input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. import logging import os.path as osp from argparse import ArgumentParser import mmcv from mmengine.config import Config from mmengine.logging import MMLogger from mmengine.utils import mkdir_or_exist from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = ArgumentParser() parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint_root', help='Checkpoint file root path') parser.add_argument('--img', default='demo/demo.jpg', help='Image file') parser.add_argument('--aug', action='store_true', help='aug test') parser.add_argument('--model-name', help='model name to inference') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument('--out-dir', default=None, help='Dir to output file') parser.add_argument( '--wait-time', type=float, default=1, help='the interval of show (s), 0 is block') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--palette', default='coco', choices=['coco', 'voc', 'citys', 'random'], help='Color palette used for visualization') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') args = parser.parse_args() return args def inference_model(config_name, checkpoint, visualizer, args, logger=None): cfg = Config.fromfile(config_name) if args.aug: raise NotImplementedError() model = init_detector( cfg, checkpoint, palette=args.palette, device=args.device) visualizer.dataset_meta = model.dataset_meta # test a single image result = inference_detector(model, args.img) # show the results if args.show or args.out_dir is not None: img = mmcv.imread(args.img) img = mmcv.imconvert(img, 'bgr', 'rgb') out_file = None if args.out_dir is not None: out_dir = args.out_dir mkdir_or_exist(out_dir) out_file = osp.join( out_dir, config_name.split('/')[-1].replace('py', 'jpg')) visualizer.add_datasample( 'result', img, data_sample=result, draw_gt=False, show=args.show, wait_time=args.wait_time, out_file=out_file, pred_score_thr=args.score_thr) return result # Sample test whether the inference code is correct def main(args): # register all modules in mmdet into the registries register_all_modules() config = Config.fromfile(args.config) # init visualizer visualizer_cfg = dict(type='DetLocalVisualizer', name='visualizer') visualizer = VISUALIZERS.build(visualizer_cfg) # test single model if args.model_name: if args.model_name in config: model_infos = config[args.model_name] if not isinstance(model_infos, list): model_infos = [model_infos] model_info = model_infos[0] config_name = model_info['config'].strip() print(f'processing: {config_name}', flush=True) checkpoint = osp.join(args.checkpoint_root, model_info['checkpoint'].strip()) # build the model from a config file and a checkpoint file inference_model(config_name, checkpoint, visualizer, args) return else: raise RuntimeError('model name input error.') # test all model logger = MMLogger.get_instance( name='MMLogger', log_file='benchmark_test_image.log', log_level=logging.ERROR) for model_key in config: model_infos = config[model_key] if not isinstance(model_infos, list): model_infos = [model_infos] for model_info in model_infos: print('processing: ', model_info['config'], flush=True) config_name = model_info['config'].strip() checkpoint = osp.join(args.checkpoint_root, model_info['checkpoint'].strip()) try: # build the model from a config file and a checkpoint file inference_model(config_name, checkpoint, visualizer, args, logger) except Exception as e: logger.error(f'{config_name} " : {repr(e)}') if __name__ == '__main__': args = parse_args() main(args)
# Copyright (c) OpenMMLab. All rights reserved. import logging import os.path as osp from argparse import ArgumentParser import mmcv from mmengine.config import Config from mmengine.logging import MMLogger from mmengine.utils import mkdir_or_exist from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = ArgumentParser() parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint_root', help='Checkpoint file root path') parser.add_argument('--img', default='demo/demo.jpg', help='Image file') parser.add_argument('--aug', action='store_true', help='aug test') parser.add_argument('--model-name', help='model name to inference') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument('--out-dir', default=None, help='Dir to output file') parser.add_argument( '--wait-time', type=float, default=1, help='the interval of show (s), 0 is block') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--palette', default='coco', choices=['coco', 'voc', 'citys', 'random'], help='Color palette used for visualization') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') args = parser.parse_args() return args def inference_model(config_name, checkpoint, visualizer, args, logger=None): cfg = Config.fromfile(config_name) if args.aug: raise NotImplementedError() model = init_detector( cfg, checkpoint, palette=args.palette, device=args.device) visualizer.dataset_meta = model.dataset_meta # test a single image result = inference_detector(model, args.img) # show the results if args.show or args.out_dir is not None: img = mmcv.imread(args.img) img = mmcv.imconvert(img, 'bgr', 'rgb') out_file = None if args.out_dir is not None: out_dir = args.out_dir mkdir_or_exist(out_dir) out_file = osp.join( out_dir, config_name.split('/')[-1].replace('py', 'jpg')) visualizer.add_datasample( 'result', img, pred_sample=result, show=args.show, wait_time=args.wait_time, out_file=out_file, pred_score_thr=args.score_thr) return result # Sample test whether the inference code is correct def main(args): # register all modules in mmdet into the registries register_all_modules() config = Config.fromfile(args.config) # init visualizer visualizer_cfg = dict(type='DetLocalVisualizer', name='visualizer') visualizer = VISUALIZERS.build(visualizer_cfg) # test single model if args.model_name: if args.model_name in config: model_infos = config[args.model_name] if not isinstance(model_infos, list): model_infos = [model_infos] model_info = model_infos[0] config_name = model_info['config'].strip() print(f'processing: {config_name}', flush=True) checkpoint = osp.join(args.checkpoint_root, model_info['checkpoint'].strip()) # build the model from a config file and a checkpoint file inference_model(config_name, checkpoint, visualizer, args) return else: raise RuntimeError('model name input error.') # test all model logger = MMLogger.get_instance( name='MMLogger', log_file='benchmark_test_image.log', log_level=logging.ERROR) for model_key in config: model_infos = config[model_key] if not isinstance(model_infos, list): model_infos = [model_infos] for model_info in model_infos: print('processing: ', model_info['config'], flush=True) config_name = model_info['config'].strip() checkpoint = osp.join(args.checkpoint_root, model_info['checkpoint'].strip()) try: # build the model from a config file and a checkpoint file inference_model(config_name, checkpoint, visualizer, args, logger) except Exception as e: logger.error(f'{config_name} " : {repr(e)}') if __name__ == '__main__': args = parse_args() main(args)
import numpy as np import pytest from keras.src import testing from keras.src.layers.activations import leaky_relu class LeakyReLUTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_leaky_relu(self): self.run_layer_test( leaky_relu.LeakyReLU, init_kwargs={ "negative_slope": 1, }, input_shape=(2, 3, 4), supports_masking=True, assert_built_after_instantiation=True, ) def test_leaky_relu_correctness(self): leaky_relu_layer = leaky_relu.LeakyReLU(negative_slope=0.5) input = np.array([-10, -5, 0.0, 5, 10]) expected_output = np.array([-5.0, -2.5, 0.0, 5.0, 10.0]) result = leaky_relu_layer(input) self.assertAllClose(result, expected_output) def test_invalid_usage(self): with self.assertRaisesRegex( ValueError, "The negative_slope value of a Leaky ReLU layer cannot be None", ): self.run_layer_test( leaky_relu.LeakyReLU, init_kwargs={"negative_slope": None}, input_shape=(2, 3, 4), supports_masking=True, )
import numpy as np import pytest from keras.src import testing from keras.src.layers.activations import leaky_relu class LeakyReLUTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_leaky_relu(self): self.run_layer_test( leaky_relu.LeakyReLU, init_kwargs={ "negative_slope": 1, }, input_shape=(2, 3, 4), supports_masking=True, ) def test_leaky_relu_correctness(self): leaky_relu_layer = leaky_relu.LeakyReLU(negative_slope=0.5) input = np.array([-10, -5, 0.0, 5, 10]) expected_output = np.array([-5.0, -2.5, 0.0, 5.0, 10.0]) result = leaky_relu_layer(input) self.assertAllClose(result, expected_output) def test_invalid_usage(self): with self.assertRaisesRegex( ValueError, "The negative_slope value of a Leaky ReLU layer cannot be None", ): self.run_layer_test( leaky_relu.LeakyReLU, init_kwargs={"negative_slope": None}, input_shape=(2, 3, 4), supports_masking=True, )
import numpy as np import pytest import torch from docarray.base_doc import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AnyUrl, NdArray, TorchTensor @pytest.fixture() def doc_and_class(): class Mmdoc(BaseDoc): img: NdArray url: AnyUrl txt: str torch_tensor: TorchTensor bytes_: bytes doc = Mmdoc( img=np.zeros((10)), url='http://doccaray.io', txt='hello', torch_tensor=torch.zeros(10), bytes_=b'hello', ) return doc, Mmdoc def test_to_json(doc_and_class): doc, _ = doc_and_class doc.json() def test_from_json(doc_and_class): doc, Mmdoc = doc_and_class new_doc = Mmdoc.parse_raw(doc.json()) for field, field2 in zip(doc.dict().keys(), new_doc.dict().keys()): if field in ['torch_tensor', 'img']: assert (getattr(doc, field) == getattr(doc, field2)).all() else: assert getattr(doc, field) == getattr(doc, field2) def test_to_dict_to_json(doc_and_class): doc, Mmdoc = doc_and_class new_doc = Mmdoc.parse_raw(orjson_dumps(doc.dict())) for field, field2 in zip(doc.dict().keys(), new_doc.dict().keys()): if field in ['torch_tensor', 'img']: assert (getattr(doc, field) == getattr(doc, field2)).all() else: assert getattr(doc, field) == getattr(doc, field2)
import numpy as np import pytest import torch from docarray.base_doc import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AnyUrl, NdArray, TorchTensor @pytest.fixture() def doc_and_class(): class Mmdoc(BaseDoc): img: NdArray url: AnyUrl txt: str torch_tensor: TorchTensor bytes_: bytes doc = Mmdoc( img=np.zeros((10)), url='http://doccaray.io', txt='hello', torch_tensor=torch.zeros(10), bytes_=b'hello', ) return doc, Mmdoc def test_to_json(doc_and_class): doc, _ = doc_and_class doc.json() def test_from_json(doc_and_class): doc, Mmdoc = doc_and_class new_doc = Mmdoc.parse_raw(doc.json()) for (field, field2) in zip(doc.dict().keys(), new_doc.dict().keys()): if field in ['torch_tensor', 'img']: assert (getattr(doc, field) == getattr(doc, field2)).all() else: assert getattr(doc, field) == getattr(doc, field2) def test_to_dict_to_json(doc_and_class): doc, Mmdoc = doc_and_class new_doc = Mmdoc.parse_raw(orjson_dumps(doc.dict())) for (field, field2) in zip(doc.dict().keys(), new_doc.dict().keys()): if field in ['torch_tensor', 'img']: assert (getattr(doc, field) == getattr(doc, field2)).all() else: assert getattr(doc, field) == getattr(doc, field2)
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.8.0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.7.1.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
import warnings from abc import ABC from typing import TYPE_CHECKING, Any, BinaryIO, Dict, TypeVar, Union from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._internal.misc import import_library, is_notebook if TYPE_CHECKING: from docarray.typing.bytes.audio_bytes import AudioBytes T = TypeVar('T', bound='AbstractAudioTensor') MAX_INT_16 = 2**15 class AbstractAudioTensor(AbstractTensor, ABC): def to_bytes(self) -> 'AudioBytes': """ Convert audio tensor to [`AudioBytes`][docarray.typing.AudioBytes]. """ from docarray.typing.bytes.audio_bytes import AudioBytes tensor = self.get_comp_backend().to_numpy(self) tensor = (tensor * MAX_INT_16).astype('<h') return AudioBytes(tensor.tobytes()) def save( self: 'T', file_path: Union[str, BinaryIO], format: str = 'wav', frame_rate: int = 44100, sample_width: int = 2, pydub_args: Dict[str, Any] = {}, ) -> None: """ Save audio tensor to an audio file. Mono/stereo is preserved. :param file_path: path to an audio file. If file is a string, open the file by that name, otherwise treat it as a file-like object. :param format: format for the audio file ('mp3', 'wav', 'raw', 'ogg' or other ffmpeg/avconv supported files) :param frame_rate: sampling frequency :param sample_width: sample width in bytes :param pydub_args: dictionary of additional arguments for pydub.AudioSegment.export function """ pydub = import_library('pydub', raise_error=True) # noqa: F841 from pydub import AudioSegment comp_backend = self.get_comp_backend() channels = 2 if comp_backend.n_dim(array=self) > 1 else 1 # type: ignore segment = AudioSegment( self.to_bytes(), frame_rate=frame_rate, sample_width=sample_width, channels=channels, ) segment.export(file_path, format=format, **pydub_args) def display(self, rate=44100): """ Play audio data from tensor in notebook. """ if is_notebook(): from IPython.display import Audio, display audio_np = self.get_comp_backend().to_numpy(self) display(Audio(audio_np, rate=rate)) else: warnings.warn('Display of audio is only possible in a notebook.')
import warnings from abc import ABC from typing import TYPE_CHECKING, Any, BinaryIO, Dict, TypeVar, Union from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._internal.misc import import_library, is_notebook if TYPE_CHECKING: from docarray.typing.bytes.audio_bytes import AudioBytes T = TypeVar('T', bound='AbstractAudioTensor') MAX_INT_16 = 2**15 class AbstractAudioTensor(AbstractTensor, ABC): def to_bytes(self) -> 'AudioBytes': """ Convert audio tensor to [`AudioBytes`][docarray.typrin.AudioBytes]. """ from docarray.typing.bytes.audio_bytes import AudioBytes tensor = self.get_comp_backend().to_numpy(self) tensor = (tensor * MAX_INT_16).astype('<h') return AudioBytes(tensor.tobytes()) def save( self: 'T', file_path: Union[str, BinaryIO], format: str = 'wav', frame_rate: int = 44100, sample_width: int = 2, pydub_args: Dict[str, Any] = {}, ) -> None: """ Save audio tensor to an audio file. Mono/stereo is preserved. :param file_path: path to an audio file. If file is a string, open the file by that name, otherwise treat it as a file-like object. :param format: format for the audio file ('mp3', 'wav', 'raw', 'ogg' or other ffmpeg/avconv supported files) :param frame_rate: sampling frequency :param sample_width: sample width in bytes :param pydub_args: dictionary of additional arguments for pydub.AudioSegment.export function """ pydub = import_library('pydub', raise_error=True) # noqa: F841 from pydub import AudioSegment comp_backend = self.get_comp_backend() channels = 2 if comp_backend.n_dim(array=self) > 1 else 1 # type: ignore segment = AudioSegment( self.to_bytes(), frame_rate=frame_rate, sample_width=sample_width, channels=channels, ) segment.export(file_path, format=format, **pydub_args) def display(self, rate=44100): """ Play audio data from tensor in notebook. """ if is_notebook(): from IPython.display import Audio, display audio_np = self.get_comp_backend().to_numpy(self) display(Audio(audio_np, rate=rate)) else: warnings.warn('Display of audio is only possible in a notebook.')
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoTorchTensor') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_torch_tensor') class VideoTorchTensor(TorchTensor, VideoTensorMixin, metaclass=metaTorchAndNode): """ Subclass of [`TorchTensor`][docarray.typing.TorchTensor], to represent a video tensor. Adds video-specific features to the tensor. --- ```python from typing import Optional import torch from docarray import BaseDoc from docarray.typing import VideoTorchTensor, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoTorchTensor] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=torch.randn(size=(100, 224, 224, 3)), ) # doc_1.video_tensor.save(file_path='file_1.mp4') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true', ) doc_2.video_tensor = doc_2.url.load().video # doc_2.video_tensor.save(file_path='file_2.wav') ``` --- """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoTorchTensor') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_torch_tensor') class VideoTorchTensor(TorchTensor, VideoTensorMixin, metaclass=metaTorchAndNode): """ Subclass of [`TorchTensor`][docarray.typing.TorchTensor], to represent a video tensor. Adds video-specific features to the tensor. --- ```python from typing import Optional import torch from docarray import BaseDoc from docarray.typing import VideoTorchTensor, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoTorchTensor] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=torch.randn(size=(100, 224, 224, 3)), ) # doc_1.video_tensor.save(file_path='file_1.mp4') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true', ) doc_2.video_tensor = doc_2.url.load().video # doc_2.video_tensor.save(file_path='file_2.wav') ``` --- """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
""" Video audio parser. Contains parsers for mp3, mp4 files. """ from pathlib import Path from typing import Any, Dict, List, Optional, cast import logging from fsspec import AbstractFileSystem from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) class VideoAudioReader(BaseReader): """ Video audio parser. Extract text from transcript of video/audio files. """ def __init__(self, *args: Any, model_version: str = "base", **kwargs: Any) -> None: """Init parser.""" super().__init__(*args, **kwargs) self._model_version = model_version try: import whisper except ImportError: raise ImportError( "Please install OpenAI whisper model " "'pip install git+https://github.com/openai/whisper.git' " "to use the model" ) model = whisper.load_model(self._model_version) self.parser_config = {"model": model} def load_data( self, file: Path, extra_info: Optional[Dict] = None, fs: Optional[AbstractFileSystem] = None, ) -> List[Document]: """Parse file.""" import whisper if file.name.endswith("mp4"): try: from pydub import AudioSegment except ImportError: raise ImportError("Please install pydub 'pip install pydub' ") if fs: with fs.open(file, "rb") as f: video = AudioSegment.from_file(f, format="mp4") else: # open file video = AudioSegment.from_file(file, format="mp4") # Extract audio from video audio = video.split_to_mono()[0] file_str = str(file)[:-4] + ".mp3" # export file audio.export(file_str, format="mp3") model = cast(whisper.Whisper, self.parser_config["model"]) result = model.transcribe(str(file)) transcript = result["text"] return [Document(text=transcript, metadata=extra_info or {})]
"""Video audio parser. Contains parsers for mp3, mp4 files. """ from pathlib import Path from typing import Any, Dict, List, Optional, cast import logging from fsspec import AbstractFileSystem from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) class VideoAudioReader(BaseReader): """Video audio parser. Extract text from transcript of video/audio files. """ def __init__(self, *args: Any, model_version: str = "base", **kwargs: Any) -> None: """Init parser.""" super().__init__(*args, **kwargs) self._model_version = model_version try: import whisper except ImportError: raise ImportError( "Please install OpenAI whisper model " "'pip install git+https://github.com/openai/whisper.git' " "to use the model" ) model = whisper.load_model(self._model_version) self.parser_config = {"model": model} def load_data( self, file: Path, extra_info: Optional[Dict] = None, fs: Optional[AbstractFileSystem] = None, ) -> List[Document]: """Parse file.""" import whisper if file.name.endswith("mp4"): try: from pydub import AudioSegment except ImportError: raise ImportError("Please install pydub 'pip install pydub' ") if fs: with fs.open(file, "rb") as f: video = AudioSegment.from_file(f, format="mp4") else: # open file video = AudioSegment.from_file(file, format="mp4") # Extract audio from video audio = video.split_to_mono()[0] file_str = str(file)[:-4] + ".mp3" # export file audio.export(file_str, format="mp3") model = cast(whisper.Whisper, self.parser_config["model"]) result = model.transcribe(str(file)) transcript = result["text"] return [Document(text=transcript, metadata=extra_info or {})]
from __future__ import annotations from .splade_callbacks import SchedulerType, SpladeWeightRegulizerSchedulerCallback __all__ = ["SpladeWeightRegulizerSchedulerCallback", "SchedulerType"]
from __future__ import annotations from .splade_callbacks import SchedulerType, SpladeLambdaSchedulerCallback __all__ = ["SpladeLambdaSchedulerCallback", "SchedulerType"]
_base_ = ['./ld_r18-gflv1-r101_fpn_1x_coco.py'] teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth' # noqa model = dict( teacher_config='configs/gfl/gfl_r101-dconv-c3-c5_fpn_ms-2x_coco.py', teacher_ckpt=teacher_ckpt, backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5)) max_epochs = 24 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # multi-scale training train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = ['./ld_r18-gflv1-r101_fpn_1x_coco.py'] teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth' # noqa model = dict( teacher_config='configs/gfl/gfl_r101-dconv-c3-c5_fpn_ms-2x_coco.py', teacher_ckpt=teacher_ckpt, backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5)) max_epochs = 24 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # multi-scale training train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
# CREDITS: https://github.com/openai/CLIP import gzip import html from functools import lru_cache from pathlib import Path import ftfy import regex as re @lru_cache() def default_bpe(): return str(Path(__file__).parents[2] / '.cache/bpe_simple_vocab_16e6.txt.gz') @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
# CREDITS: https://github.com/openai/CLIP import gzip import html import os from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.getcwd(), '.cache', 'bpe_simple_vocab_16e6.txt.gz') @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
# Copyright (c) OpenMMLab. All rights reserved. import ast import os.path as osp import re import warnings from typing import Tuple from mmengine.fileio import load from mmengine.utils import check_file_exist PKG2PROJECT = { 'mmcls': 'mmcls', 'mmdet': 'mmdet', 'mmdet3d': 'mmdet3d', 'mmseg': 'mmsegmentation', 'mmaction2': 'mmaction2', 'mmtrack': 'mmtrack', 'mmpose': 'mmpose', 'mmedit': 'mmedit', 'mmocr': 'mmocr', 'mmgen': 'mmgen', 'mmfewshot': 'mmfewshot', 'mmrazor': 'mmrazor', 'mmflow': 'mmflow', 'mmhuman3d': 'mmhuman3d', 'mmrotate': 'mmrotate', 'mmselfsup': 'mmselfsup', } def _get_cfg_metainfo(package_path: str, cfg_path: str) -> dict: """Get target meta information from all 'metafile.yml' defined in `mode- index.yml` of external package. Args: package_path (str): Path of external package. cfg_path (str): Name of experiment config. Returns: dict: Meta information of target experiment. """ meta_index_path = osp.join(package_path, '.mim', 'model-index.yml') meta_index = load(meta_index_path) cfg_dict = dict() for meta_path in meta_index['Import']: meta_path = osp.join(package_path, '.mim', meta_path) cfg_meta = load(meta_path) for model_cfg in cfg_meta['Models']: if 'Config' not in model_cfg: warnings.warn(f'There is not `Config` define in {model_cfg}') continue cfg_name = model_cfg['Config'].partition('/')[-1] # Some config could have multiple weights, we only pick the # first one. if cfg_name in cfg_dict: continue cfg_dict[cfg_name] = model_cfg if cfg_path not in cfg_dict: raise ValueError(f'Expected configs: {cfg_dict.keys()}, but got ' f'{cfg_path}') return cfg_dict[cfg_path] def _get_external_cfg_path(package_path: str, cfg_file: str) -> str: """Get config path of external package. Args: package_path (str): Path of external package. cfg_file (str): Name of experiment config. Returns: str: Absolute config path from external package. """ cfg_file = cfg_file.split('.')[0] model_cfg = _get_cfg_metainfo(package_path, cfg_file) cfg_path = osp.join(package_path, model_cfg['Config']) check_file_exist(cfg_path) return cfg_path def _get_external_cfg_base_path(package_path: str, cfg_name: str) -> str: """Get base config path of external package. Args: package_path (str): Path of external package. cfg_name (str): External relative config path with 'package::'. Returns: str: Absolute config path from external package. """ cfg_path = osp.join(package_path, '.mim', 'configs', cfg_name) check_file_exist(cfg_path) return cfg_path def _get_package_and_cfg_path(cfg_path: str) -> Tuple[str, str]: """Get package name and relative config path. Args: cfg_path (str): External relative config path with 'package::'. Returns: Tuple[str, str]: Package name and config path. """ if re.match(r'\w*::\w*/\w*', cfg_path) is None: raise ValueError( '`_get_package_and_cfg_path` is used for get external package, ' 'please specify the package name and relative config path, just ' 'like `mmdet::faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py`') package_cfg = cfg_path.split('::') if len(package_cfg) > 2: raise ValueError('`::` should only be used to separate package and ' 'config name, but found multiple `::` in ' f'{cfg_path}') package, cfg_path = package_cfg assert package in PKG2PROJECT, 'mmengine does not support to load ' \ f'{package} config.' package = PKG2PROJECT[package] return package, cfg_path class RemoveAssignFromAST(ast.NodeTransformer): """Remove Assign node if the target's name match the key. Args: key (str): The target name of the Assign node. """ def __init__(self, key): self.key = key def visit_Assign(self, node): if (isinstance(node.targets[0], ast.Name) and node.targets[0].id == self.key): return None else: return node
# Copyright (c) OpenMMLab. All rights reserved. import ast class RemoveAssignFromAST(ast.NodeTransformer): """Remove Assign node if the target's name match the key. Args: key (str): The target name of the Assign node. """ def __init__(self, key): self.key = key def visit_Assign(self, node): if (isinstance(node.targets[0], ast.Name) and node.targets[0].id == self.key): return None else: return node
from typing import ( TYPE_CHECKING, Iterable, ) from docarray.array.memory import DocumentArrayInMemory if TYPE_CHECKING: from docarray.document import Document class ChunkArray(DocumentArrayInMemory): """ :class:`ChunkArray` inherits from :class:`DocumentArray`. It's a subset of Documents. :param docs: Set of sub-documents (i.e chunks) of `reference_doc` :param reference_doc: Reference :class:`Document` for the sub-documents """ def __init__(self, docs, reference_doc: 'Document'): """ Set constructor method. :param doc_views: protobuf representation of the chunks :param reference_doc: parent document """ self._ref_doc = reference_doc super().__init__(docs) if isinstance(docs, Iterable) and self._ref_doc is not None: for d in docs: d.parent_id = self._ref_doc.id d.granularity = self._ref_doc.granularity + 1 def append(self, document: 'Document'): """Add a sub-document (i.e chunk) to the current Document. :param document: Sub-document to be appended .. note:: Comparing to :attr:`DocumentArray.append()`, this method adds more safeguard to make sure the added chunk is legit. """ document.parent_id = self._ref_doc.id document.granularity = self._ref_doc.granularity + 1 super().append(document) @property def reference_doc(self) -> 'Document': """ Get the document that :class:`ChunkArray` belongs to. :return: reference doc """ return self._ref_doc @property def granularity(self) -> int: """ Get granularity of all document in this array. :return: granularity """ return self._ref_doc.granularity + 1 @property def adjacency(self) -> int: """ Get adjacency of all document in this array. :return: adjacency """ return self._ref_doc.adjacency
from typing import ( TYPE_CHECKING, Iterable, ) from .memory import DocumentArrayInMemory if TYPE_CHECKING: from ..document import Document class ChunkArray(DocumentArrayInMemory): """ :class:`ChunkArray` inherits from :class:`DocumentArray`. It's a subset of Documents. :param docs: Set of sub-documents (i.e chunks) of `reference_doc` :param reference_doc: Reference :class:`Document` for the sub-documents """ def __init__(self, docs, reference_doc: 'Document'): """ Set constructor method. :param doc_views: protobuf representation of the chunks :param reference_doc: parent document """ self._ref_doc = reference_doc super().__init__(docs) if isinstance(docs, Iterable) and self._ref_doc is not None: for d in docs: d.parent_id = self._ref_doc.id d.granularity = self._ref_doc.granularity + 1 def append(self, document: 'Document'): """Add a sub-document (i.e chunk) to the current Document. :param document: Sub-document to be appended .. note:: Comparing to :attr:`DocumentArray.append()`, this method adds more safeguard to make sure the added chunk is legit. """ document.parent_id = self._ref_doc.id document.granularity = self._ref_doc.granularity + 1 super().append(document) @property def reference_doc(self) -> 'Document': """ Get the document that :class:`ChunkArray` belongs to. :return: reference doc """ return self._ref_doc @property def granularity(self) -> int: """ Get granularity of all document in this array. :return: granularity """ return self._ref_doc.granularity + 1 @property def adjacency(self) -> int: """ Get adjacency of all document in this array. :return: adjacency """ return self._ref_doc.adjacency
from __future__ import annotations import logging from dataclasses import dataclass from sentence_transformers.data_collator import SentenceTransformerDataCollator logger = logging.getLogger(__name__) @dataclass class SparseEncoderDataCollator(SentenceTransformerDataCollator): """Collator for a SparseEncoder model. Overrided from SentenceTransformerDataCollator nothing added. This encodes the text columns to {column}_input_ids and {column}_attention_mask columns. This works with the two text dataset that is used as the example in the training overview: https://www.sbert.net/docs/sentence_transformer/training_overview.html It is important that the columns are in the expected order. For example, if your dataset has columns "answer", "question" in that order, then the MultipleNegativesRankingLoss will consider "answer" as the anchor and "question" as the positive, and it will (unexpectedly) optimize for "given the answer, what is the question?". """
from __future__ import annotations import logging from dataclasses import dataclass from sentence_transformers.data_collator import SentenceTransformerDataCollator logger = logging.getLogger(__name__) @dataclass class SparseEncoderDataCollator(SentenceTransformerDataCollator): """Collator for a SparseEncoder model. This encodes the text columns to {column}_input_ids and {column}_attention_mask columns. This works with the two text dataset that is used as the example in the training overview: https://www.sbert.net/docs/sentence_transformer/training_overview.html It is important that the columns are in the expected order. For example, if your dataset has columns "answer", "question" in that order, then the MultipleNegativesRankingLoss will consider "answer" as the anchor and "question" as the positive, and it will (unexpectedly) optimize for "given the answer, what is the question?". """
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import DDODHead class TestDDODHead(TestCase): def test_ddod_head_loss(self): """Tests ddod head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1 }] cfg = Config( dict( assigner=dict(type='ATSSAssigner', topk=9, alpha=0.8), reg_assigner=dict(type='ATSSAssigner', topk=9, alpha=0.5), allowed_border=-1, pos_weight=-1, debug=False)) atss_head = DDODHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=1, use_dcn=False, norm_cfg=None, train_cfg=cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_iou=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [8, 16, 32, 64, 128] ] cls_scores, bbox_preds, centernesses = atss_head.forward(feat) # Test that empty ground truth encourages the network to predict # background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = atss_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) empty_centerness_loss = sum(empty_gt_losses['loss_iou']) self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_centerness_loss.item(), 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = atss_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) onegt_centerness_loss = sum(one_gt_losses['loss_iou']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero') self.assertGreater(onegt_centerness_loss.item(), 0, 'centerness loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.data import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import DDODHead class TestDDODHead(TestCase): def test_ddod_head_loss(self): """Tests ddod head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1 }] cfg = Config( dict( assigner=dict(type='ATSSAssigner', topk=9, alpha=0.8), reg_assigner=dict(type='ATSSAssigner', topk=9, alpha=0.5), allowed_border=-1, pos_weight=-1, debug=False)) atss_head = DDODHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=1, use_dcn=False, norm_cfg=None, train_cfg=cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_iou=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [8, 16, 32, 64, 128] ] cls_scores, bbox_preds, centernesses = atss_head.forward(feat) # Test that empty ground truth encourages the network to predict # background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = atss_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) empty_centerness_loss = sum(empty_gt_losses['loss_iou']) self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_centerness_loss.item(), 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = atss_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) onegt_centerness_loss = sum(one_gt_losses['loss_iou']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero') self.assertGreater(onegt_centerness_loss.item(), 0, 'centerness loss should be non-zero')
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Utilities for file names.""" import itertools import os import re _uppercase_uppercase_re = re.compile(r"([A-Z]+)([A-Z][a-z])") _lowercase_uppercase_re = re.compile(r"([a-z\d])([A-Z])") _single_underscore_re = re.compile(r"(?<!_)_(?!_)") _multiple_underscores_re = re.compile(r"(_{2,})") _split_re = r"^\w+(\.\w+)*$" INVALID_WINDOWS_CHARACTERS_IN_PATH = r"<>:/\|?*" def camelcase_to_snakecase(name): """Convert camel-case string to snake-case.""" name = _uppercase_uppercase_re.sub(r"\1_\2", name) name = _lowercase_uppercase_re.sub(r"\1_\2", name) return name.lower() def snakecase_to_camelcase(name): """Convert snake-case string to camel-case string.""" name = _single_underscore_re.split(name) name = [_multiple_underscores_re.split(n) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(name) if n != "") def filename_prefix_for_name(name): if os.path.basename(name) != name: raise ValueError(f"Should be a dataset name, not a path: {name}") return camelcase_to_snakecase(name) def filename_prefix_for_split(name, split): if os.path.basename(name) != name: raise ValueError(f"Should be a dataset name, not a path: {name}") if not re.match(_split_re, split): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'.") return f"{filename_prefix_for_name(name)}-{split}" def filepattern_for_dataset_split(dataset_name, split, data_dir, filetype_suffix=None): prefix = filename_prefix_for_split(dataset_name, split) if filetype_suffix: prefix += f".{filetype_suffix}" filepath = os.path.join(data_dir, prefix) return f"{filepath}*" def filenames_for_dataset_split(path, dataset_name, split, filetype_suffix=None, shard_lengths=None): prefix = filename_prefix_for_split(dataset_name, split) prefix = os.path.join(path, prefix) if shard_lengths: num_shards = len(shard_lengths) filenames = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(num_shards)] if filetype_suffix: filenames = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: filename = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Utilities for file names.""" import itertools import os import re _uppercase_uppercase_re = re.compile(r"([A-Z]+)([A-Z][a-z])") _lowercase_uppercase_re = re.compile(r"([a-z\d])([A-Z])") _single_underscore_re = re.compile(r"(?<!_)_(?!_)") _multiple_underscores_re = re.compile(r"(_{2,})") _split_re = r"^\w+(\.\w+)*$" INVALID_WINDOWS_CHARACTERS_IN_PATH = r"<>:/\|?*" def camelcase_to_snakecase(name): """Convert camel-case string to snake-case.""" name = _uppercase_uppercase_re.sub(r"\1_\2", name) name = _lowercase_uppercase_re.sub(r"\1_\2", name) return name.lower() def snakecase_to_camelcase(name): """Convert snake-case string to camel-case string.""" name = _single_underscore_re.split(name) name = [_multiple_underscores_re.split(n) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(name) if n != "") def filename_prefix_for_name(name): if os.path.basename(name) != name: raise ValueError(f"Should be a dataset name, not a path: {name}") return camelcase_to_snakecase(name) def filename_prefix_for_split(name, split): if os.path.basename(name) != name: raise ValueError(f"Should be a dataset name, not a path: {name}") if not re.match(_split_re, split): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'.") return f"{filename_prefix_for_name(name)}-{split}" def filepattern_for_dataset_split(dataset_name, split, data_dir, filetype_suffix=None): prefix = filename_prefix_for_split(dataset_name, split) if filetype_suffix: prefix += f".{filetype_suffix}" filepath = os.path.join(data_dir, prefix) return f"{filepath}*" def filenames_for_dataset_split(path, dataset_name, split, filetype_suffix=None, shard_lengths=None): prefix = filename_prefix_for_split(dataset_name, split) prefix = os.path.join(path, prefix) if shard_lengths: num_shards = len(shard_lengths) filenames = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(num_shards)] if filetype_suffix: filenames = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: filename = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
