input
stringlengths
33
5k
output
stringlengths
32
5k
"""DashScope api utils.""" from http import HTTPStatus from typing import Any, Dict, List, Sequence, cast from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ImageBlock, ) from llama_index.core.base.llms.generic_utils import image_node_to_image_block from llama_index.core.schema import ImageDocument, ImageNode def dashscope_response_to_completion_response(response: Any) -> CompletionResponse: if response["status_code"] == HTTPStatus.OK: content = response["output"]["choices"][0]["message"]["content"] if content: content = content[0]["text"] else: content = "" return CompletionResponse(text=content, raw=response) else: return CompletionResponse(text="", raw=response) def dashscope_response_to_chat_response( response: Any, ) -> ChatResponse: if response["status_code"] == HTTPStatus.OK: content = response["output"]["choices"][0]["message"]["content"] role = response["output"]["choices"][0]["message"]["role"] return ChatResponse( message=ChatMessage(role=role, content=content), raw=response ) else: return ChatResponse(message=ChatMessage(), raw=response) def chat_message_to_dashscope_multi_modal_messages( chat_messages: Sequence[ChatMessage], ) -> List[Dict]: messages = [] for msg in chat_messages: messages.append({"role": msg.role.value, "content": msg.content}) return messages def create_dashscope_multi_modal_chat_message( prompt: str, role: str, image_documents: Sequence[ImageDocument] ) -> ChatMessage: if image_documents is None: message = ChatMessage(role=role, content=[{"text": prompt}]) else: if all(isinstance(doc, ImageNode) for doc in image_document): image_docs: List[ImageBlock] = [ image_node_to_image_block(doc) for doc in image_document ] else: image_docs = cast(List[ImageBlock], image_documents) content = [] for image_document in image_docs: content.append( { "image": ( image_document.image if image_document.url is not None else image_document.path ) } ) content.append({"text": prompt}) message = ChatMessage(role=role, content=content) return message def load_local_images(local_images: List[str]) -> List[ImageDocument]: # load images into image documents image_documents = [] for _, img in enumerate(local_images): new_image_document = ImageDocument(image_path=img) image_documents.append(new_image_document) return image_documents
"""DashScope api utils.""" from http import HTTPStatus from typing import Any, Dict, List, Sequence from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ) from llama_index.core.schema import ImageDocument def dashscope_response_to_completion_response(response: Any) -> CompletionResponse: if response["status_code"] == HTTPStatus.OK: content = response["output"]["choices"][0]["message"]["content"] if content: content = content[0]["text"] else: content = "" return CompletionResponse(text=content, raw=response) else: return CompletionResponse(text="", raw=response) def dashscope_response_to_chat_response( response: Any, ) -> ChatResponse: if response["status_code"] == HTTPStatus.OK: content = response["output"]["choices"][0]["message"]["content"] role = response["output"]["choices"][0]["message"]["role"] return ChatResponse( message=ChatMessage(role=role, content=content), raw=response ) else: return ChatResponse(message=ChatMessage(), raw=response) def chat_message_to_dashscope_multi_modal_messages( chat_messages: Sequence[ChatMessage], ) -> List[Dict]: messages = [] for msg in chat_messages: messages.append({"role": msg.role.value, "content": msg.content}) return messages def create_dashscope_multi_modal_chat_message( prompt: str, role: str, image_documents: Sequence[ImageDocument] ) -> ChatMessage: if image_documents is None: message = ChatMessage(role=role, content=[{"text": prompt}]) else: content = [] for image_document in image_documents: content.append( { "image": ( image_document.image_url if image_document.image_url is not None else image_document.image_path ) } ) content.append({"text": prompt}) message = ChatMessage(role=role, content=content) return message def load_local_images(local_images: List[str]) -> List[ImageDocument]: # load images into image documents image_documents = [] for _, img in enumerate(local_images): new_image_document = ImageDocument(image_path=img) image_documents.append(new_image_document) return image_documents
import json import datasets from tests.trainer.test_trainer import StoreLossCallback from transformers import ( AutoModelForCausalLM, AutoTokenizer, DataCollatorForLanguageModeling, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.testing_utils import ( TestCasePlus, backend_device_count, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_accelerator, torch_device, ) class TestTrainerDistributedLoss(TestCasePlus): @require_torch_multi_accelerator def test_trainer(self): device_count = backend_device_count(torch_device) min_bs = 1 output_dir = self.get_auto_remove_tmp_dir() for gpu_num, enable, bs, name in ( (1, True, min_bs * device_count, "base"), (device_count, False, min_bs, "broken"), (device_count, True, min_bs, "fixed"), ): distributed_args = f"""--nproc_per_node={gpu_num} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed_loss.py """.split() args = f"--output_dir {output_dir}/{name} --per_device_train_batch_size {bs} --average_tokens_across_devices {enable}".split() cmd = ["torchrun"] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) with open(f"{output_dir}/base_losses.json") as f: base_loss = json.load(f) with open(f"{output_dir}/broken_losses.json") as