ 'query_features': ['brand', 'price'], 'match_features': ['brand', 'price'], 'relevance_label': 'relevance', }, ) def test_train_dump_load_search_flow( flow, documents_to_train_price_sensitive_model, tmpdir, documents_without_label_random_brand, ): model_path = str(tmpdir) + '/model.cbm' with flow as f: f.post('/train', inputs=documents_to_train_price_sensitive_model) rv = f.search(documents_without_label_random_brand, return_results=True) relevances_before_dump = [] for doc in rv[0].data.docs: for match in doc.matches: assert isinstance(match.scores['relevance'].value, float) relevances_before_dump.append(match.scores['relevance'].value) f.post('/dump', parameters={'model_path': model_path}) assert os.path.exists(model_path) f.post('/load', parameters={'model_path': model_path}) # ensure after load produce the same result rv = f.search(documents_without_label_random_brand, return_results=True) relevances_after_dump = [] for doc in rv[0].data.docs: for match in doc.matches: assert isinstance(match.scores['relevance'].value, float) relevances_after_dump.append(match.scores['relevance'].value) assert relevances_before_dump == relevances_after_dump
import numpy as np from .tensor import Tensor Embedding = Tensor
import numpy as np Tensor = np.ndarray Embedding = Tensor
"""Utilities for working with pydantic models. :private: """ def get_pydantic_major_version() -> int: """Get the major version of Pydantic.""" try: import pydantic return int(pydantic.__version__.split(".")[0]) except ImportError: return 0 PYDANTIC_MAJOR_VERSION = get_pydantic_major_version()
""" Utilities for working with pydantic models. :private: """ def get_pydantic_major_version() -> int: """Get the major version of Pydantic.""" try: import pydantic return int(pydantic.__version__.split(".")[0]) except ImportError: return 0 PYDANTIC_MAJOR_VERSION = get_pydantic_major_version()
from collections.abc import Iterator from typing import Iterable class tracked_str(str): origins = {} def set_origin(self, origin: str): if super().__repr__() not in self.origins: self.origins[super().__repr__()] = origin def get_origin(self): return self.origins.get(super().__repr__(), str(self)) def __repr__(self) -> str: if super().__repr__() not in self.origins or self.origins[super().__repr__()] == self: return super().__repr__() else: return f"{str(self)} (origin={self.origins[super().__repr__()]})" class tracked_list(list): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.last_item = None def __iter__(self) -> Iterator: for x in super().__iter__(): self.last_item = x yield x self.last_item = None def __repr__(self) -> str: if self.last_item is None: return super().__repr__() else: return f"{self.__class__.__name__}(current={self.last_item})" class TrackedIterableFromGenerator(Iterable): """Utility class to create an iterable from a generator function, in order to reset the generator when needed.""" def __init__(self, generator, *args): super().__init__() self.generator = generator self.args = args self.last_item = None def __iter__(self): for x in self.generator(*self.args): self.last_item = x yield x self.last_item = None def __repr__(self) -> str: if self.last_item is None: return super().__repr__() else: return f"{self.__class__.__name__}(current={self.last_item})" def __reduce__(self): return (self.__class__, (self.generator, *self.args))
from collections.abc import Iterator from typing import Iterable class tracked_str(str): origins = {} def set_origin(self, origin: str): if super().__repr__() not in self.origins: self.origins[super().__repr__()] = origin def get_origin(self): return self.origins.get(super().__repr__(), str(self)) def __repr__(self) -> str: if super().__repr__() not in self.origins or self.origins[super().__repr__()] == self: return super().__repr__() else: return f"{str(self)} (origin={self.origins[super().__repr__()]})" class tracked_list(list): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.last_item = None def __iter__(self) -> Iterator: for x in super().__iter__(): self.last_item = x yield x self.last_item = None def __repr__(self) -> str: if self.last_item is None: return super().__repr__() else: return f"{self.__class__.__name__}(current={self.last_item})" class TrackedIterable(Iterable): def __init__(self) -> None: super().__init__() self.last_item = None def __repr__(self) -> str: if self.last_item is None: super().__repr__() else: return f"{self.__class__.__name__}(current={self.last_item})"
from typing import TYPE_CHECKING, Optional, Dict if TYPE_CHECKING: from ... import DocumentArray class PostMixin: """Helper functions for posting DocumentArray to Jina Flow.""" def post( self, host: str, show_progress: bool = False, batch_size: Optional[int] = None, parameters: Optional[Dict] = None, ) -> 'DocumentArray': """Posting itself to a remote Flow/Sandbox and get the modified DocumentArray back :param host: a host string. Can be one of the following: - `grpc://192.168.0.123:8080/endpoint` - `ws://192.168.0.123:8080/endpoint` - `http://192.168.0.123:8080/endpoint` - `jinahub://Hello/endpoint` - `jinahub+docker://Hello/endpoint` - `jinahub+sandbox://Hello/endpoint` :param show_progress: if to show a progressbar :param batch_size: number of Document on each request :param parameters: parameters to send in the request :return: the new DocumentArray returned from remote """ if not self: return from urllib.parse import urlparse r = urlparse(host) _on = r.path or '/' _port = r.port or None standardized_host = ( r._replace(netloc=r.netloc.replace(f':{r.port}', '')) ._replace(path='') .geturl() ) batch_size = batch_size or len(self) _scheme = r.scheme _tls = False if _scheme in ('grpcs', 'https', 'wss'): _scheme = _scheme[:-1] _tls = True if _scheme == 'ws': _scheme = 'websocket' # temp fix for the core if _scheme.startswith('jinahub'): from jina import Flow f = Flow(quiet=True, prefetch=1).add(uses=standardized_host) with f: return f.post( _on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, ) elif _scheme in ('grpc', 'http', 'ws', 'websocket'): from jina import Client c = Client(host=r.hostname) return c.post( _on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, ) else: raise ValueError(f'unsupported scheme: {r.scheme}')
from typing import TYPE_CHECKING, Optional, Dict if TYPE_CHECKING: from ... import DocumentArray class PostMixin: """Helper functions for posting DocumentArray to Jina Flow.""" def post( self, host: str, show_progress: bool = False, batch_size: Optional[int] = None, parameters: Optional[Dict] = None, ) -> 'DocumentArray': """Posting itself to a remote Flow/Sandbox and get the modified DocumentArray back :param host: a host string. Can be one of the following: - `grpc://192.168.0.123:8080/endpoint` - `ws://192.168.0.123:8080/endpoint` - `http://192.168.0.123:8080/endpoint` - `jinahub://Hello/endpoint` - `jinahub+docker://Hello/endpoint` - `jinahub+sandbox://Hello/endpoint` :param show_progress: if to show a progressbar :param batch_size: number of Document on each request :param parameters: parameters to send in the request :return: the new DocumentArray returned from remote """ if not self: return from urllib.parse import urlparse r = urlparse(host) _on = r.path or '/' _port = r.port or None standardized_host = ( r._replace(netloc=r.netloc.replace(f':{r.port}', '')) ._replace(path='') .geturl() ) batch_size = batch_size or len(self) _scheme = r.scheme _tls = False if _scheme in ('grpcs', 'https', 'wss'): _scheme = _scheme[:-1] _tls = True if _scheme == 'ws': _scheme = 'websocket' # temp fix for the core if _scheme.startswith('jinahub'): from jina import Flow f = Flow(quiet=True, prefetch=1).add(uses=standardized_host) with f: return f.post( _on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, ) elif _scheme in ('grpc', 'http', 'ws', 'websocket'): if _port is None: raise ValueError(f'can not determine port from {host}') from jina import Client c = Client(host=r.hostname, port=_port, protocol=_scheme, https=_tls) return c.post( _on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, ) else: raise ValueError(f'unsupported scheme: {r.scheme}')
import os import warnings from modulefinder import Module import torch # Don't re-order these, we need to load the _C extension (done when importing # .extensions) before entering _meta_registrations. from .extension import _HAS_OPS # usort:skip from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils # usort:skip try: from .version import __version__ # noqa: F401 except ImportError: pass # Check if torchvision is being imported within the root folder if not _HAS_OPS and os.path.dirname(os.path.realpath(__file__)) == os.path.join( os.path.realpath(os.getcwd()), "torchvision" ): message = ( "You are importing torchvision within its own root folder ({}). " "This is not expected to work and may give errors. Please exit the " "torchvision project source and relaunch your python interpreter." ) warnings.warn(message.format(os.getcwd())) _image_backend = "PIL" _video_backend = "pyav" def set_image_backend(backend): """ Specifies the package used to load images. Args: backend (string): Name of the image backend. one of {'PIL', 'accimage'}. The :mod:`accimage` package uses the Intel IPP library. It is generally faster than PIL, but does not support as many operations. """ global _image_backend if backend not in ["PIL", "accimage"]: raise ValueError(f"Invalid backend '{backend}'. Options are 'PIL' and 'accimage'") _image_backend = backend def get_image_backend(): """ Gets the name of the package used to load images """ return _image_backend def set_video_backend(backend): """ Specifies the package used to decode videos. Args: backend (string): Name of the video backend. one of {'pyav', 'video_reader'}. The :mod:`pyav` package uses the 3rd party PyAv library. It is a Pythonic binding for the FFmpeg libraries. The :mod:`video_reader` package includes a native C++ implementation on top of FFMPEG libraries, and a python API of TorchScript custom operator. It generally decodes faster than :mod:`pyav`, but is perhaps less robust. .. note:: Building with FFMPEG is disabled by default in the latest `main`. If you want to use the 'video_reader' backend, please compile torchvision from source. """ global _video_backend if backend not in ["pyav", "video_reader", "cuda"]: raise ValueError("Invalid video backend '%s'. Options are 'pyav', 'video_reader' and 'cuda'" % backend) if backend == "video_reader" and not io._HAS_CPU_VIDEO_DECODER: # TODO: better messages message = "video_reader video backend is not available. Please compile torchvision from source and try again" raise RuntimeError(message) elif backend == "cuda" and not io._HAS_GPU_VIDEO_DECODER: # TODO: better messages message = "cuda video backend is not available." raise RuntimeError(message) else: _video_backend = backend def get_video_backend(): """ Returns the currently active video backend used to decode videos. Returns: str: Name of the video backend. one of {'pyav', 'video_reader'}. """ return _video_backend def _is_tracing(): return torch._C._get_tracing_state() def disable_beta_transforms_warning(): # Noop, only exists to avoid breaking existing code. # See https://github.com/pytorch/vision/issues/7896 pass