from __future__ import annotations import pytest from torch.utils.data import BatchSampler, ConcatDataset, SequentialSampler from sentence_transformers.sampler import RoundRobinBatchSampler from sentence_transformers.util import is_datasets_available if is_datasets_available(): from datasets import Dataset else: pytest.skip( reason='Sentence Transformers was not installed with the `["train"]` extra.', allow_module_level=True, ) DATASET_LENGTH = 25 @pytest.fixture def dummy_concat_dataset() -> ConcatDataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 1, 2, ... , 23, 24, 100, 101, ..., 123, 124], "label": [0, 1, 0, 1, ..., 0, 1], } """ values_1 = list(range(DATASET_LENGTH)) labels = [x % 2 for x in values_1] dataset_1 = Dataset.from_dict({"data": values_1, "label": labels}) values_2 = [x + 100 for x in values_1] + [x + 200 for x in values_1] dataset_2 = Dataset.from_dict({"data": values_2, "label": labels + labels}) return ConcatDataset([dataset_1, dataset_2]) def test_round_robin_batch_sampler(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[0]))), batch_size=batch_size, drop_last=True ) batch_sampler_2 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[1]))), batch_size=batch_size, drop_last=True ) sampler = RoundRobinBatchSampler(dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2]) batches = list(iter(sampler)) # Despite the second dataset being larger (2 * DATASET_LENGTH), we still only sample DATASET_LENGTH // batch_size batches from each dataset # because the RoundRobinBatchSampler should stop sampling once it has sampled all elements from one dataset assert len(batches) == 2 * DATASET_LENGTH // batch_size assert len(sampler) == len(batches) # Assert that batches are produced in a round-robin fashion for i in range(0, len(batches), 2): # Batch from the first part of the dataset batch_1 = batches[i] assert all( dummy_concat_dataset[idx]["data"] < 100 for idx in batch_1 ), f"Batch {i} contains data from the second part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_1]}" # Batch from the second part of the dataset batch_2 = batches[i + 1] assert all( dummy_concat_dataset[idx]["data"] >= 100 for idx in batch_2 ), f"Batch {i+1} contains data from the first part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_2]}" def test_round_robin_batch_sampler_value_error(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_2 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_3 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) with pytest.raises( ValueError, match="The number of batch samplers must match the number of datasets in the ConcatDataset" ): RoundRobinBatchSampler( dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2, batch_sampler_3] )
from __future__ import annotations import pytest from datasets import Dataset from torch.utils.data import BatchSampler, ConcatDataset, SequentialSampler from sentence_transformers.sampler import RoundRobinBatchSampler DATASET_LENGTH = 25 @pytest.fixture def dummy_concat_dataset() -> ConcatDataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 1, 2, ... , 23, 24, 100, 101, ..., 123, 124], "label": [0, 1, 0, 1, ..., 0, 1], } """ values_1 = list(range(DATASET_LENGTH)) labels = [x % 2 for x in values_1] dataset_1 = Dataset.from_dict({"data": values_1, "label": labels}) values_2 = [x + 100 for x in values_1] + [x + 200 for x in values_1] dataset_2 = Dataset.from_dict({"data": values_2, "label": labels + labels}) return ConcatDataset([dataset_1, dataset_2]) def test_round_robin_batch_sampler(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[0]))), batch_size=batch_size, drop_last=True ) batch_sampler_2 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[1]))), batch_size=batch_size, drop_last=True ) sampler = RoundRobinBatchSampler(dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2]) batches = list(iter(sampler)) # Despite the second dataset being larger (2 * DATASET_LENGTH), we still only sample DATASET_LENGTH // batch_size batches from each dataset # because the RoundRobinBatchSampler should stop sampling once it has sampled all elements from one dataset assert len(batches) == 2 * DATASET_LENGTH // batch_size assert len(sampler) == len(batches) # Assert that batches are produced in a round-robin fashion for i in range(0, len(batches), 2): # Batch from the first part of the dataset batch_1 = batches[i] assert all( dummy_concat_dataset[idx]["data"] < 100 for idx in batch_1 ), f"Batch {i} contains data from the second part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_1]}" # Batch from the second part of the dataset batch_2 = batches[i + 1] assert all( dummy_concat_dataset[idx]["data"] >= 100 for idx in batch_2 ), f"Batch {i+1} contains data from the first part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_2]}" def test_round_robin_batch_sampler_value_error(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_2 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_3 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) with pytest.raises( ValueError, match="The number of batch samplers must match the number of datasets in the ConcatDataset" ): RoundRobinBatchSampler( dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2, batch_sampler_3] )
""" This script finds the person responsible for labeling a PR by a commit SHA. It is used by the workflow in '.github/workflows/pr-labels.yml'. Note: we only ping the person who pulls the pr, not the reviewers, as the reviewers can sometimes be external to torchaudio with no labeling responsibility, so we don't want to bother them. """ import json import os import sys from typing import Any, Optional, Set import requests # For a PR to be properly labeled it should have one primary label and one secondary label # For a PR with primary label "other", it does not require an additional secondary label PRIMARY_LABELS = { "BC-breaking", "deprecation", "bug fix", "new feature", "improvement", "prototype", "other", } SECONDARY_LABELS = { "module: io", "module: ops", "module: models", "module: pipelines", "module: datasets", "module: docs", "module: tests", "tutorial", "recipe", "example", "build", "style", "perf", "other", } GITHUB_TOKEN = os.environ.get("GITHUB_TOKEN") REQUEST_HEADERS = {"Accept": "application/vnd.github.v3+json", "Authorization": f"token {GITHUB_TOKEN}"} TORCHAUDIO_REPO = "https://api.github.com/repos/pytorch/audio" def query_torchaudio(cmd: str) -> Any: response = requests.get(f"{TORCHAUDIO_REPO}/{cmd}", headers=REQUEST_HEADERS) return response.json() def get_pr_merger_and_number(commit_hash: str) -> Optional[str]: data = query_torchaudio(f"commits/{commit_hash}") commit_message = data["commit"]["message"] pulled_by = commit_message.split("Pulled By: ") pulled_by = pulled_by[1].split("\n")[0] if len(pulled_by) > 1 else None pr_number = commit_message.split("Pull Request resolved: https://github.com/pytorch/audio/pull/") pr_number = pr_number[1].split("\n")[0] if len(pr_number) > 1 else None return pulled_by, pr_number def get_labels(pr_number: int) -> Set[str]: data = query_torchaudio(f"pulls/{pr_number}") labels = {label["name"] for label in data["labels"]} return labels def post_github_comment(pr_number: int, merger: str) -> Any: message = { "body": f"Hey @{merger}." + """ You merged this PR, but labels were not properly added. Please add a primary and secondary label \ (See https://github.com/pytorch/audio/blob/main/.github/process_commit.py). --- ## Some guidance: Use 'module: ops' for operations under 'torchaudio/{transforms, functional}', \ and ML-related components under 'torchaudio/csrc' (e.g. RNN-T loss). Things in "examples" directory: - 'recipe' is applicable to training recipes under the 'examples' folder, - 'tutorial' is applicable to tutorials under the “examples/tutorials” folder - 'example' is applicable to everything else (e.g. C++ examples) - 'module: docs' is applicable to code documentations (not to tutorials). Regarding examples in code documentations, please also use 'module: docs'. Please use 'other' tag only when you’re sure the changes are not much relevant to users, \ or when all other tags are not applicable. Try not to use it often, in order to minimize \ efforts required when we prepare release notes. --- When preparing release notes, please make sure 'documentation' and 'tutorials' occur as the \ last sub-categories under each primary category like 'new feature', 'improvements' or 'prototype'. Things related to build are by default excluded from the release note, \ except when it impacts users. For example: * Drop support of Python 3.7. * Add support of Python 3.X. * Change the way a third party library is bound (so that user needs to install it separately). """ } response = requests.post( f"{TORCHAUDIO_REPO}/issues/{pr_number}/comments", json.dumps(message), headers=REQUEST_HEADERS ) return response.json() if __name__ == "__main__": commit_hash = sys.argv[1] merger, pr_number = get_pr_merger_and_number(commit_hash) if pr_number: labels = get_labels(pr_number) is_properly_labeled = bool(PRIMARY_LABELS.intersection(labels) and SECONDARY_LABELS.intersection(labels)) if not is_properly_labeled: post_github_comment(pr_number, merger)
""" This script finds the person responsible for labeling a PR by a commit SHA. It is used by the workflow in '.github/workflows/pr-labels.yml'. Note: we only ping the person who pulls the pr, not the reviewers, as the reviewers can sometimes be external to torchaudio with no labeling responsibility, so we don't want to bother them. """ import json import os import sys from typing import Any, Optional, Set, Tuple import requests # For a PR to be properly labeled it should have one primary label and one secondary label # For a PR with primary label "other", it does not require an additional secondary label PRIMARY_LABELS = { "BC-breaking", "deprecation", "bug fix", "new feature", "improvement", "prototype", "other", } SECONDARY_LABELS = { "module: io", "module: ops", "module: models", "module: pipelines", "module: datasets", "module: docs", "module: tests", "tutorial", "recipe", "example", "build", "style", "perf", "other", } GITHUB_TOKEN = os.environ.get("GITHUB_TOKEN") REQUEST_HEADERS = {"Accept": "application/vnd.github.v3+json", "Authorization": f"token {GITHUB_TOKEN}"} TORCHAUDIO_REPO = "https://api.github.com/repos/pytorch/audio" def query_torchaudio(cmd: str) -> Any: response = requests.get(f"{TORCHAUDIO_REPO}/{cmd}", headers=REQUEST_HEADERS) return response.json() def get_pr_merger_and_number(commit_hash: str) -> Optional[str]: data = query_torchaudio(f"commits/{commit_hash}") commit_message = data["commit"]["message"] pulled_by = commit_message.split("Pulled By: ") pulled_by = pulled_by[1].split("\n")[0] if len(pulled_by) > 1 else None pr_number = commit_message.split("Pull Request resolved: https://github.com/pytorch/audio/pull/") pr_number = pr_number[1].split("\n")[0] if len(pr_number) > 1 else None return pulled_by, pr_number def get_labels(pr_number: int) -> Set[str]: data = query_torchaudio(f"pulls/{pr_number}") labels = {label["name"] for label in data["labels"]} return labels def post_github_comment(pr_number: int, merger: str) -> Any: message = { "body": f"Hey @{merger}." + """ You merged this PR, but labels were not properly added. Please add a primary and secondary label \ (See https://github.com/pytorch/audio/blob/main/.github/process_commit.py). --- ## Some guidance: Use 'module: ops' for operations under 'torchaudio/{transforms, functional}', \ and ML-related components under 'torchaudio/csrc' (e.g. RNN-T loss). Things in "examples" directory: - 'recipe' is applicable to training recipes under the 'examples' folder, - 'tutorial' is applicable to tutorials under the “examples/tutorials” folder - 'example' is applicable to everything else (e.g. C++ examples) - 'module: docs' is applicable to code documentations (not to tutorials). \ Regarding examples in code documentations, please also use 'module: docs'. Please use 'other' tag only when you’re sure the changes are not much relevant to users, \ or when all other tags are not applicable. Try not to use it often, in order to minimize \ efforts required when we prepare release notes. --- When preparing release notes, please make sure 'documentation' and 'tutorials' occur as the \ last sub-categories under each primary category like 'new feature', 'improvements' or 'prototype'. Things related to build are by default excluded from the release note, \ except when it impacts users. For example: * Drop support of Python 3.7. * Add support of Python 3.X. * Change the way a third party library is bound (so that user needs to install it separately). """ } response = requests.post( f"{TORCHAUDIO_REPO}/issues/{pr_number}/comments", json.dumps(message), headers=REQUEST_HEADERS ) return response.json() if __name__ == "__main__": commit_hash = sys.argv[1] merger, pr_number = get_pr_merger_and_number(commit_hash) if pr_number: labels = get_labels(pr_number) is_properly_labeled = bool(PRIMARY_LABELS.intersection(labels) and SECONDARY_LABELS.intersection(labels)) if not is_properly_labeled: post_github_comment(pr_number, merger)
import datetime from typing import List import prisma.enums import pydantic class Pagination(pydantic.BaseModel): total_items: int = pydantic.Field( description="Total number of items.", examples=[42] ) total_pages: int = pydantic.Field( description="Total number of pages.", examples=[97] ) current_page: int = pydantic.Field( description="Current_page page number.", examples=[1] ) page_size: int = pydantic.Field( description="Number of items per page.", examples=[25] ) class MyAgent(pydantic.BaseModel): agent_id: str agent_version: int agent_name: str description: str last_edited: datetime.datetime class MyAgentsResponse(pydantic.BaseModel): agents: list[MyAgent] pagination: Pagination class StoreAgent(pydantic.BaseModel): slug: str agent_name: str agent_image: str creator: str creator_avatar: str sub_heading: str description: str runs: int rating: float class StoreAgentsResponse(pydantic.BaseModel): agents: list[StoreAgent] pagination: Pagination class StoreAgentDetails(pydantic.BaseModel): store_listing_version_id: str slug: str agent_name: str agent_video: str agent_image: list[str] creator: str creator_avatar: str sub_heading: str description: str categories: list[str] runs: int rating: float versions: list[str] last_updated: datetime.datetime class Creator(pydantic.BaseModel): name: str username: str description: str avatar_url: str num_agents: int agent_rating: float agent_runs: int is_featured: bool class CreatorsResponse(pydantic.BaseModel): creators: List[Creator] pagination: Pagination class CreatorDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str agent_rating: float agent_runs: int top_categories: list[str] class Profile(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str is_featured: bool = False class StoreSubmission(pydantic.BaseModel): agent_id: str agent_version: int name: str sub_heading: str slug: str description: str image_urls: list[str] date_submitted: datetime.datetime status: prisma.enums.SubmissionStatus runs: int rating: float class StoreSubmissionsResponse(pydantic.BaseModel): submissions: list[StoreSubmission] pagination: Pagination class StoreSubmissionRequest(pydantic.BaseModel): agent_id: str agent_version: int slug: str name: str sub_heading: str video_url: str | None = None image_urls: list[str] = [] description: str = "" categories: list[str] = [] class ProfileDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str | None = None class StoreReview(pydantic.BaseModel): score: int comments: str | None = None class StoreReviewCreate(pydantic.BaseModel): store_listing_version_id: str score: int comments: str | None = None
import datetime from typing import List import prisma.enums import pydantic class Pagination(pydantic.BaseModel): total_items: int = pydantic.Field( description="Total number of items.", examples=[42] ) total_pages: int = pydantic.Field( description="Total number of pages.", examples=[97] ) current_page: int = pydantic.Field( description="Current_page page number.", examples=[1] ) page_size: int = pydantic.Field( description="Number of items per page.", examples=[25] ) class MyAgent(pydantic.BaseModel): agent_id: str agent_version: int agent_name: str last_edited: datetime.datetime class MyAgentsResponse(pydantic.BaseModel): agents: list[MyAgent] pagination: Pagination class StoreAgent(pydantic.BaseModel): slug: str agent_name: str agent_image: str creator: str creator_avatar: str sub_heading: str description: str runs: int rating: float class StoreAgentsResponse(pydantic.BaseModel): agents: list[StoreAgent] pagination: Pagination class StoreAgentDetails(pydantic.BaseModel): store_listing_version_id: str slug: str agent_name: str agent_video: str agent_image: list[str] creator: str creator_avatar: str sub_heading: str description: str categories: list[str] runs: int rating: float versions: list[str] last_updated: datetime.datetime class Creator(pydantic.BaseModel): name: str username: str description: str avatar_url: str num_agents: int agent_rating: float agent_runs: int is_featured: bool class CreatorsResponse(pydantic.BaseModel): creators: List[Creator] pagination: Pagination class CreatorDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str agent_rating: float agent_runs: int top_categories: list[str] class Profile(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str is_featured: bool = False class StoreSubmission(pydantic.BaseModel): agent_id: str agent_version: int name: str sub_heading: str slug: str description: str image_urls: list[str] date_submitted: datetime.datetime status: prisma.enums.SubmissionStatus runs: int rating: float class StoreSubmissionsResponse(pydantic.BaseModel): submissions: list[StoreSubmission] pagination: Pagination class StoreSubmissionRequest(pydantic.BaseModel): agent_id: str agent_version: int slug: str name: str sub_heading: str video_url: str | None = None image_urls: list[str] = [] description: str = "" categories: list[str] = [] class ProfileDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str | None = None class StoreReview(pydantic.BaseModel): score: int comments: str | None = None class StoreReviewCreate(pydantic.BaseModel): store_listing_version_id: str score: int comments: str | None = None
import contextlib from collections.abc import Iterable from pathlib import Path from typing import Any from tomlkit import dump, inline_table, load from tomlkit.items import InlineTable def _get_dep_inline_table(path: Path) -> InlineTable: dep = inline_table() dep.update({"path": str(path), "develop": True}) return dep def add_dependencies_to_pyproject_toml( pyproject_toml: Path, local_editable_dependencies: Iterable[tuple[str, Path]], ) -> None: """Add dependencies to pyproject.toml.""" with open(pyproject_toml, encoding="utf-8") as f: # tomlkit types aren't amazing - treat as Dict instead pyproject: dict[str, Any] = load(f) pyproject["tool"]["poetry"]["dependencies"].update( { name: _get_dep_inline_table(loc.relative_to(pyproject_toml.parent)) for name, loc in local_editable_dependencies }, ) with open(pyproject_toml, "w", encoding="utf-8") as f: dump(pyproject, f) def remove_dependencies_from_pyproject_toml( pyproject_toml: Path, local_editable_dependencies: Iterable[str], ) -> None: """Remove dependencies from pyproject.toml.""" with open(pyproject_toml, encoding="utf-8") as f: pyproject: dict[str, Any] = load(f) # tomlkit types aren't amazing - treat as Dict instead dependencies = pyproject["tool"]["poetry"]["dependencies"] for name in local_editable_dependencies: with contextlib.suppress(KeyError): del dependencies[name] with open(pyproject_toml, "w", encoding="utf-8") as f: dump(pyproject, f)
import contextlib from collections.abc import Iterable from pathlib import Path from typing import Any from tomlkit import dump, inline_table, load from tomlkit.items import InlineTable def _get_dep_inline_table(path: Path) -> InlineTable: dep = inline_table() dep.update({"path": str(path), "develop": True}) return dep def add_dependencies_to_pyproject_toml( pyproject_toml: Path, local_editable_dependencies: Iterable[tuple[str, Path]] ) -> None: """Add dependencies to pyproject.toml.""" with open(pyproject_toml, encoding="utf-8") as f: # tomlkit types aren't amazing - treat as Dict instead pyproject: dict[str, Any] = load(f) pyproject["tool"]["poetry"]["dependencies"].update( { name: _get_dep_inline_table(loc.relative_to(pyproject_toml.parent)) for name, loc in local_editable_dependencies } ) with open(pyproject_toml, "w", encoding="utf-8") as f: dump(pyproject, f) def remove_dependencies_from_pyproject_toml( pyproject_toml: Path, local_editable_dependencies: Iterable[str] ) -> None: """Remove dependencies from pyproject.toml.""" with open(pyproject_toml, encoding="utf-8") as f: pyproject: dict[str, Any] = load(f) # tomlkit types aren't amazing - treat as Dict instead dependencies = pyproject["tool"]["poetry"]["dependencies"] for name in local_editable_dependencies: with contextlib.suppress(KeyError): del dependencies[name] with open(pyproject_toml, "w", encoding="utf-8") as f: dump(pyproject, f)
from abc import ABC from typing import Any, Callable, Dict, List, Optional, Union, TypeVar from llama_index.core.llms import ChatMessage from llama_index.core.memory import BaseMemory from llama_index.core.workflow import ( Context, ) from llama_index.core.workflow.checkpointer import CheckpointCallback from llama_index.core.workflow.handler import WorkflowHandler T = TypeVar("T", bound="BaseWorkflowAgent") # type: ignore[name-defined] class SingleAgentRunnerMixin(ABC): """ Mixin class for executing a single agent within a workflow system. This class provides the necessary interface for running a single agent. """ def _get_steps(self) -> Dict[str, Callable]: """Returns all the steps from the prebuilt workflow.""" from llama_index.core.agent.workflow import AgentWorkflow instance = AgentWorkflow(agents=[self]) # type: ignore return instance._get_steps() def run( self, user_msg: Optional[Union[str, ChatMessage]] = None, chat_history: Optional[List[ChatMessage]] = None, memory: Optional[BaseMemory] = None, ctx: Optional[Context] = None, stepwise: bool = False, checkpoint_callback: Optional[CheckpointCallback] = None, **workflow_kwargs: Any, ) -> WorkflowHandler: """Run the agent.""" from llama_index.core.agent.workflow import AgentWorkflow workflow = AgentWorkflow(agents=[self], **workflow_kwargs) # type: ignore[list-item] return workflow.run( user_msg=user_msg, chat_history=chat_history, memory=memory, ctx=ctx, stepwise=stepwise, checkpoint_callback=checkpoint_callback, )
from abc import ABC from typing import Any, Callable, Dict, List, Optional, Union, TypeVar from llama_index.core.llms import ChatMessage from llama_index.core.memory import BaseMemory from llama_index.core.workflow import ( Context, ) from llama_index.core.workflow.checkpointer import CheckpointCallback from llama_index.core.workflow.handler import WorkflowHandler T = TypeVar("T", bound="BaseWorkflowAgent") # type: ignore[name-defined] class SingleAgentRunnerMixin(ABC): """Mixin class for executing a single agent within a workflow system. This class provides the necessary interface for running a single agent. """ def _get_steps(self) -> Dict[str, Callable]: """Returns all the steps from the prebuilt workflow.""" from llama_index.core.agent.workflow import AgentWorkflow instance = AgentWorkflow(agents=[self]) # type: ignore return instance._get_steps() def run( self: T, user_msg: Optional[Union[str, ChatMessage]] = None, chat_history: Optional[List[ChatMessage]] = None, memory: Optional[BaseMemory] = None, ctx: Optional[Context] = None, stepwise: bool = False, checkpoint_callback: Optional[CheckpointCallback] = None, **workflow_kwargs: Any, ) -> WorkflowHandler: """Run the agent.""" from llama_index.core.agent.workflow import AgentWorkflow workflow = AgentWorkflow(agents=[self], **workflow_kwargs) return workflow.run( user_msg=user_msg, chat_history=chat_history, memory=memory, ctx=ctx, stepwise=stepwise, checkpoint_callback=checkpoint_callback, )
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_hunyuan_skyreels_image2video"] = ["HunyuanSkyreelsImageToVideoPipeline"] _import_structure["pipeline_hunyuan_video"] = ["HunyuanVideoPipeline"] _import_structure["pipeline_hunyuan_video_framepack"] = ["HunyuanVideoFramepackPipeline"] _import_structure["pipeline_hunyuan_video_image2video"] = ["HunyuanVideoImageToVideoPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_hunyuan_skyreels_image2video import HunyuanSkyreelsImageToVideoPipeline from .pipeline_hunyuan_video import HunyuanVideoPipeline from .pipeline_hunyuan_video_framepack import HunyuanVideoFramepackPipeline from .pipeline_hunyuan_video_image2video import HunyuanVideoImageToVideoPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_hunyuan_skyreels_image2video"] = ["HunyuanSkyreelsImageToVideoPipeline"] _import_structure["pipeline_hunyuan_video"] = ["HunyuanVideoPipeline"] _import_structure["pipeline_hunyuan_video_image2video"] = ["HunyuanVideoImageToVideoPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_hunyuan_skyreels_image2video import HunyuanSkyreelsImageToVideoPipeline from .pipeline_hunyuan_video import HunyuanVideoPipeline from .pipeline_hunyuan_video_image2video import HunyuanVideoImageToVideoPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=20))) METAINFO = { 'classes': ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'), # palette is a list of color tuples, which is used for visualization. 'palette': [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192), (197, 226, 255), (0, 60, 100), (0, 0, 142), (255, 77, 255), (153, 69, 1), (120, 166, 157), (0, 182, 199), (0, 226, 252), (182, 182, 255), (0, 0, 230), (220, 20, 60), (163, 255, 0), (0, 82, 0), (3, 95, 161), (0, 80, 100), (183, 130, 88)] } # dataset settings dataset_type = 'CocoDataset' data_root = 'data/VOCdevkit/' train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(1000, 600), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( dataset=dict( type='RepeatDataset', times=3, dataset=dict( _delete_=True, type=dataset_type, data_root=data_root, ann_file='annotations/voc0712_trainval.json', data_prefix=dict(img=''), metainfo=METAINFO, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args={{_base_.backend_args}}))) val_dataloader = dict( dataset=dict( type=dataset_type, ann_file='annotations/voc07_test.json', data_prefix=dict(img=''), metainfo=METAINFO, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/voc07_test.json', metric='bbox', format_only=False, backend_args={{_base_.backend_args}}) test_evaluator = val_evaluator # training schedule, the dataset is repeated 3 times, so the # actual epoch = 4 * 3 = 12 max_epochs = 4 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[3], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=20))) METAINFO = { 'classes': ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'), # palette is a list of color tuples, which is used for visualization. 'palette': [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192), (197, 226, 255), (0, 60, 100), (0, 0, 142), (255, 77, 255), (153, 69, 1), (120, 166, 157), (0, 182, 199), (0, 226, 252), (182, 182, 255), (0, 0, 230), (220, 20, 60), (163, 255, 0), (0, 82, 0), (3, 95, 161), (0, 80, 100), (183, 130, 88)] } # dataset settings dataset_type = 'CocoDataset' data_root = 'data/VOCdevkit/' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1000, 600), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( dataset=dict( type='RepeatDataset', times=3, dataset=dict( _delete_=True, type=dataset_type, data_root=data_root, ann_file='annotations/voc0712_trainval.json', data_prefix=dict(img=''), metainfo=METAINFO, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( dataset=dict( type=dataset_type, ann_file='annotations/voc07_test.json', data_prefix=dict(img=''), metainfo=METAINFO, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/voc07_test.json', metric='bbox', format_only=False) test_evaluator = val_evaluator # training schedule, the dataset is repeated 3 times, so the # actual epoch = 4 * 3 = 12 max_epochs = 4 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[3], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
_base_ = [ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py' ] data_preprocessor = dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True) # model settings model = dict( type='CornerNet', data_preprocessor=data_preprocessor, backbone=dict( type='HourglassNet', downsample_times=5, num_stacks=2, stage_channels=[256, 256, 384, 384, 384, 512], stage_blocks=[2, 2, 2, 2, 2, 4], norm_cfg=dict(type='BN', requires_grad=True)), neck=None, bbox_head=dict( type='CentripetalHead', num_classes=80, in_channels=256, num_feat_levels=2, corner_emb_channels=0, loss_heatmap=dict( type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1), loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1), loss_guiding_shift=dict( type='SmoothL1Loss', beta=1.0, loss_weight=0.05), loss_centripetal_shift=dict( type='SmoothL1Loss', beta=1.0, loss_weight=1)), # training and testing settings train_cfg=None, test_cfg=dict( corner_topk=100, local_maximum_kernel=3, distance_threshold=0.5, score_thr=0.05, max_per_img=100, nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'))) # data settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( # The cropped images are padded into squares during training, # but may be smaller than crop_size. type='RandomCenterCropPad', crop_size=(511, 511), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), test_mode=False, test_pad_mode=None, mean=data_preprocessor['mean'], std=data_preprocessor['std'], # Image data is not converted to rgb. to_rgb=data_preprocessor['bgr_to_rgb']), dict(type='Resize', scale=(511, 511), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] # TODO: mstest is not currently implemented test_pipeline = [ dict( type='LoadImageFromFile', to_float32=True, file_client_args={{_base_.file_client_args}}), # don't need Resize dict( type='RandomCenterCropPad', crop_size=None, ratios=None, border=None, test_mode=True, test_pad_mode=['logical_or', 127], mean=data_preprocessor['mean'], std=data_preprocessor['std'], # Image data is not converted to rgb. to_rgb=data_preprocessor['bgr_to_rgb']), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border')) ] train_dataloader = dict( batch_size=6, num_workers=3, batch_sampler=None, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.0005), clip_grad=dict(max_norm=35, norm_type=2)) max_epochs = 210 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[190], gamma=0.1) ] train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (16 GPUs) x (6 samples per GPU) auto_scale_lr = dict(base_batch_size=96)
_base_ = [ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py' ] data_preprocessor = dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True) # model settings model = dict( type='CornerNet', data_preprocessor=data_preprocessor, backbone=dict( type='HourglassNet', downsample_times=5, num_stacks=2, stage_channels=[256, 256, 384, 384, 384, 512], stage_blocks=[2, 2, 2, 2, 2, 4], norm_cfg=dict(type='BN', requires_grad=True)), neck=None, bbox_head=dict( type='CentripetalHead', num_classes=80, in_channels=256, num_feat_levels=2, corner_emb_channels=0, loss_heatmap=dict( type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1), loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1), loss_guiding_shift=dict( type='SmoothL1Loss', beta=1.0, loss_weight=0.05), loss_centripetal_shift=dict( type='SmoothL1Loss', beta=1.0, loss_weight=1)), # training and testing settings train_cfg=None, test_cfg=dict( corner_topk=100, local_maximum_kernel=3, distance_threshold=0.5, score_thr=0.05, max_per_img=100, nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'))) # data settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( # The cropped images are padded into squares during training, # but may be smaller than crop_size. type='RandomCenterCropPad', crop_size=(511, 511), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), test_mode=False, test_pad_mode=None, mean=data_preprocessor['mean'], std=data_preprocessor['std'], # Image data is not converted to rgb. to_rgb=data_preprocessor['bgr_to_rgb']), dict(type='Resize', scale=(511, 511), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] # TODO: mstest is not currently implemented test_pipeline = [ dict( type='LoadImageFromFile', to_float32=True, file_client_args={{_base_.file_client_args}}), # don't need Resize dict( type='RandomCenterCropPad', crop_size=None, ratios=None, border=None, test_mode=True, test_pad_mode=['logical_or', 127], mean=data_preprocessor['mean'], std=data_preprocessor['std'], # Image data is not converted to rgb. to_rgb=data_preprocessor['bgr_to_rgb']), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border')) ] train_dataloader = dict( batch_size=6, num_workers=3, batch_sampler=None, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.0005), clip_grad=dict(max_norm=35, norm_type=2)) max_epochs = 210 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[190], gamma=0.1) ] train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (16 GPUs) x (6 samples per GPU) auto_scale_lr = dict(base_batch_size=96)
"""Tool for the SceneXplain API.""" from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.scenexplain import SceneXplainAPIWrapper class SceneXplainInput(BaseModel): """Input for SceneXplain.""" query: str = Field(..., description="The link to the image to explain") class SceneXplainTool(BaseTool): """Tool that explains images.""" name: str = "image_explainer" description: str = ( "An Image Captioning Tool: Use this tool to generate a detailed caption " "for an image. The input can be an image file of any format, and " "the output will be a text description that covers every detail of the image." ) api_wrapper: SceneXplainAPIWrapper = Field(default_factory=SceneXplainAPIWrapper) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the tool.""" return self.api_wrapper.run(query)
"""Tool for the SceneXplain API.""" from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.scenexplain import SceneXplainAPIWrapper class SceneXplainInput(BaseModel): """Input for SceneXplain.""" query: str = Field(..., description="The link to the image to explain") class SceneXplainTool(BaseTool): # type: ignore[override] """Tool that explains images.""" name: str = "image_explainer" description: str = ( "An Image Captioning Tool: Use this tool to generate a detailed caption " "for an image. The input can be an image file of any format, and " "the output will be a text description that covers every detail of the image." ) api_wrapper: SceneXplainAPIWrapper = Field(default_factory=SceneXplainAPIWrapper) # type: ignore[arg-type] def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the tool.""" return self.api_wrapper.run(query)
from .proto import ProtoArrayMixin
from abc import ABC from docarray.array.mixins.content import ContentPropertyMixin from docarray.array.mixins.delitem import DelItemMixin from docarray.array.mixins.embed import EmbedMixin from docarray.array.mixins.empty import EmptyMixin from docarray.array.mixins.evaluation import EvaluationMixin from docarray.array.mixins.find import FindMixin from docarray.array.mixins.getattr import GetAttributeMixin from docarray.array.mixins.getitem import GetItemMixin from docarray.array.mixins.group import GroupMixin from docarray.array.mixins.io.binary import BinaryIOMixin from docarray.array.mixins.io.common import CommonIOMixin from docarray.array.mixins.io.csv import CsvIOMixin from docarray.array.mixins.io.dataframe import DataframeIOMixin from docarray.array.mixins.io.from_gen import FromGeneratorMixin from docarray.array.mixins.io.json import JsonIOMixin from docarray.array.mixins.io.pushpull import PushPullMixin from docarray.array.mixins.match import MatchMixin from docarray.array.mixins.parallel import ParallelMixin from docarray.array.mixins.plot import PlotMixin from docarray.array.mixins.post import PostMixin from docarray.array.mixins.pydantic import PydanticMixin from docarray.array.mixins.reduce import ReduceMixin from docarray.array.mixins.sample import SampleMixin from docarray.array.mixins.setitem import SetItemMixin from docarray.array.mixins.strawberry import StrawberryMixin from docarray.array.mixins.text import TextToolsMixin from docarray.array.mixins.traverse import TraverseMixin from docarray.array.mixins.dataloader import DataLoaderMixin class AllMixins( GetAttributeMixin, GetItemMixin, SetItemMixin, DelItemMixin, ContentPropertyMixin, PydanticMixin, StrawberryMixin, GroupMixin, EmptyMixin, CsvIOMixin, JsonIOMixin, BinaryIOMixin, CommonIOMixin, EmbedMixin, PushPullMixin, FromGeneratorMixin, FindMixin, MatchMixin, TraverseMixin, PlotMixin, SampleMixin, PostMixin, TextToolsMixin, EvaluationMixin, ReduceMixin, ParallelMixin, DataframeIOMixin, DataLoaderMixin, ABC, ): """All plugins that can be used in :class:`DocumentArray`.""" ...