import os import warnings from modulefinder import Module import torch # Don't re-order these, we need to load the _C extension (done when importing # .extensions) before entering _meta_registrations. from .extension import _HAS_OPS # usort:skip from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils # usort:skip try: from .version import __version__ # noqa: F401 except ImportError: pass # Check if torchvision is being imported within the root folder if not _HAS_OPS and os.path.dirname(os.path.realpath(__file__)) == os.path.join( os.path.realpath(os.getcwd()), "torchvision" ): message = ( "You are importing torchvision within its own root folder ({}). " "This is not expected to work and may give errors. Please exit the " "torchvision project source and relaunch your python interpreter." ) warnings.warn(message.format(os.getcwd())) _image_backend = "PIL" _video_backend = "pyav" def set_image_backend(backend): """ Specifies the package used to load images. Args: backend (string): Name of the image backend. one of {'PIL', 'accimage'}. The :mod:`accimage` package uses the Intel IPP library. It is generally faster than PIL, but does not support as many operations. """ global _image_backend if backend not in ["PIL", "accimage"]: raise ValueError(f"Invalid backend '{backend}'. Options are 'PIL' and 'accimage'") _image_backend = backend def get_image_backend(): """ Gets the name of the package used to load images """ return _image_backend def set_video_backend(backend): """ Specifies the package used to decode videos. Args: backend (string): Name of the video backend. one of {'pyav', 'video_reader'}. The :mod:`pyav` package uses the 3rd party PyAv library. It is a Pythonic binding for the FFmpeg libraries. The :mod:`video_reader` package includes a native C++ implementation on top of FFMPEG libraries, and a python API of TorchScript custom operator. It generally decodes faster than :mod:`pyav`, but is perhaps less robust. .. note:: Building with FFMPEG is disabled by default in the latest `main`. If you want to use the 'video_reader' backend, please compile torchvision from source. """ global _video_backend if backend not in ["pyav", "video_reader", "cuda"]: raise ValueError("Invalid video backend '%s'. Options are 'pyav', 'video_reader' and 'cuda'" % backend) if backend == "video_reader" and not io._HAS_VIDEO_OPT: # TODO: better messages message = "video_reader video backend is not available. Please compile torchvision from source and try again" raise RuntimeError(message) elif backend == "cuda" and not io._HAS_GPU_VIDEO_DECODER: # TODO: better messages message = "cuda video backend is not available." raise RuntimeError(message) else: _video_backend = backend def get_video_backend(): """ Returns the currently active video backend used to decode videos. Returns: str: Name of the video backend. one of {'pyav', 'video_reader'}. """ return _video_backend def _is_tracing(): return torch._C._get_tracing_state() def disable_beta_transforms_warning(): # Noop, only exists to avoid breaking existing code. # See https://github.com/pytorch/vision/issues/7896 pass
from jina.serve.runtimes.gateway.gateway import BaseGateway from jina.serve.runtimes.servers.websocket import WebSocketServer __all__ = ['WebSocketGateway'] class WebSocketGateway(WebSocketServer, BaseGateway): """ :class:`WebSocketGateway` is a WebSocketServer that can be loaded from YAML as any other Gateway """ pass
from jina.serve.runtimes.gateway.gateway import BaseGateway from jina.serve.runtimes.servers.websocket import WebSocketServer __all__ = ['WebSocketGateway'] class WebSocketGateway(WebSocketServer, BaseGateway): """ :class:`WebSocketGateway` is a WebSocketServer that can be loaded from YAML as any other Gateway """ pass
from typing import List import datasets from datasets.tasks import ImageClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class ImageFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """BuilderConfig for ImageFolder.""" drop_labels: bool = None drop_metadata: bool = None class ImageFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Image BASE_COLUMN_NAME = "image" BUILDER_CONFIG_CLASS = ImageFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = ImageClassification(image_column="image", label_column="label") # Obtained with: # ``` # import PIL.Image # IMAGE_EXTENSIONS = [] # PIL.Image.init() # for ext, format in PIL.Image.EXTENSION.items(): # if format in PIL.Image.OPEN: # IMAGE_EXTENSIONS.append(ext[1:]) # ``` # We intentionally do not run this code on launch because: # (1) Pillow is an optional dependency, so importing Pillow in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic IMAGE_EXTENSIONS = [ ".blp", ".bmp", ".dib", ".bufr", ".cur", ".pcx", ".dcx", ".dds", ".ps", ".eps", ".fit", ".fits", ".fli", ".flc", ".ftc", ".ftu", ".gbr", ".gif", ".grib", ".h5", ".hdf", ".png", ".apng", ".jp2", ".j2k", ".jpc", ".jpf", ".jpx", ".j2c", ".icns", ".ico", ".im", ".iim", ".tif", ".tiff", ".jfif", ".jpe", ".jpg", ".jpeg", ".mpg", ".mpeg", ".msp", ".pcd", ".pxr", ".pbm", ".pgm", ".ppm", ".pnm", ".psd", ".bw", ".rgb", ".rgba", ".sgi", ".ras", ".tga", ".icb", ".vda", ".vst", ".webp", ".wmf", ".emf", ".xbm", ".xpm", ] ImageFolder.EXTENSIONS = IMAGE_EXTENSIONS
from typing import List import datasets from datasets.tasks import ImageClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class ImageFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """BuilderConfig for ImageFolder.""" drop_labels: bool = None drop_metadata: bool = None class ImageFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Image() BASE_COLUMN_NAME = "image" BUILDER_CONFIG_CLASS = ImageFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = ImageClassification(image_column="image", label_column="label") # Obtained with: # ``` # import PIL.Image # IMAGE_EXTENSIONS = [] # PIL.Image.init() # for ext, format in PIL.Image.EXTENSION.items(): # if format in PIL.Image.OPEN: # IMAGE_EXTENSIONS.append(ext[1:]) # ``` # We intentionally do not run this code on launch because: # (1) Pillow is an optional dependency, so importing Pillow in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic IMAGE_EXTENSIONS = [ ".blp", ".bmp", ".dib", ".bufr", ".cur", ".pcx", ".dcx", ".dds", ".ps", ".eps", ".fit", ".fits", ".fli", ".flc", ".ftc", ".ftu", ".gbr", ".gif", ".grib", ".h5", ".hdf", ".png", ".apng", ".jp2", ".j2k", ".jpc", ".jpf", ".jpx", ".j2c", ".icns", ".ico", ".im", ".iim", ".tif", ".tiff", ".jfif", ".jpe", ".jpg", ".jpeg", ".mpg", ".mpeg", ".msp", ".pcd", ".pxr", ".pbm", ".pgm", ".ppm", ".pnm", ".psd", ".bw", ".rgb", ".rgba", ".sgi", ".ras", ".tga", ".icb", ".vda", ".vst", ".webp", ".wmf", ".emf", ".xbm", ".xpm", ] ImageFolder.EXTENSIONS = IMAGE_EXTENSIONS
# Copyright (c) OpenMMLab. All rights reserved. from .base_boxes import BaseBoxes from .bbox_overlaps import bbox_overlaps from .box_type import (autocast_box_type, convert_box_type, get_box_type, register_box, register_box_converter) from .horizontal_boxes import HorizontalBoxes from .transforms import bbox_cxcyah_to_xyxy # noqa: E501 from .transforms import (bbox2corner, bbox2distance, bbox2result, bbox2roi, bbox_cxcywh_to_xyxy, bbox_flip, bbox_mapping, bbox_mapping_back, bbox_project, bbox_rescale, bbox_xyxy_to_cxcyah, bbox_xyxy_to_cxcywh, cat_boxes, corner2bbox, distance2bbox, empty_box_as, find_inside_bboxes, get_box_tensor, get_box_wh, roi2bbox, scale_boxes, stack_boxes) __all__ = [ 'bbox_overlaps', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back', 'bbox2roi', 'roi2bbox', 'bbox2result', 'distance2bbox', 'bbox2distance', 'bbox_rescale', 'bbox_cxcywh_to_xyxy', 'bbox_xyxy_to_cxcywh', 'find_inside_bboxes', 'bbox2corner', 'corner2bbox', 'bbox_project', 'BaseBoxes', 'convert_box_type', 'get_box_type', 'register_box', 'register_box_converter', 'HorizontalBoxes', 'autocast_box_type', 'cat_boxes', 'stack_boxes', 'scale_boxes', 'get_box_wh', 'get_box_tensor', 'empty_box_as', 'bbox_xyxy_to_cxcyah', 'bbox_cxcyah_to_xyxy' ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_boxes import BaseBoxes from .bbox_overlaps import bbox_overlaps from .box_type import (autocast_box_type, convert_box_type, get_box_type, register_box, register_box_converter) from .horizontal_boxes import HorizontalBoxes from .transforms import (bbox2corner, bbox2distance, bbox2result, bbox2roi, bbox_cxcywh_to_xyxy, bbox_flip, bbox_mapping, bbox_mapping_back, bbox_project, bbox_rescale, bbox_xyxy_to_cxcywh, cat_boxes, corner2bbox, distance2bbox, empty_box_as, find_inside_bboxes, get_box_tensor, get_box_wh, roi2bbox, scale_boxes, stack_boxes) __all__ = [ 'bbox_overlaps', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back', 'bbox2roi', 'roi2bbox', 'bbox2result', 'distance2bbox', 'bbox2distance', 'bbox_rescale', 'bbox_cxcywh_to_xyxy', 'bbox_xyxy_to_cxcywh', 'find_inside_bboxes', 'bbox2corner', 'corner2bbox', 'bbox_project', 'BaseBoxes', 'convert_box_type', 'get_box_type', 'register_box', 'register_box_converter', 'HorizontalBoxes', 'autocast_box_type', 'cat_boxes', 'stack_boxes', 'scale_boxes', 'get_box_wh', 'get_box_tensor', 'empty_box_as' ]
from pydantic import BaseModel from backend.data.block import ( Block, BlockCategory, BlockOutput, BlockSchema, BlockWebhookConfig, ) from backend.data.model import SchemaField from backend.integrations.providers import ProviderName from backend.util import settings from backend.util.settings import AppEnvironment, BehaveAs from ._api import ( TEST_CREDENTIALS, TEST_CREDENTIALS_INPUT, Slant3DCredentialsField, Slant3DCredentialsInput, ) class Slant3DTriggerBase: """Base class for Slant3D webhook triggers""" class Input(BlockSchema): credentials: Slant3DCredentialsInput = Slant3DCredentialsField() # Webhook URL is handled by the webhook system payload: dict = SchemaField(hidden=True, default_factory=dict) class Output(BlockSchema): payload: dict = SchemaField( description="The complete webhook payload received from Slant3D" ) order_id: str = SchemaField(description="The ID of the affected order") error: str = SchemaField( description="Error message if payload processing failed" ) def run(self, input_data: Input, **kwargs) -> BlockOutput: yield "payload", input_data.payload yield "order_id", input_data.payload["orderId"] class Slant3DOrderWebhookBlock(Slant3DTriggerBase, Block): """Block for handling Slant3D order webhooks""" class Input(Slant3DTriggerBase.Input): class EventsFilter(BaseModel): """ Currently Slant3D only supports 'SHIPPED' status updates Could be expanded in the future with more status types """ shipped: bool = True events: EventsFilter = SchemaField( title="Events", description="Order status events to subscribe to", default=EventsFilter(shipped=True), ) class Output(Slant3DTriggerBase.Output): status: str = SchemaField(description="The new status of the order") tracking_number: str = SchemaField( description="The tracking number for the shipment" ) carrier_code: str = SchemaField(description="The carrier code (e.g., 'usps')") def __init__(self): super().__init__( id="8a74c2ad-0104-4640-962f-26c6b69e58cd", description=( "This block triggers on Slant3D order status updates and outputs " "the event details, including tracking information when orders are shipped." ), # All webhooks are currently subscribed to for all orders. This works for self hosted, but not for cloud hosted prod disabled=( settings.Settings().config.behave_as == BehaveAs.CLOUD and settings.Settings().config.app_env != AppEnvironment.LOCAL ), categories={BlockCategory.DEVELOPER_TOOLS}, input_schema=self.Input, output_schema=self.Output, webhook_config=BlockWebhookConfig( provider=ProviderName.SLANT3D, webhook_type="orders", # Only one type for now resource_format="", # No resource format needed event_filter_input="events", event_format="order.{event}", ), test_input={ "credentials": TEST_CREDENTIALS_INPUT, "events": {"shipped": True}, "payload": { "orderId": "1234567890", "status": "SHIPPED", "trackingNumber": "ABCDEF123456", "carrierCode": "usps", }, }, test_credentials=TEST_CREDENTIALS, test_output=[ ( "payload", { "orderId": "1234567890", "status": "SHIPPED", "trackingNumber": "ABCDEF123456", "carrierCode": "usps", }, ), ("order_id", "1234567890"), ("status", "SHIPPED"), ("tracking_number", "ABCDEF123456"), ("carrier_code", "usps"), ], ) def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore yield from super().run(input_data, **kwargs) # Extract and normalize values from the payload yield "status", input_data.payload["status"] yield "tracking_number", input_data.payload["trackingNumber"] yield "carrier_code", input_data.payload["carrierCode"]