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmcv.runner import BaseModule from ..builder import NECKS @NECKS.register_module() class SSDNeck(BaseModule): """Extra layers of SSD backbone to generate multi-scale feature maps. Args: in_channels (Sequence[int]): Number of input channels per scale. out_channels (Sequence[int]): Number of output channels per scale. level_strides (Sequence[int]): Stride of 3x3 conv per level. level_paddings (Sequence[int]): Padding size of 3x3 conv per level. l2_norm_scale (float|None): L2 normalization layer init scale. If None, not use L2 normalization on the first input feature. last_kernel_size (int): Kernel size of the last conv layer. Default: 3. use_depthwise (bool): Whether to use DepthwiseSeparableConv. Default: False. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Dictionary to construct and config norm layer. Default: None. act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, level_strides, level_paddings, l2_norm_scale=20., last_kernel_size=3, use_depthwise=False, conv_cfg=None, norm_cfg=None, act_cfg=dict(type='ReLU'), init_cfg=[ dict( type='Xavier', distribution='uniform', layer='Conv2d'), dict(type='Constant', val=1, layer='BatchNorm2d'), ]): super(SSDNeck, self).__init__(init_cfg) assert len(out_channels) > len(in_channels) assert len(out_channels) - len(in_channels) == len(level_strides) assert len(level_strides) == len(level_paddings) assert in_channels == out_channels[:len(in_channels)] if l2_norm_scale: self.l2_norm = L2Norm(in_channels[0], l2_norm_scale) self.init_cfg += [ dict( type='Constant', val=self.l2_norm.scale, override=dict(name='l2_norm')) ] self.extra_layers = nn.ModuleList() extra_layer_channels = out_channels[len(in_channels):] second_conv = DepthwiseSeparableConvModule if \ use_depthwise else ConvModule for i, (out_channel, stride, padding) in enumerate( zip(extra_layer_channels, level_strides, level_paddings)): kernel_size = last_kernel_size \ if i == len(extra_layer_channels) - 1 else 3 per_lvl_convs = nn.Sequential( ConvModule( out_channels[len(in_channels) - 1 + i], out_channel // 2, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), second_conv( out_channel // 2, out_channel, kernel_size, stride=stride, padding=padding, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) self.extra_layers.append(per_lvl_convs) def forward(self, inputs): """Forward function.""" outs = [feat for feat in inputs] if hasattr(self, 'l2_norm'): outs[0] = self.l2_norm(outs[0]) feat = outs[-1] for layer in self.extra_layers: feat = layer(feat) outs.append(feat) return tuple(outs) class L2Norm(nn.Module): def __init__(self, n_dims, scale=20., eps=1e-10): """L2 normalization layer. Args: n_dims (int): Number of dimensions to be normalized scale (float, optional): Defaults to 20.. eps (float, optional): Used to avoid division by zero. Defaults to 1e-10. """ super(L2Norm, self).__init__() self.n_dims = n_dims self.weight = nn.Parameter(torch.Tensor(self.n_dims)) self.eps = eps self.scale = scale def forward(self, x): """Forward function.""" # normalization layer convert to FP32 in FP16 training x_float = x.float() norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps return (self.weight[None, :, None, None].float().expand_as(x_float) * x_float / norm).type_as(x)
import torch import torch.nn as nn from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmcv.runner import BaseModule from ..builder import NECKS @NECKS.register_module() class SSDNeck(BaseModule): """Extra layers of SSD backbone to generate multi-scale feature maps. Args: in_channels (Sequence[int]): Number of input channels per scale. out_channels (Sequence[int]): Number of output channels per scale. level_strides (Sequence[int]): Stride of 3x3 conv per level. level_paddings (Sequence[int]): Padding size of 3x3 conv per level. l2_norm_scale (float|None): L2 normalization layer init scale. If None, not use L2 normalization on the first input feature. last_kernel_size (int): Kernel size of the last conv layer. Default: 3. use_depthwise (bool): Whether to use DepthwiseSeparableConv. Default: False. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Dictionary to construct and config norm layer. Default: None. act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, level_strides, level_paddings, l2_norm_scale=20., last_kernel_size=3, use_depthwise=False, conv_cfg=None, norm_cfg=None, act_cfg=dict(type='ReLU'), init_cfg=[ dict( type='Xavier', distribution='uniform', layer='Conv2d'), dict(type='Constant', val=1, layer='BatchNorm2d'), ]): super(SSDNeck, self).__init__(init_cfg) assert len(out_channels) > len(in_channels) assert len(out_channels) - len(in_channels) == len(level_strides) assert len(level_strides) == len(level_paddings) assert in_channels == out_channels[:len(in_channels)] if l2_norm_scale: self.l2_norm = L2Norm(in_channels[0], l2_norm_scale) self.init_cfg += [ dict( type='Constant', val=self.l2_norm.scale, override=dict(name='l2_norm')) ] self.extra_layers = nn.ModuleList() extra_layer_channels = out_channels[len(in_channels):] second_conv = DepthwiseSeparableConvModule if \ use_depthwise else ConvModule for i, (out_channel, stride, padding) in enumerate( zip(extra_layer_channels, level_strides, level_paddings)): kernel_size = last_kernel_size \ if i == len(extra_layer_channels) - 1 else 3 per_lvl_convs = nn.Sequential( ConvModule( out_channels[len(in_channels) - 1 + i], out_channel // 2, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), second_conv( out_channel // 2, out_channel, kernel_size, stride=stride, padding=padding, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) self.extra_layers.append(per_lvl_convs) def forward(self, inputs): """Forward function.""" outs = [feat for feat in inputs] if hasattr(self, 'l2_norm'): outs[0] = self.l2_norm(outs[0]) feat = outs[-1] for layer in self.extra_layers: feat = layer(feat) outs.append(feat) return tuple(outs) class L2Norm(nn.Module): def __init__(self, n_dims, scale=20., eps=1e-10): """L2 normalization layer. Args: n_dims (int): Number of dimensions to be normalized scale (float, optional): Defaults to 20.. eps (float, optional): Used to avoid division by zero. Defaults to 1e-10. """ super(L2Norm, self).__init__() self.n_dims = n_dims self.weight = nn.Parameter(torch.Tensor(self.n_dims)) self.eps = eps self.scale = scale def forward(self, x): """Forward function.""" # normalization layer convert to FP32 in FP16 training x_float = x.float() norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps return (self.weight[None, :, None, None].float().expand_as(x_float) * x_float / norm).type_as(x)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.audio_url import AudioUrl from docarray.typing.url.image_url import ImageUrl from docarray.typing.url.text_url import TextUrl from docarray.typing.url.url_3d.mesh_url import Mesh3DUrl from docarray.typing.url.url_3d.point_cloud_url import PointCloud3DUrl from docarray.typing.url.video_url import VideoUrl __all__ = [ 'ImageUrl', 'AudioUrl', 'AnyUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl', 'VideoUrl', ]
from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.audio_url import AudioUrl from docarray.typing.url.image_url import ImageUrl from docarray.typing.url.text_url import TextUrl from docarray.typing.url.url_3d.mesh_url import Mesh3DUrl from docarray.typing.url.url_3d.point_cloud_url import PointCloud3DUrl from docarray.typing.url.video_url import VideoUrl __all__ = [ 'ImageUrl', 'AudioUrl', 'AnyUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl', 'VideoUrl', ]
import os import pytest from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.notion import NotionToolSpec # Get yourself a page id and database id from your notion account # Refer to the page: https://developers.notion.com/docs/create-a-notion-integration#give-your-integration-page-permissions page_ids = ["17d66c19670f80c5aaddfb8a0a449179"] # replace with your page id database_ids = ["16066c19-670f-801d-adb8-fa9d1cdaa053"] # replace with your database id def test_class(): names_of_base_classes = [b.__name__ for b in NotionToolSpec.__mro__] assert BaseToolSpec.__name__ in names_of_base_classes @pytest.mark.skipif( "NOTION_INTEGRATION_TOKEN" not in os.environ, reason="NOTION_INTEGRATION_TOKEN is not set", ) def test_load_data_with_page_ids(): tool = NotionToolSpec() content = tool.load_data(page_ids=page_ids) assert content @pytest.mark.skipif( "NOTION_INTEGRATION_TOKEN" not in os.environ, reason="NOTION_INTEGRATION_TOKEN is not set", ) def test_load_data_with_database_ids(): tool = NotionToolSpec() content = tool.load_data(database_ids=database_ids) assert content @pytest.mark.skipif( "NOTION_INTEGRATION_TOKEN" not in os.environ, reason="NOTION_INTEGRATION_TOKEN is not set", ) def test_load_data_with_page_ids_and_database_ids(): tool = NotionToolSpec() content = tool.load_data(page_ids=page_ids, database_ids=database_ids) assert content @pytest.mark.skipif( "NOTION_INTEGRATION_TOKEN" not in os.environ, reason="NOTION_INTEGRATION_TOKEN is not set", ) def test_search_data(): tool = NotionToolSpec() result = tool.search_data(query="Website") # replace with your search query assert len(result) > 0
from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.notion import NotionToolSpec def test_class(): names_of_base_classes = [b.__name__ for b in NotionToolSpec.__mro__] assert BaseToolSpec.__name__ in names_of_base_classes
"""Google Search tool spec.""" import json import urllib.parse from typing import Optional import requests from llama_index.core.schema import Document from llama_index.core.tools.tool_spec.base import BaseToolSpec QUERY_URL_TMPL = ( "https://www.googleapis.com/customsearch/v1?key={key}&cx={engine}&q={query}" ) class GoogleSearchToolSpec(BaseToolSpec): """Google Search tool spec.""" spec_functions = ["google_search"] def __init__(self, key: str, engine: str, num: Optional[int] = None) -> None: """Initialize with parameters.""" self.key = key self.engine = engine self.num = num def google_search(self, query: str): """ Make a query to the Google search engine to receive a list of results. Args: query (str): The query to be passed to Google search. num (int, optional): The number of search results to return. Defaults to None. Raises: ValueError: If the 'num' is not an integer between 1 and 10. """ url = QUERY_URL_TMPL.format( key=self.key, engine=self.engine, query=urllib.parse.quote_plus(query) ) if self.num is not None: if not 1 <= self.num <= 10: raise ValueError("num should be an integer between 1 and 10, inclusive") url += f"&num={self.num}" response = requests.get(url) results = json.loads(response.text).get("items", []) documents = [] if len(results) == 0: return "No search results available" for result in results: if "snippet" in result: documents.append( Document( text=result["snippet"], metadata={"title": result["title"], "link": result["link"]}, ) ) return documents
"""Google Search tool spec.""" import urllib.parse from typing import Optional import requests from llama_index.core.schema import Document from llama_index.core.tools.tool_spec.base import BaseToolSpec QUERY_URL_TMPL = ( "https://www.googleapis.com/customsearch/v1?key={key}&cx={engine}&q={query}" ) class GoogleSearchToolSpec(BaseToolSpec): """Google Search tool spec.""" spec_functions = ["google_search"] def __init__(self, key: str, engine: str, num: Optional[int] = None) -> None: """Initialize with parameters.""" self.key = key self.engine = engine self.num = num def google_search(self, query: str): """ Make a query to the Google search engine to receive a list of results. Args: query (str): The query to be passed to Google search. num (int, optional): The number of search results to return. Defaults to None. Raises: ValueError: If the 'num' is not an integer between 1 and 10. """ url = QUERY_URL_TMPL.format( key=self.key, engine=self.engine, query=urllib.parse.quote_plus(query) ) if self.num is not None: if not 1 <= self.num <= 10: raise ValueError("num should be an integer between 1 and 10, inclusive") url += f"&num={self.num}" response = requests.get(url) return [Document(text=response.text)]
from typing import Any, Dict, Optional, Type, cast from llama_index.core.llms.llm import LLM from llama_index.core.output_parsers.pydantic import PydanticOutputParser from llama_index.core.prompts.base import BasePromptTemplate, PromptTemplate from llama_index.core.settings import Settings from llama_index.core.types import BaseOutputParser, BasePydanticProgram, Model class LLMTextCompletionProgram(BasePydanticProgram[Model]): """ LLM Text Completion Program. Uses generic LLM text completion + an output parser to generate a structured output. """ def __init__( self, output_parser: BaseOutputParser, output_cls: Type[Model], prompt: BasePromptTemplate, llm: LLM, verbose: bool = False, ) -> None: self._output_parser = output_parser self._output_cls = output_cls self._llm = llm self._prompt = prompt self._verbose = verbose self._prompt.output_parser = output_parser @classmethod def from_defaults( cls, output_parser: Optional[BaseOutputParser] = None, output_cls: Optional[Type[Model]] = None, prompt_template_str: Optional[str] = None, prompt: Optional[BasePromptTemplate] = None, llm: Optional[LLM] = None, verbose: bool = False, **kwargs: Any, ) -> "LLMTextCompletionProgram[Model]": llm = llm or Settings.llm if prompt is None and prompt_template_str is None: raise ValueError("Must provide either prompt or prompt_template_str.") if prompt is not None and prompt_template_str is not None: raise ValueError("Must provide either prompt or prompt_template_str.") if prompt_template_str is not None: prompt = PromptTemplate(prompt_template_str) # decide default output class if not set if output_cls is None: if not isinstance(output_parser, PydanticOutputParser): raise ValueError("Output parser must be PydanticOutputParser.") output_cls = output_parser.output_cls else: if output_parser is None: output_parser = PydanticOutputParser(output_cls=output_cls) return cls( output_parser, output_cls, prompt=cast(PromptTemplate, prompt), llm=llm, verbose=verbose, ) @property def output_cls(self) -> Type[Model]: return self._output_cls @property def prompt(self) -> BasePromptTemplate: return self._prompt @prompt.setter def prompt(self, prompt: BasePromptTemplate) -> None: self._prompt = prompt def __call__( self, llm_kwargs: Optional[Dict[str, Any]] = None, *args: Any, **kwargs: Any, ) -> Model: llm_kwargs = llm_kwargs or {} if self._llm.metadata.is_chat_model: messages = self._prompt.format_messages(llm=self._llm, **kwargs) messages = self._llm._extend_messages(messages) chat_response = self._llm.chat(messages, **llm_kwargs) raw_output = chat_response.message.content or "" else: formatted_prompt = self._prompt.format(llm=self._llm, **kwargs) response = self._llm.complete(formatted_prompt, **llm_kwargs) raw_output = response.text output = self._output_parser.parse(raw_output) if not isinstance(output, self._output_cls): raise ValueError( f"Output parser returned {type(output)} but expected {self._output_cls}" ) return output async def acall( self, llm_kwargs: Optional[Dict[str, Any]] = None, *args: Any, **kwargs: Any, ) -> Model: llm_kwargs = llm_kwargs or {} if self._llm.metadata.is_chat_model: messages = self._prompt.format_messages(llm=self._llm, **kwargs) messages = self._llm._extend_messages(messages) chat_response = await self._llm.achat(messages, **llm_kwargs) raw_output = chat_response.message.content or "" else: formatted_prompt = self._prompt.format(llm=self._llm, **kwargs) response = await self._llm.acomplete(formatted_prompt, **llm_kwargs) raw_output = response.text output = self._output_parser.parse(raw_output) if not isinstance(output, self._output_cls): raise ValueError( f"Output parser returned {type(output)} but expected {self._output_cls}" ) return output
from typing import Any, Dict, Optional, Type, cast from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.llms.llm import LLM from llama_index.core.output_parsers.pydantic import PydanticOutputParser from llama_index.core.prompts.base import BasePromptTemplate, PromptTemplate from llama_index.core.settings import Settings from llama_index.core.types import BaseOutputParser, BasePydanticProgram class LLMTextCompletionProgram(BasePydanticProgram[BaseModel]): """ LLM Text Completion Program. Uses generic LLM text completion + an output parser to generate a structured output. """ def __init__( self, output_parser: BaseOutputParser, output_cls: Type[BaseModel], prompt: BasePromptTemplate, llm: LLM, verbose: bool = False, ) -> None: self._output_parser = output_parser self._output_cls = output_cls self._llm = llm self._prompt = prompt self._verbose = verbose self._prompt.output_parser = output_parser @classmethod def from_defaults( cls, output_parser: Optional[BaseOutputParser] = None, output_cls: Optional[Type[BaseModel]] = None, prompt_template_str: Optional[str] = None, prompt: Optional[BasePromptTemplate] = None, llm: Optional[LLM] = None, verbose: bool = False, **kwargs: Any, ) -> "LLMTextCompletionProgram": llm = llm or Settings.llm if prompt is None and prompt_template_str is None: raise ValueError("Must provide either prompt or prompt_template_str.") if prompt is not None and prompt_template_str is not None: raise ValueError("Must provide either prompt or prompt_template_str.") if prompt_template_str is not None: prompt = PromptTemplate(prompt_template_str) # decide default output class if not set if output_cls is None: if not isinstance(output_parser, PydanticOutputParser): raise ValueError("Output parser must be PydanticOutputParser.") output_cls = output_parser.output_cls else: if output_parser is None: output_parser = PydanticOutputParser(output_cls=output_cls) return cls( output_parser, output_cls, prompt=cast(PromptTemplate, prompt), llm=llm, verbose=verbose, ) @property def output_cls(self) -> Type[BaseModel]: return self._output_cls @property def prompt(self) -> BasePromptTemplate: return self._prompt @prompt.setter def prompt(self, prompt: BasePromptTemplate) -> None: self._prompt = prompt def __call__( self, llm_kwargs: Optional[Dict[str, Any]] = None, *args: Any, **kwargs: Any, ) -> BaseModel: llm_kwargs = llm_kwargs or {} if self._llm.metadata.is_chat_model: messages = self._prompt.format_messages(llm=self._llm, **kwargs) messages = self._llm._extend_messages(messages) chat_response = self._llm.chat(messages, **llm_kwargs) raw_output = chat_response.message.content or "" else: formatted_prompt = self._prompt.format(llm=self._llm, **kwargs) response = self._llm.complete(formatted_prompt, **llm_kwargs) raw_output = response.text output = self._output_parser.parse(raw_output) if not isinstance(output, self._output_cls): raise ValueError( f"Output parser returned {type(output)} but expected {self._output_cls}" ) return output async def acall( self, llm_kwargs: Optional[Dict[str, Any]] = None, *args: Any, **kwargs: Any, ) -> BaseModel: llm_kwargs = llm_kwargs or {} if self._llm.metadata.is_chat_model: messages = self._prompt.format_messages(llm=self._llm, **kwargs) messages = self._llm._extend_messages(messages) chat_response = await self._llm.achat(messages, **llm_kwargs) raw_output = chat_response.message.content or "" else: formatted_prompt = self._prompt.format(llm=self._llm, **kwargs) response = await self._llm.acomplete(formatted_prompt, **llm_kwargs) raw_output = response.text output = self._output_parser.parse(raw_output) if not isinstance(output, self._output_cls): raise ValueError( f"Output parser returned {type(output)} but expected {self._output_cls}" ) return output
""" This file contains deprecated code that can only be used with the old `model.fit`-style Sentence Transformers v2.X training. It exists for backwards compatibility with the `model.old_fit` method, but will be removed in a future version. Nowadays, with Sentence Transformers v3+, it is recommended to use the `SentenceTransformerTrainer` class to train models. See https://www.sbert.net/docs/sentence_transformer/training_overview.html for more information. See this script for more details on how to use the new training API: https://github.com/UKPLab/sentence-transformers/blob/master/examples/unsupervised_learning/TSDAE/train_stsb_tsdae.py """ from __future__ import annotations import numpy as np from torch.utils.data import Dataset from transformers.utils.import_utils import NLTK_IMPORT_ERROR, is_nltk_available from sentence_transformers.readers.InputExample import InputExample class DenoisingAutoEncoderDataset(Dataset): """ The DenoisingAutoEncoderDataset returns InputExamples in the format: texts=[noise_fn(sentence), sentence] It is used in combination with the DenoisingAutoEncoderLoss: Here, a decoder tries to re-construct the sentence without noise. Args: sentences: A list of sentences noise_fn: A noise function: Given a string, it returns a string with noise, e.g. deleted words """ def __init__(self, sentences: list[str], noise_fn=lambda s: DenoisingAutoEncoderDataset.delete(s)): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.sentences = sentences self.noise_fn = noise_fn def __getitem__(self, item): sent = self.sentences[item] return InputExample(texts=[self.noise_fn(sent), sent]) def __len__(self): return len(self.sentences) # Deletion noise. @staticmethod def delete(text, del_ratio=0.6): from nltk import word_tokenize from nltk.tokenize.treebank import TreebankWordDetokenizer words = word_tokenize(text) n = len(words) if n == 0: return text keep_or_not = np.random.rand(n) > del_ratio if sum(keep_or_not) == 0: keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains words_processed = TreebankWordDetokenizer().detokenize(np.array(words)[keep_or_not]) return words_processed
from __future__ import annotations import numpy as np from torch.utils.data import Dataset from transformers.utils.import_utils import NLTK_IMPORT_ERROR, is_nltk_available from sentence_transformers.readers.InputExample import InputExample class DenoisingAutoEncoderDataset(Dataset): """ The DenoisingAutoEncoderDataset returns InputExamples in the format: texts=[noise_fn(sentence), sentence] It is used in combination with the DenoisingAutoEncoderLoss: Here, a decoder tries to re-construct the sentence without noise. Args: sentences: A list of sentences noise_fn: A noise function: Given a string, it returns a string with noise, e.g. deleted words """ def __init__(self, sentences: list[str], noise_fn=lambda s: DenoisingAutoEncoderDataset.delete(s)): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.sentences = sentences self.noise_fn = noise_fn def __getitem__(self, item): sent = self.sentences[item] return InputExample(texts=[self.noise_fn(sent), sent]) def __len__(self): return len(self.sentences) # Deletion noise. @staticmethod def delete(text, del_ratio=0.6): from nltk import word_tokenize from nltk.tokenize.treebank import TreebankWordDetokenizer words = word_tokenize(text) n = len(words) if n == 0: return text keep_or_not = np.random.rand(n) > del_ratio if sum(keep_or_not) == 0: keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains words_processed = TreebankWordDetokenizer().detokenize(np.array(words)[keep_or_not]) return words_processed
__version__ = '0.12.4' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
__version__ = '0.12.3' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) pytestmark = pytest.mark.integration @pytest.mark.parametrize("path", ["paws", "csv"]) def test_inspect_dataset(path, tmp_path): inspect_dataset(path, tmp_path) script_name = path + ".py" assert script_name in os.listdir(tmp_path) assert "__pycache__" not in os.listdir(tmp_path) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning") @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning") @pytest.mark.parametrize("path", ["accuracy"]) def test_inspect_metric(path, tmp_path): inspect_metric(path, tmp_path) script_name = path + ".py" assert script_name in os.listdir(tmp_path) assert "__pycache__" not in os.listdir(tmp_path) @pytest.mark.parametrize( "path, config_name, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_config_info(path, config_name, expected_splits): info = get_dataset_config_info(path, config_name=config_name) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits def test_get_dataset_config_info_private(hf_token, hf_private_dataset_repo_txt_data): info = get_dataset_config_info(hf_private_dataset_repo_txt_data, config_name="default", token=hf_token) assert list(info.splits.keys()) == ["train"] @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_config_info_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_config_info(path, config_name=config_name) @pytest.mark.parametrize( "path, expected", [ ("squad", ["plain_text"]), ("acronym_identification", ["default"]), ("lhoestq/squad", ["plain_text"]), ("lhoestq/test", ["default"]), ("lhoestq/demo1", ["default"]), ("dalle-mini/wit", ["default"]), ("datasets-maintainers/audiofolder_no_configs_in_metadata", ["default"]), ("datasets-maintainers/audiofolder_single_config_in_metadata", ["custom"]), ("datasets-maintainers/audiofolder_two_configs_in_metadata", ["v1", "v2"]), ], ) def test_get_dataset_config_names(path, expected): config_names = get_dataset_config_names(path) assert config_names == expected @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config", [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["default"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ], ) def test_get_dataset_info(path, expected_configs, expected_splits_in_first_config): infos = get_dataset_infos(path) assert list(infos.keys()) == expected_configs expected_config = expected_configs[0] assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_split_names(path, expected_config, expected_splits): infos = get_dataset_infos(path) assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_split_names_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_split_names(path, config_name=config_name)
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) pytestmark = pytest.mark.integration @pytest.mark.parametrize("path", ["paws", "csv"]) def test_inspect_dataset(path, tmp_path): inspect_dataset(path, tmp_path) script_name = path + ".py" assert script_name in os.listdir(tmp_path) assert "__pycache__" not in os.listdir(tmp_path) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning") @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning") @pytest.mark.parametrize("path", ["accuracy"]) def test_inspect_metric(path, tmp_path): inspect_metric(path, tmp_path) script_name = path + ".py" assert script_name in os.listdir(tmp_path) assert "__pycache__" not in os.listdir(tmp_path) @pytest.mark.parametrize( "path, config_name, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_config_info(path, config_name, expected_splits): info = get_dataset_config_info(path, config_name=config_name) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_config_info_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_config_info(path, config_name=config_name) @pytest.mark.parametrize( "path, expected", [ ("squad", ["plain_text"]), ("acronym_identification", ["default"]), ("lhoestq/squad", ["plain_text"]), ("lhoestq/test", ["default"]), ("lhoestq/demo1", ["default"]), ("dalle-mini/wit", ["default"]), ("datasets-maintainers/audiofolder_no_configs_in_metadata", ["default"]), ("datasets-maintainers/audiofolder_single_config_in_metadata", ["custom"]), ("datasets-maintainers/audiofolder_two_configs_in_metadata", ["v1", "v2"]), ], ) def test_get_dataset_config_names(path, expected): config_names = get_dataset_config_names(path) assert config_names == expected @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config", [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["default"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ], ) def test_get_dataset_info(path, expected_configs, expected_splits_in_first_config): infos = get_dataset_infos(path) assert list(infos.keys()) == expected_configs expected_config = expected_configs[0] assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_split_names(path, expected_config, expected_splits): infos = get_dataset_infos(path) assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_split_names_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_split_names(path, config_name=config_name)
import orjson from pydantic.json import ENCODERS_BY_TYPE from docarray.typing.abstract_type import AbstractType def _default_orjson(obj): """ default option for orjson dumps. :param obj: :return: return a json compatible object """ if isinstance(obj, AbstractType): return obj._docarray_to_json_compatible() else: for cls_, encoder in ENCODERS_BY_TYPE.items(): if isinstance(obj, cls_): return encoder(obj) return obj def orjson_dumps(v, *, default=None) -> bytes: # dumps to bytes using orjson return orjson.dumps(v, default=_default_orjson, option=orjson.OPT_SERIALIZE_NUMPY) def orjson_dumps_and_decode(v, *, default=None) -> str: # dumps to bytes using orjson return orjson_dumps(v, default=default).decode()
import orjson from docarray.typing.tensor.abstract_tensor import AbstractTensor def _default_orjson(obj): """ default option for orjson dumps. :param obj: :return: return a json compatible object """ if isinstance(obj, AbstractTensor): return obj._docarray_to_json_compatible() else: return obj def orjson_dumps(v, *, default=None) -> bytes: # dumps to bytes using orjson return orjson.dumps(v, default=_default_orjson, option=orjson.OPT_SERIALIZE_NUMPY) def orjson_dumps_and_decode(v, *, default=None) -> str: # dumps to bytes using orjson return orjson_dumps(v, default=default).decode()
from markitdown import MarkItDown from llama_index.core.bridge.pydantic import BaseModel, model_validator import os from pathlib import Path from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from typing import Tuple, Optional, Union, List from typing_extensions import Self def is_empty(list_it: list) -> Tuple[bool, Optional[list]]: if len(list_it) == 0: return True, None return False, list_it class ValidFilePath(BaseModel): file_path: Union[str, Path, List[str], List[Path]] @model_validator(mode="after") def validate_file_path(self) -> Self: if isinstance(self.file_path, str): if not (Path(self.file_path).is_dir()): raise ValueError("Directory path does not exist") dir_files = [] for root, _, files in os.walk(self.file_path): for el in files: dir_files.append(os.path.join(root, el)) self.file_path = dir_files elif isinstance(self.file_path, Path): if not self.file_path.is_dir(): raise ValueError("Directory path does not exist") dir_files = [] for root, _, files in os.walk(self.file_path): for el in files: dir_files.append(os.path.join(root, el)) self.file_path = dir_files empty, fls = is_empty(self.file_path) if empty: raise ValueError("There is no file to parse!") else: files = [] if isinstance(fls[0], str): for fl in fls: if Path(fl).is_file() and os.path.splitext(fl)[1] in [".docx", ".html", ".xml", ".csv", ".pdf", ".pptx", ".xlsx", ".json", ".zip", ".txt", "", ".md"]: files.append(fl) else: for fl in fls: if fl.is_file() and os.path.splitext(fl)[1] in [".docx", ".html", ".xml", ".csv", ".pdf", ".pptx", ".xlsx", ".json", ".zip", ".txt", "", ".md"]: files.append(fl.__str__()) self.file_path = files return self class MarkItDownReader(BaseReader): """ MarkItDownReader is a document reader that utilizes the MarkItDown parser to convert files or collections of files into Document objects. Methods ------- load_data(file_path: str | Path | Iterable[str] | Iterable[Path]) -> List[Document] Loads and parses a directory (if `file_path` is `str` or `Path`) or a list of files specified by `file_path` using the MarkItDown parser. Returns a list of Document objects, each containing the text content and metadata such as file path, file type, and content length. """ _reader: MarkItDown = MarkItDown() @classmethod def class_name(cls) -> str: """Get the name identifier of the class.""" return "MarkItDownReader" def load_data( self, file_path: Union[str, Path, List[str], List[Path]], ) -> List[Document]: docs: List[Document] = [] fl_pt = ValidFilePath(file_path=file_path) fs = fl_pt.file_path for f in fs: res = self._reader.convert(f) docs.append(Document(text=res.text_content, metadata={"file_path": f.__str__(), "file_type": os.path.splitext(f)[1], "content_length": len(res.text_content)})) return docs
from markitdown import MarkItDown from llama_index.core.bridge.pydantic import BaseModel, model_validator import os from pathlib import Path from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from typing import Tuple, Optional, Union, List from typing_extensions import Self def is_empty(list_it: list) -> Tuple[bool, Optional[list]]: if len(list_it) == 0: return True, None return False, list_it class ValidFilePath(BaseModel): file_path: Union[str, Path, List[str], List[Path]] @model_validator(mode="after") def validate_file_path(self) -> Self: if isinstance(self.file_path, str): if not (Path(self.file_path).is_dir()): raise ValueError("Directory path does not exist") dir_files = [] for root, _, files in os.walk(self.file_path): for el in files: dir_files.append(os.path.join(root, el)) self.file_path = dir_files elif isinstance(self.file_path, Path): if not self.file_path.is_dir(): raise ValueError("Directory path does not exist") dir_files = [] for root, _, files in os.walk(self.file_path): for el in files: dir_files.append(os.path.join(root, el)) self.file_path = dir_files empty, fls = is_empty(self.file_path) if empty: raise ValueError("There is no file to parse!") else: files = [] if isinstance(fls[0], str): for fl in fls: if Path(fl).is_file() and os.path.splitext(fl)[1] in [".docx", ".html", ".xml", ".csv", ".pdf", ".pptx", ".xlsx", ".json", ".zip", ".txt", "", ".md"]: files.append(fl) else: for fl in fls: if fl.is_file() and os.path.splitext(fl)[1] in [".docx", ".html", ".xml", ".csv", ".pdf", ".pptx", ".xlsx", ".json", ".zip", ".txt", "", ".md"]: files.append(fl.__str__()) self.file_path = files return self class MarkItDownReader(BaseReader): """ MarkItDownReader is a document reader that utilizes the MarkItDown parser to convert files or collections of files into Document objects. Methods: ------- load_data(file_path: str | Path | Iterable[str] | Iterable[Path]) -> List[Document] Loads and parses a directory (if `file_path` is `str` or `Path`) or a list of files specified by `file_path` using the MarkItDown parser. Returns a list of Document objects, each containing the text content and metadata such as file path, file type, and content length. """ _reader: MarkItDown = MarkItDown() @classmethod def class_name(cls) -> str: """Get the name identifier of the class.""" return "MarkItDownReader" def load_data( self, file_path: Union[str, Path, List[str], List[Path]], ) -> List[Document]: docs: List[Document] = [] fl_pt = ValidFilePath(file_path=file_path) fs = fl_pt.file_path for f in fs: res = self._reader.convert(f) docs.append(Document(text=res.text_content, metadata={"file_path": f.__str__(), "file_type": os.path.splitext(f)[1], "content_length": len(res.text_content)})) return docs
from pathlib import Path from typing import Any from langchain_core._api.path import as_import_path def __getattr__(name: str) -> Any: """Get attr name.""" if name == "create_csv_agent": # Get directory of langchain package HERE = Path(__file__).parents[3] here = as_import_path(Path(__file__).parent, relative_to=HERE) old_path = "langchain." + here + "." + name new_path = "langchain_experimental." + here + "." + name msg = ( "This agent has been moved to langchain experiment. " "This agent relies on python REPL tool under the hood, so to use it " "safely please sandbox the python REPL. " "Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md " "and https://github.com/langchain-ai/langchain/discussions/11680" "To keep using this code as is, install langchain experimental and " f"update your import statement from:\n `{old_path}` to `{new_path}`." ) raise ImportError(msg) msg = f"{name} does not exist" raise AttributeError(msg)
from pathlib import Path from typing import Any from langchain_core._api.path import as_import_path def __getattr__(name: str) -> Any: """Get attr name.""" if name == "create_csv_agent": # Get directory of langchain package HERE = Path(__file__).parents[3] here = as_import_path(Path(__file__).parent, relative_to=HERE) old_path = "langchain." + here + "." + name new_path = "langchain_experimental." + here + "." + name raise ImportError( "This agent has been moved to langchain experiment. " "This agent relies on python REPL tool under the hood, so to use it " "safely please sandbox the python REPL. " "Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md " "and https://github.com/langchain-ai/langchain/discussions/11680" "To keep using this code as is, install langchain experimental and " f"update your import statement from:\n `{old_path}` to `{new_path}`." ) raise AttributeError(f"{name} does not exist")
_base_ = './mask-rcnn_x50-32x4d_fpn_gn-ws-all_2x_coco.py' # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[20, 23], gamma=0.1) ]
_base_ = './mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py' # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[20, 23], gamma=0.1) ]
import datetime import autogpt_libs.auth as autogpt_auth_lib import fastapi.testclient import pytest import pytest_mock import backend.server.model as server_model import backend.server.v2.library.model as library_model from backend.server.v2.library.routes import router as library_router app = fastapi.FastAPI() app.include_router(library_router) client = fastapi.testclient.TestClient(app) def override_auth_middleware(): """Override auth middleware for testing""" return {"sub": "test-user-id"} def override_get_user_id(): """Override get_user_id for testing""" return "test-user-id" app.dependency_overrides[autogpt_auth_lib.auth_middleware] = override_auth_middleware app.dependency_overrides[autogpt_auth_lib.depends.get_user_id] = override_get_user_id @pytest.mark.asyncio async def test_get_library_agents_success(mocker: pytest_mock.MockFixture): mocked_value = library_model.LibraryAgentResponse( agents=[ library_model.LibraryAgent( id="test-agent-1", agent_id="test-agent-1", agent_version=1, name="Test Agent 1", description="Test Description 1", image_url=None, creator_name="Test Creator", creator_image_url="", input_schema={"type": "object", "properties": {}}, status=library_model.LibraryAgentStatus.COMPLETED, new_output=False, can_access_graph=True, is_latest_version=True, updated_at=datetime.datetime(2023, 1, 1, 0, 0, 0), ), library_model.LibraryAgent( id="test-agent-2", agent_id="test-agent-2", agent_version=1, name="Test Agent 2", description="Test Description 2", image_url=None, creator_name="Test Creator", creator_image_url="", input_schema={"type": "object", "properties": {}}, status=library_model.LibraryAgentStatus.COMPLETED, new_output=False, can_access_graph=False, is_latest_version=True, updated_at=datetime.datetime(2023, 1, 1, 0, 0, 0), ), ], pagination=server_model.Pagination( total_items=2, total_pages=1, current_page=1, page_size=50 ), ) mock_db_call = mocker.patch("backend.server.v2.library.db.list_library_agents") mock_db_call.return_value = mocked_value response = client.get("/agents?search_term=test") assert response.status_code == 200 data = library_model.LibraryAgentResponse.model_validate(response.json()) assert len(data.agents) == 2 assert data.agents[0].agent_id == "test-agent-1" assert data.agents[0].can_access_graph is True assert data.agents[1].agent_id == "test-agent-2" assert data.agents[1].can_access_graph is False mock_db_call.assert_called_once_with( user_id="test-user-id", search_term="test", sort_by=library_model.LibraryAgentSort.UPDATED_AT, page=1, page_size=15, ) def test_get_library_agents_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.list_library_agents") mock_db_call.side_effect = Exception("Test error") response = client.get("/agents?search_term=test") assert response.status_code == 500 mock_db_call.assert_called_once_with( user_id="test-user-id", search_term="test", sort_by=library_model.LibraryAgentSort.UPDATED_AT, page=1, page_size=15, ) @pytest.mark.skip(reason="Mocker Not implemented") def test_add_agent_to_library_success(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.return_value = None response = client.post("/agents/test-version-id") assert response.status_code == 201 mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" ) @pytest.mark.skip(reason="Mocker Not implemented") def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.side_effect = Exception("Test error") response = client.post("/agents/test-version-id") assert response.status_code == 500 assert response.json()["detail"] == "Failed to add agent to library" mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" )
import datetime import autogpt_libs.auth as autogpt_auth_lib import fastapi import fastapi.testclient import pytest import pytest_mock import backend.server.model as server_model import backend.server.v2.library.model as library_model from backend.server.v2.library.routes import router as library_router app = fastapi.FastAPI() app.include_router(library_router) client = fastapi.testclient.TestClient(app) def override_auth_middleware(): """Override auth middleware for testing""" return {"sub": "test-user-id"} def override_get_user_id(): """Override get_user_id for testing""" return "test-user-id" app.dependency_overrides[autogpt_auth_lib.auth_middleware] = override_auth_middleware app.dependency_overrides[autogpt_auth_lib.depends.get_user_id] = override_get_user_id def test_get_library_agents_success(mocker: pytest_mock.MockFixture): mocked_value = [ library_model.LibraryAgentResponse( agents=[ library_model.LibraryAgent( id="test-agent-1", agent_id="test-agent-1", agent_version=1, name="Test Agent 1", description="Test Description 1", image_url=None, creator_name="Test Creator", creator_image_url="", input_schema={"type": "object", "properties": {}}, status=library_model.LibraryAgentStatus.COMPLETED, new_output=False, can_access_graph=True, is_latest_version=True, updated_at=datetime.datetime(2023, 1, 1, 0, 0, 0), ), library_model.LibraryAgent( id="test-agent-2", agent_id="test-agent-2", agent_version=1, name="Test Agent 2", description="Test Description 2", image_url=None, creator_name="Test Creator", creator_image_url="", input_schema={"type": "object", "properties": {}}, status=library_model.LibraryAgentStatus.COMPLETED, new_output=False, can_access_graph=False, is_latest_version=True, updated_at=datetime.datetime(2023, 1, 1, 0, 0, 0), ), ], pagination=server_model.Pagination( total_items=2, total_pages=1, current_page=1, page_size=50 ), ), ] mock_db_call = mocker.patch("backend.server.v2.library.db.get_library_agents") mock_db_call.return_value = mocked_value response = client.get("/agents?search_term=test") assert response.status_code == 200 data = library_model.LibraryAgentResponse.model_validate(response.json()) assert len(data.agents) == 2 assert data.agents[0].agent_id == "test-agent-1" assert data.agents[0].can_access_graph is True assert data.agents[1].agent_id == "test-agent-2" assert data.agents[1].can_access_graph is False mock_db_call.assert_called_once_with( user_id="test-user-id", search_term="test", sort_by=library_model.LibraryAgentSort.UPDATED_AT, page=1, page_size=15, ) def test_get_library_agents_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.get_library_agents") mock_db_call.side_effect = Exception("Test error") response = client.get("/agents?search_term=test") assert response.status_code == 500 mock_db_call.assert_called_once_with( user_id="test-user-id", search_term="test", sort_by=library_model.LibraryAgentSort.UPDATED_AT, page=1, page_size=15, ) @pytest.mark.skip(reason="Mocker Not implemented") def test_add_agent_to_library_success(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.return_value = None response = client.post("/agents/test-version-id") assert response.status_code == 201 mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" ) @pytest.mark.skip(reason="Mocker Not implemented") def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.side_effect = Exception("Test error") response = client.post("/agents/test-version-id") assert response.status_code == 500 assert response.json()["detail"] == "Failed to add agent to library" mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" )
from .database import DatabaseManager, DatabaseManagerAsyncClient, DatabaseManagerClient from .manager import ExecutionManager from .scheduler import Scheduler __all__ = [ "DatabaseManager", "DatabaseManagerClient", "DatabaseManagerAsyncClient", "ExecutionManager", "Scheduler", ]
from .database import DatabaseManager, DatabaseManagerClient from .manager import ExecutionManager from .scheduler import Scheduler __all__ = [ "DatabaseManager", "DatabaseManagerClient", "ExecutionManager", "Scheduler", ]
from __future__ import annotations import json import logging import os from typing import Literal import torch from torch import Tensor, nn from .tokenizer import WhitespaceTokenizer logger = logging.getLogger(__name__) class BoW(nn.Module): """Implements a Bag-of-Words (BoW) model to derive sentence embeddings. A weighting can be added to allow the generation of tf-idf vectors. The output vector has the size of the vocab. """ def __init__( self, vocab: list[str], word_weights: dict[str, float] = {}, unknown_word_weight: float = 1, cumulative_term_frequency: bool = True, ): super().__init__() vocab = list(set(vocab)) # Ensure vocab is unique self.config_keys = ["vocab", "word_weights", "unknown_word_weight", "cumulative_term_frequency"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight self.cumulative_term_frequency = cumulative_term_frequency # Maps wordIdx -> word weight self.weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 self.weights.append(weight) logger.info( f"{num_unknown_words} out of {len(vocab)} words without a weighting value. Set weight to {unknown_word_weight}" ) self.tokenizer = WhitespaceTokenizer(vocab, stop_words=set(), do_lower_case=False) self.sentence_embedding_dimension = len(vocab) def forward(self, features: dict[str, Tensor]): # Nothing to do, everything is done in get_sentence_features return features def tokenize(self, texts: list[str], **kwargs) -> list[int]: tokenized = [self.tokenizer.tokenize(text, **kwargs) for text in texts] return self.get_sentence_features(tokenized) def get_sentence_embedding_dimension(self): return self.sentence_embedding_dimension def get_sentence_features( self, tokenized_texts: list[list[int]], pad_seq_length: int = 0 ) -> dict[Literal["sentence_embedding"], torch.Tensor]: vectors = [] for tokens in tokenized_texts: vector = torch.zeros(self.get_sentence_embedding_dimension(), dtype=torch.float32) for token in tokens: if self.cumulative_term_frequency: vector[token] += self.weights[token] else: vector[token] = self.weights[token] vectors.append(vector) return {"sentence_embedding": torch.stack(vectors)} def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return BoW(**config)
from __future__ import annotations import json import logging import os from typing import Literal import torch from torch import Tensor, nn from .tokenizer import WhitespaceTokenizer logger = logging.getLogger(__name__) class BoW(nn.Module): """Implements a Bag-of-Words (BoW) model to derive sentence embeddings. A weighting can be added to allow the generation of tf-idf vectors. The output vector has the size of the vocab. """ def __init__( self, vocab: list[str], word_weights: dict[str, float] = {}, unknown_word_weight: float = 1, cumulative_term_frequency: bool = True, ): super(BoW, self).__init__() vocab = list(set(vocab)) # Ensure vocab is unique self.config_keys = ["vocab", "word_weights", "unknown_word_weight", "cumulative_term_frequency"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight self.cumulative_term_frequency = cumulative_term_frequency # Maps wordIdx -> word weight self.weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 self.weights.append(weight) logger.info( "{} out of {} words without a weighting value. Set weight to {}".format( num_unknown_words, len(vocab), unknown_word_weight ) ) self.tokenizer = WhitespaceTokenizer(vocab, stop_words=set(), do_lower_case=False) self.sentence_embedding_dimension = len(vocab) def forward(self, features: dict[str, Tensor]): # Nothing to do, everything is done in get_sentence_features return features def tokenize(self, texts: list[str], **kwargs) -> list[int]: tokenized = [self.tokenizer.tokenize(text, **kwargs) for text in texts] return self.get_sentence_features(tokenized) def get_sentence_embedding_dimension(self): return self.sentence_embedding_dimension def get_sentence_features( self, tokenized_texts: list[list[int]], pad_seq_length: int = 0 ) -> dict[Literal["sentence_embedding"], torch.Tensor]: vectors = [] for tokens in tokenized_texts: vector = torch.zeros(self.get_sentence_embedding_dimension(), dtype=torch.float32) for token in tokens: if self.cumulative_term_frequency: vector[token] += self.weights[token] else: vector[token] = self.weights[token] vectors.append(vector) return {"sentence_embedding": torch.stack(vectors)} def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return BoW(**config)
"""langchain-core version information and utilities.""" VERSION = "0.3.62"
"""langchain-core version information and utilities.""" VERSION = "0.3.61"
"""Parser for JSON output.""" from __future__ import annotations import json from json import JSONDecodeError from typing import Annotated, Any, Optional, TypeVar, Union import jsonpatch # type: ignore[import-untyped] import pydantic from pydantic import SkipValidation from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers.format_instructions import JSON_FORMAT_INSTRUCTIONS from langchain_core.output_parsers.transform import BaseCumulativeTransformOutputParser from langchain_core.outputs import Generation from langchain_core.utils.json import ( parse_and_check_json_markdown, parse_json_markdown, parse_partial_json, ) from langchain_core.utils.pydantic import IS_PYDANTIC_V1 if IS_PYDANTIC_V1: PydanticBaseModel = pydantic.BaseModel else: from pydantic.v1 import BaseModel # Union type needs to be last assignment to PydanticBaseModel to make mypy happy. PydanticBaseModel = Union[BaseModel, pydantic.BaseModel] # type: ignore[assignment,misc] TBaseModel = TypeVar("TBaseModel", bound=PydanticBaseModel) class JsonOutputParser(BaseCumulativeTransformOutputParser[Any]): """Parse the output of an LLM call to a JSON object. When used in streaming mode, it will yield partial JSON objects containing all the keys that have been returned so far. In streaming, if `diff` is set to `True`, yields JSONPatch operations describing the difference between the previous and the current object. """ pydantic_object: Annotated[Optional[type[TBaseModel]], SkipValidation()] = None # type: ignore[valid-type] """The Pydantic object to use for validation. If None, no validation is performed.""" def _diff(self, prev: Optional[Any], next: Any) -> Any: return jsonpatch.make_patch(prev, next).patch def _get_schema(self, pydantic_object: type[TBaseModel]) -> dict[str, Any]: if issubclass(pydantic_object, pydantic.BaseModel): return pydantic_object.model_json_schema() if issubclass(pydantic_object, pydantic.v1.BaseModel): return pydantic_object.schema() return None def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a JSON object. Args: result: The result of the LLM call. partial: Whether to parse partial JSON objects. If True, the output will be a JSON object containing all the keys that have been returned so far. If False, the output will be the full JSON object. Default is False. Returns: The parsed JSON object. Raises: OutputParserException: If the output is not valid JSON. """ text = result[0].text text = text.strip() if partial: try: return parse_json_markdown(text) except JSONDecodeError: return None else: try: return parse_json_markdown(text) except JSONDecodeError as e: msg = f"Invalid json output: {text}" raise OutputParserException(msg, llm_output=text) from e def parse(self, text: str) -> Any: """Parse the output of an LLM call to a JSON object. Args: text: The output of the LLM call. Returns: The parsed JSON object. """ return self.parse_result([Generation(text=text)]) def get_format_instructions(self) -> str: """Return the format instructions for the JSON output. Returns: The format instructions for the JSON output. """ if self.pydantic_object is None: return "Return a JSON object." # Copy schema to avoid altering original Pydantic schema. schema = dict(self._get_schema(self.pydantic_object).items()) # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure json in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema, ensure_ascii=False) return JSON_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "simple_json_output_parser" # For backwards compatibility SimpleJsonOutputParser = JsonOutputParser __all__ = [ "JsonOutputParser", "SimpleJsonOutputParser", # For backwards compatibility "parse_and_check_json_markdown", # For backwards compatibility "parse_partial_json", # For backwards compatibility ]
"""Parser for JSON output.""" from __future__ import annotations import json from json import JSONDecodeError from typing import Annotated, Any, Optional, TypeVar, Union import jsonpatch # type: ignore[import-untyped] import pydantic from pydantic import SkipValidation from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers.format_instructions import JSON_FORMAT_INSTRUCTIONS from langchain_core.output_parsers.transform import BaseCumulativeTransformOutputParser from langchain_core.outputs import Generation from langchain_core.utils.json import ( parse_and_check_json_markdown, parse_json_markdown, parse_partial_json, ) from langchain_core.utils.pydantic import IS_PYDANTIC_V1 if IS_PYDANTIC_V1: PydanticBaseModel = pydantic.BaseModel else: from pydantic.v1 import BaseModel # Union type needs to be last assignment to PydanticBaseModel to make mypy happy. PydanticBaseModel = Union[BaseModel, pydantic.BaseModel] # type: ignore[assignment,misc] TBaseModel = TypeVar("TBaseModel", bound=PydanticBaseModel) class JsonOutputParser(BaseCumulativeTransformOutputParser[Any]): """Parse the output of an LLM call to a JSON object. When used in streaming mode, it will yield partial JSON objects containing all the keys that have been returned so far. In streaming, if `diff` is set to `True`, yields JSONPatch operations describing the difference between the previous and the current object. """ pydantic_object: Annotated[Optional[type[TBaseModel]], SkipValidation()] = None # type: ignore[valid-type] """The Pydantic object to use for validation. If None, no validation is performed.""" def _diff(self, prev: Optional[Any], next: Any) -> Any: return jsonpatch.make_patch(prev, next).patch def _get_schema(self, pydantic_object: type[TBaseModel]) -> dict[str, Any]: if issubclass(pydantic_object, pydantic.BaseModel): return pydantic_object.model_json_schema() if issubclass(pydantic_object, pydantic.v1.BaseModel): return pydantic_object.schema() return None def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a JSON object. Args: result: The result of the LLM call. partial: Whether to parse partial JSON objects. If True, the output will be a JSON object containing all the keys that have been returned so far. If False, the output will be the full JSON object. Default is False. Returns: The parsed JSON object. Raises: OutputParserException: If the output is not valid JSON. """ text = result[0].text text = text.strip() if partial: try: return parse_json_markdown(text) except JSONDecodeError: return None else: try: return parse_json_markdown(text) except JSONDecodeError as e: msg = f"Invalid json output: {text}" raise OutputParserException(msg, llm_output=text) from e def parse(self, text: str) -> Any: """Parse the output of an LLM call to a JSON object. Args: text: The output of the LLM call. Returns: The parsed JSON object. """ return self.parse_result([Generation(text=text)]) def get_format_instructions(self) -> str: """Return the format instructions for the JSON output. Returns: The format instructions for the JSON output. """ if self.pydantic_object is None: return "Return a JSON object." # Copy schema to avoid altering original Pydantic schema. schema = dict(self._get_schema(self.pydantic_object).items()) # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure json in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema, ensure_ascii=False) return JSON_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "simple_json_output_parser" # For backwards compatibility SimpleJsonOutputParser = JsonOutputParser __all__ = [ "JsonOutputParser", "SimpleJsonOutputParser", # For backwards compatibility "parse_partial_json", # For backwards compatibility "parse_and_check_json_markdown", # For backwards compatibility ]
from keras.src.backend.common.name_scope import name_scope from keras.src.backend.jax import core from keras.src.backend.jax import distribution_lib from keras.src.backend.jax import image from keras.src.backend.jax import linalg from keras.src.backend.jax import math from keras.src.backend.jax import nn from keras.src.backend.jax import numpy from keras.src.backend.jax import random from keras.src.backend.jax.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.jax.core import Variable from keras.src.backend.jax.core import cast from keras.src.backend.jax.core import compute_output_spec from keras.src.backend.jax.core import cond from keras.src.backend.jax.core import convert_to_numpy from keras.src.backend.jax.core import convert_to_tensor from keras.src.backend.jax.core import device_scope from keras.src.backend.jax.core import is_tensor from keras.src.backend.jax.core import random_seed_dtype from keras.src.backend.jax.core import scatter from keras.src.backend.jax.core import shape from keras.src.backend.jax.core import stop_gradient from keras.src.backend.jax.core import vectorized_map from keras.src.backend.jax.rnn import cudnn_ok from keras.src.backend.jax.rnn import gru from keras.src.backend.jax.rnn import lstm from keras.src.backend.jax.rnn import rnn
from keras.src.backend.jax import core from keras.src.backend.jax import distribution_lib from keras.src.backend.jax import image from keras.src.backend.jax import linalg from keras.src.backend.jax import math from keras.src.backend.jax import nn from keras.src.backend.jax import numpy from keras.src.backend.jax import random from keras.src.backend.jax.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.jax.core import Variable from keras.src.backend.jax.core import cast from keras.src.backend.jax.core import compute_output_spec from keras.src.backend.jax.core import cond from keras.src.backend.jax.core import convert_to_numpy from keras.src.backend.jax.core import convert_to_tensor from keras.src.backend.jax.core import device_scope from keras.src.backend.jax.core import is_tensor from keras.src.backend.jax.core import random_seed_dtype from keras.src.backend.jax.core import scatter from keras.src.backend.jax.core import shape from keras.src.backend.jax.core import stop_gradient from keras.src.backend.jax.core import vectorized_map from keras.src.backend.jax.rnn import cudnn_ok from keras.src.backend.jax.rnn import gru from keras.src.backend.jax.rnn import lstm from keras.src.backend.jax.rnn import rnn
from llama_index_instrumentation.span.simple import SimpleSpan # noqa
from typing import Dict, Optional from llama_index.core.bridge.pydantic import Field from llama_index.core.instrumentation.span.base import BaseSpan from datetime import datetime class SimpleSpan(BaseSpan): """Simple span class.""" start_time: datetime = Field(default_factory=lambda: datetime.now()) end_time: Optional[datetime] = Field(default=None) duration: float = Field(default=0.0, description="Duration of span in seconds.") metadata: Optional[Dict] = Field(default=None)
import os from pathlib import Path from typing import List, Tuple, Union from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.librispeech import load_librispeech_item from torchaudio.datasets.utils import extract_archive _ARCHIVE_NAME = "librispeech_finetuning" _URL = "https://dl.fbaipublicfiles.com/librilight/data/librispeech_finetuning.tgz" _CHECKSUM = "5d1efdc777b548194d7e09ba89126e2188026df9fd57aa57eb14408d2b2342af" def _get_fileids_paths(path, subset, _ext_audio) -> List[Tuple[str, str]]: """Get the file names and the corresponding file paths without `speaker_id` and `chapter_id` directories. The format of path is like: {root}/{_ARCHIVE_NAME}/1h/[0-5]/[clean, other] or {root}/{_ARCHIVE_NAME}/9h/[clean, other] """ if subset == "10min": files_paths = [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("1h/0/*/*/*/*" + _ext_audio) ] elif subset in ["1h", "10h"]: files_paths = [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("1h/*/*/*/*/*" + _ext_audio) ] if subset == "10h": files_paths += [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("9h/*/*/*/*" + _ext_audio) ] else: raise ValueError(f"Unsupported subset value. Found {subset}.") files_paths = sorted(files_paths, key=lambda x: x[0] + x[1]) return files_paths class LibriLightLimited(Dataset): """Create a Dataset for LibriLightLimited, which is the supervised subset of LibriLight dataset. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. subset (str, optional): The subset to use. Options: [``10min``, ``1h``, ``10h``] (Default: ``10min``). download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ _ext_txt = ".trans.txt" _ext_audio = ".flac" def __init__( self, root: Union[str, Path], subset: str = "10min", download: bool = False, ) -> None: if subset not in ["10min", "1h", "10h"]: raise ValueError("`subset` must be one of ['10min', '1h', '10h']") root = os.fspath(root) self._path = os.path.join(root, _ARCHIVE_NAME) archive = os.path.join(root, f"{_ARCHIVE_NAME}.tgz") if not os.path.isdir(self._path): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") if not os.path.isfile(archive): download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM) extract_archive(archive) self._fileids_paths = _get_fileids_paths(self._path, subset, self._ext_audio) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, int, int, int): ``(waveform, sample_rate, transcript, speaker_id, chapter_id, utterance_id)`` """ file_path, fileid = self._fileids_paths[n] return load_librispeech_item(fileid, file_path, self._ext_audio, self._ext_txt) def __len__(self) -> int: return len(self._fileids_paths)
import os from pathlib import Path from typing import List, Tuple, Union from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.librispeech import load_librispeech_item from torchaudio.datasets.utils import extract_archive _ARCHIVE_NAME = "librispeech_finetuning" _URL = "https://dl.fbaipublicfiles.com/librilight/data/librispeech_finetuning.tgz" _CHECKSUM = "5d1efdc777b548194d7e09ba89126e2188026df9fd57aa57eb14408d2b2342af" def _get_fileids_paths(path, subset, _ext_audio) -> List[Tuple[str, str]]: """Get the file names and the corresponding file paths without `speaker_id` and `chapter_id` directories. The format of path is like: {root}/{_ARCHIVE_NAME}/1h/[0-5]/[clean, other] or {root}/{_ARCHIVE_NAME}/9h/[clean, other] """ if subset == "10min": files_paths = [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("1h/0/*/*/*/*" + _ext_audio) ] elif subset in ["1h", "10h"]: files_paths = [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("1h/*/*/*/*/*" + _ext_audio) ] if subset == "10h": files_paths += [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("9h/*/*/*/*" + _ext_audio) ] else: raise ValueError(f"Unsupported subset value. Found {subset}.") files_paths = sorted(files_paths, key=lambda x: x[0] + x[1]) return files_paths class LibriLightLimited(Dataset): """Create a Dataset for LibriLightLimited, which is the supervised subset of LibriLight dataset. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. subset (str, optional): The subset to use. Options: [``10min``, ``1h``, ``10h``] (Default: ``10min``). download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ _ext_txt = ".trans.txt" _ext_audio = ".flac" def __init__( self, root: Union[str, Path], subset: str = "10min", download: bool = False, ) -> None: assert subset in ["10min", "1h", "10h"], "`subset` must be one of ['10min', '1h', '10h']" root = os.fspath(root) self._path = os.path.join(root, _ARCHIVE_NAME) archive = os.path.join(root, f"{_ARCHIVE_NAME}.tgz") if not os.path.isdir(self._path): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") if not os.path.isfile(archive): download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM) extract_archive(archive) self._fileids_paths = _get_fileids_paths(self._path, subset, self._ext_audio) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, int, int, int): ``(waveform, sample_rate, transcript, speaker_id, chapter_id, utterance_id)`` """ file_path, fileid = self._fileids_paths[n] return load_librispeech_item(fileid, file_path, self._ext_audio, self._ext_txt) def __len__(self) -> int: return len(self._fileids_paths)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Tuple import torch.nn as nn from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init from torch import Tensor from mmdet.core.utils import OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .anchor_head import AnchorHead @MODELS.register_module() class RetinaSepBNHead(AnchorHead): """"RetinaHead with separate BN. In RetinaHead, conv/norm layers are shared across different FPN levels, while in RetinaSepBNHead, conv layers are shared across different FPN levels, but BN layers are separated. """ def __init__(self, num_classes: int, num_ins: int, in_channels: int, stacked_convs: int = 4, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None, **kwargs) -> None: assert init_cfg is None, 'To prevent abnormal initialization ' \ 'behavior, init_cfg is not allowed to be set' self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.num_ins = num_ins super().__init__( num_classes=num_classes, in_channels=in_channels, init_cfg=init_cfg, **kwargs) def _init_layers(self) -> None: """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.num_ins): cls_convs = nn.ModuleList() reg_convs = nn.ModuleList() for j in range(self.stacked_convs): chn = self.in_channels if j == 0 else self.feat_channels cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.cls_convs.append(cls_convs) self.reg_convs.append(reg_convs) for i in range(self.stacked_convs): for j in range(1, self.num_ins): self.cls_convs[j][i].conv = self.cls_convs[0][i].conv self.reg_convs[j][i].conv = self.reg_convs[0][i].conv self.retina_cls = nn.Conv2d( self.feat_channels, self.num_base_priors * self.cls_out_channels, 3, padding=1) self.retina_reg = nn.Conv2d( self.feat_channels, self.num_base_priors * 4, 3, padding=1) def init_weights(self) -> None: """Initialize weights of the head.""" super().init_weights() for m in self.cls_convs[0]: normal_init(m.conv, std=0.01) for m in self.reg_convs[0]: normal_init(m.conv, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.retina_cls, std=0.01, bias=bias_cls) normal_init(self.retina_reg, std=0.01) def forward(self, feats: Tuple[Tensor]) -> tuple: """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of classification scores and bbox prediction - cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes. - bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4. """ cls_scores = [] bbox_preds = [] for i, x in enumerate(feats): cls_feat = feats[i] reg_feat = feats[i] for cls_conv in self.cls_convs[i]: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs[i]: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_pred = self.retina_reg(reg_feat) cls_scores.append(cls_score) bbox_preds.append(bbox_pred) return cls_scores, bbox_preds
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init from mmdet.registry import MODELS from .anchor_head import AnchorHead @MODELS.register_module() class RetinaSepBNHead(AnchorHead): """"RetinaHead with separate BN. In RetinaHead, conv/norm layers are shared across different FPN levels, while in RetinaSepBNHead, conv layers are shared across different FPN levels, but BN layers are separated. """ def __init__(self, num_classes, num_ins, in_channels, stacked_convs=4, conv_cfg=None, norm_cfg=None, init_cfg=None, **kwargs): assert init_cfg is None, 'To prevent abnormal initialization ' \ 'behavior, init_cfg is not allowed to be set' self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.num_ins = num_ins super(RetinaSepBNHead, self).__init__( num_classes, in_channels, init_cfg=init_cfg, **kwargs) def _init_layers(self): """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.num_ins): cls_convs = nn.ModuleList() reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.cls_convs.append(cls_convs) self.reg_convs.append(reg_convs) for i in range(self.stacked_convs): for j in range(1, self.num_ins): self.cls_convs[j][i].conv = self.cls_convs[0][i].conv self.reg_convs[j][i].conv = self.reg_convs[0][i].conv self.retina_cls = nn.Conv2d( self.feat_channels, self.num_base_priors * self.cls_out_channels, 3, padding=1) self.retina_reg = nn.Conv2d( self.feat_channels, self.num_base_priors * 4, 3, padding=1) def init_weights(self): """Initialize weights of the head.""" super(RetinaSepBNHead, self).init_weights() for m in self.cls_convs[0]: normal_init(m.conv, std=0.01) for m in self.reg_convs[0]: normal_init(m.conv, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.retina_cls, std=0.01, bias=bias_cls) normal_init(self.retina_reg, std=0.01) def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of classification scores and bbox prediction cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4. """ cls_scores = [] bbox_preds = [] for i, x in enumerate(feats): cls_feat = feats[i] reg_feat = feats[i] for cls_conv in self.cls_convs[i]: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs[i]: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_pred = self.retina_reg(reg_feat) cls_scores.append(cls_score) bbox_preds.append(bbox_pred) return cls_scores, bbox_preds
from langchain_core.utils.utils import ( build_extra_kwargs, check_package_version, convert_to_secret_str, get_pydantic_field_names, guard_import, mock_now, raise_for_status_with_text, xor_args, ) __all__ = [ "build_extra_kwargs", "check_package_version", "convert_to_secret_str", "get_pydantic_field_names", "guard_import", "mock_now", "raise_for_status_with_text", "xor_args", ]
from langchain_core.utils.utils import ( build_extra_kwargs, check_package_version, convert_to_secret_str, get_pydantic_field_names, guard_import, mock_now, raise_for_status_with_text, xor_args, ) __all__ = [ "xor_args", "raise_for_status_with_text", "mock_now", "guard_import", "check_package_version", "get_pydantic_field_names", "build_extra_kwargs", "convert_to_secret_str", ]
import os import pytest import torch import whisper @pytest.mark.parametrize("model_name", whisper.available_models()) def test_transcribe(model_name: str): device = "cuda" if torch.cuda.is_available() else "cpu" model = whisper.load_model(model_name).to(device) audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac") language = "en" if model_name.endswith(".en") else None result = model.transcribe( audio_path, language=language, temperature=0.0, word_timestamps=True ) assert result["language"] == "en" transcription = result["text"].lower() assert "my fellow americans" in transcription assert "your country" in transcription assert "do for you" in transcription timing_checked = False for segment in result["segments"]: for timing in segment["words"]: assert timing["start"] < timing["end"] if timing["word"].strip(" ,") == "Americans": assert timing["start"] <= 1.8 assert timing["end"] >= 1.8 print(timing) timing_checked = True assert timing_checked
import os import pytest import torch import whisper @pytest.mark.parametrize("model_name", whisper.available_models()) def test_transcribe(model_name: str): device = "cuda" if torch.cuda.is_available() else "cpu" model = whisper.load_model(model_name).to(device) audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac") language = "en" if model_name.endswith(".en") else None result = model.transcribe(audio_path, language=language, temperature=0.0, word_timestamps=True) assert result["language"] == "en" transcription = result["text"].lower() assert "my fellow americans" in transcription assert "your country" in transcription assert "do for you" in transcription timing_checked = False for segment in result["segments"]: for timing in segment["words"]: assert timing["start"] < timing["end"] if timing["word"].strip(" ,") == "Americans": assert timing["start"] <= 1.8 assert timing["end"] >= 1.8 print(timing) timing_checked = True assert timing_checked