from pydantic import BaseModel from backend.data.block import ( Block, BlockCategory, BlockOutput, BlockSchema, BlockWebhookConfig, ) from backend.data.model import SchemaField from backend.integrations.providers import ProviderName from backend.util import settings from backend.util.settings import AppEnvironment, BehaveAs from ._api import ( TEST_CREDENTIALS, TEST_CREDENTIALS_INPUT, Slant3DCredentialsField, Slant3DCredentialsInput, ) class Slant3DTriggerBase: """Base class for Slant3D webhook triggers""" class Input(BlockSchema): credentials: Slant3DCredentialsInput = Slant3DCredentialsField() # Webhook URL is handled by the webhook system payload: dict = SchemaField(hidden=True, default={}) class Output(BlockSchema): payload: dict = SchemaField( description="The complete webhook payload received from Slant3D" ) order_id: str = SchemaField(description="The ID of the affected order") error: str = SchemaField( description="Error message if payload processing failed" ) def run(self, input_data: Input, **kwargs) -> BlockOutput: yield "payload", input_data.payload yield "order_id", input_data.payload["orderId"] class Slant3DOrderWebhookBlock(Slant3DTriggerBase, Block): """Block for handling Slant3D order webhooks""" class Input(Slant3DTriggerBase.Input): class EventsFilter(BaseModel): """ Currently Slant3D only supports 'SHIPPED' status updates Could be expanded in the future with more status types """ shipped: bool = True events: EventsFilter = SchemaField( title="Events", description="Order status events to subscribe to", default=EventsFilter(shipped=True), ) class Output(Slant3DTriggerBase.Output): status: str = SchemaField(description="The new status of the order") tracking_number: str = SchemaField( description="The tracking number for the shipment" ) carrier_code: str = SchemaField(description="The carrier code (e.g., 'usps')") def __init__(self): super().__init__( id="8a74c2ad-0104-4640-962f-26c6b69e58cd", description=( "This block triggers on Slant3D order status updates and outputs " "the event details, including tracking information when orders are shipped." ), # All webhooks are currently subscribed to for all orders. This works for self hosted, but not for cloud hosted prod disabled=( settings.Settings().config.behave_as == BehaveAs.CLOUD and settings.Settings().config.app_env != AppEnvironment.LOCAL ), categories={BlockCategory.DEVELOPER_TOOLS}, input_schema=self.Input, output_schema=self.Output, webhook_config=BlockWebhookConfig( provider=ProviderName.SLANT3D, webhook_type="orders", # Only one type for now resource_format="", # No resource format needed event_filter_input="events", event_format="order.{event}", ), test_input={ "credentials": TEST_CREDENTIALS_INPUT, "events": {"shipped": True}, "payload": { "orderId": "1234567890", "status": "SHIPPED", "trackingNumber": "ABCDEF123456", "carrierCode": "usps", }, }, test_credentials=TEST_CREDENTIALS, test_output=[ ( "payload", { "orderId": "1234567890", "status": "SHIPPED", "trackingNumber": "ABCDEF123456", "carrierCode": "usps", }, ), ("order_id", "1234567890"), ("status", "SHIPPED"), ("tracking_number", "ABCDEF123456"), ("carrier_code", "usps"), ], ) def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore yield from super().run(input_data, **kwargs) # Extract and normalize values from the payload yield "status", input_data.payload["status"] yield "tracking_number", input_data.payload["trackingNumber"] yield "carrier_code", input_data.payload["carrierCode"]
from typing import ( TYPE_CHECKING, Sequence, ) import numpy as np from docarray.helper import typename if TYPE_CHECKING: # pragma: no cover from docarray.typing import ( DocumentArrayIndexType, ) class DelItemMixin: """Provide help function to enable advanced indexing in `__delitem__`""" def __delitem__(self, index: 'DocumentArrayIndexType'): self._update_subindices_del(index) if isinstance(index, (int, np.generic)) and not isinstance(index, bool): self._del_doc_by_offset(int(index)) elif isinstance(index, str): if index.startswith('@'): raise NotImplementedError( 'Delete elements along traversal paths is not implemented' ) else: self._del_doc(index) elif isinstance(index, slice): self._del_docs_by_slice(index) elif index is Ellipsis: self._del_all_docs() elif isinstance(index, Sequence): if ( isinstance(index, tuple) and len(index) == 2 and ( isinstance(index[0], (slice, Sequence, str, int)) or index[0] is Ellipsis ) and isinstance(index[1], (str, Sequence)) ): # TODO: add support for cases such as da[1, ['text', 'id']]? if isinstance(index[0], (str, int)) and isinstance(index[1], str): # ambiguity only comes from the second string if index[1] in self: del self[index[0]] del self[index[1]] else: self._set_doc_attr_by_id(index[0], index[1], None) elif isinstance(index[0], (slice, Sequence)): _attrs = index[1] if isinstance(_attrs, str): _attrs = (index[1],) for _d in self[index[0]]: for _aa in _attrs: self._set_doc_attr_by_id(_d.id, _aa, None) _d.pop(_aa) elif isinstance(index[0], bool): self._del_docs_by_mask(index) elif isinstance(index[0], int): for t in sorted(index, reverse=True): del self[t] elif isinstance(index[0], str): for t in index: del self[t] elif isinstance(index, np.ndarray): index = index.squeeze() if index.ndim == 1: del self[index.tolist()] else: raise IndexError( f'When using np.ndarray as index, its `ndim` must =1. However, receiving ndim={index.ndim}' ) else: raise IndexError(f'Unsupported index type {typename(index)}: {index}')
from typing import ( TYPE_CHECKING, Sequence, ) import numpy as np from docarray.helper import typename if TYPE_CHECKING: from docarray.typing import ( DocumentArrayIndexType, ) class DelItemMixin: """Provide help function to enable advanced indexing in `__delitem__`""" def __delitem__(self, index: 'DocumentArrayIndexType'): self._update_subindices_del(index) if isinstance(index, (int, np.generic)) and not isinstance(index, bool): self._del_doc_by_offset(int(index)) elif isinstance(index, str): if index.startswith('@'): raise NotImplementedError( 'Delete elements along traversal paths is not implemented' ) else: self._del_doc(index) elif isinstance(index, slice): self._del_docs_by_slice(index) elif index is Ellipsis: self._del_all_docs() elif isinstance(index, Sequence): if ( isinstance(index, tuple) and len(index) == 2 and ( isinstance(index[0], (slice, Sequence, str, int)) or index[0] is Ellipsis ) and isinstance(index[1], (str, Sequence)) ): # TODO: add support for cases such as da[1, ['text', 'id']]? if isinstance(index[0], (str, int)) and isinstance(index[1], str): # ambiguity only comes from the second string if index[1] in self: del self[index[0]] del self[index[1]] else: self._set_doc_attr_by_id(index[0], index[1], None) elif isinstance(index[0], (slice, Sequence)): _attrs = index[1] if isinstance(_attrs, str): _attrs = (index[1],) for _d in self[index[0]]: for _aa in _attrs: self._set_doc_attr_by_id(_d.id, _aa, None) _d.pop(_aa) elif isinstance(index[0], bool): self._del_docs_by_mask(index) elif isinstance(index[0], int): for t in sorted(index, reverse=True): del self[t] elif isinstance(index[0], str): for t in index: del self[t] elif isinstance(index, np.ndarray): index = index.squeeze() if index.ndim == 1: del self[index.tolist()] else: raise IndexError( f'When using np.ndarray as index, its `ndim` must =1. However, receiving ndim={index.ndim}' ) else: raise IndexError(f'Unsupported index type {typename(index)}: {index}')
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .torchao_quantizer import TorchAoHfQuantizer
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .torchao_quantizer import TorchAoHfQuantizer
import types from typing import TYPE_CHECKING from docarray.index.backends.in_memory import InMemoryDocIndex from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.index.backends.elastic import ElasticDocIndex # noqa: F401 from docarray.index.backends.elasticv7 import ElasticV7DocIndex # noqa: F401 from docarray.index.backends.hnswlib import HnswDocumentIndex # noqa: F401 from docarray.index.backends.qdrant import QdrantDocumentIndex # noqa: F401 from docarray.index.backends.weaviate import WeaviateDocumentIndex # noqa: F401 __all__ = ['InMemoryDocIndex'] def __getattr__(name: str): lib: types.ModuleType if name == 'HnswDocumentIndex': import_library('hnswlib', raise_error=True) import docarray.index.backends.hnswlib as lib elif name == 'ElasticDocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elastic as lib elif name == 'ElasticV7DocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elasticv7 as lib elif name == 'QdrantDocumentIndex': import_library('qdrant_client', raise_error=True) import docarray.index.backends.qdrant as lib elif name == 'WeaviateDocumentIndex': import_library('weaviate', raise_error=True) import docarray.index.backends.weaviate as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) index_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return index_cls
import types from typing import TYPE_CHECKING from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.index.backends.elastic import ElasticDocIndex # noqa: F401 from docarray.index.backends.elasticv7 import ElasticV7DocIndex # noqa: F401 from docarray.index.backends.hnswlib import HnswDocumentIndex # noqa: F401 from docarray.index.backends.qdrant import QdrantDocumentIndex # noqa: F401 from docarray.index.backends.weaviate import WeaviateDocumentIndex # noqa: F401 __all__ = [] def __getattr__(name: str): lib: types.ModuleType if name == 'HnswDocumentIndex': import_library('hnswlib', raise_error=True) import docarray.index.backends.hnswlib as lib elif name == 'ElasticDocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elastic as lib elif name == 'ElasticV7DocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elasticv7 as lib elif name == 'QdrantDocumentIndex': import_library('qdrant_client', raise_error=True) import docarray.index.backends.qdrant as lib elif name == 'WeaviateDocumentIndex': import_library('weaviate', raise_error=True) import docarray.index.backends.weaviate as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) index_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return index_cls