import torch _TORCHFUNCTION_SUBCLASS = False class _ReturnTypeCM: def __init__(self, to_restore): self.to_restore = to_restore def __enter__(self): return self def __exit__(self, *args): global _TORCHFUNCTION_SUBCLASS _TORCHFUNCTION_SUBCLASS = self.to_restore def set_return_type(return_type: str): """[BETA] Set the return type of torch operations on :class:`~torchvision.tv_tensors.TVTensor`. This only affects the behaviour of torch operations. It has no effect on ``torchvision`` transforms or functionals, which will always return as output the same type that was passed as input. .. warning:: We recommend using :class:`~torchvision.transforms.v2.ToPureTensor` at the end of your transform pipelines if you use ``set_return_type("TVTensor")``. This will avoid the ``__torch_function__`` overhead in the models ``forward()``. Can be used as a global flag for the entire program: .. code:: python img = tv_tensors.Image(torch.rand(3, 5, 5)) img + 2 # This is a pure Tensor (default behaviour) set_return_type("TVTensor") img + 2 # This is an Image or as a context manager to restrict the scope: .. code:: python img = tv_tensors.Image(torch.rand(3, 5, 5)) img + 2 # This is a pure Tensor with set_return_type("TVTensor"): img + 2 # This is an Image img + 2 # This is a pure Tensor Args: return_type (str): Can be "TVTensor" or "Tensor" (case-insensitive). Default is "Tensor" (i.e. pure :class:`torch.Tensor`). """ global _TORCHFUNCTION_SUBCLASS to_restore = _TORCHFUNCTION_SUBCLASS try: _TORCHFUNCTION_SUBCLASS = {"tensor": False, "tvtensor": True}[return_type.lower()] except KeyError: raise ValueError(f"return_type must be 'TVTensor' or 'Tensor', got {return_type}") from None return _ReturnTypeCM(to_restore) def _must_return_subclass(): return _TORCHFUNCTION_SUBCLASS # For those ops we always want to preserve the original subclass instead of returning a pure Tensor _FORCE_TORCHFUNCTION_SUBCLASS = {torch.Tensor.clone, torch.Tensor.to, torch.Tensor.detach, torch.Tensor.requires_grad_}
import torch _TORCHFUNCTION_SUBCLASS = False class _ReturnTypeCM: def __init__(self, to_restore): self.to_restore = to_restore def __enter__(self): return self def __exit__(self, *args): global _TORCHFUNCTION_SUBCLASS _TORCHFUNCTION_SUBCLASS = self.to_restore def set_return_type(return_type: str): """[BETA] Set the return type of torch operations on tv_tensors. This only affects the behaviour of torch operations. It has no effect on ``torchvision`` transforms or functionals, which will always return as output the same type that was passed as input. .. warning:: We recommend using :class:`~torchvision.transforms.v2.ToPureTensor` at the end of your transform pipelines if you use ``set_return_type("dataptoint")``. This will avoid the ``__torch_function__`` overhead in the models ``forward()``. Can be used as a global flag for the entire program: .. code:: python img = tv_tensors.Image(torch.rand(3, 5, 5)) img + 2 # This is a pure Tensor (default behaviour) set_return_type("tv_tensors") img + 2 # This is an Image or as a context manager to restrict the scope: .. code:: python img = tv_tensors.Image(torch.rand(3, 5, 5)) img + 2 # This is a pure Tensor with set_return_type("tv_tensors"): img + 2 # This is an Image img + 2 # This is a pure Tensor Args: return_type (str): Can be "tv_tensor" or "tensor". Default is "tensor". """ global _TORCHFUNCTION_SUBCLASS to_restore = _TORCHFUNCTION_SUBCLASS _TORCHFUNCTION_SUBCLASS = {"tensor": False, "tv_tensor": True}[return_type.lower()] return _ReturnTypeCM(to_restore) def _must_return_subclass(): return _TORCHFUNCTION_SUBCLASS # For those ops we always want to preserve the original subclass instead of returning a pure Tensor _FORCE_TORCHFUNCTION_SUBCLASS = {torch.Tensor.clone, torch.Tensor.to, torch.Tensor.detach, torch.Tensor.requires_grad_}
# Copyright (c) OpenMMLab. All rights reserved. """Collecting some commonly used type hint in mmdetection.""" from typing import Dict, List, Optional, Sequence, Tuple, Union import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData, PixelData from ..bbox.samplers import SamplingResult from ..data_structures import DetDataSample # Type hint of config data ConfigType = Union[ConfigDict, dict] OptConfigType = Optional[ConfigType] # Type hint of one or more config data MultiConfig = Union[ConfigType, List[ConfigType]] OptMultiConfig = Optional[MultiConfig] InstanceList = List[InstanceData] OptInstanceList = Optional[InstanceList] PixelList = List[PixelData] OptPixelList = Optional[PixelList] SampleList = List[DetDataSample] OptSampleList = Optional[SampleList] SamplingResultList = List[SamplingResult] OptSamplingResultList = Optional[SamplingResultList] ForwardResults = Union[Dict[str, torch.Tensor], List[DetDataSample], Tuple[torch.Tensor], torch.Tensor] RangeType = Sequence[Tuple[int, int]]
# Copyright (c) OpenMMLab. All rights reserved. """Collecting some commonly used type hint in mmdetection.""" from typing import Dict, List, Optional, Tuple, Union import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData, PixelData from ..bbox.samplers import SamplingResult from ..data_structures import DetDataSample # Type hint of config data ConfigType = Union[ConfigDict, dict] OptConfigType = Optional[ConfigType] # Type hint of one or more config data MultiConfig = Union[ConfigType, List[ConfigType]] OptMultiConfig = Optional[MultiConfig] InstanceList = List[InstanceData] OptInstanceList = Optional[InstanceList] PixelList = List[PixelData] OptPixelList = Optional[PixelList] SampleList = List[DetDataSample] OptSampleList = Optional[SampleList] SamplingResultList = List[SamplingResult] OptSamplingResultList = Optional[SamplingResultList] ForwardResults = Union[Dict[str, torch.Tensor], List[DetDataSample], Tuple[torch.Tensor], torch.Tensor]
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VAN model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) class VanConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VanModel`]. It is used to instantiate a VAN model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VAN [Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. num_channels (`int`, *optional*, defaults to 3): The number of input channels. patch_sizes (`list[int]`, *optional*, defaults to `[7, 3, 3, 3]`): Patch size to use in each stage's embedding layer. strides (`list[int]`, *optional*, defaults to `[4, 2, 2, 2]`): Stride size to use in each stage's embedding layer to downsample the input. hidden_sizes (`list[int]`, *optional*, defaults to `[64, 128, 320, 512]`): Dimensionality (hidden size) at each stage. depths (`list[int]`, *optional*, defaults to `[3, 3, 12, 3]`): Depth (number of layers) for each stage. mlp_ratios (`list[int]`, *optional*, defaults to `[8, 8, 4, 4]`): The expansion ratio for mlp layer at each stage. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in each layer. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. layer_scale_init_value (`float`, *optional*, defaults to 0.01): The initial value for layer scaling. drop_path_rate (`float`, *optional*, defaults to 0.0): The dropout probability for stochastic depth. dropout_rate (`float`, *optional*, defaults to 0.0): The dropout probability for dropout. Example: ```python >>> from transformers import VanModel, VanConfig >>> # Initializing a VAN van-base style configuration >>> configuration = VanConfig() >>> # Initializing a model from the van-base style configuration >>> model = VanModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "van" def __init__( self, image_size=224, num_channels=3, patch_sizes=[7, 3, 3, 3], strides=[4, 2, 2, 2], hidden_sizes=[64, 128, 320, 512], depths=[3, 3, 12, 3], mlp_ratios=[8, 8, 4, 4], hidden_act="gelu", initializer_range=0.02, layer_norm_eps=1e-6, layer_scale_init_value=1e-2, drop_path_rate=0.0, dropout_rate=0.0, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.num_channels = num_channels self.patch_sizes = patch_sizes self.strides = strides self.hidden_sizes = hidden_sizes self.depths = depths self.mlp_ratios = mlp_ratios self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.layer_scale_init_value = layer_scale_init_value self.drop_path_rate = drop_path_rate self.dropout_rate = dropout_rate __all__ = ["VanConfig"]
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VAN model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) class VanConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VanModel`]. It is used to instantiate a VAN model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VAN [Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. num_channels (`int`, *optional*, defaults to 3): The number of input channels. patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`): Patch size to use in each stage's embedding layer. strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): Stride size to use in each stage's embedding layer to downsample the input. hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 3, 12, 3]`): Depth (number of layers) for each stage. mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`): The expansion ratio for mlp layer at each stage. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in each layer. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. layer_scale_init_value (`float`, *optional*, defaults to 0.01): The initial value for layer scaling. drop_path_rate (`float`, *optional*, defaults to 0.0): The dropout probability for stochastic depth. dropout_rate (`float`, *optional*, defaults to 0.0): The dropout probability for dropout. Example: ```python >>> from transformers import VanModel, VanConfig >>> # Initializing a VAN van-base style configuration >>> configuration = VanConfig() >>> # Initializing a model from the van-base style configuration >>> model = VanModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "van" def __init__( self, image_size=224, num_channels=3, patch_sizes=[7, 3, 3, 3], strides=[4, 2, 2, 2], hidden_sizes=[64, 128, 320, 512], depths=[3, 3, 12, 3], mlp_ratios=[8, 8, 4, 4], hidden_act="gelu", initializer_range=0.02, layer_norm_eps=1e-6, layer_scale_init_value=1e-2, drop_path_rate=0.0, dropout_rate=0.0, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.num_channels = num_channels self.patch_sizes = patch_sizes self.strides = strides self.hidden_sizes = hidden_sizes self.depths = depths self.mlp_ratios = mlp_ratios self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.layer_scale_init_value = layer_scale_init_value self.drop_path_rate = drop_path_rate self.dropout_rate = dropout_rate __all__ = ["VanConfig"]
"""String utilities.""" from typing import Any def stringify_value(val: Any) -> str: """Stringify a value. Args: val: The value to stringify. Returns: str: The stringified value. """ if isinstance(val, str): return val elif isinstance(val, dict): return "\n" + stringify_dict(val) elif isinstance(val, list): return "\n".join(stringify_value(v) for v in val) else: return str(val) def stringify_dict(data: dict) -> str: """Stringify a dictionary. Args: data: The dictionary to stringify. Returns: str: The stringified dictionary. """ text = "" for key, value in data.items(): text += key + ": " + stringify_value(value) + "\n" return text def comma_list(items: list[Any]) -> str: """Convert a list to a comma-separated string. Args: items: The list to convert. Returns: str: The comma-separated string. """ return ", ".join(str(item) for item in items)
from typing import Any def stringify_value(val: Any) -> str: """Stringify a value. Args: val: The value to stringify. Returns: str: The stringified value. """ if isinstance(val, str): return val elif isinstance(val, dict): return "\n" + stringify_dict(val) elif isinstance(val, list): return "\n".join(stringify_value(v) for v in val) else: return str(val) def stringify_dict(data: dict) -> str: """Stringify a dictionary. Args: data: The dictionary to stringify. Returns: str: The stringified dictionary. """ text = "" for key, value in data.items(): text += key + ": " + stringify_value(value) + "\n" return text def comma_list(items: list[Any]) -> str: """Convert a list to a comma-separated string. Args: items: The list to convert. Returns: str: The comma-separated string. """ return ", ".join(str(item) for item in items)
import abc import io import pathlib import pickle from typing import Any, BinaryIO, cast, Dict, Iterator, List, Optional, Tuple, Union import numpy as np from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.datapoints import Image from torchvision.prototype.datapoints import Label from torchvision.prototype.datasets.utils import Dataset, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from .._api import register_dataset, register_info class CifarFileReader(IterDataPipe[Tuple[np.ndarray, int]]): def __init__(self, datapipe: IterDataPipe[Dict[str, Any]], *, labels_key: str) -> None: self.datapipe = datapipe self.labels_key = labels_key def __iter__(self) -> Iterator[Tuple[np.ndarray, int]]: for mapping in self.datapipe: image_arrays = mapping["data"].reshape((-1, 3, 32, 32)) category_idcs = mapping[self.labels_key] yield from iter(zip(image_arrays, category_idcs)) class _CifarBase(Dataset): _FILE_NAME: str _SHA256: str _LABELS_KEY: str _META_FILE_NAME: str _CATEGORIES_KEY: str _categories: List[str] def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "test")) super().__init__(root, skip_integrity_check=skip_integrity_check) @abc.abstractmethod def _is_data_file(self, data: Tuple[str, BinaryIO]) -> Optional[int]: pass def _resources(self) -> List[OnlineResource]: return [ HttpResource( f"https://www.cs.toronto.edu/~kriz/{self._FILE_NAME}", sha256=self._SHA256, ) ] def _unpickle(self, data: Tuple[str, io.BytesIO]) -> Dict[str, Any]: _, file = data content = cast(Dict[str, Any], pickle.load(file, encoding="latin1")) file.close() return content def _prepare_sample(self, data: Tuple[np.ndarray, int]) -> Dict[str, Any]: image_array, category_idx = data return dict( image=Image(image_array), label=Label(category_idx, categories=self._categories), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, self._is_data_file) dp = Mapper(dp, self._unpickle) dp = CifarFileReader(dp, labels_key=self._LABELS_KEY) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 50_000 if self._split == "train" else 10_000 def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) dp = Filter(dp, path_comparator("name", self._META_FILE_NAME)) dp = Mapper(dp, self._unpickle) return cast(List[str], next(iter(dp))[self._CATEGORIES_KEY]) @register_info("cifar10") def _cifar10_info() -> Dict[str, Any]: return dict(categories=read_categories_file("cifar10")) @register_dataset("cifar10") class Cifar10(_CifarBase): """ - **homepage**: https://www.cs.toronto.edu/~kriz/cifar.html """ _FILE_NAME = "cifar-10-python.tar.gz" _SHA256 = "6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce" _LABELS_KEY = "labels" _META_FILE_NAME = "batches.meta" _CATEGORIES_KEY = "label_names" _categories = _cifar10_info()["categories"] def _is_data_file(self, data: Tuple[str, Any]) -> bool: path = pathlib.Path(data[0]) return path.name.startswith("data" if self._split == "train" else "test") @register_info("cifar100") def _cifar100_info() -> Dict[str, Any]: return dict(categories=read_categories_file("cifar100")) @register_dataset("cifar100") class Cifar100(_CifarBase): """ - **homepage**: https://www.cs.toronto.edu/~kriz/cifar.html """ _FILE_NAME = "cifar-100-python.tar.gz" _SHA256 = "85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7" _LABELS_KEY = "fine_labels" _META_FILE_NAME = "meta" _CATEGORIES_KEY = "fine_label_names" _categories = _cifar100_info()["categories"] def _is_data_file(self, data: Tuple[str, Any]) -> bool: path = pathlib.Path(data[0]) return path.name == self._split
import abc import io import pathlib import pickle from typing import Any, BinaryIO, cast, Dict, Iterator, List, Optional, Tuple, Union import numpy as np from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.prototype.datapoints import Image, Label from torchvision.prototype.datasets.utils import Dataset, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from .._api import register_dataset, register_info class CifarFileReader(IterDataPipe[Tuple[np.ndarray, int]]): def __init__(self, datapipe: IterDataPipe[Dict[str, Any]], *, labels_key: str) -> None: self.datapipe = datapipe self.labels_key = labels_key def __iter__(self) -> Iterator[Tuple[np.ndarray, int]]: for mapping in self.datapipe: image_arrays = mapping["data"].reshape((-1, 3, 32, 32)) category_idcs = mapping[self.labels_key] yield from iter(zip(image_arrays, category_idcs)) class _CifarBase(Dataset): _FILE_NAME: str _SHA256: str _LABELS_KEY: str _META_FILE_NAME: str _CATEGORIES_KEY: str _categories: List[str] def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "test")) super().__init__(root, skip_integrity_check=skip_integrity_check) @abc.abstractmethod def _is_data_file(self, data: Tuple[str, BinaryIO]) -> Optional[int]: pass def _resources(self) -> List[OnlineResource]: return [ HttpResource( f"https://www.cs.toronto.edu/~kriz/{self._FILE_NAME}", sha256=self._SHA256, ) ] def _unpickle(self, data: Tuple[str, io.BytesIO]) -> Dict[str, Any]: _, file = data content = cast(Dict[str, Any], pickle.load(file, encoding="latin1")) file.close() return content def _prepare_sample(self, data: Tuple[np.ndarray, int]) -> Dict[str, Any]: image_array, category_idx = data return dict( image=Image(image_array), label=Label(category_idx, categories=self._categories), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, self._is_data_file) dp = Mapper(dp, self._unpickle) dp = CifarFileReader(dp, labels_key=self._LABELS_KEY) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 50_000 if self._split == "train" else 10_000 def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) dp = Filter(dp, path_comparator("name", self._META_FILE_NAME)) dp = Mapper(dp, self._unpickle) return cast(List[str], next(iter(dp))[self._CATEGORIES_KEY]) @register_info("cifar10") def _cifar10_info() -> Dict[str, Any]: return dict(categories=read_categories_file("cifar10")) @register_dataset("cifar10") class Cifar10(_CifarBase): """ - **homepage**: https://www.cs.toronto.edu/~kriz/cifar.html """ _FILE_NAME = "cifar-10-python.tar.gz" _SHA256 = "6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce" _LABELS_KEY = "labels" _META_FILE_NAME = "batches.meta" _CATEGORIES_KEY = "label_names" _categories = _cifar10_info()["categories"] def _is_data_file(self, data: Tuple[str, Any]) -> bool: path = pathlib.Path(data[0]) return path.name.startswith("data" if self._split == "train" else "test") @register_info("cifar100") def _cifar100_info() -> Dict[str, Any]: return dict(categories=read_categories_file("cifar100")) @register_dataset("cifar100") class Cifar100(_CifarBase): """ - **homepage**: https://www.cs.toronto.edu/~kriz/cifar.html """ _FILE_NAME = "cifar-100-python.tar.gz" _SHA256 = "85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7" _LABELS_KEY = "fine_labels" _META_FILE_NAME = "meta" _CATEGORIES_KEY = "fine_label_names" _categories = _cifar100_info()["categories"] def _is_data_file(self, data: Tuple[str, Any]) -> bool: path = pathlib.Path(data[0]) return path.name == self._split
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.3.0' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.2.0' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
try: from ._load_gpu_decoder import _HAS_GPU_VIDEO_DECODER except ModuleNotFoundError: _HAS_GPU_VIDEO_DECODER = False from ._video_opt import ( _HAS_CPU_VIDEO_DECODER, _HAS_VIDEO_OPT, _probe_video_from_file, _probe_video_from_memory, _read_video_from_file, _read_video_from_memory, _read_video_timestamps_from_file, _read_video_timestamps_from_memory, Timebase, VideoMetaData, ) from .image import ( decode_avif, decode_gif, decode_heic, decode_image, decode_jpeg, decode_png, decode_webp, encode_jpeg, encode_png, ImageReadMode, read_file, read_image, write_file, write_jpeg, write_png, ) from .video import read_video, read_video_timestamps, write_video from .video_reader import VideoReader __all__ = [ "write_video", "read_video", "read_video_timestamps", "_read_video_from_file", "_read_video_timestamps_from_file", "_probe_video_from_file", "_read_video_from_memory", "_read_video_timestamps_from_memory", "_probe_video_from_memory", "_HAS_CPU_VIDEO_DECODER", "_HAS_VIDEO_OPT", "_HAS_GPU_VIDEO_DECODER", "_read_video_clip_from_memory", "_read_video_meta_data", "VideoMetaData", "Timebase", "ImageReadMode", "decode_image", "decode_jpeg", "decode_png", "decode_avif", "decode_heic", "decode_webp", "decode_gif", "encode_jpeg", "encode_png", "read_file", "read_image", "write_file", "write_jpeg", "write_png", "Video", "VideoReader", ]
from typing import Any, Dict, Iterator import torch from ..utils import _log_api_usage_once try: from ._load_gpu_decoder import _HAS_GPU_VIDEO_DECODER except ModuleNotFoundError: _HAS_GPU_VIDEO_DECODER = False from ._video_opt import ( _HAS_CPU_VIDEO_DECODER, _HAS_VIDEO_OPT, _probe_video_from_file, _probe_video_from_memory, _read_video_from_file, _read_video_from_memory, _read_video_timestamps_from_file, _read_video_timestamps_from_memory, Timebase, VideoMetaData, ) from .image import ( decode_gif, decode_image, decode_jpeg, decode_png, decode_webp, encode_jpeg, encode_png, ImageReadMode, read_file, read_image, write_file, write_jpeg, write_png, ) from .video import read_video, read_video_timestamps, write_video from .video_reader import VideoReader __all__ = [ "write_video", "read_video", "read_video_timestamps", "_read_video_from_file", "_read_video_timestamps_from_file", "_probe_video_from_file", "_read_video_from_memory", "_read_video_timestamps_from_memory", "_probe_video_from_memory", "_HAS_CPU_VIDEO_DECODER", "_HAS_VIDEO_OPT", "_HAS_GPU_VIDEO_DECODER", "_read_video_clip_from_memory", "_read_video_meta_data", "VideoMetaData", "Timebase", "ImageReadMode", "decode_image", "decode_jpeg", "decode_png", "decode_heic", "decode_webp", "decode_gif", "encode_jpeg", "encode_png", "read_file", "read_image", "write_file", "write_jpeg", "write_png", "Video", "VideoReader", ] from .._internally_replaced_utils import IN_FBCODE if IN_FBCODE: from .image import _decode_avif as decode_avif, _decode_heic as decode_heic __all__ += ["decode_avif", "decode_heic"]
import logging from typing import TYPE_CHECKING if TYPE_CHECKING: from backend.util.process import AppProcess logger = logging.getLogger(__name__) def run_processes(*processes: "AppProcess", **kwargs): """ Execute all processes in the app. The last process is run in the foreground. Includes enhanced error handling and process lifecycle management. """ try: # Run all processes except the last one in the background. for process in processes[:-1]: process.start(background=True, **kwargs) # Run the last process in the foreground. processes[-1].start(background=False, **kwargs) finally: for process in processes: try: process.stop() except Exception as e: logger.exception(f"[{process.service_name}] unable to stop: {e}") def main(**kwargs): """ Run all the processes required for the AutoGPT-server (REST and WebSocket APIs). """ from backend.executor import DatabaseManager, ExecutionManager, ExecutionScheduler from backend.notifications import NotificationManager from backend.server.rest_api import AgentServer from backend.server.ws_api import WebsocketServer run_processes( DatabaseManager(), ExecutionManager(), ExecutionScheduler(), NotificationManager(), WebsocketServer(), AgentServer(), **kwargs, ) if __name__ == "__main__": main()
from typing import TYPE_CHECKING if TYPE_CHECKING: from backend.util.process import AppProcess def run_processes(*processes: "AppProcess", **kwargs): """ Execute all processes in the app. The last process is run in the foreground. """ try: for process in processes[:-1]: process.start(background=True, **kwargs) # Run the last process in the foreground processes[-1].start(background=False, **kwargs) finally: for process in processes: process.stop() def main(**kwargs): """ Run all the processes required for the AutoGPT-server (REST and WebSocket APIs). """ from backend.executor import DatabaseManager, ExecutionManager, ExecutionScheduler from backend.notifications import NotificationManager from backend.server.rest_api import AgentServer from backend.server.ws_api import WebsocketServer run_processes( DatabaseManager(), ExecutionManager(), ExecutionScheduler(), NotificationManager(), WebsocketServer(), AgentServer(), **kwargs, ) if __name__ == "__main__": main()
import os import pytest import torch import torchaudio class GreedyCTCDecoder(torch.nn.Module): def __init__(self, labels, blank: int = 0): super().__init__() self.blank = blank self.labels = labels def forward(self, logits: torch.Tensor) -> str: """Given a sequence logits over labels, get the best path string Args: logits (Tensor): Logit tensors. Shape `[num_seq, num_label]`. Returns: str: The resulting transcript """ best_path = torch.argmax(logits, dim=-1) # [num_seq,] best_path = torch.unique_consecutive(best_path, dim=-1) hypothesis = [] for i in best_path: if i != self.blank: hypothesis.append(self.labels[i]) return "".join(hypothesis) @pytest.fixture def ctc_decoder(): return GreedyCTCDecoder _FILES = { "en": "Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.flac", "de": "20090505-0900-PLENARY-16-de_20090505-21_56_00_8.flac", "en2": "20120613-0900-PLENARY-8-en_20120613-13_46_50_3.flac", "es": "20130207-0900-PLENARY-7-es_20130207-13_02_05_5.flac", "fr": "20121212-0900-PLENARY-5-fr_20121212-11_37_04_10.flac", "it": "20170516-0900-PLENARY-16-it_20170516-18_56_31_1.flac", } _MIXTURE_FILE = "mixture_3729-6852-0037_8463-287645-0000.wav" _CLEAN_FILES = [ "s1_3729-6852-0037_8463-287645-0000.wav", "s2_3729-6852-0037_8463-287645-0000.wav", ] @pytest.fixture def sample_speech(tmp_path, lang): if lang not in _FILES: raise NotImplementedError(f"Unexpected lang: {lang}") filename = _FILES[lang] path = tmp_path.parent / filename if not path.exists(): torchaudio.utils.download_asset(f"test-assets/{filename}", path=path) return path @pytest.fixture def mixture_source(): path = torchaudio.utils.download_asset(os.path.join("test-assets", f"{_MIXTURE_FILE}")) return path @pytest.fixture def clean_sources(): paths = [] for file in _CLEAN_FILES: path = torchaudio.utils.download_asset(os.path.join("test-assets", f"{file}")) paths.append(path) return paths def pytest_addoption(parser): parser.addoption( "--use-tmp-hub-dir", action="store_true", help=( "When provided, tests will use temporary directory as Torch Hub directory. " "Downloaded models will be deleted after each test." ), ) @pytest.fixture(autouse=True) def temp_hub_dir(tmpdir, pytestconfig): if not pytestconfig.getoption("use_tmp_hub_dir"): yield else: org_dir = torch.hub.get_dir() torch.hub.set_dir(tmpdir) yield torch.hub.set_dir(org_dir) @pytest.fixture() def emissions(): path = torchaudio.utils.download_asset("test-assets/emissions-8555-28447-0012.pt") return torch.load(path)
import pytest import torch import torchaudio class GreedyCTCDecoder(torch.nn.Module): def __init__(self, labels, blank: int = 0): super().__init__() self.blank = blank self.labels = labels def forward(self, logits: torch.Tensor) -> str: """Given a sequence logits over labels, get the best path string Args: logits (Tensor): Logit tensors. Shape `[num_seq, num_label]`. Returns: str: The resulting transcript """ best_path = torch.argmax(logits, dim=-1) # [num_seq,] best_path = torch.unique_consecutive(best_path, dim=-1) hypothesis = [] for i in best_path: if i != self.blank: hypothesis.append(self.labels[i]) return "".join(hypothesis) @pytest.fixture def ctc_decoder(): return GreedyCTCDecoder _FILES = { "en": "Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.flac", "de": "20090505-0900-PLENARY-16-de_20090505-21_56_00_8.flac", "en2": "20120613-0900-PLENARY-8-en_20120613-13_46_50_3.flac", "es": "20130207-0900-PLENARY-7-es_20130207-13_02_05_5.flac", "fr": "20121212-0900-PLENARY-5-fr_20121212-11_37_04_10.flac", "it": "20170516-0900-PLENARY-16-it_20170516-18_56_31_1.flac", } @pytest.fixture def sample_speech(tmp_path, lang): if lang not in _FILES: raise NotImplementedError(f"Unexpected lang: {lang}") filename = _FILES[lang] path = tmp_path.parent / filename if not path.exists(): torchaudio.utils.download_asset(f"test-assets/{filename}", path=path) return path def pytest_addoption(parser): parser.addoption( "--use-tmp-hub-dir", action="store_true", help=( "When provided, tests will use temporary directory as Torch Hub directory. " "Downloaded models will be deleted after each test." ), ) @pytest.fixture(autouse=True) def temp_hub_dir(tmpdir, pytestconfig): if not pytestconfig.getoption("use_tmp_hub_dir"): yield else: org_dir = torch.hub.get_dir() torch.hub.set_dir(tmpdir) yield torch.hub.set_dir(org_dir) @pytest.fixture() def emissions(): path = torchaudio.utils.download_asset("test-assets/emissions-8555-28447-0012.pt") return torch.load(path)
from workflows.errors import ( ContextSerdeError, # noqa WorkflowCancelledByUser, # noqa WorkflowConfigurationError, # noqa WorkflowDone, # noqa WorkflowRuntimeError, # noqa WorkflowStepDoesNotExistError, # noqa WorkflowTimeoutError, # noqa WorkflowValidationError, # noqa )
class WorkflowValidationError(Exception): pass class WorkflowTimeoutError(Exception): pass class WorkflowRuntimeError(Exception): pass class WorkflowDone(Exception): pass class WorkflowCancelledByUser(Exception): pass class WorkflowStepDoesNotExistError(Exception): pass class WorkflowConfigurationError(Exception): pass class ContextSerdeError(Exception): pass
import asyncio import sys import pytest from llama_index.core import Document from llama_index.graph_rag.cognee import CogneeGraphRAG def test_smoke(): """No-op test: CI will fail if no tests are collected.""" @pytest.mark.skipif( sys.version_info < (3, 10), reason="mock strategy requires python3.10 or higher" ) @pytest.mark.asyncio() async def test_add_data(monkeypatch): # Instantiate cognee GraphRAG cogneeGraphRAG = CogneeGraphRAG( llm_api_key="", llm_provider="openai", llm_model="gpt-4o-mini", graph_db_provider="networkx", vector_db_provider="lancedb", relational_db_provider="sqlite", relational_db_name="cognee_db", ) async def mock_add_return(add, dataset_name): return True import cognee monkeypatch.setattr(cognee, "add", mock_add_return) # Gather documents to add to GraphRAG documents = [ Document( text="Jessica Miller, Experienced Sales Manager with a strong track record in driving sales growth and building high-performing teams." ), Document( text="David Thompson, Creative Graphic Designer with over 8 years of experience in visual design and branding." ), ] await cogneeGraphRAG.add(documents, "test") await cogneeGraphRAG.add(documents[0], "test") if __name__ == "__main__": asyncio.run(test_add_data())
from llama_index.core import Document import asyncio import pytest from llama_index.graph_rag.cognee import CogneeGraphRAG @pytest.mark.asyncio() async def test_add_data(monkeypatch): # Instantiate cognee GraphRAG cogneeGraphRAG = CogneeGraphRAG( llm_api_key="", llm_provider="openai", llm_model="gpt-4o-mini", graph_db_provider="networkx", vector_db_provider="lancedb", relational_db_provider="sqlite", relational_db_name="cognee_db", ) async def mock_add_return(add, dataset_name): return True import cognee monkeypatch.setattr(cognee, "add", mock_add_return) # Gather documents to add to GraphRAG documents = [ Document( text="Jessica Miller, Experienced Sales Manager with a strong track record in driving sales growth and building high-performing teams." ), Document( text="David Thompson, Creative Graphic Designer with over 8 years of experience in visual design and branding." ), ] await cogneeGraphRAG.add(documents, "test") await cogneeGraphRAG.add(documents[0], "test") if __name__ == "__main__": asyncio.run(test_add_data())
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.12.0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.11.1.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
import PIL.Image import torch from torchvision import datapoints from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: if torch.jit.is_scripting(): return erase_image(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, datapoints.Image) def erase_image( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def _erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, datapoints.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
import PIL.Image import torch from torchvision import datapoints from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: if torch.jit.is_scripting(): return erase_image_tensor(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, datapoints.Image) def erase_image_tensor( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image_tensor(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, datapoints.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image_tensor(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
from typing import TYPE_CHECKING, Any, Type, TypeVar, Union from docarray.base_doc import BaseDoc from docarray.typing.tensor.tensor import AnyTensor from docarray.utils._internal.misc import import_library T = TypeVar('T', bound='VerticesAndFaces') class VerticesAndFaces(BaseDoc): """ Document for handling the tensor data of a [`Mesh3D`][docarray.documents.mesh.Mesh3D] object. A VerticesAndFaces Document can contain: - an [`AnyTensor`](../../../../api_references/typing/tensor/tensor) containing the vertices information (`VerticesAndFaces.vertices`) - an [`AnyTensor`](../../../../api_references/typing/tensor/tensor) containing the faces information (`VerticesAndFaces.faces`) """ vertices: AnyTensor faces: AnyTensor @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: return super().validate(value) def display(self) -> None: """ Plot mesh consisting of vertices and faces. """ if TYPE_CHECKING: import trimesh else: trimesh = import_library('trimesh', raise_error=True) from IPython.display import display if self.vertices is None or self.faces is None: raise ValueError( 'Can\'t display mesh from tensors when the vertices and/or faces ' 'are None.' ) mesh = trimesh.Trimesh(vertices=self.vertices, faces=self.faces) display(mesh.show())
from typing import TYPE_CHECKING, Any, Type, TypeVar, Union from docarray.base_doc import BaseDoc from docarray.typing.tensor.tensor import AnyTensor from docarray.utils._internal.misc import import_library T = TypeVar('T', bound='VerticesAndFaces') class VerticesAndFaces(BaseDoc): """ Document for handling 3D mesh tensor data. A VerticesAndFaces Document can contain an AnyTensor containing the vertices information (`VerticesAndFaces.vertices`), and an AnyTensor containing the faces information (`VerticesAndFaces.faces`). """ vertices: AnyTensor faces: AnyTensor @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: return super().validate(value) def display(self) -> None: """ Plot mesh consisting of vertices and faces. """ if TYPE_CHECKING: import trimesh else: trimesh = import_library('trimesh', raise_error=True) from IPython.display import display if self.vertices is None or self.faces is None: raise ValueError( 'Can\'t display mesh from tensors when the vertices and/or faces ' 'are None.' ) mesh = trimesh.Trimesh(vertices=self.vertices, faces=self.faces) display(mesh.show())
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch import torch.nn as nn from mmengine.runner import load_checkpoint from torch import Tensor from mmdet.registry import MODELS from mmdet.structures import SampleList from mmdet.utils import ConfigType, OptConfigType from ..utils.misc import unpack_gt_instances from .kd_one_stage import KnowledgeDistillationSingleStageDetector @MODELS.register_module() class LAD(KnowledgeDistillationSingleStageDetector): """Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_.""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, teacher_backbone: ConfigType, teacher_neck: ConfigType, teacher_bbox_head: ConfigType, teacher_ckpt: Optional[str] = None, eval_teacher: bool = True, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None) -> None: super(KnowledgeDistillationSingleStageDetector, self).__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor) self.eval_teacher = eval_teacher self.teacher_model = nn.Module() self.teacher_model.backbone = MODELS.build(teacher_backbone) if teacher_neck is not None: self.teacher_model.neck = MODELS.build(teacher_neck) teacher_bbox_head.update(train_cfg=train_cfg) teacher_bbox_head.update(test_cfg=test_cfg) self.teacher_model.bbox_head = MODELS.build(teacher_bbox_head) if teacher_ckpt is not None: load_checkpoint( self.teacher_model, teacher_ckpt, map_location='cpu') @property def with_teacher_neck(self) -> bool: """bool: whether the detector has a teacher_neck""" return hasattr(self.teacher_model, 'neck') and \ self.teacher_model.neck is not None def extract_teacher_feat(self, batch_inputs: Tensor) -> Tensor: """Directly extract teacher features from the backbone+neck.""" x = self.teacher_model.backbone(batch_inputs) if self.with_teacher_neck: x = self.teacher_model.neck(x) return x def loss(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> dict: """ Args: batch_inputs (Tensor): Input images of shape (N, C, H, W). These should usually be mean centered and std scaled. batch_data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. Returns: dict[str, Tensor]: A dictionary of loss components. """ outputs = unpack_gt_instances(batch_data_samples) batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ = outputs # get label assignment from the teacher with torch.no_grad(): x_teacher = self.extract_teacher_feat(batch_inputs) outs_teacher = self.teacher_model.bbox_head(x_teacher) label_assignment_results = \ self.teacher_model.bbox_head.get_label_assignment( *outs_teacher, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) # the student use the label assignment from the teacher to learn x = self.extract_feat(batch_inputs) losses = self.bbox_head.loss(x, label_assignment_results, batch_data_samples) return losses
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch import torch.nn as nn from mmengine.runner import load_checkpoint from torch import Tensor from mmdet.registry import MODELS from mmdet.structures import SampleList from mmdet.utils import ConfigType, OptConfigType from ..utils.misc import unpack_gt_instances from .kd_one_stage import KnowledgeDistillationSingleStageDetector @MODELS.register_module() class LAD(KnowledgeDistillationSingleStageDetector): """Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_.""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, teacher_backbone: ConfigType, teacher_neck: ConfigType, teacher_bbox_head: ConfigType, teacher_ckpt: Optional[str] = None, eval_teacher: bool = True, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None) -> None: super(KnowledgeDistillationSingleStageDetector, self).__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor) self.eval_teacher = eval_teacher self.teacher_model = nn.Module() self.teacher_model.backbone = MODELS.build(teacher_backbone) if teacher_neck is not None: self.teacher_model.neck = MODELS.build(teacher_neck) teacher_bbox_head.update(train_cfg=train_cfg) teacher_bbox_head.update(test_cfg=test_cfg) self.teacher_model.bbox_head = MODELS.build(teacher_bbox_head) if teacher_ckpt is not None: load_checkpoint( self.teacher_model, teacher_ckpt, map_location='cpu') @property def with_teacher_neck(self) -> bool: """bool: whether the detector has a teacher_neck""" return hasattr(self.teacher_model, 'neck') and \ self.teacher_model.neck is not None def extract_teacher_feat(self, batch_inputs: Tensor) -> Tensor: """Directly extract teacher features from the backbone+neck.""" x = self.teacher_model.backbone(batch_inputs) if self.with_teacher_neck: x = self.teacher_model.neck(x) return x def loss(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> dict: """ Args: batch_inputs (Tensor): Input images of shape (N, C, H, W). These should usually be mean centered and std scaled. batch_data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. Returns: dict[str, Tensor]: A dictionary of loss components. """ outputs = unpack_gt_instances(batch_data_samples) batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ = outputs # get label assignment from the teacher with torch.no_grad(): x_teacher = self.extract_teacher_feat(batch_inputs) outs_teacher = self.teacher_model.bbox_head(x_teacher) label_assignment_results = \ self.teacher_model.bbox_head.get_label_assignment( *outs_teacher, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) # the student use the label assignment from the teacher to learn x = self.extract_feat(batch_inputs) losses = self.bbox_head.loss(x, label_assignment_results, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) return losses
#!/usr/bin/env python3 # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import psutil vm = psutil.virtual_memory() total_gb = vm.total / (1024**3) available_gb = vm.available / (1024**3) print(f"Total RAM: {total_gb:.2f} GB") print(f"Available RAM: {available_gb:.2f} GB") except ImportError: pass try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) if torch.cuda.is_available(): print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) device_properties = torch.cuda.get_device_properties(0) total_memory = device_properties.total_memory / (1024**3) print(f"CUDA memory: {total_memory} GB") print("XPU available:", hasattr(torch, "xpu") and torch.xpu.is_available()) if hasattr(torch, "xpu") and torch.xpu.is_available(): print("XPU model:", torch.xpu.get_device_properties(0).name) print("XPU compiler version:", torch.version.xpu) print("Number of XPUs available:", torch.xpu.device_count()) device_properties = torch.xpu.get_device_properties(0) total_memory = device_properties.total_memory / (1024**3) print(f"XPU memory: {total_memory} GB") except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
#!/usr/bin/env python3 # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) if torch.cuda.is_available(): print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) device_properties = torch.cuda.get_device_properties(0) total_memory = device_properties.total_memory / (1024**3) print(f"CUDA memory: {total_memory} GB") print("XPU available:", hasattr(torch, "xpu") and torch.xpu.is_available()) if hasattr(torch, "xpu") and torch.xpu.is_available(): print("XPU model:", torch.xpu.get_device_properties(0).name) print("XPU compiler version:", torch.version.xpu) print("Number of XPUs available:", torch.xpu.device_count()) device_properties = torch.xpu.get_device_properties(0) total_memory = device_properties.total_memory / (1024**3) print(f"XPU memory: {total_memory} GB") except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
from pathlib import Path from typing import List import pytest from dpr_text import DPRTextEncoder from jina import Document, DocumentArray, Executor _EMBEDDING_DIM = 768 @pytest.fixture(scope='session') def basic_encoder() -> DPRTextEncoder: return DPRTextEncoder() @pytest.fixture(scope='session') def basic_encoder_ctx() -> DPRTextEncoder: return DPRTextEncoder( 'facebook/dpr-ctx_encoder-single-nq-base', encoder_type='context', title_tag_key='title', ) def test_config(): encoder = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert encoder.encoder_type == 'question' def test_no_document(basic_encoder: DPRTextEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: DPRTextEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: DPRTextEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_context_encoder_doc_no_title(basic_encoder_ctx: DPRTextEncoder): docs = DocumentArray([Document(text='hello there')]) with pytest.raises(ValueError, match='If you set `title_tag_key` property'): basic_encoder_ctx.encode(docs, {}) def test_wrong_encoder_type(): with pytest.raises(ValueError, match='The ``encoder_type`` parameter'): DPRTextEncoder(encoder_type='worng_type') def test_encoding_cpu(): docs = DocumentArray([Document(text='hello there')]) encoder = DPRTextEncoder(device='cpu') encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) def test_encoding_question_type(basic_encoder: DPRTextEncoder): docs = DocumentArray([Document(text='hello there')]) basic_encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) def test_encoding_context_type(basic_encoder_ctx: DPRTextEncoder): docs = DocumentArray([Document(text='hello there', tags={'title': 'greeting'})]) basic_encoder_ctx.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): docs = DocumentArray([Document(text='hello there')]) encoder = DPRTextEncoder(device='cuda') encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: DPRTextEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: DPRTextEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: DPRTextEncoder): docs = DocumentArray( [ Document(id='A', text='a furry animal that with a long tail'), Document(id='B', text='a domesticated mammal with four legs'), Document(id='C', text='a type of aircraft that uses rotating wings'), Document(id='D', text='flying vehicle that has fixed wings and engines'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i] def test_ctx_encoder_with_incorrect_model(): with pytest.raises( ValueError, match='Please ensure that pretrained_model_name_or_path is correctly set', ): DPRTextEncoder(encoder_type='context')
from pathlib import Path from typing import List import pytest from dpr_text import DPRTextEncoder from jina import Document, DocumentArray, Executor _EMBEDDING_DIM = 768 @pytest.fixture(scope='session') def basic_encoder() -> DPRTextEncoder: return DPRTextEncoder() @pytest.fixture(scope='session') def basic_encoder_ctx() -> DPRTextEncoder: return DPRTextEncoder( 'facebook/dpr-ctx_encoder-single-nq-base', encoder_type='context', title_tag_key='title', ) def test_config(): encoder = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert encoder.encoder_type == 'question' def test_no_document(basic_encoder: DPRTextEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: DPRTextEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: DPRTextEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_context_encoder_doc_no_title(basic_encoder_ctx: DPRTextEncoder): docs = DocumentArray([Document(text='hello there')]) with pytest.raises(ValueError, match='If you set `title_tag_key` property'): basic_encoder_ctx.encode(docs, {}) def test_wrong_encoder_type(): with pytest.raises(ValueError, match='The ``encoder_type`` parameter'): DPRTextEncoder(encoder_type='worng_type') def test_encoding_cpu(): docs = DocumentArray([Document(text='hello there')]) encoder = DPRTextEncoder(device='cpu') encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) def test_encoding_question_type(basic_encoder: DPRTextEncoder): docs = DocumentArray([Document(text='hello there')]) basic_encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) def test_encoding_context_type(basic_encoder_ctx: DPRTextEncoder): docs = DocumentArray([Document(text='hello there', tags={'title': 'greeting'})]) basic_encoder_ctx.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): docs = DocumentArray([Document(text='hello there')]) encoder = DPRTextEncoder(device='cuda') encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: DPRTextEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: DPRTextEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: DPRTextEncoder): docs = DocumentArray( [ Document(id='A', text='a furry animal that with a long tail'), Document(id='B', text='a domesticated mammal with four legs'), Document(id='C', text='a type of aircraft that uses rotating wings'), Document(id='D', text='flying vehicle that has fixed wings and engines'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
import copy import importlib import os import sys from keras.src import backend as backend_module from keras.src.api_export import keras_export from keras.src.backend.common import global_state def in_tf_graph(): if global_state.get_global_attribute("in_tf_graph_scope", False): return True if "tensorflow" in sys.modules: from keras.src.utils.module_utils import tensorflow as tf return not tf.executing_eagerly() return False def convert_tf_tensor(outputs, dtype=None): if backend_module.backend() != "tensorflow" and not in_tf_graph(): outputs = backend_module.convert_to_tensor(outputs, dtype=dtype) return outputs class TFGraphScope: def __init__(self): self._original_value = global_state.get_global_attribute( "in_tf_graph_scope", False ) def __enter__(self): global_state.set_global_attribute("in_tf_graph_scope", True) def __exit__(self, *args, **kwargs): global_state.set_global_attribute( "in_tf_graph_scope", self._original_value ) class DynamicBackend: """A class that can be used to switch from one backend to another. Example: ```python backend = DynamicBackend("tensorflow") y = backend.square(tf.constant(...)) backend.set_backend("jax") y = backend.square(jax.numpy.array(...)) ``` Args: backend: Initial backend to use (string). """ def __init__(self, backend=None): self._backend = backend or backend_module.backend() def set_backend(self, backend): self._backend = backend def reset(self): self._backend = backend_module.backend() @property def name(self): return self._backend def __getattr__(self, name): if self._backend == "tensorflow": from keras.src.backend import tensorflow as tf_backend return getattr(tf_backend, name) if self._backend == "jax": from keras.src.backend import jax as jax_backend return getattr(jax_backend, name) if self._backend == "torch": from keras.src.backend import torch as torch_backend return getattr(torch_backend, name) if self._backend == "numpy": # TODO (ariG23498): # The import `from keras.src.backend import numpy as numpy_backend` # is not working. This is a temporary fix. # The import is redirected to `keras.backend.numpy.numpy.py` from keras.src import backend as numpy_backend return getattr(numpy_backend, name) @keras_export("keras.config.set_backend") def set_backend(backend): """Reload the backend (and the Keras package). Example: ```python keras.config.set_backend("jax") ``` ⚠️ WARNING ⚠️: Using this function is dangerous and should be done carefully. Changing the backend will **NOT** convert the type of any already-instantiated objects. Thus, any layers / tensors / etc. already created will no longer be usable without errors. It is strongly recommended **not** to keep around **any** Keras-originated objects instances created before calling `set_backend()`. This includes any function or class instance that uses any Keras functionality. All such code needs to be re-executed after calling `set_backend()`. """ os.environ["KERAS_BACKEND"] = backend # Clear module cache. loaded_modules = [ key for key in sys.modules.keys() if key.startswith("keras") ] for key in loaded_modules: del sys.modules[key] # Reimport Keras with the new backend (set via KERAS_BACKEND). import keras # Finally: refresh all imported Keras submodules. globs = copy.copy(globals()) for key, value in globs.items(): if value.__class__ == keras.__class__: if str(value).startswith("<module 'keras."): module_name = str(value) module_name = module_name[module_name.find("'") + 1 :] module_name = module_name[: module_name.find("'")] globals()[key] = importlib.import_module(module_name)
import copy import importlib import os import sys from keras.src import backend as backend_module from keras.src.api_export import keras_export from keras.src.backend.common import global_state def in_tf_graph(): if global_state.get_global_attribute("in_tf_graph_scope", False): return True if "tensorflow" in sys.modules: from keras.src.utils.module_utils import tensorflow as tf return not tf.executing_eagerly() return False def convert_tf_tensor(outputs, dtype=None): if backend_module.backend() != "tensorflow" and not in_tf_graph(): outputs = backend_module.convert_to_tensor(outputs, dtype=dtype) return outputs class TFGraphScope: def __init__(self): self._original_value = global_state.get_global_attribute( "in_tf_graph_scope", False ) def __enter__(self): global_state.set_global_attribute("in_tf_graph_scope", True) def __exit__(self, *args, **kwargs): global_state.set_global_attribute( "in_tf_graph_scope", self._original_value ) class DynamicBackend: """A class that can be used to switch from one backend to another. Example: ```python backend = DynamicBackend("tensorflow") y = backend.square(tf.constant(...)) backend.set_backend("jax") y = backend.square(jax.numpy.array(...)) ``` Args: backend: Initial backend to use (string). """ def __init__(self, backend=None): self._backend = backend or backend_module.backend() def set_backend(self, backend): self._backend = backend def reset(self): self._backend = backend_module.backend() def __getattr__(self, name): if self._backend == "tensorflow": from keras.src.backend import tensorflow as tf_backend return getattr(tf_backend, name) if self._backend == "jax": from keras.src.backend import jax as jax_backend return getattr(jax_backend, name) if self._backend == "torch": from keras.src.backend import torch as torch_backend return getattr(torch_backend, name) if self._backend == "numpy": # TODO (ariG23498): # The import `from keras.src.backend import numpy as numpy_backend` # is not working. This is a temporary fix. # The import is redirected to `keras.backend.numpy.numpy.py` from keras.src import backend as numpy_backend return getattr(numpy_backend, name) @keras_export("keras.config.set_backend") def set_backend(backend): """Reload the backend (and the Keras package). Example: ```python keras.config.set_backend("jax") ``` ⚠️ WARNING ⚠️: Using this function is dangerous and should be done carefully. Changing the backend will **NOT** convert the type of any already-instantiated objects. Thus, any layers / tensors / etc. already created will no longer be usable without errors. It is strongly recommended **not** to keep around **any** Keras-originated objects instances created before calling `set_backend()`. This includes any function or class instance that uses any Keras functionality. All such code needs to be re-executed after calling `set_backend()`. """ os.environ["KERAS_BACKEND"] = backend # Clear module cache. loaded_modules = [ key for key in sys.modules.keys() if key.startswith("keras") ] for key in loaded_modules: del sys.modules[key] # Reimport Keras with the new backend (set via KERAS_BACKEND). import keras # Finally: refresh all imported Keras submodules. globs = copy.copy(globals()) for key, value in globs.items(): if value.__class__ == keras.__class__: if str(value).startswith("<module 'keras."): module_name = str(value) module_name = module_name[module_name.find("'") + 1 :] module_name = module_name[: module_name.find("'")] globals()[key] = importlib.import_module(module_name)
import pytest from .utils import remove_color_codes @pytest.mark.parametrize( "raw_text, clean_text", [ ( "COMMAND = \x1b[36mbrowse_website\x1b[0m " "ARGUMENTS = \x1b[36m{'url': 'https://www.google.com'," " 'question': 'What is the capital of France?'}\x1b[0m", "COMMAND = browse_website " "ARGUMENTS = {'url': 'https://www.google.com'," " 'question': 'What is the capital of France?'}", ), ( "{'Schaue dir meine Projekte auf github () an, als auch meine Webseiten': " "'https://github.com/Significant-Gravitas/AutoGPT," " https://discord.gg/autogpt und https://twitter.com/Auto_GPT'}", "{'Schaue dir meine Projekte auf github () an, als auch meine Webseiten': " "'https://github.com/Significant-Gravitas/AutoGPT," " https://discord.gg/autogpt und https://twitter.com/Auto_GPT'}", ), ("", ""), ("hello", "hello"), ("hello\x1b[31m world", "hello world"), ("\x1b[36mHello,\x1b[32m World!", "Hello, World!"), ( "\x1b[1m\x1b[31mError:\x1b[0m\x1b[31m file not found", "Error: file not found", ), ], ) def test_remove_color_codes(raw_text, clean_text): assert remove_color_codes(raw_text) == clean_text
import pytest from .utils import remove_color_codes @pytest.mark.parametrize( "raw_text, clean_text", [ ( "COMMAND = \x1b[36mbrowse_website\x1b[0m " "ARGUMENTS = \x1b[36m{'url': 'https://www.google.com'," " 'question': 'What is the capital of France?'}\x1b[0m", "COMMAND = browse_website " "ARGUMENTS = {'url': 'https://www.google.com'," " 'question': 'What is the capital of France?'}", ), ( "{'Schaue dir meine Projekte auf github () an, als auch meine Webseiten': " "'https://github.com/Significant-Gravitas/AutoGPT," " https://discord.gg/autogpt und https://twitter.com/Auto_GPT'}", "{'Schaue dir meine Projekte auf github () an, als auch meine Webseiten': " "'https://github.com/Significant-Gravitas/AutoGPT," " https://discord.gg/autogpt und https://twitter.com/Auto_GPT'}", ), ("", ""), ("hello", "hello"), ("hello\x1B[31m world", "hello world"), ("\x1B[36mHello,\x1B[32m World!", "Hello, World!"), ( "\x1B[1m\x1B[31mError:\x1B[0m\x1B[31m file not found", "Error: file not found", ), ], ) def test_remove_color_codes(raw_text, clean_text): assert remove_color_codes(raw_text) == clean_text
import inspect import threading from typing import Any, Awaitable, Callable, ParamSpec, TypeVar, cast, overload P = ParamSpec("P") R = TypeVar("R") @overload def thread_cached(func: Callable[P, Awaitable[R]]) -> Callable[P, Awaitable[R]]: ... @overload def thread_cached(func: Callable[P, R]) -> Callable[P, R]: ... def thread_cached( func: Callable[P, R] | Callable[P, Awaitable[R]], ) -> Callable[P, R] | Callable[P, Awaitable[R]]: thread_local = threading.local() if inspect.iscoroutinefunction(func): async def async_wrapper(*args: P.args, **kwargs: P.kwargs) -> R: cache = getattr(thread_local, "cache", None) if cache is None: cache = thread_local.cache = {} key = (func, args, tuple(sorted(kwargs.items()))) if key not in cache: cache[key] = await cast(Callable[P, Awaitable[R]], func)( *args, **kwargs ) return cache[key] return async_wrapper else: def sync_wrapper(*args: P.args, **kwargs: P.kwargs) -> R: cache = getattr(thread_local, "cache", None) if cache is None: cache = thread_local.cache = {} # Include function in the key to prevent collisions between different functions key = (func, args, tuple(sorted(kwargs.items()))) if key not in cache: cache[key] = func(*args, **kwargs) return cache[key] return sync_wrapper def clear_thread_cache(func: Callable[..., Any]) -> None: """Clear the cache for a thread-cached function.""" thread_local = threading.local() cache = getattr(thread_local, "cache", None) if cache is not None: # Clear all entries that match the function for key in list(cache.keys()): if key and len(key) > 0 and key[0] == func: del cache[key]
import threading from typing import Callable, ParamSpec, TypeVar P = ParamSpec("P") R = TypeVar("R") def thread_cached(func: Callable[P, R]) -> Callable[P, R]: thread_local = threading.local() def wrapper(*args: P.args, **kwargs: P.kwargs) -> R: cache = getattr(thread_local, "cache", None) if cache is None: cache = thread_local.cache = {} key = (args, tuple(sorted(kwargs.items()))) if key not in cache: cache[key] = func(*args, **kwargs) return cache[key] return wrapper
import pytest from datasets.exceptions import DatasetNotFoundError from datasets.inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) pytestmark = pytest.mark.integration @pytest.mark.parametrize( "path, config_name, expected_splits", [ ("rajpurkar/squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_config_info(path, config_name, expected_splits): info = get_dataset_config_info(path, config_name=config_name) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits def test_get_dataset_config_info_private(hf_token, hf_private_dataset_repo_txt_data): info = get_dataset_config_info(hf_private_dataset_repo_txt_data, config_name="default", token=hf_token) assert list(info.splits.keys()) == ["train"] @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), # non-existing, gated, private: ("hf-internal-testing/non-existing-dataset", "default", DatasetNotFoundError), ("hf-internal-testing/gated_dataset_with_data_files", "default", DatasetNotFoundError), ("hf-internal-testing/private_dataset_with_data_files", "default", DatasetNotFoundError), ("hf-internal-testing/gated_dataset_with_data_files", "default", DatasetNotFoundError), ("hf-internal-testing/private_dataset_with_data_files", "default", DatasetNotFoundError), ], ) def test_get_dataset_config_info_raises(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_config_info(path, config_name=config_name) @pytest.mark.parametrize( "path, expected", [ ("amirveyseh/acronym_identification", ["default"]), ("rajpurkar/squad", ["plain_text"]), ("dalle-mini/wit", ["default"]), ("hf-internal-testing/librispeech_asr_dummy", ["clean"]), ("hf-internal-testing/audiofolder_no_configs_in_metadata", ["default"]), ("hf-internal-testing/audiofolder_single_config_in_metadata", ["custom"]), ("hf-internal-testing/audiofolder_two_configs_in_metadata", ["v1", "v2"]), ], ) def test_get_dataset_config_names(path, expected): config_names = get_dataset_config_names(path) assert config_names == expected @pytest.mark.parametrize( "path, expected", [ ("amirveyseh/acronym_identification", "default"), ("rajpurkar/squad", "plain_text"), ("dalle-mini/wit", "default"), ("hf-internal-testing/librispeech_asr_dummy", "clean"), ("hf-internal-testing/audiofolder_no_configs_in_metadata", "default"), ("hf-internal-testing/audiofolder_single_config_in_metadata", "custom"), ("hf-internal-testing/audiofolder_two_configs_in_metadata", None), ], ) def test_get_dataset_default_config_name(path, expected): default_config_name = get_dataset_default_config_name(path) if expected: assert default_config_name == expected else: assert default_config_name is None @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config", [ ("rajpurkar/squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["default"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ], ) def test_get_dataset_info(path, expected_configs, expected_splits_in_first_config): infos = get_dataset_infos(path) assert list(infos.keys()) == expected_configs expected_config = expected_configs[0] assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits", [ ("rajpurkar/squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_split_names(path, expected_config, expected_splits): infos = get_dataset_infos(path) assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_split_names_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_split_names(path, config_name=config_name)
import pytest from datasets.exceptions import DatasetNotFoundError from datasets.inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) pytestmark = pytest.mark.integration @pytest.mark.parametrize( "path, config_name, expected_splits", [ ("rajpurkar/squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_config_info(path, config_name, expected_splits): info = get_dataset_config_info(path, config_name=config_name) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits def test_get_dataset_config_info_private(hf_token, hf_private_dataset_repo_txt_data): info = get_dataset_config_info(hf_private_dataset_repo_txt_data, config_name="default", token=hf_token) assert list(info.splits.keys()) == ["train"] @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), # non-existing, gated, private: ("hf-internal-testing/non-existing-dataset", "default", DatasetNotFoundError), ("hf-internal-testing/gated_dataset_with_data_files", "default", DatasetNotFoundError), ("hf-internal-testing/private_dataset_with_data_files", "default", DatasetNotFoundError), ("hf-internal-testing/gated_dataset_with_data_files", "default", DatasetNotFoundError), ("hf-internal-testing/private_dataset_with_data_files", "default", DatasetNotFoundError), ], ) def test_get_dataset_config_info_raises(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_config_info(path, config_name=config_name) @pytest.mark.parametrize( "path, expected", [ ("acronym_identification", ["default"]), ("rajpurkar/squad", ["plain_text"]), ("dalle-mini/wit", ["default"]), ("hf-internal-testing/librispeech_asr_dummy", ["clean"]), ("hf-internal-testing/audiofolder_no_configs_in_metadata", ["default"]), ("hf-internal-testing/audiofolder_single_config_in_metadata", ["custom"]), ("hf-internal-testing/audiofolder_two_configs_in_metadata", ["v1", "v2"]), ], ) def test_get_dataset_config_names(path, expected): config_names = get_dataset_config_names(path) assert config_names == expected @pytest.mark.parametrize( "path, expected", [ ("acronym_identification", "default"), ("rajpurkar/squad", "plain_text"), ("dalle-mini/wit", "default"), ("hf-internal-testing/librispeech_asr_dummy", "clean"), ("hf-internal-testing/audiofolder_no_configs_in_metadata", "default"), ("hf-internal-testing/audiofolder_single_config_in_metadata", "custom"), ("hf-internal-testing/audiofolder_two_configs_in_metadata", None), ], ) def test_get_dataset_default_config_name(path, expected): default_config_name = get_dataset_default_config_name(path) if expected: assert default_config_name == expected else: assert default_config_name is None @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config", [ ("rajpurkar/squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["default"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ], ) def test_get_dataset_info(path, expected_configs, expected_splits_in_first_config): infos = get_dataset_infos(path) assert list(infos.keys()) == expected_configs expected_config = expected_configs[0] assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits", [ ("rajpurkar/squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_split_names(path, expected_config, expected_splits): infos = get_dataset_infos(path) assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_split_names_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_split_names(path, config_name=config_name)
import codecs from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField class TextDecoderBlock(Block): class Input(BlockSchema): text: str = SchemaField( description="A string containing escaped characters to be decoded", placeholder='Your entire text block with \\n and \\" escaped characters', ) class Output(BlockSchema): decoded_text: str = SchemaField( description="The decoded text with escape sequences processed" ) def __init__(self): super().__init__( id="2570e8fe-8447-43ed-84c7-70d657923231", description="Decodes a string containing escape sequences into actual text", categories={BlockCategory.TEXT}, input_schema=TextDecoderBlock.Input, output_schema=TextDecoderBlock.Output, test_input={"text": """Hello\nWorld!\nThis is a \"quoted\" string."""}, test_output=[ ( "decoded_text", """Hello World! This is a "quoted" string.""", ) ], ) async def run(self, input_data: Input, **kwargs) -> BlockOutput: decoded_text = codecs.decode(input_data.text, "unicode_escape") yield "decoded_text", decoded_text
import codecs from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField class TextDecoderBlock(Block): class Input(BlockSchema): text: str = SchemaField( description="A string containing escaped characters to be decoded", placeholder='Your entire text block with \\n and \\" escaped characters', ) class Output(BlockSchema): decoded_text: str = SchemaField( description="The decoded text with escape sequences processed" ) def __init__(self): super().__init__( id="2570e8fe-8447-43ed-84c7-70d657923231", description="Decodes a string containing escape sequences into actual text", categories={BlockCategory.TEXT}, input_schema=TextDecoderBlock.Input, output_schema=TextDecoderBlock.Output, test_input={"text": """Hello\nWorld!\nThis is a \"quoted\" string."""}, test_output=[ ( "decoded_text", """Hello World! This is a "quoted" string.""", ) ], ) def run(self, input_data: Input, **kwargs) -> BlockOutput: decoded_text = codecs.decode(input_data.text, "unicode_escape") yield "decoded_text", decoded_text
"""**Schemas** are the LangChain Base Classes and Interfaces.""" from langchain_core.agents import AgentAction, AgentFinish from langchain_core.caches import BaseCache from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.documents import BaseDocumentTransformer, Document from langchain_core.exceptions import LangChainException, OutputParserException from langchain_core.memory import BaseMemory from langchain_core.messages import ( AIMessage, BaseMessage, ChatMessage, FunctionMessage, HumanMessage, SystemMessage, _message_from_dict, get_buffer_string, messages_from_dict, messages_to_dict, ) from langchain_core.messages.base import message_to_dict from langchain_core.output_parsers import ( BaseLLMOutputParser, BaseOutputParser, StrOutputParser, ) from langchain_core.outputs import ( ChatGeneration, ChatResult, Generation, LLMResult, RunInfo, ) from langchain_core.prompt_values import PromptValue from langchain_core.prompts import BasePromptTemplate, format_document from langchain_core.retrievers import BaseRetriever from langchain_core.stores import BaseStore RUN_KEY = "__run" # Backwards compatibility. Memory = BaseMemory _message_to_dict = message_to_dict __all__ = [ "RUN_KEY", "AIMessage", "AgentAction", "AgentFinish", "BaseCache", "BaseChatMessageHistory", "BaseDocumentTransformer", "BaseLLMOutputParser", "BaseMemory", "BaseMessage", "BaseOutputParser", "BasePromptTemplate", "BaseRetriever", "BaseStore", "ChatGeneration", "ChatMessage", "ChatResult", "Document", "FunctionMessage", "Generation", "HumanMessage", "LLMResult", "LangChainException", "Memory", "OutputParserException", "PromptValue", "RunInfo", "StrOutputParser", "SystemMessage", "_message_from_dict", "_message_to_dict", "format_document", "get_buffer_string", "message_to_dict", "messages_from_dict", "messages_to_dict", ]
"""**Schemas** are the LangChain Base Classes and Interfaces.""" from langchain_core.agents import AgentAction, AgentFinish from langchain_core.caches import BaseCache from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.documents import BaseDocumentTransformer, Document from langchain_core.exceptions import LangChainException, OutputParserException from langchain_core.memory import BaseMemory from langchain_core.messages import ( AIMessage, BaseMessage, ChatMessage, FunctionMessage, HumanMessage, SystemMessage, _message_from_dict, get_buffer_string, messages_from_dict, messages_to_dict, ) from langchain_core.messages.base import message_to_dict from langchain_core.output_parsers import ( BaseLLMOutputParser, BaseOutputParser, StrOutputParser, ) from langchain_core.outputs import ( ChatGeneration, ChatResult, Generation, LLMResult, RunInfo, ) from langchain_core.prompt_values import PromptValue from langchain_core.prompts import BasePromptTemplate, format_document from langchain_core.retrievers import BaseRetriever from langchain_core.stores import BaseStore RUN_KEY = "__run" # Backwards compatibility. Memory = BaseMemory _message_to_dict = message_to_dict __all__ = [ "BaseCache", "BaseMemory", "BaseStore", "AgentFinish", "AgentAction", "Document", "BaseChatMessageHistory", "BaseDocumentTransformer", "BaseMessage", "ChatMessage", "FunctionMessage", "HumanMessage", "AIMessage", "SystemMessage", "messages_from_dict", "messages_to_dict", "message_to_dict", "_message_to_dict", "_message_from_dict", "get_buffer_string", "RunInfo", "LLMResult", "ChatResult", "ChatGeneration", "Generation", "PromptValue", "LangChainException", "BaseRetriever", "RUN_KEY", "Memory", "OutputParserException", "StrOutputParser", "BaseOutputParser", "BaseLLMOutputParser", "BasePromptTemplate", "format_document", ]
from langchain_core.messages import ( AIMessage, FunctionMessage, HumanMessage, SystemMessage, ) from langchain_core.output_parsers.openai_tools import ( parse_tool_call, ) from langchain_community.chat_models.tongyi import ( convert_dict_to_message, convert_message_to_dict, ) def test__convert_dict_to_message_human() -> None: message_dict = {"role": "user", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = HumanMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_ai() -> None: message_dict = {"role": "assistant", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = AIMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_other_role() -> None: message_dict = {"role": "system", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = SystemMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_function_call() -> None: raw_function_calls = [ { "function": { "name": "get_current_weather", "arguments": '{"location": "Boston", "unit": "fahrenheit"}', }, "type": "function", } ] message_dict = { "role": "assistant", "content": "foo", "tool_calls": raw_function_calls, } result = convert_dict_to_message(message_dict) tool_calls = [ parse_tool_call(raw_tool_call, return_id=True) for raw_tool_call in raw_function_calls ] expected_output = AIMessage( content="foo", additional_kwargs={"tool_calls": raw_function_calls}, tool_calls=tool_calls, # type: ignore[arg-type] invalid_tool_calls=[], ) assert result == expected_output def test__convert_dict_to_message_partial_mode() -> None: message_dict = {"role": "assistant", "content": "foo", "partial": True} result = convert_dict_to_message(message_dict) expected_output = AIMessage(content="foo", additional_kwargs={"partial": True}) assert result == expected_output def test__convert_message_to_dict_human() -> None: message = HumanMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "user", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_ai() -> None: message = AIMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "assistant", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_ai_partial_mode() -> None: message = AIMessage(content="foo", additional_kwargs={"partial": True}) result = convert_message_to_dict(message) expected_output = {"role": "assistant", "content": "foo", "partial": True} assert result == expected_output def test__convert_message_to_dict_system() -> None: message = SystemMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "system", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_tool() -> None: message = FunctionMessage(name="foo", content="bar") result = convert_message_to_dict(message) expected_output = { "role": "tool", "tool_call_id": "", "content": "bar", "name": "foo", } assert result == expected_output