# model settings preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) input_size = 300 model = dict( type='SingleStageDetector', preprocess_cfg=preprocess_cfg, backbone=dict( type='SSDVGG', depth=16, with_last_pool=False, ceil_mode=True, out_indices=(3, 4), out_feature_indices=(22, 34), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://vgg16_caffe')), neck=dict( type='SSDNeck', in_channels=(512, 1024), out_channels=(512, 1024, 512, 256, 256, 256), level_strides=(2, 2, 1, 1), level_paddings=(1, 1, 0, 0), l2_norm_scale=20), bbox_head=dict( type='SSDHead', in_channels=(512, 1024, 512, 256, 256, 256), num_classes=80, anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.15, 0.9), strides=[8, 16, 32, 64, 100, 300], ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2])), # model training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0., ignore_iof_thr=-1, gt_max_assign_all=False), sampler=dict(type='PseudoSampler'), smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False), test_cfg=dict( nms_pre=1000, nms=dict(type='nms', iou_threshold=0.45), min_bbox_size=0, score_thr=0.02, max_per_img=200)) cudnn_benchmark = True
# model settings input_size = 300 model = dict( type='SingleStageDetector', backbone=dict( type='SSDVGG', depth=16, with_last_pool=False, ceil_mode=True, out_indices=(3, 4), out_feature_indices=(22, 34), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://vgg16_caffe')), neck=dict( type='SSDNeck', in_channels=(512, 1024), out_channels=(512, 1024, 512, 256, 256, 256), level_strides=(2, 2, 1, 1), level_paddings=(1, 1, 0, 0), l2_norm_scale=20), bbox_head=dict( type='SSDHead', in_channels=(512, 1024, 512, 256, 256, 256), num_classes=80, anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.15, 0.9), strides=[8, 16, 32, 64, 100, 300], ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2])), # model training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0., ignore_iof_thr=-1, gt_max_assign_all=False), smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False), test_cfg=dict( nms_pre=1000, nms=dict(type='nms', iou_threshold=0.45), min_bbox_size=0, score_thr=0.02, max_per_img=200)) cudnn_benchmark = True
# pyright: reportAttributeAccessIssue=false # pyright: reportUnknownArgumentType=false # pyright: reportUnknownMemberType=false # pyright: reportUnknownVariableType=false from __future__ import annotations import numpy as np # intersection of `np.linalg.__all__` on numpy 1.22 and 2.2, minus `_linalg.__all__` from numpy.linalg import ( LinAlgError, cond, det, eig, eigvals, eigvalsh, inv, lstsq, matrix_power, multi_dot, norm, tensorinv, tensorsolve, ) from .._internal import get_xp from ..common import _linalg # These functions are in both the main and linalg namespaces from ._aliases import matmul, matrix_transpose, tensordot, vecdot # noqa: F401 from ._typing import Array cross = get_xp(np)(_linalg.cross) outer = get_xp(np)(_linalg.outer) EighResult = _linalg.EighResult QRResult = _linalg.QRResult SlogdetResult = _linalg.SlogdetResult SVDResult = _linalg.SVDResult eigh = get_xp(np)(_linalg.eigh) qr = get_xp(np)(_linalg.qr) slogdet = get_xp(np)(_linalg.slogdet) svd = get_xp(np)(_linalg.svd) cholesky = get_xp(np)(_linalg.cholesky) matrix_rank = get_xp(np)(_linalg.matrix_rank) pinv = get_xp(np)(_linalg.pinv) matrix_norm = get_xp(np)(_linalg.matrix_norm) svdvals = get_xp(np)(_linalg.svdvals) diagonal = get_xp(np)(_linalg.diagonal) trace = get_xp(np)(_linalg.trace) # Note: unlike np.linalg.solve, the array API solve() only accepts x2 as a # vector when it is exactly 1-dimensional. All other cases treat x2 as a stack # of matrices. The np.linalg.solve behavior of allowing stacks of both # matrices and vectors is ambiguous c.f. # https://github.com/numpy/numpy/issues/15349 and # https://github.com/data-apis/array-api/issues/285. # To workaround this, the below is the code from np.linalg.solve except # only calling solve1 in the exactly 1D case. # This code is here instead of in common because it is numpy specific. Also # note that CuPy's solve() does not currently support broadcasting (see # https://github.com/cupy/cupy/blob/main/cupy/cublas.py#L43). def solve(x1: Array, x2: Array, /) -> Array: try: from numpy.linalg._linalg import ( _assert_stacked_2d, _assert_stacked_square, _commonType, _makearray, _raise_linalgerror_singular, isComplexType, ) except ImportError: from numpy.linalg.linalg import ( _assert_stacked_2d, _assert_stacked_square, _commonType, _makearray, _raise_linalgerror_singular, isComplexType, ) from numpy.linalg import _umath_linalg x1, _ = _makearray(x1) _assert_stacked_2d(x1) _assert_stacked_square(x1) x2, wrap = _makearray(x2) t, result_t = _commonType(x1, x2) # This part is different from np.linalg.solve gufunc: np.ufunc if x2.ndim == 1: gufunc = _umath_linalg.solve1 else: gufunc = _umath_linalg.solve # This does nothing currently but is left in because it will be relevant # when complex dtype support is added to the spec in 2022. signature = "DD->D" if isComplexType(t) else "dd->d" with np.errstate( call=_raise_linalgerror_singular, invalid="call", over="ignore", divide="ignore", under="ignore", ): r: Array = gufunc(x1, x2, signature=signature) return wrap(r.astype(result_t, copy=False)) # These functions are completely new here. If the library already has them # (i.e., numpy 2.0), use the library version instead of our wrapper. if hasattr(np.linalg, "vector_norm"): vector_norm = np.linalg.vector_norm else: vector_norm = get_xp(np)(_linalg.vector_norm) __all__ = [ "LinAlgError", "cond", "det", "eig", "eigvals", "eigvalsh", "inv", "lstsq", "matrix_power", "multi_dot", "norm", "tensorinv", "tensorsolve", ] __all__ += _linalg.__all__ __all__ += ["solve", "vector_norm"] def __dir__() -> list[str]: return __all__
from numpy.linalg import * # noqa: F403 from numpy.linalg import __all__ as linalg_all import numpy as _np from ..common import _linalg from .._internal import get_xp # These functions are in both the main and linalg namespaces from ._aliases import matmul, matrix_transpose, tensordot, vecdot # noqa: F401 import numpy as np cross = get_xp(np)(_linalg.cross) outer = get_xp(np)(_linalg.outer) EighResult = _linalg.EighResult QRResult = _linalg.QRResult SlogdetResult = _linalg.SlogdetResult SVDResult = _linalg.SVDResult eigh = get_xp(np)(_linalg.eigh) qr = get_xp(np)(_linalg.qr) slogdet = get_xp(np)(_linalg.slogdet) svd = get_xp(np)(_linalg.svd) cholesky = get_xp(np)(_linalg.cholesky) matrix_rank = get_xp(np)(_linalg.matrix_rank) pinv = get_xp(np)(_linalg.pinv) matrix_norm = get_xp(np)(_linalg.matrix_norm) svdvals = get_xp(np)(_linalg.svdvals) diagonal = get_xp(np)(_linalg.diagonal) trace = get_xp(np)(_linalg.trace) # Note: unlike np.linalg.solve, the array API solve() only accepts x2 as a # vector when it is exactly 1-dimensional. All other cases treat x2 as a stack # of matrices. The np.linalg.solve behavior of allowing stacks of both # matrices and vectors is ambiguous c.f. # https://github.com/numpy/numpy/issues/15349 and # https://github.com/data-apis/array-api/issues/285. # To workaround this, the below is the code from np.linalg.solve except # only calling solve1 in the exactly 1D case. # This code is here instead of in common because it is numpy specific. Also # note that CuPy's solve() does not currently support broadcasting (see # https://github.com/cupy/cupy/blob/main/cupy/cublas.py#L43). def solve(x1: _np.ndarray, x2: _np.ndarray, /) -> _np.ndarray: try: from numpy.linalg._linalg import ( _makearray, _assert_stacked_2d, _assert_stacked_square, _commonType, isComplexType, _raise_linalgerror_singular ) except ImportError: from numpy.linalg.linalg import ( _makearray, _assert_stacked_2d, _assert_stacked_square, _commonType, isComplexType, _raise_linalgerror_singular ) from numpy.linalg import _umath_linalg x1, _ = _makearray(x1) _assert_stacked_2d(x1) _assert_stacked_square(x1) x2, wrap = _makearray(x2) t, result_t = _commonType(x1, x2) # This part is different from np.linalg.solve if x2.ndim == 1: gufunc = _umath_linalg.solve1 else: gufunc = _umath_linalg.solve # This does nothing currently but is left in because it will be relevant # when complex dtype support is added to the spec in 2022. signature = 'DD->D' if isComplexType(t) else 'dd->d' with _np.errstate(call=_raise_linalgerror_singular, invalid='call', over='ignore', divide='ignore', under='ignore'): r = gufunc(x1, x2, signature=signature) return wrap(r.astype(result_t, copy=False)) # These functions are completely new here. If the library already has them # (i.e., numpy 2.0), use the library version instead of our wrapper. if hasattr(np.linalg, 'vector_norm'): vector_norm = np.linalg.vector_norm else: vector_norm = get_xp(np)(_linalg.vector_norm) __all__ = linalg_all + _linalg.__all__ + ['solve'] del get_xp del np del linalg_all del _linalg
import base64 import hashlib from datetime import datetime, timedelta, timezone import os import jwt from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.serialization import ( Encoding, PublicFormat, load_pem_private_key, ) SPCS_TOKEN_PATH = "/snowflake/session/token" def get_default_spcs_token() -> str: """ Returns the value of the SnowPark default JWT Oauth Session Token. In a Snowpark Container Services environment, there is a 'default' oauth session token. This retrieves it for you (as a string). """ with open(SPCS_TOKEN_PATH) as fp: return fp.read() def is_spcs_environment() -> bool: """ Determines if we're currently in an SPCS (Snowpark Container Services) environment. Does this by checking for the default session token. Returns a boolean: whether or not we're in an SPCS environment. """ return ( os.path.exists(SPCS_TOKEN_PATH) and os.environ.get("SNOWFLAKE_HOST") is not None and os.environ.get("SNOWFLAKE_ACCOUNT") is not None ) def get_spcs_base_url() -> str: """ Returns a correctly formatted URL for making Snowflake API calls from within an SPCS environment. Raises a ValueError if not in an SPCS environment. Returns a string, https://{some-url} that you can affix an API endpoint such as Cortex to. """ if not is_spcs_environment(): raise ValueError("Cannot call get_spcs_base_url unless in an spcs environment.") return "https://" + os.environ.get("SNOWFLAKE_HOST").replace( "snowflake", os.environ.get("SNOWFLAKE_ACCOUNT").lower().replace("_", "-"), 1, ) def generate_sf_jwt(sf_account: str, sf_user: str, sf_private_key_filepath: str) -> str: """ Generate a JSON Web Token for a Snowflake user. Args: sf_account: Fully qualified snowflake account name (ORG_ID-ACCOUNT_ID). sf_user: User to generate token for. sf_private_key_filepath: Path to user's private key. Returns: str: JSON Web Token """ with open(sf_private_key_filepath, "rb") as pem_in: pemlines = pem_in.read() # TODO: Add support for encrypted private keys private_key = load_pem_private_key(pemlines, None, default_backend()) # Get the raw bytes of the public key. public_key_raw = private_key.public_key().public_bytes( Encoding.DER, PublicFormat.SubjectPublicKeyInfo ) # Get the sha256 hash of the raw bytes. sha256hash = hashlib.sha256() sha256hash.update(public_key_raw) # Base64-encode the value and prepend the prefix 'SHA256:'. public_key_fp = "SHA256:" + base64.b64encode(sha256hash.digest()).decode("utf-8") # Use uppercase for the account identifier and user name. account = sf_account.upper() user = sf_user.upper() qualified_username = account + "." + user # Get the current time in order to specify the time when the JWT was issued and the expiration time of the JWT. now = datetime.now(timezone.utc) # Specify the length of time during which the JWT will be valid. You can specify at most 1 hour. lifetime = timedelta(minutes=59) # Create the payload for the token. payload = { # Set the issuer to the fully qualified username concatenated with the public key fingerprint (calculated in the previous step). "iss": qualified_username + "." + public_key_fp, # Set the subject to the fully qualified username. "sub": qualified_username, # Set the issue time to now. "iat": now, # Set the expiration time, based on the lifetime specified for this object. "exp": now + lifetime, } # Generate the JWT. private_key is the private key that you read from the private key file in the previous step when you generated the public key fingerprint. encoding_algorithm = "RS256" return jwt.encode(payload, key=private_key, algorithm=encoding_algorithm)
import base64 import hashlib from datetime import datetime, timedelta, timezone import jwt from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.serialization import ( Encoding, PublicFormat, load_pem_private_key, ) def generate_sf_jwt(sf_account: str, sf_user: str, sf_private_key_filepath: str) -> str: """ Generate a JSON Web Token for a Snowflake user. Args: sf_account: Fully qualified snowflake account name (ORG_ID-ACCOUNT_ID). sf_user: User to generate token for. sf_private_key_filepath: Path to user's private key. Returns: str: JSON Web Token """ with open(sf_private_key_filepath, "rb") as pem_in: pemlines = pem_in.read() # TODO: Add support for encrypted private keys private_key = load_pem_private_key(pemlines, None, default_backend()) # Get the raw bytes of the public key. public_key_raw = private_key.public_key().public_bytes( Encoding.DER, PublicFormat.SubjectPublicKeyInfo ) # Get the sha256 hash of the raw bytes. sha256hash = hashlib.sha256() sha256hash.update(public_key_raw) # Base64-encode the value and prepend the prefix 'SHA256:'. public_key_fp = "SHA256:" + base64.b64encode(sha256hash.digest()).decode("utf-8") # Use uppercase for the account identifier and user name. account = sf_account.upper() user = sf_user.upper() qualified_username = account + "." + user # Get the current time in order to specify the time when the JWT was issued and the expiration time of the JWT. now = datetime.now(timezone.utc) # Specify the length of time during which the JWT will be valid. You can specify at most 1 hour. lifetime = timedelta(minutes=59) # Create the payload for the token. payload = { # Set the issuer to the fully qualified username concatenated with the public key fingerprint (calculated in the previous step). "iss": qualified_username + "." + public_key_fp, # Set the subject to the fully qualified username. "sub": qualified_username, # Set the issue time to now. "iat": now, # Set the expiration time, based on the lifetime specified for this object. "exp": now + lifetime, } # Generate the JWT. private_key is the private key that you read from the private key file in the previous step when you generated the public key fingerprint. encoding_algorithm = "RS256" return jwt.encode(payload, key=private_key, algorithm=encoding_algorithm)
import tempfile import os import time import pytest cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.abspath( os.path.join(cur_dir, 'unit', 'array', 'docker-compose.yml') ) @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'docarray_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile @pytest.fixture(scope='session') def start_storage(): os.system( f"docker-compose -f {compose_yml} --project-directory . up --build -d " f"--remove-orphans" ) from elasticsearch import Elasticsearch es = Elasticsearch(hosts='http://localhost:9200/') while not es.ping(): time.sleep(0.5) yield os.system( f"docker-compose -f {compose_yml} --project-directory . down " f"--remove-orphans" )
import tempfile import os import time import pytest from elasticsearch import Elasticsearch cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.abspath( os.path.join(cur_dir, 'unit', 'array', 'docker-compose.yml') ) @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'docarray_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile @pytest.fixture(scope='session') def start_storage(): os.system( f"docker-compose -f {compose_yml} --project-directory . up --build -d " f"--remove-orphans" ) es = Elasticsearch(hosts='http://localhost:9200/') while not es.ping(): time.sleep(0.5) yield os.system( f"docker-compose -f {compose_yml} --project-directory . down " f"--remove-orphans" )
from types import SimpleNamespace from jina.serve.executors import BaseExecutor def test_exec_from_python(): be = BaseExecutor(metas={'name': 'hello', 'random_name': 'random_value'}) assert be.metas.name == 'hello' assert be.metas.random_name == 'random_value' def test_runtime_args(): b = BaseExecutor.load_config( 'BaseExecutor', metas={'name': 'b123'}, runtime_args={'hello': 'world'} ) assert b.runtime_args.hello == 'world' assert b.metas.name == 'b123' def test_default_args_from_load_config(): b = BaseExecutor.load_config('!BaseExecutor {}') assert isinstance(b.runtime_args, SimpleNamespace) assert isinstance(b.metas, SimpleNamespace) # name is always auto-assigned assert b.metas.name def test_runtime_args_from_load_config(): y = ''' !BaseExecutor metas: name: my-mwu-encoder workspace: ./ ''' b = BaseExecutor.load_config(y) assert b.metas.workspace == './' assert b.metas.name == 'my-mwu-encoder' def test_default_args_from_python(): b = BaseExecutor() assert isinstance(b.runtime_args, SimpleNamespace) assert isinstance(b.metas, SimpleNamespace) # name is always auto-assigned assert b.metas.name def test_name_python_jaml_identical(): # There are two different ways of importing the executors in jina 2.0. # We want the executors to have the same metas.name field regardless of # the way they were imported! # First way of import using py_modules argument in jaml file from jina.jaml.helper import load_py_modules load_py_modules({'py_modules': ['metas_executors.py']}) from metas_executors import TestExecutor jaml_executor = TestExecutor() jaml_metas_name = jaml_executor.metas.name # Second way of importing directly via path in python from .metas_executors import TestExecutor py_executor = TestExecutor() py_metas_name = py_executor.metas.name # Make sure that the executor meta name is equal to only the class name assert jaml_metas_name == 'TestExecutor' assert py_metas_name == 'TestExecutor' # Make sure that the executor can be loaded from a native python module path as well load_py_modules({'py_modules': ['metas_executors']})
from types import SimpleNamespace from jina.serve.executors import BaseExecutor def test_exec_from_python(): be = BaseExecutor(metas={'name': 'hello', 'random_name': 'random_value'}) assert be.metas.name == 'hello' assert be.metas.random_name == 'random_value' def test_runtime_args(): b = BaseExecutor.load_config( 'BaseExecutor', metas={'name': 'b123'}, runtime_args={'hello': 'world'} ) assert b.runtime_args.hello == 'world' assert b.metas.name == 'b123' def test_default_args_from_load_config(): b = BaseExecutor.load_config('!BaseExecutor {}') assert isinstance(b.runtime_args, SimpleNamespace) assert isinstance(b.metas, SimpleNamespace) # name is always auto-assigned assert b.metas.name def test_runtime_args_from_load_config(): y = ''' !BaseExecutor metas: name: my-mwu-encoder workspace: ./ ''' b = BaseExecutor.load_config(y) assert b.metas.workspace == './' assert b.metas.name == 'my-mwu-encoder' def test_default_args_from_python(): b = BaseExecutor() assert isinstance(b.runtime_args, SimpleNamespace) assert isinstance(b.metas, SimpleNamespace) # name is always auto-assigned assert b.metas.name def test_name_python_jaml_identical(): # There are two different ways of importing the executors in jina 2.0. # We want the executors to have the same metas.name field regardless of # the way they were imported! # First way of import using py_modules argument in jaml file from jina.jaml.helper import load_py_modules load_py_modules({'py_modules': ['metas_executors.py']}) from metas_executors import TestExecutor jaml_executor = TestExecutor() jaml_metas_name = jaml_executor.metas.name # Second way of importing directly via path in python from .metas_executors import TestExecutor py_executor = TestExecutor() py_metas_name = py_executor.metas.name # Make sure that the executor meta name is equal to only the class name assert jaml_metas_name == 'TestExecutor' assert py_metas_name == 'TestExecutor'
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from ..builder import PIPELINES @PIPELINES.register_module() class InstaBoost: r"""Data augmentation method in `InstaBoost: Boosting Instance Segmentation Via Probability Map Guided Copy-Pasting <https://arxiv.org/abs/1908.07801>`_. Refer to https://github.com/GothicAi/Instaboost for implementation details. Args: action_candidate (tuple): Action candidates. "normal", "horizontal", \ "vertical", "skip" are supported. Default: ('normal', \ 'horizontal', 'skip'). action_prob (tuple): Corresponding action probabilities. Should be \ the same length as action_candidate. Default: (1, 0, 0). scale (tuple): (min scale, max scale). Default: (0.8, 1.2). dx (int): The maximum x-axis shift will be (instance width) / dx. Default 15. dy (int): The maximum y-axis shift will be (instance height) / dy. Default 15. theta (tuple): (min rotation degree, max rotation degree). \ Default: (-1, 1). color_prob (float): Probability of images for color augmentation. Default 0.5. heatmap_flag (bool): Whether to use heatmap guided. Default False. aug_ratio (float): Probability of applying this transformation. \ Default 0.5. """ def __init__(self, action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5): try: import instaboostfast as instaboost except ImportError: raise ImportError( 'Please run "pip install instaboostfast" ' 'to install instaboostfast first for instaboost augmentation.') self.cfg = instaboost.InstaBoostConfig(action_candidate, action_prob, scale, dx, dy, theta, color_prob, hflag) self.aug_ratio = aug_ratio def _load_anns(self, results): labels = results['ann_info']['labels'] masks = results['ann_info']['masks'] bboxes = results['ann_info']['bboxes'] n = len(labels) anns = [] for i in range(n): label = labels[i] bbox = bboxes[i] mask = masks[i] x1, y1, x2, y2 = bbox # assert (x2 - x1) >= 1 and (y2 - y1) >= 1 bbox = [x1, y1, x2 - x1, y2 - y1] anns.append({ 'category_id': label, 'segmentation': mask, 'bbox': bbox }) return anns def _parse_anns(self, results, anns, img): gt_bboxes = [] gt_labels = [] gt_masks_ann = [] for ann in anns: x1, y1, w, h = ann['bbox'] # TODO: more essential bug need to be fixed in instaboost if w <= 0 or h <= 0: continue bbox = [x1, y1, x1 + w, y1 + h] gt_bboxes.append(bbox) gt_labels.append(ann['category_id']) gt_masks_ann.append(ann['segmentation']) gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) results['ann_info']['labels'] = gt_labels results['ann_info']['bboxes'] = gt_bboxes results['ann_info']['masks'] = gt_masks_ann results['img'] = img return results def __call__(self, results): img = results['img'] orig_type = img.dtype anns = self._load_anns(results) if np.random.choice([0, 1], p=[1 - self.aug_ratio, self.aug_ratio]): try: import instaboostfast as instaboost except ImportError: raise ImportError('Please run "pip install instaboostfast" ' 'to install instaboostfast first.') anns, img = instaboost.get_new_data( anns, img.astype(np.uint8), self.cfg, background=None) results = self._parse_anns(results, anns, img.astype(orig_type)) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(cfg={self.cfg}, aug_ratio={self.aug_ratio})' return repr_str