from langchain_core.messages import ( AIMessage, FunctionMessage, HumanMessage, SystemMessage, ) from langchain_core.output_parsers.openai_tools import ( parse_tool_call, ) from langchain_community.chat_models.tongyi import ( convert_dict_to_message, convert_message_to_dict, ) def test__convert_dict_to_message_human() -> None: message_dict = {"role": "user", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = HumanMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_ai() -> None: message_dict = {"role": "assistant", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = AIMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_other_role() -> None: message_dict = {"role": "system", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = SystemMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_function_call() -> None: raw_function_calls = [ { "function": { "name": "get_current_weather", "arguments": '{"location": "Boston", "unit": "fahrenheit"}', }, "type": "function", } ] message_dict = { "role": "assistant", "content": "foo", "tool_calls": raw_function_calls, } result = convert_dict_to_message(message_dict) tool_calls = [ parse_tool_call(raw_tool_call, return_id=True) for raw_tool_call in raw_function_calls ] expected_output = AIMessage( content="foo", additional_kwargs={"tool_calls": raw_function_calls}, tool_calls=tool_calls, # type: ignore[arg-type] invalid_tool_calls=[], ) assert result == expected_output def test__convert_message_to_dict_human() -> None: message = HumanMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "user", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_ai() -> None: message = AIMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "assistant", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_system() -> None: message = SystemMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "system", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_tool() -> None: message = FunctionMessage(name="foo", content="bar") result = convert_message_to_dict(message) expected_output = { "role": "tool", "tool_call_id": "", "content": "bar", "name": "foo", } assert result == expected_output
from .text_paddle import TextPaddleEncoder
from .text_paddle import TextPaddleEncoder
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.memorize.tool import Memorize, TrainableLLM # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "TrainableLLM": "langchain_community.tools.memorize.tool", "Memorize": "langchain_community.tools.memorize.tool", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "Memorize", "TrainableLLM", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.memorize.tool import Memorize, TrainableLLM # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "TrainableLLM": "langchain_community.tools.memorize.tool", "Memorize": "langchain_community.tools.memorize.tool", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "TrainableLLM", "Memorize", ]
import pytest from langchain.evaluation.string_distance import ( PairwiseStringDistanceEvalChain, StringDistance, StringDistanceEvalChain, ) @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", list(StringDistance)) def test_zero_distance(distance: StringDistance) -> None: eval_chain = StringDistanceEvalChain(distance=distance) string = "三人行则必有我师" result = eval_chain.evaluate_strings(prediction=string, reference=string) assert "score" in result assert result["score"] == 0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", list(StringDistance)) async def test_zero_distance_async(distance: StringDistance) -> None: eval_chain = StringDistanceEvalChain(distance=distance) string = "三人行则必有我师" result = await eval_chain.aevaluate_strings(prediction=string, reference=string) assert "score" in result assert result["score"] == 0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", list(StringDistance)) @pytest.mark.parametrize("normalize_score", [True, False]) def test_zero_distance_pairwise( *, distance: StringDistance, normalize_score: bool ) -> None: eval_chain = PairwiseStringDistanceEvalChain( distance=distance, normalize_score=normalize_score ) string = "三人行则必有我师" result = eval_chain.evaluate_string_pairs(prediction=string, prediction_b=string) assert "score" in result assert result["score"] == 0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", list(StringDistance)) async def test_zero_distance_pairwise_async(distance: StringDistance) -> None: eval_chain = PairwiseStringDistanceEvalChain(distance=distance) string = "三人行则必有我师" result = await eval_chain.aevaluate_string_pairs( prediction=string, prediction_b=string ) assert "score" in result assert result["score"] == 0 valid_distances = [ distance for distance in StringDistance if distance != StringDistance.HAMMING ] @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", valid_distances) @pytest.mark.parametrize("normalize_score", [True, False]) def test_non_zero_distance(*, distance: StringDistance, normalize_score: bool) -> None: eval_chain = StringDistanceEvalChain( distance=distance, normalize_score=normalize_score ) prediction = "I like to eat apples." reference = "I like apples." result = eval_chain.evaluate_strings(prediction=prediction, reference=reference) assert "score" in result assert result["score"] > 0 if normalize_score: assert result["score"] < 1.0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", valid_distances) async def test_non_zero_distance_async(distance: StringDistance) -> None: eval_chain = StringDistanceEvalChain(distance=distance) prediction = "I like to eat apples." reference = "I like apples." result = await eval_chain.aevaluate_strings( prediction=prediction, reference=reference ) assert "score" in result assert 0 < result["score"] < 1.0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", valid_distances) def test_non_zero_distance_pairwise(distance: StringDistance) -> None: eval_chain = PairwiseStringDistanceEvalChain(distance=distance) prediction = "I like to eat apples." reference = "I like apples." result = eval_chain.evaluate_string_pairs( prediction=prediction, prediction_b=reference ) assert "score" in result assert 0 < result["score"] < 1.0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", valid_distances) async def test_non_zero_distance_pairwise_async(distance: StringDistance) -> None: eval_chain = PairwiseStringDistanceEvalChain(distance=distance) prediction = "I like to eat apples." reference = "I like apples." result = await eval_chain.aevaluate_string_pairs( prediction=prediction, prediction_b=reference ) assert "score" in result assert 0 < result["score"] < 1.0
import pytest from langchain.evaluation.string_distance import ( PairwiseStringDistanceEvalChain, StringDistance, StringDistanceEvalChain, ) @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", list(StringDistance)) def test_zero_distance(distance: StringDistance) -> None: eval_chain = StringDistanceEvalChain(distance=distance) string = "三人行则必有我师" result = eval_chain.evaluate_strings(prediction=string, reference=string) assert "score" in result assert result["score"] == 0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", list(StringDistance)) async def test_zero_distance_async(distance: StringDistance) -> None: eval_chain = StringDistanceEvalChain(distance=distance) string = "三人行则必有我师" result = await eval_chain.aevaluate_strings(prediction=string, reference=string) assert "score" in result assert result["score"] == 0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", list(StringDistance)) @pytest.mark.parametrize("normalize_score", [True, False]) def test_zero_distance_pairwise( distance: StringDistance, normalize_score: bool ) -> None: eval_chain = PairwiseStringDistanceEvalChain( distance=distance, normalize_score=normalize_score ) string = "三人行则必有我师" result = eval_chain.evaluate_string_pairs(prediction=string, prediction_b=string) assert "score" in result assert result["score"] == 0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", list(StringDistance)) async def test_zero_distance_pairwise_async(distance: StringDistance) -> None: eval_chain = PairwiseStringDistanceEvalChain(distance=distance) string = "三人行则必有我师" result = await eval_chain.aevaluate_string_pairs( prediction=string, prediction_b=string ) assert "score" in result assert result["score"] == 0 valid_distances = [ distance for distance in StringDistance if distance != StringDistance.HAMMING ] @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", valid_distances) @pytest.mark.parametrize("normalize_score", [True, False]) def test_non_zero_distance(distance: StringDistance, normalize_score: bool) -> None: eval_chain = StringDistanceEvalChain( distance=distance, normalize_score=normalize_score ) prediction = "I like to eat apples." reference = "I like apples." result = eval_chain.evaluate_strings(prediction=prediction, reference=reference) assert "score" in result assert result["score"] > 0 if normalize_score: assert result["score"] < 1.0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", valid_distances) async def test_non_zero_distance_async(distance: StringDistance) -> None: eval_chain = StringDistanceEvalChain(distance=distance) prediction = "I like to eat apples." reference = "I like apples." result = await eval_chain.aevaluate_strings( prediction=prediction, reference=reference ) assert "score" in result assert 0 < result["score"] < 1.0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", valid_distances) def test_non_zero_distance_pairwise(distance: StringDistance) -> None: eval_chain = PairwiseStringDistanceEvalChain(distance=distance) prediction = "I like to eat apples." reference = "I like apples." result = eval_chain.evaluate_string_pairs( prediction=prediction, prediction_b=reference ) assert "score" in result assert 0 < result["score"] < 1.0 @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("distance", valid_distances) async def test_non_zero_distance_pairwise_async(distance: StringDistance) -> None: eval_chain = PairwiseStringDistanceEvalChain(distance=distance) prediction = "I like to eat apples." reference = "I like apples." result = await eval_chain.aevaluate_string_pairs( prediction=prediction, prediction_b=reference ) assert "score" in result assert 0 < result["score"] < 1.0
from typing import Optional from docarray import DocList, BaseDoc from docarray.typing import NdArray from jina import Executor, requests import numpy as np class MyDoc(BaseDoc): text: str embedding: Optional[NdArray] = None class Encoder(Executor): def __init__( self, *args, **kwargs, ): super().__init__(*args, **kwargs) @requests def encode(self, docs: DocList[MyDoc], **kwargs) -> DocList[MyDoc]: for doc in docs: doc.embedding = np.random.random(128)
from typing import Optional from docarray import DocList, BaseDoc from docarray.typing import NdArray from jina import Executor, requests import numpy as np class MyDoc(BaseDoc): text: str embedding: Optional[NdArray] = None class Encoder(Executor): def __init__( self, *args, **kwargs, ): super().__init__(*args, **kwargs) @requests def encode(self, docs: DocList[MyDoc], **kwargs) -> DocList[MyDoc]: for doc in docs: doc.embedding = np.random.random(128)
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( # use ResNeSt img_norm data_preprocessor=dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) # # use ResNeSt img_norm img_norm_cfg = dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='Resize', img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
from setuptools import find_packages, setup with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="3.0.0.dev0", author="Nils Reimers", author_email="[email protected]", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), include_package_data=True, python_requires=">=3.8.0", install_requires=[ "transformers>=4.34.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", "datasets", "accelerate>=0.20.3", ], extras_require={ "dev": [ "pre-commit", "pytest", "ruff>=0.3.0", ], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
from setuptools import setup, find_packages with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="3.0.0.dev0", author="Nils Reimers", author_email="[email protected]", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), include_package_data=True, python_requires=">=3.8.0", install_requires=[ "transformers>=4.34.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", "datasets", "accelerate>=0.20.3", ], extras_require={ "dev": [ "pre-commit", "pytest", "ruff>=0.3.0", ], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.optimizers import legacy as legacy from keras.optimizers import schedules as schedules from keras.src.optimizers import deserialize as deserialize from keras.src.optimizers import get as get from keras.src.optimizers import serialize as serialize from keras.src.optimizers.adadelta import Adadelta as Adadelta from keras.src.optimizers.adafactor import Adafactor as Adafactor from keras.src.optimizers.adagrad import Adagrad as Adagrad from keras.src.optimizers.adam import Adam as Adam from keras.src.optimizers.adamax import Adamax as Adamax from keras.src.optimizers.adamw import AdamW as AdamW from keras.src.optimizers.ftrl import Ftrl as Ftrl from keras.src.optimizers.lamb import Lamb as Lamb from keras.src.optimizers.lion import Lion as Lion from keras.src.optimizers.loss_scale_optimizer import ( LossScaleOptimizer as LossScaleOptimizer, ) from keras.src.optimizers.muon import Muon as Muon from keras.src.optimizers.nadam import Nadam as Nadam from keras.src.optimizers.optimizer import Optimizer as Optimizer from keras.src.optimizers.rmsprop import RMSprop as RMSprop from keras.src.optimizers.sgd import SGD as SGD
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.optimizers import legacy from keras.api.optimizers import schedules from keras.src.optimizers import deserialize from keras.src.optimizers import get from keras.src.optimizers import serialize from keras.src.optimizers.adadelta import Adadelta from keras.src.optimizers.adafactor import Adafactor from keras.src.optimizers.adagrad import Adagrad from keras.src.optimizers.adam import Adam from keras.src.optimizers.adamax import Adamax from keras.src.optimizers.adamw import AdamW from keras.src.optimizers.ftrl import Ftrl from keras.src.optimizers.lamb import Lamb from keras.src.optimizers.lion import Lion from keras.src.optimizers.loss_scale_optimizer import LossScaleOptimizer from keras.src.optimizers.muon import Muon from keras.src.optimizers.nadam import Nadam from keras.src.optimizers.optimizer import Optimizer from keras.src.optimizers.rmsprop import RMSprop from keras.src.optimizers.sgd import SGD
"""**Load** module helps with serialization and deserialization.""" from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.load.dump import dumpd, dumps from langchain_core.load.load import load, loads from langchain_core.load.serializable import Serializable __all__ = ["dumpd", "dumps", "load", "loads", "Serializable"] _dynamic_imports = { "dumpd": "dump", "dumps": "dump", "load": "load", "loads": "load", "Serializable": "serializable", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Load** module helps with serialization and deserialization.""" from langchain_core.load.dump import dumpd, dumps from langchain_core.load.load import load, loads from langchain_core.load.serializable import Serializable __all__ = ["dumpd", "dumps", "load", "loads", "Serializable"]
from urllib.parse import urlparse from backend.blocks.github._auth import GithubCredentials from backend.util.request import Requests def _convert_to_api_url(url: str) -> str: """ Converts a standard GitHub URL to the corresponding GitHub API URL. Handles repository URLs, issue URLs, pull request URLs, and more. """ parsed_url = urlparse(url) path_parts = parsed_url.path.strip("/").split("/") if len(path_parts) >= 2: owner, repo = path_parts[0], path_parts[1] api_base = f"https://api.github.com/repos/{owner}/{repo}" if len(path_parts) > 2: additional_path = "/".join(path_parts[2:]) api_url = f"{api_base}/{additional_path}" else: # Repository base URL api_url = api_base else: raise ValueError("Invalid GitHub URL format.") return api_url def _get_headers(credentials: GithubCredentials) -> dict[str, str]: return { "Authorization": credentials.auth_header(), "Accept": "application/vnd.github.v3+json", } def get_api(credentials: GithubCredentials, convert_urls: bool = True) -> Requests: return Requests( trusted_origins=["https://api.github.com", "https://github.com"], extra_url_validator=_convert_to_api_url if convert_urls else None, extra_headers=_get_headers(credentials), )
from urllib.parse import urlparse from backend.blocks.github._auth import GithubCredentials from backend.util.request import Requests def _convert_to_api_url(url: str) -> str: """ Converts a standard GitHub URL to the corresponding GitHub API URL. Handles repository URLs, issue URLs, pull request URLs, and more. """ parsed_url = urlparse(url) path_parts = parsed_url.path.strip("/").split("/") if len(path_parts) >= 2: owner, repo = path_parts[0], path_parts[1] api_base = f"https://api.github.com/repos/{owner}/{repo}" if len(path_parts) > 2: additional_path = "/".join(path_parts[2:]) api_url = f"{api_base}/{additional_path}" else: # Repository base URL api_url = api_base else: raise ValueError("Invalid GitHub URL format.") return api_url def _get_headers(credentials: GithubCredentials) -> dict[str, str]: return { "Authorization": credentials.bearer(), "Accept": "application/vnd.github.v3+json", } def get_api(credentials: GithubCredentials, convert_urls: bool = True) -> Requests: return Requests( trusted_origins=["https://api.github.com", "https://github.com"], extra_url_validator=_convert_to_api_url if convert_urls else None, extra_headers=_get_headers(credentials), )
_base_ = 'mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py' # Use RepeatDataset to speed up training # change repeat time from 4 (for 100 epochs) to 2 (for 50 epochs) train_dataloader = dict(dataset=dict(times=2))
_base_ = 'mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py' # Use RepeatDataset to speed up training # change repeat time from 4 (for 100 epochs) to 2 (for 50 epochs) data = dict(train=dict(times=2))
from enum import Enum from typing import TYPE_CHECKING, Union, overload import numpy as np if TYPE_CHECKING: import torch # pants: no-infer-dep class Pooling(str, Enum): """Enum of possible pooling choices with pooling behaviors.""" CLS = "cls" MEAN = "mean" def __call__(self, array: np.ndarray) -> np.ndarray: if self == self.CLS: return Pooling.cls_pooling(array) return Pooling.mean_pooling(array) @classmethod @overload def cls_pooling(cls, array: np.ndarray) -> np.ndarray: ... @classmethod @overload # TODO: Remove this `type: ignore` after the false positive problem # is addressed in mypy: https://github.com/python/mypy/issues/15683 . def cls_pooling(cls, array: "torch.Tensor") -> "torch.Tensor": # type: ignore ... @classmethod def cls_pooling( cls, array: "Union[np.ndarray, torch.Tensor]" ) -> "Union[np.ndarray, torch.Tensor]": if len(array.shape) == 3: return array[:, 0] if len(array.shape) == 2: return array[0] raise NotImplementedError(f"Unhandled shape {array.shape}.") @classmethod def mean_pooling(cls, array: np.ndarray) -> np.ndarray: if len(array.shape) == 3: return array.mean(axis=1) if len(array.shape) == 2: return array.mean(axis=0) raise NotImplementedError(f"Unhandled shape {array.shape}.")
from enum import Enum from typing import TYPE_CHECKING, Union, overload import numpy as np if TYPE_CHECKING: import torch # pants: no-infer-dep class Pooling(str, Enum): """Enum of possible pooling choices with pooling behaviors.""" CLS = "cls" MEAN = "mean" def __call__(self, array: np.ndarray) -> np.ndarray: if self == self.CLS: return Pooling.cls_pooling(array) return Pooling.mean_pooling(array) @classmethod @overload def cls_pooling(cls, array: np.ndarray) -> np.ndarray: ... @classmethod @overload # TODO: Remove this `type: ignore` after the false positive problem # is addressed in mypy: https://github.com/python/mypy/issues/15683 . def cls_pooling(cls, array: "torch.Tensor") -> "torch.Tensor": # type: ignore ... @classmethod def cls_pooling( cls, array: "Union[np.ndarray, torch.Tensor]" ) -> "Union[np.ndarray, torch.Tensor]": if len(array.shape) == 3: return array[:, 0] if len(array.shape) == 2: return array[0] raise NotImplementedError(f"Unhandled shape {array.shape}.") @classmethod def mean_pooling(cls, array: np.ndarray) -> np.ndarray: if len(array.shape) == 3: return array.mean(axis=1) if len(array.shape) == 2: return array.mean(axis=0) raise NotImplementedError(f"Unhandled shape {array.shape}.")
from __future__ import annotations import random import pytest import torch from torch.utils.data import ConcatDataset from sentence_transformers.sampler import NoDuplicatesBatchSampler, ProportionalBatchSampler from sentence_transformers.util import is_datasets_available if is_datasets_available(): from datasets import Dataset else: pytest.skip( reason='Sentence Transformers was not installed with the `["train"]` extra.', allow_module_level=True, ) @pytest.fixture def dummy_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 47, 3, 30, 3, ... 2], "label": [0, 1, 0, 1, ..., 0, 1], } """ # Create a list of two 0's, two 1's, two 2's, ... two 49's. Then shuffle. values = [j for i in range(50) for j in (i, i)] random.shuffle(values) data = {"data": values, "label": [i % 2 for i in range(100)]} return Dataset.from_dict(data) @pytest.fixture def dummy_duplicates_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "anchor": ["anchor_1", "anchor_1", "anchor_1", ... "anchor_2", "anchor_2"], "positive": ["positive_1", "positive_1", "positive_1", ... "positive_2", "positive_2"], } """ values = [{"anchor": "anchor_1", "positive": "positive_1"}] * 10 + [ {"anchor": "anchor_2", "positive": "positive_2"} ] * 8 return Dataset.from_list(values) def test_group_by_label_batch_sampler_label_a(dummy_dataset: Dataset) -> None: batch_size = 10 sampler = NoDuplicatesBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=True, valid_label_columns=["label"] ) batches = list(iter(sampler)) # Assert all batch sizes are correct assert all(len(batch) == batch_size for batch in batches) # Assert batches contain no duplicate values for batch in batches: batch_values = [dummy_dataset[i]["data"] for i in batch] assert len(batch_values) == len(set(batch_values)), f"Batch {batch} contains duplicate values: {batch_values}" @pytest.mark.parametrize("drop_last", [True, False]) def test_proportional_no_duplicates(dummy_duplicates_dataset: Dataset, drop_last: bool) -> None: batch_size = 2 sampler_1 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["anchor"] ) sampler_2 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["positive"] ) concat_dataset = ConcatDataset([dummy_duplicates_dataset, dummy_duplicates_dataset]) batch_sampler = ProportionalBatchSampler( concat_dataset, [sampler_1, sampler_2], generator=torch.Generator(), seed=12 ) batches = list(iter(batch_sampler)) if drop_last: # If we drop the last batch (i.e. incomplete batches), we should have 16 batches out of the 18 possible, # because of the duplicates being skipped by the NoDuplicatesBatchSampler. # Notably, we should not crash like reported in #2816. assert len(batches) == 16 # All batches are the same size: 2 assert all(len(batch) == batch_size for batch in batches) assert len(sum(batches, [])) == 32 else: # If we don't drop incomplete batches, we should be able to do 18 batches, and get more data. # Note: we don't get all data, because the NoDuplicatesBatchSampler will estimate the number of batches # and it would require more (non-complete) batches to get all data. assert len(batches) == 18 assert len(sum(batches, [])) == 34
from __future__ import annotations import random import pytest import torch from datasets import Dataset from torch.utils.data import ConcatDataset from sentence_transformers.sampler import NoDuplicatesBatchSampler, ProportionalBatchSampler @pytest.fixture def dummy_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 47, 3, 30, 3, ... 2], "label": [0, 1, 0, 1, ..., 0, 1], } """ # Create a list of two 0's, two 1's, two 2's, ... two 49's. Then shuffle. values = [j for i in range(50) for j in (i, i)] random.shuffle(values) data = {"data": values, "label": [i % 2 for i in range(100)]} return Dataset.from_dict(data) @pytest.fixture def dummy_duplicates_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "anchor": ["anchor_1", "anchor_1", "anchor_1", ... "anchor_2", "anchor_2"], "positive": ["positive_1", "positive_1", "positive_1", ... "positive_2", "positive_2"], } """ values = [{"anchor": "anchor_1", "positive": "positive_1"}] * 10 + [ {"anchor": "anchor_2", "positive": "positive_2"} ] * 8 return Dataset.from_list(values) def test_group_by_label_batch_sampler_label_a(dummy_dataset: Dataset) -> None: batch_size = 10 sampler = NoDuplicatesBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=True, valid_label_columns=["label"] ) batches = list(iter(sampler)) # Assert all batch sizes are correct assert all(len(batch) == batch_size for batch in batches) # Assert batches contain no duplicate values for batch in batches: batch_values = [dummy_dataset[i]["data"] for i in batch] assert len(batch_values) == len(set(batch_values)), f"Batch {batch} contains duplicate values: {batch_values}" @pytest.mark.parametrize("drop_last", [True, False]) def test_proportional_no_duplicates(dummy_duplicates_dataset: Dataset, drop_last: bool) -> None: batch_size = 2 sampler_1 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["anchor"] ) sampler_2 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["positive"] ) concat_dataset = ConcatDataset([dummy_duplicates_dataset, dummy_duplicates_dataset]) batch_sampler = ProportionalBatchSampler( concat_dataset, [sampler_1, sampler_2], generator=torch.Generator(), seed=12 ) batches = list(iter(batch_sampler)) if drop_last: # If we drop the last batch (i.e. incomplete batches), we should have 16 batches out of the 18 possible, # because of the duplicates being skipped by the NoDuplicatesBatchSampler. # Notably, we should not crash like reported in #2816. assert len(batches) == 16 # All batches are the same size: 2 assert all(len(batch) == batch_size for batch in batches) assert len(sum(batches, [])) == 32 else: # If we don't drop incomplete batches, we should be able to do 18 batches, and get more data. # Note: we don't get all data, because the NoDuplicatesBatchSampler will estimate the number of batches # and it would require more (non-complete) batches to get all data. assert len(batches) == 18 assert len(sum(batches, [])) == 34
import pathlib from typing import Any, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import CSVDictParser, Demultiplexer, Filter, IterDataPipe, Mapper, Zipper from torchvision.datapoints import BoundingBoxes from torchvision.prototype.datapoints import Label from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, ) from .._api import register_dataset, register_info NAME = "gtsrb" @register_info(NAME) def _info() -> Dict[str, Any]: return dict( categories=[f"{label:05d}" for label in range(43)], ) @register_dataset(NAME) class GTSRB(Dataset): """GTSRB Dataset homepage="https://benchmark.ini.rub.de" """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _URL_ROOT = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" _URLS = { "train": f"{_URL_ROOT}GTSRB-Training_fixed.zip", "test": f"{_URL_ROOT}GTSRB_Final_Test_Images.zip", "test_ground_truth": f"{_URL_ROOT}GTSRB_Final_Test_GT.zip", } _CHECKSUMS = { "train": "df4144942083645bd60b594de348aa6930126c3e0e5de09e39611630abf8455a", "test": "48ba6fab7e877eb64eaf8de99035b0aaecfbc279bee23e35deca4ac1d0a837fa", "test_ground_truth": "f94e5a7614d75845c74c04ddb26b8796b9e483f43541dd95dd5b726504e16d6d", } def _resources(self) -> List[OnlineResource]: rsrcs: List[OnlineResource] = [HttpResource(self._URLS[self._split], sha256=self._CHECKSUMS[self._split])] if self._split == "test": rsrcs.append( HttpResource( self._URLS["test_ground_truth"], sha256=self._CHECKSUMS["test_ground_truth"], ) ) return rsrcs def _classify_train_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.suffix == ".ppm": return 0 elif path.suffix == ".csv": return 1 else: return None def _prepare_sample(self, data: Tuple[Tuple[str, Any], Dict[str, Any]]) -> Dict[str, Any]: (path, buffer), csv_info = data label = int(csv_info["ClassId"]) bounding_boxes = BoundingBoxes( [int(csv_info[k]) for k in ("Roi.X1", "Roi.Y1", "Roi.X2", "Roi.Y2")], format="xyxy", spatial_size=(int(csv_info["Height"]), int(csv_info["Width"])), ) return { "path": path, "image": EncodedImage.from_file(buffer), "label": Label(label, categories=self._categories), "bounding_boxes": bounding_boxes, } def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: if self._split == "train": images_dp, ann_dp = Demultiplexer( resource_dps[0], 2, self._classify_train_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) else: images_dp, ann_dp = resource_dps images_dp = Filter(images_dp, path_comparator("suffix", ".ppm")) # The order of the image files in the .zip archives perfectly match the order of the entries in the # (possibly concatenated) .csv files. So we're able to use Zipper here instead of a IterKeyZipper. ann_dp = CSVDictParser(ann_dp, delimiter=";") dp = Zipper(images_dp, ann_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 26_640 if self._split == "train" else 12_630
import pathlib from typing import Any, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import CSVDictParser, Demultiplexer, Filter, IterDataPipe, Mapper, Zipper from torchvision.datapoints import BoundingBox from torchvision.prototype.datapoints import Label from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, ) from .._api import register_dataset, register_info NAME = "gtsrb" @register_info(NAME) def _info() -> Dict[str, Any]: return dict( categories=[f"{label:05d}" for label in range(43)], ) @register_dataset(NAME) class GTSRB(Dataset): """GTSRB Dataset homepage="https://benchmark.ini.rub.de" """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _URL_ROOT = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" _URLS = { "train": f"{_URL_ROOT}GTSRB-Training_fixed.zip", "test": f"{_URL_ROOT}GTSRB_Final_Test_Images.zip", "test_ground_truth": f"{_URL_ROOT}GTSRB_Final_Test_GT.zip", } _CHECKSUMS = { "train": "df4144942083645bd60b594de348aa6930126c3e0e5de09e39611630abf8455a", "test": "48ba6fab7e877eb64eaf8de99035b0aaecfbc279bee23e35deca4ac1d0a837fa", "test_ground_truth": "f94e5a7614d75845c74c04ddb26b8796b9e483f43541dd95dd5b726504e16d6d", } def _resources(self) -> List[OnlineResource]: rsrcs: List[OnlineResource] = [HttpResource(self._URLS[self._split], sha256=self._CHECKSUMS[self._split])] if self._split == "test": rsrcs.append( HttpResource( self._URLS["test_ground_truth"], sha256=self._CHECKSUMS["test_ground_truth"], ) ) return rsrcs def _classify_train_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.suffix == ".ppm": return 0 elif path.suffix == ".csv": return 1 else: return None def _prepare_sample(self, data: Tuple[Tuple[str, Any], Dict[str, Any]]) -> Dict[str, Any]: (path, buffer), csv_info = data label = int(csv_info["ClassId"]) bounding_box = BoundingBox( [int(csv_info[k]) for k in ("Roi.X1", "Roi.Y1", "Roi.X2", "Roi.Y2")], format="xyxy", spatial_size=(int(csv_info["Height"]), int(csv_info["Width"])), ) return { "path": path, "image": EncodedImage.from_file(buffer), "label": Label(label, categories=self._categories), "bounding_box": bounding_box, } def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: if self._split == "train": images_dp, ann_dp = Demultiplexer( resource_dps[0], 2, self._classify_train_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) else: images_dp, ann_dp = resource_dps images_dp = Filter(images_dp, path_comparator("suffix", ".ppm")) # The order of the image files in the .zip archives perfectly match the order of the entries in the # (possibly concatenated) .csv files. So we're able to use Zipper here instead of a IterKeyZipper. ann_dp = CSVDictParser(ann_dp, delimiter=";") dp = Zipper(images_dp, ann_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 26_640 if self._split == "train" else 12_630
import json from typing import Optional from cryptography.fernet import Fernet from backend.util.settings import Settings ENCRYPTION_KEY = Settings().secrets.encryption_key class JSONCryptor: def __init__(self, key: Optional[str] = None): # Use provided key or get from environment self.key = key or ENCRYPTION_KEY if not self.key: raise ValueError( "Encryption key must be provided or set in ENCRYPTION_KEY environment variable" ) self.fernet = Fernet( self.key.encode() if isinstance(self.key, str) else self.key ) def encrypt(self, data: dict) -> str: """Encrypt dictionary data to string""" json_str = json.dumps(data) encrypted = self.fernet.encrypt(json_str.encode()) return encrypted.decode() def decrypt(self, encrypted_str: str) -> dict: """Decrypt string to dictionary""" if not encrypted_str: return {} try: decrypted = self.fernet.decrypt(encrypted_str.encode()) return json.loads(decrypted.decode()) except Exception: return {}
import json from typing import Optional from cryptography.fernet import Fernet from backend.util.settings import Settings ENCRYPTION_KEY = Settings().secrets.encryption_key class JSONCryptor: def __init__(self, key: Optional[str] = None): # Use provided key or get from environment self.key = key or ENCRYPTION_KEY if not self.key: raise ValueError( "Encryption key must be provided or set in ENCRYPTION_KEY environment variable" ) self.fernet = Fernet( self.key.encode() if isinstance(self.key, str) else self.key ) def encrypt(self, data: dict) -> str: """Encrypt dictionary data to string""" json_str = json.dumps(data) encrypted = self.fernet.encrypt(json_str.encode()) return encrypted.decode() def decrypt(self, encrypted_str: str) -> dict: """Decrypt string to dictionary""" if not encrypted_str: return {} decrypted = self.fernet.decrypt(encrypted_str.encode()) return json.loads(decrypted.decode())
"""Memory used to save agent output AND intermediate steps.""" from typing import Any from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage, get_buffer_string from langchain.agents.format_scratchpad import ( format_to_openai_function_messages, format_to_tool_messages, ) from langchain.memory.chat_memory import BaseChatMemory class AgentTokenBufferMemory(BaseChatMemory): """Memory used to save agent output AND intermediate steps. Parameters: human_prefix: Prefix for human messages. Default is "Human". ai_prefix: Prefix for AI messages. Default is "AI". llm: Language model. memory_key: Key to save memory under. Default is "history". max_token_limit: Maximum number of tokens to keep in the buffer. Once the buffer exceeds this many tokens, the oldest messages will be pruned. Default is 12000. return_messages: Whether to return messages. Default is True. output_key: Key to save output under. Default is "output". intermediate_steps_key: Key to save intermediate steps under. Default is "intermediate_steps". format_as_tools: Whether to format as tools. Default is False. """ human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel memory_key: str = "history" max_token_limit: int = 12000 """The max number of tokens to keep in the buffer. Once the buffer exceeds this many tokens, the oldest messages will be pruned.""" return_messages: bool = True output_key: str = "output" intermediate_steps_key: str = "intermediate_steps" format_as_tools: bool = False @property def buffer(self) -> list[BaseMessage]: """String buffer of memory.""" return self.chat_memory.messages @property def memory_variables(self) -> list[str]: """Always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, Any]: """Return history buffer. Args: inputs: Inputs to the agent. Returns: A dictionary with the history buffer. """ if self.return_messages: final_buffer: Any = self.buffer else: final_buffer = get_buffer_string( self.buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) return {self.memory_key: final_buffer} def save_context(self, inputs: dict[str, Any], outputs: dict[str, Any]) -> None: """Save context from this conversation to buffer. Pruned. Args: inputs: Inputs to the agent. outputs: Outputs from the agent. """ input_str, output_str = self._get_input_output(inputs, outputs) self.chat_memory.add_user_message(input_str) format_to_messages = ( format_to_tool_messages if self.format_as_tools else format_to_openai_function_messages ) steps = format_to_messages(outputs[self.intermediate_steps_key]) for msg in steps: self.chat_memory.add_message(msg) self.chat_memory.add_ai_message(output_str) # Prune buffer if it exceeds max token limit buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit: while curr_buffer_length > self.max_token_limit: buffer.pop(0) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer)