import numpy as np from ..builder import PIPELINES @PIPELINES.register_module() class InstaBoost: r"""Data augmentation method in `InstaBoost: Boosting Instance Segmentation Via Probability Map Guided Copy-Pasting <https://arxiv.org/abs/1908.07801>`_. Refer to https://github.com/GothicAi/Instaboost for implementation details. Args: action_candidate (tuple): Action candidates. "normal", "horizontal", \ "vertical", "skip" are supported. Default: ('normal', \ 'horizontal', 'skip'). action_prob (tuple): Corresponding action probabilities. Should be \ the same length as action_candidate. Default: (1, 0, 0). scale (tuple): (min scale, max scale). Default: (0.8, 1.2). dx (int): The maximum x-axis shift will be (instance width) / dx. Default 15. dy (int): The maximum y-axis shift will be (instance height) / dy. Default 15. theta (tuple): (min rotation degree, max rotation degree). \ Default: (-1, 1). color_prob (float): Probability of images for color augmentation. Default 0.5. heatmap_flag (bool): Whether to use heatmap guided. Default False. aug_ratio (float): Probability of applying this transformation. \ Default 0.5. """ def __init__(self, action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5): try: import instaboostfast as instaboost except ImportError: raise ImportError( 'Please run "pip install instaboostfast" ' 'to install instaboostfast first for instaboost augmentation.') self.cfg = instaboost.InstaBoostConfig(action_candidate, action_prob, scale, dx, dy, theta, color_prob, hflag) self.aug_ratio = aug_ratio def _load_anns(self, results): labels = results['ann_info']['labels'] masks = results['ann_info']['masks'] bboxes = results['ann_info']['bboxes'] n = len(labels) anns = [] for i in range(n): label = labels[i] bbox = bboxes[i] mask = masks[i] x1, y1, x2, y2 = bbox # assert (x2 - x1) >= 1 and (y2 - y1) >= 1 bbox = [x1, y1, x2 - x1, y2 - y1] anns.append({ 'category_id': label, 'segmentation': mask, 'bbox': bbox }) return anns def _parse_anns(self, results, anns, img): gt_bboxes = [] gt_labels = [] gt_masks_ann = [] for ann in anns: x1, y1, w, h = ann['bbox'] # TODO: more essential bug need to be fixed in instaboost if w <= 0 or h <= 0: continue bbox = [x1, y1, x1 + w, y1 + h] gt_bboxes.append(bbox) gt_labels.append(ann['category_id']) gt_masks_ann.append(ann['segmentation']) gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) results['ann_info']['labels'] = gt_labels results['ann_info']['bboxes'] = gt_bboxes results['ann_info']['masks'] = gt_masks_ann results['img'] = img return results def __call__(self, results): img = results['img'] orig_type = img.dtype anns = self._load_anns(results) if np.random.choice([0, 1], p=[1 - self.aug_ratio, self.aug_ratio]): try: import instaboostfast as instaboost except ImportError: raise ImportError('Please run "pip install instaboostfast" ' 'to install instaboostfast first.') anns, img = instaboost.get_new_data( anns, img.astype(np.uint8), self.cfg, background=None) results = self._parse_anns(results, anns, img.astype(orig_type)) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(cfg={self.cfg}, aug_ratio={self.aug_ratio})' return repr_str
""" this test check the docstring of all of our public API. It does it by checking the `__all__` of each of our namespace. to add a new namespace you need to * import it * add it to the `SUB_MODULE_TO_CHECK` list """ import pytest from mktestdocs import check_docstring, get_codeblock_members import docarray.data import docarray.documents import docarray.index import docarray.store import docarray.typing from docarray.utils import filter, find, map SUB_MODULE_TO_CHECK = [ docarray, docarray.index, docarray.data, docarray.documents, docarray.store, docarray.typing, find, map, filter, ] def get_obj_to_check(lib): obj_to_check = [] for obj in lib.__all__: obj_to_check.append(getattr(lib, obj)) return obj_to_check obj_to_check = [] for lib in SUB_MODULE_TO_CHECK: obj_to_check.extend(get_obj_to_check(lib)) members = [] for obj in obj_to_check: members.extend(get_codeblock_members(obj)) @pytest.mark.parametrize("obj", members, ids=lambda d: d.__qualname__) def test_member(obj): check_docstring(obj)
""" this test check the docstring of all of our public API. It does it by checking the `__all__` of each of our namespace. to add a new namespace you need to * import it * add it to the `SUB_MODULE_TO_CHECK` list """ import pytest from mktestdocs import check_docstring, get_codeblock_members import docarray.data import docarray.documents import docarray.index import docarray.store import docarray.typing SUB_MODULE_TO_CHECK = [ docarray, docarray.index, docarray.data, docarray.documents, docarray.store, docarray.typing, ] def get_obj_to_check(lib): obj_to_check = [] for obj in lib.__all__: obj_to_check.append(getattr(lib, obj)) return obj_to_check obj_to_check = [] for lib in SUB_MODULE_TO_CHECK: obj_to_check.extend(get_obj_to_check(lib)) members = [] for obj in obj_to_check: members.extend(get_codeblock_members(obj)) @pytest.mark.parametrize("obj", members, ids=lambda d: d.__qualname__) def test_member(obj): check_docstring(obj)
from typing import Any, Dict, Union import torch from torchvision import transforms as _transforms from torchvision.prototype import datapoints from torchvision.prototype.transforms import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.convert_format_bounding_box(inpt, new_format=self.format) # type: ignore[return-value] class ConvertDtype(Transform): _v1_transform_cls = _transforms.ConvertImageDtype _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints.TensorImageType, datapoints.TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints.TensorImageType, datapoints.TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBox(Transform): _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.clamp_bounding_box(inpt) # type: ignore[return-value]
from typing import Any, Dict, Union import torch from torchvision import transforms as _transforms from torchvision.prototype import datapoints from torchvision.prototype.transforms import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.convert_format_bounding_box(inpt, new_format=self.format) # type: ignore[return-value] class ConvertDtype(Transform): _v1_transform_cls = _transforms.ConvertImageDtype _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints.TensorImageType, datapoints.TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints.TensorImageType, datapoints.TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBoxes(Transform): _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.clamp_bounding_box(inpt) # type: ignore[return-value]
from .clip_text import CLIPTextEncoder
from .clip_text import CLIPTextEncoder
import sqlite3 import warnings from dataclasses import dataclass, field, asdict from tempfile import NamedTemporaryFile from typing import ( Iterable, Dict, Optional, TYPE_CHECKING, Union, List, Tuple, ) from docarray.array.storage.sqlite.helper import initialize_table from docarray.array.storage.base.backend import BaseBackendMixin from docarray.helper import random_identity, dataclass_from_dict if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType def _sanitize_table_name(table_name: str, raise_warning=True) -> str: ret = ''.join(c for c in table_name if c.isalnum() or c == '_') if ret != table_name and raise_warning: warnings.warn(f'The table name is changed to {ret} due to illegal characters') return ret @dataclass class SqliteConfig: connection: Optional[Union[str, 'sqlite3.Connection']] = None table_name: Optional[str] = None serialize_config: Dict = field(default_factory=dict) conn_config: Dict = field(default_factory=dict) journal_mode: str = 'DELETE' synchronous: str = 'OFF' class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" schema_version = '0' def _sql(self, *args, **kwargs) -> 'sqlite3.Cursor': return self._cursor.execute(*args, **kwargs) def _commit(self): self._connection.commit() @property def _cursor(self) -> 'sqlite3.Cursor': return self._connection.cursor() def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[SqliteConfig, Dict]] = None, **kwargs, ): if not config: config = SqliteConfig() if isinstance(config, dict): config = dataclass_from_dict(SqliteConfig, config) from docarray import Document sqlite3.register_adapter( Document, lambda d: d.to_bytes(**config.serialize_config) ) sqlite3.register_converter( 'Document', lambda x: Document.from_bytes(x, **config.serialize_config) ) _conn_kwargs = dict() _conn_kwargs.update(config.conn_config) if config.connection is None: config.connection = NamedTemporaryFile().name if isinstance(config.connection, str): self._connection = sqlite3.connect( config.connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, ) elif isinstance(config.connection, sqlite3.Connection): self._connection = config.connection else: raise TypeError( f'connection argument must be None or a string or a sqlite3.Connection, not `{type(config.connection)}`' ) self._connection.execute(f'PRAGMA synchronous={config.synchronous}') self._connection.execute(f'PRAGMA journal_mode={config.journal_mode}') self._table_name = ( _sanitize_table_name(self.__class__.__name__ + random_identity()) if config.table_name is None else _sanitize_table_name(config.table_name) ) self._persist = bool(config.table_name) config.table_name = self._table_name initialize_table( self._table_name, self.__class__.__name__, self.schema_version, self._cursor ) self._connection.commit() self._config = config super()._init_storage() if _docs is None: return elif isinstance(_docs, Iterable): self.clear() self.extend(_docs) else: self.clear() if isinstance(_docs, Document): self.append(_docs) def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: if 'table_name' not in config_subindex: subindex_table_name = _sanitize_table_name( config_joined['table_name'] + 'subindex' + subindex_name, raise_warning=False, ) config_joined['table_name'] = subindex_table_name return config_joined def __getstate__(self): d = dict(self.__dict__) del d['_connection'] return d def __setstate__(self, state): self.__dict__ = state _conn_kwargs = dict() _conn_kwargs.update(state['_config'].conn_config) self._connection = sqlite3.connect( state['_config'].connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, )
import sqlite3 import warnings from dataclasses import dataclass, field from tempfile import NamedTemporaryFile from typing import ( Iterable, Dict, Optional, TYPE_CHECKING, Union, List, Tuple, ) from docarray.array.storage.sqlite.helper import initialize_table from docarray.array.storage.base.backend import BaseBackendMixin from docarray.helper import random_identity, dataclass_from_dict if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType def _sanitize_table_name(table_name: str) -> str: ret = ''.join(c for c in table_name if c.isalnum() or c == '_') if ret != table_name: warnings.warn(f'The table name is changed to {ret} due to illegal characters') return ret @dataclass class SqliteConfig: connection: Optional[Union[str, 'sqlite3.Connection']] = None table_name: Optional[str] = None serialize_config: Dict = field(default_factory=dict) conn_config: Dict = field(default_factory=dict) journal_mode: str = 'DELETE' synchronous: str = 'OFF' class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" schema_version = '0' def _sql(self, *args, **kwargs) -> 'sqlite3.Cursor': return self._cursor.execute(*args, **kwargs) def _commit(self): self._connection.commit() @property def _cursor(self) -> 'sqlite3.Cursor': return self._connection.cursor() def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[SqliteConfig, Dict]] = None, **kwargs, ): if not config: config = SqliteConfig() if isinstance(config, dict): config = dataclass_from_dict(SqliteConfig, config) from docarray import Document sqlite3.register_adapter( Document, lambda d: d.to_bytes(**config.serialize_config) ) sqlite3.register_converter( 'Document', lambda x: Document.from_bytes(x, **config.serialize_config) ) _conn_kwargs = dict() _conn_kwargs.update(config.conn_config) if config.connection is None: config.connection = NamedTemporaryFile().name if isinstance(config.connection, str): self._connection = sqlite3.connect( config.connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, ) elif isinstance(config.connection, sqlite3.Connection): self._connection = config.connection else: raise TypeError( f'connection argument must be None or a string or a sqlite3.Connection, not `{type(config.connection)}`' ) self._connection.execute(f'PRAGMA synchronous={config.synchronous}') self._connection.execute(f'PRAGMA journal_mode={config.journal_mode}') self._table_name = ( _sanitize_table_name(self.__class__.__name__ + random_identity()) if config.table_name is None else _sanitize_table_name(config.table_name) ) self._persist = bool(config.table_name) config.table_name = self._table_name initialize_table( self._table_name, self.__class__.__name__, self.schema_version, self._cursor ) self._connection.commit() self._config = config super()._init_storage() if _docs is None: return elif isinstance(_docs, Iterable): self.clear() self.extend(_docs) else: self.clear() if isinstance(_docs, Document): self.append(_docs) def __getstate__(self): d = dict(self.__dict__) del d['_connection'] return d def __setstate__(self, state): self.__dict__ = state _conn_kwargs = dict() _conn_kwargs.update(state['_config'].conn_config) self._connection = sqlite3.connect( state['_config'].connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, )
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path DATASETS_ON_HF_GCP = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def list_datasets_on_hf_gcp_parameters(with_config=True): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=True)) class TestDatasetOnHfGcp(TestCase): dataset = None config_name = None def test_dataset_info_available(self, dataset, config_name): with TemporaryDirectory() as tmp_dir: dataset_module = dataset_module_factory(dataset, cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name=config_name, hash=dataset_module.hash, ) dataset_info_url = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=False).replace(os.sep, "/"), config.DATASET_INFO_FILENAME, ] ) datset_info_path = cached_path(dataset_info_url, cache_dir=tmp_dir) self.assertTrue(os.path.exists(datset_info_path)) @pytest.mark.integration def test_as_dataset_from_hf_gcs(tmp_path_factory): tmp_dir = tmp_path_factory.mktemp("test_hf_gcp") / "test_wikipedia_simple" dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name="20220301.frr", hash=dataset_module.hash, ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam builder_instance._download_and_prepare = None builder_instance.download_and_prepare() ds = builder_instance.as_dataset() assert ds @pytest.mark.integration def test_as_streaming_dataset_from_hf_gcs(tmp_path): dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_path) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_path, config_name="20220301.frr", hash=dataset_module.hash, ) ds = builder_instance.as_streaming_dataset() assert ds assert isinstance(ds, IterableDatasetDict) assert "train" in ds assert isinstance(ds["train"], IterableDataset) assert next(iter(ds["train"]))
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path DATASETS_ON_HF_GCP = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def list_datasets_on_hf_gcp_parameters(with_config=True): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=True)) class TestDatasetOnHfGcp(TestCase): dataset = None config_name = None def test_dataset_info_available(self, dataset, config_name): with TemporaryDirectory() as tmp_dir: dataset_module = dataset_module_factory(dataset, cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name=config_name, hash=dataset_module.hash, ) dataset_info_url = os.path.join( HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=False), config.DATASET_INFO_FILENAME ).replace(os.sep, "/") datset_info_path = cached_path(dataset_info_url, cache_dir=tmp_dir) self.assertTrue(os.path.exists(datset_info_path)) @pytest.mark.integration def test_wikipedia_frr(tmp_path_factory): tmp_dir = tmp_path_factory.mktemp("test_hf_gcp") / "test_wikipedia_simple" dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name="20220301.frr", hash=dataset_module.hash, ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam builder_instance._download_and_prepare = None builder_instance.download_and_prepare() ds = builder_instance.as_dataset() assert ds is not None
from ._dsp import adsr_envelope, extend_pitch, oscillator_bank, sinc_impulse_response from .functional import add_noise, barkscale_fbanks, convolve, fftconvolve __all__ = [ "add_noise", "adsr_envelope", "barkscale_fbanks", "convolve", "extend_pitch", "fftconvolve", "oscillator_bank", "sinc_impulse_response", ]
from ._dsp import adsr_envelope, extend_pitch, oscillator_bank from .functional import add_noise, barkscale_fbanks, convolve, fftconvolve __all__ = [ "add_noise", "adsr_envelope", "barkscale_fbanks", "convolve", "extend_pitch", "fftconvolve", "oscillator_bank", ]
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlite3 import sqlalchemy class SqlDatasetReader(AbstractDatasetInputStream): def __init__( self, sql: Union[str, "sqlalchemy.sql.Selectable"], con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"], features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, **kwargs, ): super().__init__(features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs) self.builder = Sql( cache_dir=cache_dir, features=features, sql=sql, con=con, **kwargs, ) def read(self): download_config = None download_mode = None ignore_verifications = False use_auth_token = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, use_auth_token=use_auth_token, ) # Build dataset for splits dataset = self.builder.as_dataset( split="train", ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset class SqlDatasetWriter: def __init__( self, dataset: Dataset, name: str, con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"], batch_size: Optional[int] = None, num_proc: Optional[int] = None, **to_sql_kwargs, ): if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0.") self.dataset = dataset self.name = name self.con = con self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE self.num_proc = num_proc self.to_sql_kwargs = to_sql_kwargs def write(self) -> int: _ = self.to_sql_kwargs.pop("sql", None) _ = self.to_sql_kwargs.pop("con", None) written = self._write(**self.to_sql_kwargs) return written def _batch_sql(self, args): offset, to_sql_kwargs = args to_sql_kwargs = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs batch = query_table( table=self.dataset.data, key=slice(offset, offset + self.batch_size), indices=self.dataset._indices, ) df = batch.to_pandas() num_rows = df.to_sql(self.name, self.con, **to_sql_kwargs) return num_rows or len(df) def _write(self, **to_sql_kwargs) -> int: """Writes the pyarrow table as SQL to a database. Caller is responsible for opening and closing the SQL connection. """ written = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset), self.batch_size), unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating SQL from Arrow format", ): written += self._batch_sql((offset, to_sql_kwargs)) else: num_rows, batch_size = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql, [(offset, to_sql_kwargs) for offset in range(0, num_rows, batch_size)], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating SQL from Arrow format", ): written += num_rows return written
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlite3 import sqlalchemy class SqlDatasetReader(AbstractDatasetInputStream): def __init__( self, sql: Union[str, "sqlalchemy.sql.Selectable"], con: str, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, **kwargs, ): super().__init__(features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs) self.builder = Sql( cache_dir=cache_dir, features=features, sql=sql, con=con, **kwargs, ) def read(self): download_config = None download_mode = None ignore_verifications = False use_auth_token = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, use_auth_token=use_auth_token, ) # Build dataset for splits dataset = self.builder.as_dataset( split="train", ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset class SqlDatasetWriter: def __init__( self, dataset: Dataset, name: str, con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"], batch_size: Optional[int] = None, num_proc: Optional[int] = None, **to_sql_kwargs, ): if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0.") self.dataset = dataset self.name = name self.con = con self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE self.num_proc = num_proc self.to_sql_kwargs = to_sql_kwargs def write(self) -> int: _ = self.to_sql_kwargs.pop("sql", None) _ = self.to_sql_kwargs.pop("con", None) written = self._write(**self.to_sql_kwargs) return written def _batch_sql(self, args): offset, to_sql_kwargs = args to_sql_kwargs = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs batch = query_table( table=self.dataset.data, key=slice(offset, offset + self.batch_size), indices=self.dataset._indices, ) df = batch.to_pandas() num_rows = df.to_sql(self.name, self.con, **to_sql_kwargs) return num_rows or len(df) def _write(self, **to_sql_kwargs) -> int: """Writes the pyarrow table as SQL to a database. Caller is responsible for opening and closing the SQL connection. """ written = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset), self.batch_size), unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating SQL from Arrow format", ): written += self._batch_sql((offset, to_sql_kwargs)) else: num_rows, batch_size = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql, [(offset, to_sql_kwargs) for offset in range(0, num_rows, batch_size)], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating SQL from Arrow format", ): written += num_rows return written