"""Memory used to save agent output AND intermediate steps.""" from typing import Any from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage, get_buffer_string from langchain.agents.format_scratchpad import ( format_to_openai_function_messages, format_to_tool_messages, ) from langchain.memory.chat_memory import BaseChatMemory class AgentTokenBufferMemory(BaseChatMemory): # type: ignore[override] """Memory used to save agent output AND intermediate steps. Parameters: human_prefix: Prefix for human messages. Default is "Human". ai_prefix: Prefix for AI messages. Default is "AI". llm: Language model. memory_key: Key to save memory under. Default is "history". max_token_limit: Maximum number of tokens to keep in the buffer. Once the buffer exceeds this many tokens, the oldest messages will be pruned. Default is 12000. return_messages: Whether to return messages. Default is True. output_key: Key to save output under. Default is "output". intermediate_steps_key: Key to save intermediate steps under. Default is "intermediate_steps". format_as_tools: Whether to format as tools. Default is False. """ human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel memory_key: str = "history" max_token_limit: int = 12000 """The max number of tokens to keep in the buffer. Once the buffer exceeds this many tokens, the oldest messages will be pruned.""" return_messages: bool = True output_key: str = "output" intermediate_steps_key: str = "intermediate_steps" format_as_tools: bool = False @property def buffer(self) -> list[BaseMessage]: """String buffer of memory.""" return self.chat_memory.messages @property def memory_variables(self) -> list[str]: """Always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, Any]: """Return history buffer. Args: inputs: Inputs to the agent. Returns: A dictionary with the history buffer. """ if self.return_messages: final_buffer: Any = self.buffer else: final_buffer = get_buffer_string( self.buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) return {self.memory_key: final_buffer} def save_context(self, inputs: dict[str, Any], outputs: dict[str, Any]) -> None: """Save context from this conversation to buffer. Pruned. Args: inputs: Inputs to the agent. outputs: Outputs from the agent. """ input_str, output_str = self._get_input_output(inputs, outputs) self.chat_memory.add_user_message(input_str) format_to_messages = ( format_to_tool_messages if self.format_as_tools else format_to_openai_function_messages ) steps = format_to_messages(outputs[self.intermediate_steps_key]) for msg in steps: self.chat_memory.add_message(msg) self.chat_memory.add_ai_message(output_str) # Prune buffer if it exceeds max token limit buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit: while curr_buffer_length > self.max_token_limit: buffer.pop(0) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer)
import pytest from sentence_transformers import SentenceTransformer @pytest.mark.parametrize( ("revision", "expected_base_revision"), [ ("f3cb857cba53019a20df283396bcca179cf051a4", "f3cb857cba53019a20df283396bcca179cf051a4"), ("f3cb857", "f3cb857"), ("main", "valid-revision"), (None, "valid-revision"), ], ) def test_model_card_data(revision, expected_base_revision) -> None: model_name = "sentence-transformers-testing/stsb-bert-tiny-safetensors" model = SentenceTransformer(model_name, revision=revision) assert model.model_card_data.base_model == model_name if expected_base_revision == "valid-revision": assert model.model_card_data.base_model_revision assert len(model.model_card_data.base_model_revision) == 40 else: assert model.model_card_data.base_model_revision == expected_base_revision
from sentence_transformers import SentenceTransformer import pytest @pytest.mark.parametrize( ("revision", "expected_base_revision"), [ ("f3cb857cba53019a20df283396bcca179cf051a4", "f3cb857cba53019a20df283396bcca179cf051a4"), ("f3cb857", "f3cb857"), ("main", "valid-revision"), (None, "valid-revision"), ], ) def test_model_card_data(revision, expected_base_revision) -> None: model_name = "sentence-transformers-testing/stsb-bert-tiny-safetensors" model = SentenceTransformer(model_name, revision=revision) assert model.model_card_data.base_model == model_name if expected_base_revision == "valid-revision": assert model.model_card_data.base_model_revision assert len(model.model_card_data.base_model_revision) == 40 else: assert model.model_card_data.base_model_revision == expected_base_revision
import pathlib from typing import Any, BinaryIO, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import Demultiplexer, Filter, IterDataPipe, IterKeyZipper, JsonParser, Mapper, UnBatcher from torchvision.prototype.datapoints import Label from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( getitem, hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_accessor, path_comparator, ) from .._api import register_dataset, register_info NAME = "clevr" @register_info(NAME) def _info() -> Dict[str, Any]: return dict() @register_dataset(NAME) class CLEVR(Dataset): """ - **homepage**: https://cs.stanford.edu/people/jcjohns/clevr/ """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "val", "test")) super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: archive = HttpResource( "https://dl.fbaipublicfiles.com/clevr/CLEVR_v1.0.zip", sha256="5cd61cf1096ed20944df93c9adb31e74d189b8459a94f54ba00090e5c59936d1", ) return [archive] def _classify_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.parents[1].name == "images": return 0 elif path.parent.name == "scenes": return 1 else: return None def _filter_scene_anns(self, data: Tuple[str, Any]) -> bool: key, _ = data return key == "scenes" def _add_empty_anns(self, data: Tuple[str, BinaryIO]) -> Tuple[Tuple[str, BinaryIO], None]: return data, None def _prepare_sample(self, data: Tuple[Tuple[str, BinaryIO], Optional[Dict[str, Any]]]) -> Dict[str, Any]: image_data, scenes_data = data path, buffer = image_data return dict( path=path, image=EncodedImage.from_file(buffer), label=Label(len(scenes_data["objects"])) if scenes_data else None, ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: archive_dp = resource_dps[0] images_dp, scenes_dp = Demultiplexer( archive_dp, 2, self._classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE, ) images_dp = Filter(images_dp, path_comparator("parent.name", self._split)) images_dp = hint_shuffling(images_dp) images_dp = hint_sharding(images_dp) if self._split != "test": scenes_dp = Filter(scenes_dp, path_comparator("name", f"CLEVR_{self._split}_scenes.json")) scenes_dp = JsonParser(scenes_dp) scenes_dp = Mapper(scenes_dp, getitem(1, "scenes")) scenes_dp = UnBatcher(scenes_dp) dp = IterKeyZipper( images_dp, scenes_dp, key_fn=path_accessor("name"), ref_key_fn=getitem("image_filename"), buffer_size=INFINITE_BUFFER_SIZE, ) else: for _, file in scenes_dp: file.close() dp = Mapper(images_dp, self._add_empty_anns) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 70_000 if self._split == "train" else 15_000
import pathlib from typing import Any, BinaryIO, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import Demultiplexer, Filter, IterDataPipe, IterKeyZipper, JsonParser, Mapper, UnBatcher from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( getitem, hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_accessor, path_comparator, ) from torchvision.prototype.features import Label from .._api import register_dataset, register_info NAME = "clevr" @register_info(NAME) def _info() -> Dict[str, Any]: return dict() @register_dataset(NAME) class CLEVR(Dataset): """ - **homepage**: https://cs.stanford.edu/people/jcjohns/clevr/ """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "val", "test")) super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: archive = HttpResource( "https://dl.fbaipublicfiles.com/clevr/CLEVR_v1.0.zip", sha256="5cd61cf1096ed20944df93c9adb31e74d189b8459a94f54ba00090e5c59936d1", ) return [archive] def _classify_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.parents[1].name == "images": return 0 elif path.parent.name == "scenes": return 1 else: return None def _filter_scene_anns(self, data: Tuple[str, Any]) -> bool: key, _ = data return key == "scenes" def _add_empty_anns(self, data: Tuple[str, BinaryIO]) -> Tuple[Tuple[str, BinaryIO], None]: return data, None def _prepare_sample(self, data: Tuple[Tuple[str, BinaryIO], Optional[Dict[str, Any]]]) -> Dict[str, Any]: image_data, scenes_data = data path, buffer = image_data return dict( path=path, image=EncodedImage.from_file(buffer), label=Label(len(scenes_data["objects"])) if scenes_data else None, ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: archive_dp = resource_dps[0] images_dp, scenes_dp = Demultiplexer( archive_dp, 2, self._classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE, ) images_dp = Filter(images_dp, path_comparator("parent.name", self._split)) images_dp = hint_shuffling(images_dp) images_dp = hint_sharding(images_dp) if self._split != "test": scenes_dp = Filter(scenes_dp, path_comparator("name", f"CLEVR_{self._split}_scenes.json")) scenes_dp = JsonParser(scenes_dp) scenes_dp = Mapper(scenes_dp, getitem(1, "scenes")) scenes_dp = UnBatcher(scenes_dp) dp = IterKeyZipper( images_dp, scenes_dp, key_fn=path_accessor("name"), ref_key_fn=getitem("image_filename"), buffer_size=INFINITE_BUFFER_SIZE, ) else: for _, file in scenes_dp: file.close() dp = Mapper(images_dp, self._add_empty_anns) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 70_000 if self._split == "train" else 15_000
# Copyright (c) OpenMMLab. All rights reserved. import warnings from mmcv.utils import Registry, build_from_cfg PRIOR_GENERATORS = Registry('Generator for anchors and points') ANCHOR_GENERATORS = PRIOR_GENERATORS def build_prior_generator(cfg, default_args=None): return build_from_cfg(cfg, PRIOR_GENERATORS, default_args) def build_anchor_generator(cfg, default_args=None): warnings.warn( '``build_anchor_generator`` would be deprecated soon, please use ' '``build_prior_generator`` ') return build_prior_generator(cfg, default_args=default_args)
import warnings from mmcv.utils import Registry, build_from_cfg PRIOR_GENERATORS = Registry('Generator for anchors and points') ANCHOR_GENERATORS = PRIOR_GENERATORS def build_prior_generator(cfg, default_args=None): return build_from_cfg(cfg, PRIOR_GENERATORS, default_args) def build_anchor_generator(cfg, default_args=None): warnings.warn( '``build_anchor_generator`` would be deprecated soon, please use ' '``build_prior_generator`` ') return build_prior_generator(cfg, default_args=default_args)
_base_ = './faster-rcnn_r50-caffe_fpn_ms-1x_coco.py' model = dict(roi_head=dict(bbox_head=dict(num_classes=3))) classes = ('person', 'bicycle', 'car') data = dict( train=dict(classes=classes), val=dict(classes=classes), test=dict(classes=classes)) load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth' # noqa
_base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py' model = dict(roi_head=dict(bbox_head=dict(num_classes=3))) classes = ('person', 'bicycle', 'car') data = dict( train=dict(classes=classes), val=dict(classes=classes), test=dict(classes=classes)) load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth' # noqa
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.densenet import DenseNet121 as DenseNet121 from keras.src.applications.densenet import DenseNet169 as DenseNet169 from keras.src.applications.densenet import DenseNet201 as DenseNet201 from keras.src.applications.densenet import ( decode_predictions as decode_predictions, ) from keras.src.applications.densenet import preprocess_input as preprocess_input
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.densenet import DenseNet121 from keras.src.applications.densenet import DenseNet169 from keras.src.applications.densenet import DenseNet201 from keras.src.applications.densenet import decode_predictions from keras.src.applications.densenet import preprocess_input
import pytest from jina.enums import GatewayProtocolType from jina.helper import ArgNamespace from jina.parsers import set_gateway_parser, set_pod_parser @pytest.mark.parametrize( 'port,expected_port', [ ('12345', [12345]), ([12345], [12345]), ([12345, 12344], [12345, 12344]), ], ) @pytest.mark.parametrize( 'protocol,expected_protocol', [ ('http', [GatewayProtocolType.HTTP]), (['GRPC'], [GatewayProtocolType.GRPC]), (['grpc', 'http'], [GatewayProtocolType.GRPC, GatewayProtocolType.HTTP]), ], ) def test_multiple_port_protocol_gateway_kwargs( port, protocol, expected_port, expected_protocol ): args = ArgNamespace.kwargs2namespace( {'port': port, 'protocol': protocol}, set_gateway_parser() ) assert args.port == expected_port assert args.protocol == expected_protocol @pytest.mark.parametrize( 'port,expected_port', [ (['12345'], [12345]), (['12345', '12344'], [12345, 12344]), (['12345, 12344'], [12345, 12344]), ], ) @pytest.mark.parametrize( 'protocol,expected_protocol', [ (['http'], [GatewayProtocolType.HTTP]), (['GRPC'], [GatewayProtocolType.GRPC]), (['grpc', 'http'], [GatewayProtocolType.GRPC, GatewayProtocolType.HTTP]), ], ) def test_multiple_port_protocol_gateway_args_list( port, protocol, expected_port, expected_protocol ): args = set_gateway_parser().parse_args( ['--port'] + port + ['--protocol'] + protocol ) assert args.port == expected_port assert args.protocol == expected_protocol @pytest.mark.parametrize( 'port,expected_port', [ (['12345'], [12345]), (['12345', '12344'], [12345, 12344]), (['12345, 12344'], [12345, 12344]), ], ) def test_pod_port_cast(port, expected_port): args = set_pod_parser().parse_args(['--port'] + port) assert args.port == expected_port def test_pod_port_default(): args = set_pod_parser().parse_args([]) assert isinstance(args.port, list) assert len(args.port) == 1 @pytest.mark.parametrize( 'host,expected_host', [ (['localhost'], ['localhost']), (['0.0.0.0,localhost'], ['0.0.0.0', 'localhost']), (['0.0.0.0,localhost', '127.0.0.1'], ['0.0.0.0', 'localhost', '127.0.0.1']), ], ) def test_pod_host_cast(host, expected_host): args = set_pod_parser().parse_args(['--host'] + host) assert args.host == expected_host def test_pod_host_default(): from jina.constants import __default_host__ args = set_pod_parser().parse_args([]) assert args.host == [__default_host__] def test_default_port_protocol_gateway(): args = set_gateway_parser().parse_args([]) assert args.port is None assert args.protocol == [GatewayProtocolType.GRPC] def test_get_non_defaults_args(): args = set_gateway_parser().parse_args( [ '--port', '12345', '12344', '--protocol', 'grpc', '--uses', 'MyCustomGateway', '--uses-with', '{"arg":"value"}', ] ) non_defaults = ArgNamespace.get_non_defaults_args( args, set_gateway_parser(), ) assert non_defaults['port'] == [12345, 12344] assert 'protocol' not in non_defaults assert non_defaults['uses'] == 'MyCustomGateway' assert non_defaults['uses_with'] == {'arg': 'value'}
import pytest from jina.enums import GatewayProtocolType from jina.helper import ArgNamespace from jina.parsers import set_gateway_parser, set_pod_parser @pytest.mark.parametrize( 'port,expected_port', [ ('12345', [12345]), ([12345], [12345]), ([12345, 12344], [12345, 12344]), ], ) @pytest.mark.parametrize( 'protocol,expected_protocol', [ ('http', [GatewayProtocolType.HTTP]), (['GRPC'], [GatewayProtocolType.GRPC]), (['grpc', 'http'], [GatewayProtocolType.GRPC, GatewayProtocolType.HTTP]), ], ) def test_multiple_port_protocol_gateway_kwargs( port, protocol, expected_port, expected_protocol ): args = ArgNamespace.kwargs2namespace( {'port': port, 'protocol': protocol}, set_gateway_parser() ) assert args.port == expected_port assert args.protocol == expected_protocol @pytest.mark.parametrize( 'port,expected_port', [ (['12345'], [12345]), (['12345', '12344'], [12345, 12344]), (['12345, 12344'], [12345, 12344]), ], ) @pytest.mark.parametrize( 'protocol,expected_protocol', [ (['http'], [GatewayProtocolType.HTTP]), (['GRPC'], [GatewayProtocolType.GRPC]), (['grpc', 'http'], [GatewayProtocolType.GRPC, GatewayProtocolType.HTTP]), ], ) def test_multiple_port_protocol_gateway_args_list( port, protocol, expected_port, expected_protocol ): args = set_gateway_parser().parse_args( ['--port'] + port + ['--protocol'] + protocol ) assert args.port == expected_port assert args.protocol == expected_protocol @pytest.mark.parametrize( 'port,expected_port', [ (['12345'], [12345]), (['12345', '12344'], [12345, 12344]), (['12345, 12344'], [12345, 12344]), ], ) def test_pod_port_cast(port, expected_port): args = set_pod_parser().parse_args(['--port'] + port) assert args.port == expected_port def test_pod_port_default(): args = set_pod_parser().parse_args([]) assert isinstance(args.port, list) assert len(args.port) == 1 @pytest.mark.parametrize( 'host,expected_host', [ (['localhost'], ['localhost']), (['0.0.0.0,localhost'], ['0.0.0.0', 'localhost']), (['0.0.0.0,localhost', '127.0.0.1'], ['0.0.0.0', 'localhost', '127.0.0.1']), ], ) def test_pod_host_cast(host, expected_host): args = set_pod_parser().parse_args(['--host'] + host) assert args.host == expected_host def test_pod_host_default(): from jina import __default_host__ args = set_pod_parser().parse_args([]) assert args.host == [__default_host__] def test_default_port_protocol_gateway(): args = set_gateway_parser().parse_args([]) assert args.port is None assert args.protocol == [GatewayProtocolType.GRPC] def test_get_non_defaults_args(): args = set_gateway_parser().parse_args( [ '--port', '12345', '12344', '--protocol', 'grpc', '--uses', 'MyCustomGateway', '--uses-with', '{"arg":"value"}', ] ) non_defaults = ArgNamespace.get_non_defaults_args( args, set_gateway_parser(), ) assert non_defaults['port'] == [12345, 12344] assert 'protocol' not in non_defaults assert non_defaults['uses'] == 'MyCustomGateway' assert non_defaults['uses_with'] == {'arg': 'value'}
import pytest @pytest.mark.compile def test_placeholder() -> None: """Used for compiling integration tests without running any real tests."""
import pytest @pytest.mark.compile def test_placeholder() -> None: """Used for compiling integration tests without running any real tests.""" pass
# Copyright 2019 The OpenXLA Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Lit runner configuration.""" import os import sys import tempfile import lit.formats # copybara:uncomment_begin(google-only) # from xla.lit_google_cfg import ENV_FLAGS as google_env_flags # copybara:uncomment_end # pylint: disable=undefined-variable extra_env_flags = [] # copybara:uncomment_begin(google-only) # extra_env_flags += google_env_flags # copybara:uncomment_end config.name = "XLA" config.suffixes = [".cc", ".hlo", ".json", ".mlir", ".pbtxt", ".py", ".ll"] config.test_format = lit.formats.ShTest(execute_external=True) for env in [ # Passthrough XLA_FLAGS. "XLA_FLAGS", # Propagate environment variables used by 'bazel coverage'. # These are exported by tools/coverage/collect_coverage.sh "BULK_COVERAGE_RUN", "COVERAGE", "COVERAGE_DIR", "COVERAGE_MANIFEST", "LLVM_PROFILE_FILE", "LLVM_COVERAGE_FILE", "GCOV_PREFIX", "GCOV_PREFIX_STRIP", ] + extra_env_flags: value = os.environ.get(env) if value: config.environment[env] = value # Use the most preferred temp directory. config.test_exec_root = ( os.environ.get("TEST_UNDECLARED_OUTPUTS_DIR") or os.environ.get("TEST_TMPDIR") or os.path.join(tempfile.gettempdir(), "lit") ) config.substitutions.extend([ ("%PYTHON", os.getenv("PYTHON", sys.executable) or ""), ]) if lit_config.params.get("PTX") == "GCN": config.available_features.add("IS_ROCM") # Include additional substitutions that may be defined via params config.substitutions.extend( ("%%{%s}" % key, val) for key, val in lit_config.params.items() )
# Copyright 2019 The OpenXLA Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Lit runner configuration.""" import os import sys import tempfile import lit.formats # copybara:uncomment_begin(google-only) # from xla.lit_google_cfg import ENV_FLAGS as google_env_flags # copybara:uncomment_end # pylint: disable=undefined-variable extra_env_flags = [] # copybara:uncomment_begin(google-only) # extra_env_flags += google_env_flags # copybara:uncomment_end config.name = "XLA" config.suffixes = [".cc", ".hlo", ".json", ".mlir", ".pbtxt", ".py"] config.test_format = lit.formats.ShTest(execute_external=True) for env in [ # Passthrough XLA_FLAGS. "XLA_FLAGS", # Propagate environment variables used by 'bazel coverage'. # These are exported by tools/coverage/collect_coverage.sh "BULK_COVERAGE_RUN", "COVERAGE", "COVERAGE_DIR", "COVERAGE_MANIFEST", "LLVM_PROFILE_FILE", "LLVM_COVERAGE_FILE", "GCOV_PREFIX", "GCOV_PREFIX_STRIP", ] + extra_env_flags: value = os.environ.get(env) if value: config.environment[env] = value # Use the most preferred temp directory. config.test_exec_root = ( os.environ.get("TEST_UNDECLARED_OUTPUTS_DIR") or os.environ.get("TEST_TMPDIR") or os.path.join(tempfile.gettempdir(), "lit") ) config.substitutions.extend([ ("%PYTHON", os.getenv("PYTHON", sys.executable) or ""), ]) if lit_config.params.get("PTX") == "GCN": config.available_features.add("IS_ROCM") # Include additional substitutions that may be defined via params config.substitutions.extend( ("%%{%s}" % key, val) for key, val in lit_config.params.items() )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.preprocessing.image import ( DirectoryIterator as DirectoryIterator, ) from keras.src.legacy.preprocessing.image import ( ImageDataGenerator as ImageDataGenerator, ) from keras.src.legacy.preprocessing.image import Iterator as Iterator from keras.src.legacy.preprocessing.image import ( NumpyArrayIterator as NumpyArrayIterator, ) from keras.src.legacy.preprocessing.image import ( apply_affine_transform as apply_affine_transform, ) from keras.src.legacy.preprocessing.image import ( apply_brightness_shift as apply_brightness_shift, ) from keras.src.legacy.preprocessing.image import ( apply_channel_shift as apply_channel_shift, ) from keras.src.legacy.preprocessing.image import ( random_brightness as random_brightness, ) from keras.src.legacy.preprocessing.image import ( random_channel_shift as random_channel_shift, ) from keras.src.legacy.preprocessing.image import ( random_rotation as random_rotation, ) from keras.src.legacy.preprocessing.image import random_shear as random_shear from keras.src.legacy.preprocessing.image import random_shift as random_shift from keras.src.legacy.preprocessing.image import random_zoom as random_zoom from keras.src.utils.image_utils import array_to_img as array_to_img from keras.src.utils.image_utils import img_to_array as img_to_array from keras.src.utils.image_utils import load_img as load_img from keras.src.utils.image_utils import save_img as save_img from keras.src.utils.image_utils import smart_resize as smart_resize
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.preprocessing.image import DirectoryIterator from keras.src.legacy.preprocessing.image import ImageDataGenerator from keras.src.legacy.preprocessing.image import Iterator from keras.src.legacy.preprocessing.image import NumpyArrayIterator from keras.src.legacy.preprocessing.image import apply_affine_transform from keras.src.legacy.preprocessing.image import apply_brightness_shift from keras.src.legacy.preprocessing.image import apply_channel_shift from keras.src.legacy.preprocessing.image import random_brightness from keras.src.legacy.preprocessing.image import random_channel_shift from keras.src.legacy.preprocessing.image import random_rotation from keras.src.legacy.preprocessing.image import random_shear from keras.src.legacy.preprocessing.image import random_shift from keras.src.legacy.preprocessing.image import random_zoom from keras.src.utils.image_utils import array_to_img from keras.src.utils.image_utils import img_to_array from keras.src.utils.image_utils import load_img from keras.src.utils.image_utils import save_img from keras.src.utils.image_utils import smart_resize
import os import sys import pytest import torch import torchaudio from torchaudio.pipelines import CONVTASNET_BASE_LIBRI2MIX, HDEMUCS_HIGH_MUSDB, HDEMUCS_HIGH_MUSDB_PLUS sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..", "examples")) from source_separation.utils.metrics import sdr @pytest.mark.parametrize( "bundle,task,channel,expected_score", [ [CONVTASNET_BASE_LIBRI2MIX, "speech_separation", 1, 8.1373], [HDEMUCS_HIGH_MUSDB_PLUS, "music_separation", 2, 8.7480], [HDEMUCS_HIGH_MUSDB, "music_separation", 2, 8.0697], ], ) def test_source_separation_models(bundle, task, channel, expected_score, mixture_source, clean_sources): """Integration test for the source separation pipeline. Given the mixture waveform with dimensions `(batch, channel, time)`, the pre-trained pipeline generates the separated sources Tensor with dimensions `(batch, num_sources, time)`. The test computes the scale-invariant signal-to-distortion ratio (Si-SDR) score in decibel (dB). Si-SDR score should be equal to or larger than the expected score. """ model = bundle.get_model() mixture_waveform, sample_rate = torchaudio.load(mixture_source) assert sample_rate == bundle.sample_rate, "The sample rate of audio must match that in the bundle." clean_waveforms = [] for source in clean_sources: clean_waveform, sample_rate = torchaudio.load(source) assert sample_rate == bundle.sample_rate, "The sample rate of audio must match that in the bundle." clean_waveforms.append(clean_waveform) mixture_waveform = mixture_waveform.reshape(1, channel, -1) estimated_sources = model(mixture_waveform) clean_waveforms = torch.cat(clean_waveforms).unsqueeze(0) estimated_sources = estimated_sources.reshape(1, -1, clean_waveforms.shape[-1]) sdr_values = sdr(estimated_sources, clean_waveforms).mean() assert sdr_values >= expected_score
import os import sys import pytest import torch import torchaudio from torchaudio.pipelines import CONVTASNET_BASE_LIBRI2MIX from torchaudio.prototype.pipelines import HDEMUCS_HIGH_MUSDB, HDEMUCS_HIGH_MUSDB_PLUS sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..", "examples")) from source_separation.utils.metrics import sdr @pytest.mark.parametrize( "bundle,task,channel,expected_score", [ [CONVTASNET_BASE_LIBRI2MIX, "speech_separation", 1, 8.1373], [HDEMUCS_HIGH_MUSDB_PLUS, "music_separation", 2, 8.7480], [HDEMUCS_HIGH_MUSDB, "music_separation", 2, 8.0697], ], ) def test_source_separation_models(bundle, task, channel, expected_score, mixture_source, clean_sources): """Integration test for the source separation pipeline. Given the mixture waveform with dimensions `(batch, channel, time)`, the pre-trained pipeline generates the separated sources Tensor with dimensions `(batch, num_sources, time)`. The test computes the scale-invariant signal-to-distortion ratio (Si-SDR) score in decibel (dB). Si-SDR score should be equal to or larger than the expected score. """ model = bundle.get_model() mixture_waveform, sample_rate = torchaudio.load(mixture_source) assert sample_rate == bundle.sample_rate, "The sample rate of audio must match that in the bundle." clean_waveforms = [] for source in clean_sources: clean_waveform, sample_rate = torchaudio.load(source) assert sample_rate == bundle.sample_rate, "The sample rate of audio must match that in the bundle." clean_waveforms.append(clean_waveform) mixture_waveform = mixture_waveform.reshape(1, channel, -1) estimated_sources = model(mixture_waveform) clean_waveforms = torch.cat(clean_waveforms).unsqueeze(0) estimated_sources = estimated_sources.reshape(1, -1, clean_waveforms.shape[-1]) sdr_values = sdr(estimated_sources, clean_waveforms).mean() assert sdr_values >= expected_score
from urllib.parse import urlparse from backend.blocks.github._auth import GithubCredentials from backend.util.request import Requests def _convert_to_api_url(url: str) -> str: """ Converts a standard GitHub URL to the corresponding GitHub API URL. Handles repository URLs, issue URLs, pull request URLs, and more. """ parsed_url = urlparse(url) path_parts = parsed_url.path.strip("/").split("/") if len(path_parts) >= 2: owner, repo = path_parts[0], path_parts[1] api_base = f"https://api.github.com/repos/{owner}/{repo}" if len(path_parts) > 2: additional_path = "/".join(path_parts[2:]) api_url = f"{api_base}/{additional_path}" else: # Repository base URL api_url = api_base else: raise ValueError("Invalid GitHub URL format.") return api_url def _get_headers(credentials: GithubCredentials) -> dict[str, str]: return { "Authorization": credentials.bearer(), "Accept": "application/vnd.github.v3+json", } def get_api(credentials: GithubCredentials, convert_urls: bool = True) -> Requests: return Requests( trusted_origins=["https://api.github.com", "https://github.com"], extra_url_validator=_convert_to_api_url if convert_urls else None, extra_headers=_get_headers(credentials), )
from urllib.parse import urlparse from backend.blocks.github._auth import GithubCredentials from backend.util.request import Requests def _convert_to_api_url(url: str) -> str: """ Converts a standard GitHub URL to the corresponding GitHub API URL. Handles repository URLs, issue URLs, pull request URLs, and more. """ parsed_url = urlparse(url) path_parts = parsed_url.path.strip("/").split("/") if len(path_parts) >= 2: owner, repo = path_parts[0], path_parts[1] api_base = f"https://api.github.com/repos/{owner}/{repo}" if len(path_parts) > 2: additional_path = "/".join(path_parts[2:]) api_url = f"{api_base}/{additional_path}" else: # Repository base URL api_url = api_base else: raise ValueError("Invalid GitHub URL format.") return api_url def _get_headers(credentials: GithubCredentials) -> dict[str, str]: return { "Authorization": credentials.bearer(), "Accept": "application/vnd.github.v3+json", } def get_api(credentials: GithubCredentials) -> Requests: return Requests( trusted_origins=["https://api.github.com", "https://github.com"], extra_url_validator=_convert_to_api_url, extra_headers=_get_headers(credentials), )
from torchaudio._internal.module_utils import dropping_io_support, dropping_class_io_support # Initialize extension and backend first from . import _extension # noqa # usort: skip from ._backend import ( # noqa # usort: skip AudioMetaData as _AudioMetaData, get_audio_backend as _get_audio_backend, info as _info, list_audio_backends as _list_audio_backends, load as _load, save as _save, set_audio_backend as _set_audio_backend, ) AudioMetaData = dropping_class_io_support(_AudioMetaData) get_audio_backend = dropping_io_support(_get_audio_backend) info = dropping_io_support(_info) list_audio_backends = dropping_io_support(_list_audio_backends) load = dropping_io_support(_load) save = dropping_io_support(_save) set_audio_backend = dropping_io_support(_set_audio_backend) from . import ( # noqa: F401 compliance, datasets, functional, io, kaldi_io, models, pipelines, sox_effects, transforms, utils, ) # For BC from . import backend # noqa # usort: skip try: from .version import __version__, git_version # noqa: F401 except ImportError: pass __all__ = [ "AudioMetaData", "load", "info", "save", "io", "compliance", "datasets", "functional", "models", "pipelines", "kaldi_io", "utils", "sox_effects", "transforms", "list_audio_backends", "get_audio_backend", "set_audio_backend", ]
from torchaudio._internal.module_utils import dropping_io_support # Initialize extension and backend first from . import _extension # noqa # usort: skip from ._backend import ( # noqa # usort: skip AudioMetaData, get_audio_backend as _get_audio_backend, info as _info, list_audio_backends as _list_audio_backends, load as _load, save as _save, set_audio_backend as _set_audio_backend, ) AudioMetaData.__init__ = dropping_io_support(AudioMetaData.__init__) get_audio_backend = dropping_io_support(_get_audio_backend) info = dropping_io_support(_info) list_audio_backends = dropping_io_support(_list_audio_backends) load = dropping_io_support(_load) save = dropping_io_support(_save) set_audio_backend = dropping_io_support(_set_audio_backend) from . import ( # noqa: F401 compliance, datasets, functional, io, kaldi_io, models, pipelines, sox_effects, transforms, utils, ) # For BC from . import backend # noqa # usort: skip try: from .version import __version__, git_version # noqa: F401 except ImportError: pass __all__ = [ "AudioMetaData", "load", "info", "save", "io", "compliance", "datasets", "functional", "models", "pipelines", "kaldi_io", "utils", "sox_effects", "transforms", "list_audio_backends", "get_audio_backend", "set_audio_backend", ]
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pycocotools.mask as mask_util import torch from mmengine.utils import slice_list def split_combined_polys(polys, poly_lens, polys_per_mask): """Split the combined 1-D polys into masks. A mask is represented as a list of polys, and a poly is represented as a 1-D array. In dataset, all masks are concatenated into a single 1-D tensor. Here we need to split the tensor into original representations. Args: polys (list): a list (length = image num) of 1-D tensors poly_lens (list): a list (length = image num) of poly length polys_per_mask (list): a list (length = image num) of poly number of each mask Returns: list: a list (length = image num) of list (length = mask num) of \ list (length = poly num) of numpy array. """ mask_polys_list = [] for img_id in range(len(polys)): polys_single = polys[img_id] polys_lens_single = poly_lens[img_id].tolist() polys_per_mask_single = polys_per_mask[img_id].tolist() split_polys = slice_list(polys_single, polys_lens_single) mask_polys = slice_list(split_polys, polys_per_mask_single) mask_polys_list.append(mask_polys) return mask_polys_list # TODO: move this function to more proper place def encode_mask_results(mask_results): """Encode bitmap mask to RLE code. Args: mask_results (list): bitmap mask results. Returns: list | tuple: RLE encoded mask. """ encoded_mask_results = [] for mask in mask_results: encoded_mask_results.append( mask_util.encode( np.array(mask[:, :, np.newaxis], order='F', dtype='uint8'))[0]) # encoded with RLE return encoded_mask_results def mask2bbox(masks): """Obtain tight bounding boxes of binary masks. Args: masks (Tensor): Binary mask of shape (n, h, w). Returns: Tensor: Bboxe with shape (n, 4) of \ positive region in binary mask. """ N = masks.shape[0] bboxes = masks.new_zeros((N, 4), dtype=torch.float32) x_any = torch.any(masks, dim=1) y_any = torch.any(masks, dim=2) for i in range(N): x = torch.where(x_any[i, :])[0] y = torch.where(y_any[i, :])[0] if len(x) > 0 and len(y) > 0: bboxes[i, :] = bboxes.new_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1]) return bboxes
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import numpy as np import pycocotools.mask as mask_util import torch def split_combined_polys(polys, poly_lens, polys_per_mask): """Split the combined 1-D polys into masks. A mask is represented as a list of polys, and a poly is represented as a 1-D array. In dataset, all masks are concatenated into a single 1-D tensor. Here we need to split the tensor into original representations. Args: polys (list): a list (length = image num) of 1-D tensors poly_lens (list): a list (length = image num) of poly length polys_per_mask (list): a list (length = image num) of poly number of each mask Returns: list: a list (length = image num) of list (length = mask num) of \ list (length = poly num) of numpy array. """ mask_polys_list = [] for img_id in range(len(polys)): polys_single = polys[img_id] polys_lens_single = poly_lens[img_id].tolist() polys_per_mask_single = polys_per_mask[img_id].tolist() split_polys = mmcv.slice_list(polys_single, polys_lens_single) mask_polys = mmcv.slice_list(split_polys, polys_per_mask_single) mask_polys_list.append(mask_polys) return mask_polys_list # TODO: move this function to more proper place def encode_mask_results(mask_results): """Encode bitmap mask to RLE code. Args: mask_results (list): bitmap mask results. Returns: list | tuple: RLE encoded mask. """ encoded_mask_results = [] for mask in mask_results: encoded_mask_results.append( mask_util.encode( np.array(mask[:, :, np.newaxis], order='F', dtype='uint8'))[0]) # encoded with RLE return encoded_mask_results def mask2bbox(masks): """Obtain tight bounding boxes of binary masks. Args: masks (Tensor): Binary mask of shape (n, h, w). Returns: Tensor: Bboxe with shape (n, 4) of \ positive region in binary mask. """ N = masks.shape[0] bboxes = masks.new_zeros((N, 4), dtype=torch.float32) x_any = torch.any(masks, dim=1) y_any = torch.any(masks, dim=2) for i in range(N): x = torch.where(x_any[i, :])[0] y = torch.where(y_any[i, :])[0] if len(x) > 0 and len(y) > 0: bboxes[i, :] = bboxes.new_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1]) return bboxes