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.models.roi_heads import StandardRoIHead # noqa from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg class TestCascadeRoIHead(TestCase): @parameterized.expand( ['cascade_rcnn/cascade-mask-rcnn_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): """Test init standard RoI head.""" # Normal Cascade Mask R-CNN RoI head roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) assert roi_head.with_bbox assert roi_head.with_mask @parameterized.expand( ['cascade_rcnn/cascade-mask-rcnn_r50_fpn_1x_coco.py']) def test_cascade_roi_head_loss(self, cfg_file): """Tests standard roi head loss when truth is empty and non-empty.""" if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) # When truth is non-empty then both cls, box, and mask loss # should be nonzero for random inputs img_shape_list = [(3, s, s) for _ in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[1], num_classes=4, with_mask=True, device='cuda')['data_samples'] out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') # When there is no truth, the cls loss should be nonzero but # there should be no box and mask loss. proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[0], num_classes=4, with_mask=True, device='cuda')['data_samples'] out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss_cls' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') elif 'loss_bbox' in name or 'loss_mask' in name: self.assertEqual(value.sum(), 0)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.models.roi_heads import StandardRoIHead # noqa from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg class TestCascadeRoIHead(TestCase): @parameterized.expand( ['cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): """Test init standard RoI head.""" # Normal Cascade Mask R-CNN RoI head roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) assert roi_head.with_bbox assert roi_head.with_mask @parameterized.expand( ['cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py']) def test_cascade_roi_head_loss(self, cfg_file): """Tests standard roi head loss when truth is empty and non-empty.""" if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) # When truth is non-empty then both cls, box, and mask loss # should be nonzero for random inputs img_shape_list = [(3, s, s) for _ in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[1], num_classes=4, with_mask=True, device='cuda')['data_samples'] out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') # When there is no truth, the cls loss should be nonzero but # there should be no box and mask loss. proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[0], num_classes=4, with_mask=True, device='cuda')['data_samples'] out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss_cls' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') elif 'loss_bbox' in name or 'loss_mask' in name: self.assertEqual(value.sum(), 0)
import csv import gzip import logging import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, datasets, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Training parameters model_name = "bert-base-uncased" train_batch_size = 8 num_epochs = 1 max_seq_length = 75 # Save path to store our model model_save_path = "output/training_stsb_tsdae-{}-{}-{}".format( model_name, train_batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Check if dataset exists. If not, download and extract it sts_dataset_path = "data/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Defining our sentence transformer model word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), "cls") model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = "data/wiki1m_for_simcse.txt" if not os.path.exists(wikipedia_dataset_path): util.http_get( "https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt", wikipedia_dataset_path, ) # train_samples is a list of InputExample objects where we pass the same sentence twice to texts, i.e. texts=[sent, sent] train_sentences = [] with open(wikipedia_dataset_path, "r", encoding="utf8") as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) # Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( dev_samples, batch_size=train_batch_size, name="sts-dev" ) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( test_samples, batch_size=train_batch_size, name="sts-test" ) # We train our model using the MultipleNegativesRankingLoss train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences) train_dataloader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True, drop_last=True) train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True) evaluation_steps = 1000 logging.info("Training sentences: {}".format(len(train_sentences))) logging.info("Performance before training") dev_evaluator(model) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=evaluation_steps, output_path=model_save_path, weight_decay=0, warmup_steps=100, optimizer_params={"lr": 3e-5}, use_amp=True, # Set to True, if your GPU supports FP16 cores ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator(model, output_path=model_save_path)
from torch.utils.data import DataLoader import math from sentence_transformers import models, losses, datasets from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout # Training parameters model_name = 'bert-base-uncased' train_batch_size = 8 num_epochs = 1 max_seq_length = 75 # Save path to store our model model_save_path = 'output/training_stsb_tsdae-{}-{}-{}'.format(model_name, train_batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Check if dataset exsist. If not, download and extract it sts_dataset_path = 'data/stsbenchmark.tsv.gz' if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) # Defining our sentence transformer model word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), 'cls') model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = 'data/wiki1m_for_simcse.txt' if not os.path.exists(wikipedia_dataset_path): util.http_get('https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt', wikipedia_dataset_path) # train_samples is a list of InputExample objects where we pass the same sentence twice to texts, i.e. texts=[sent, sent] train_sentences = [] with open(wikipedia_dataset_path, 'r', encoding='utf8') as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) # Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 if row['split'] == 'dev': dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) elif row['split'] == 'test': test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, batch_size=train_batch_size, name='sts-dev') test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, batch_size=train_batch_size, name='sts-test') # We train our model using the MultipleNegativesRankingLoss train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences) train_dataloader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True, drop_last=True) train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True) evaluation_steps = 1000 logging.info("Training sentences: {}".format(len(train_sentences))) logging.info("Performance before training") dev_evaluator(model) # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=evaluation_steps, output_path=model_save_path, weight_decay=0, warmup_steps=100, optimizer_params={'lr': 3e-5}, use_amp=True #Set to True, if your GPU supports FP16 cores ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator(model, output_path=model_save_path)
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import shutil import time from unittest import TestCase from unittest.mock import Mock import torch from mmengine.structures import InstanceData from mmdet.engine.hooks import DetVisualizationHook from mmdet.structures import DetDataSample from mmdet.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w) tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h) br_x = ((cx * w) + (w * bw / 2)).clamp(0, w) br_y = ((cy * h) + (h * bh / 2)).clamp(0, h) bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=0).T return bboxes class TestVisualizationHook(TestCase): def setUp(self) -> None: DetLocalVisualizer.get_instance('visualizer') pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(5, 10, 12) pred_instances.labels = torch.randint(0, 2, (5, )) pred_instances.scores = torch.rand((5, )) pred_det_data_sample = DetDataSample() pred_det_data_sample.set_metainfo({ 'img_path': osp.join(osp.dirname(__file__), '../../data/color.jpg') }) pred_det_data_sample.pred_instances = pred_instances self.outputs = [pred_det_data_sample] * 2 def test_after_val_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook() hook.after_val_iter(runner, 1, {}, self.outputs) def test_after_test_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook(draw=True) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertEqual(hook._test_index, 2) # test timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) test_out_dir = timestamp + '1' runner.work_dir = timestamp runner.timestamp = '1' hook = DetVisualizationHook(draw=False, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertTrue(not osp.exists(f'{timestamp}/1/{test_out_dir}')) hook = DetVisualizationHook(draw=True, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertTrue(osp.exists(f'{timestamp}/1/{test_out_dir}')) shutil.rmtree(f'{timestamp}')
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import shutil import time from unittest import TestCase from unittest.mock import Mock import torch from mmengine.structures import InstanceData from mmdet.engine.hooks import DetVisualizationHook from mmdet.structures import DetDataSample from mmdet.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clip(0, w) tl_y = ((cy * h) - (h * bh / 2)).clip(0, h) br_x = ((cx * w) + (w * bw / 2)).clip(0, w) br_y = ((cy * h) + (h * bh / 2)).clip(0, h) bboxes = torch.vstack([tl_x, tl_y, br_x, br_y]).T return bboxes class TestVisualizationHook(TestCase): def setUp(self) -> None: DetLocalVisualizer.get_instance('visualizer') pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(5, 10, 12) pred_instances.labels = torch.randint(0, 2, (5, )) pred_instances.scores = torch.rand((5, )) pred_det_data_sample = DetDataSample() pred_det_data_sample.set_metainfo({ 'img_path': osp.join(osp.dirname(__file__), '../../data/color.jpg') }) pred_det_data_sample.pred_instances = pred_instances self.outputs = [pred_det_data_sample] * 2 def test_after_val_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook() hook.after_val_iter(runner, 1, {}, self.outputs) def test_after_test_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook(draw=True) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertEqual(hook._test_index, 2) # test timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) test_out_dir = timestamp + '1' runner.work_dir = timestamp runner.timestamp = '1' hook = DetVisualizationHook(draw=False, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertTrue(not osp.exists(f'{timestamp}/1/{test_out_dir}')) hook = DetVisualizationHook(draw=True, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertTrue(osp.exists(f'{timestamp}/1/{test_out_dir}')) shutil.rmtree(f'{timestamp}')