f: broken_loss = json.load(f) with open(f"{output_dir}/fixed_losses.json") as f: fixed_loss = json.load(f) broken_diff = [abs(base_loss[i] - broken_loss[i]) for i in range(len(base_loss))] fixed_diff = [abs(base_loss[i] - fixed_loss[i]) for i in range(len(base_loss))] sum_base = sum(base_loss) sum_broken = sum(broken_diff) relative_broken = abs(sum_base - sum_broken) / max(sum_base, sum_broken) self.assertGreater(max(broken_diff), 0.5) self.assertLess(max(fixed_diff), 0.005) self.assertLess(relative_broken, 0.1) def run_distributed_training(training_args): set_seed(42) model_name = "nickypro/tinyllama-15M" dataset_name = "wikitext" dataset_config = "wikitext-2-raw-v1" dataset = datasets.load_dataset(dataset_name, dataset_config, split="train[:17]") tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token def tokenize_function(examples): return tokenizer(examples["text"], max_length=16, padding="max_length", truncation=True) tokenized_dataset = dataset.map(tokenize_function, batched=True) tokenizer.pad_token = tokenizer.eos_token data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) model = AutoModelForCausalLM.from_pretrained(model_name) loss_callback = StoreLossCallback() training_args.logging_steps = 1 training_args.max_steps = 10 training_args.learning_rate = 3e-4 training_args.disable_tqdm = True training_args.dataloader_drop_last = True training_args.report_to = [] trainer = Trainer( model, training_args, train_dataset=tokenized_dataset, callbacks=[loss_callback], data_collator=data_collator, ) trainer.train() with open(training_args.output_dir + "_losses.json", "w") as f: json.dump(loss_callback.losses, f) if __name__ == "__main__": parser = HfArgumentParser((TrainingArguments,)) training_args = parser.parse_args_into_dataclasses()[0] run_distributed_training(training_args)
import json import datasets import torch from tests.trainer.test_trainer import StoreLossCallback from transformers import ( AutoModelForCausalLM, AutoTokenizer, DataCollatorForLanguageModeling, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, ) class TestTrainerDistributedLoss(TestCasePlus): @require_torch_multi_gpu def test_trainer(self): device_count = torch.cuda.device_count() min_bs = 1 output_dir = self.get_auto_remove_tmp_dir() for gpu_num, enable, bs, name in ( (1, True, min_bs * device_count, "base"), (device_count, False, min_bs, "broken"), (device_count, True, min_bs, "fixed"), ): distributed_args = f"""--nproc_per_node={gpu_num} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed_loss.py """.split() args = f"--output_dir {output_dir}/{name} --per_device_train_batch_size {bs} --average_tokens_across_devices {enable}".split() cmd = ["torchrun"] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) with open(f"{output_dir}/base_losses.json") as f: base_loss = json.load(f) with open(f"{output_dir}/broken_losses.json") as f: broken_loss = json.load(f) with open(f"{output_dir}/fixed_losses.json") as f: fixed_loss = json.load(f) broken_diff = [abs(base_loss[i] - broken_loss[i]) for i in range(len(base_loss))] fixed_diff = [abs(base_loss[i] - fixed_loss[i]) for i in range(len(base_loss))] sum_base = sum(base_loss) sum_broken = sum(broken_diff) relative_broken = abs(sum_base - sum_broken) / max(sum_base, sum_broken) self.assertGreater(max(broken_diff), 0.5) self.assertLess(max(fixed_diff), 0.005) self.assertLess(relative_broken, 0.1) def run_distributed_training(training_args): set_seed(42) model_name = "nickypro/tinyllama-15M" dataset_name = "wikitext" dataset_config = "wikitext-2-raw-v1" dataset = datasets.load_dataset(dataset_name, dataset_config, split="train[:17]") tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token def tokenize_function(examples): return tokenizer(examples["text"], max_length=16, padding="max_length", truncation=True) tokenized_dataset = dataset.map(tokenize_function, batched=True) tokenizer.pad_token = tokenizer.eos_token data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) model = AutoModelForCausalLM.from_pretrained(model_name) loss_callback = StoreLossCallback() training_args.logging_steps = 1 training_args.max_steps = 10 training_args.learning_rate = 3e-4 training_args.disable_tqdm = True training_args.dataloader_drop_last = True training_args.report_to = [] trainer = Trainer( model, training_args, train_dataset=tokenized_dataset, callbacks=[loss_callback], data_collator=data_collator, ) trainer.train() with open(training_args.output_dir + "_losses.json", "w") as f: json.dump(loss_callback.losses, f) if __name__ == "__main__": parser = HfArgumentParser((TrainingArguments,)) training_args = parser.parse_args_into_dataclasses()[0] run_distributed_training(training_args)
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseBinaryClassificationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with two text columns and a class label column (https://huggingface.co/datasets/sentence-transformers/quora-duplicates) eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) """ Accuracy with Cosine-Similarity: 74.90 (Threshold: 0.8668) F1 with Cosine-Similarity: 67.37 (Threshold: 0.5959) Precision with Cosine-Similarity: 54.15 Recall with Cosine-Similarity: 89.13 Average Precision with Cosine-Similarity: 67.81 Matthews Correlation with Cosine-Similarity: 49.89 Accuracy with Dot-Product: 76.50 (Threshold: 24.3460) F1 with Dot-Product: 66.93 (Threshold: 20.0762) Precision with Dot-Product: 57.62 Recall with Dot-Product: 79.81 Average Precision with Dot-Product: 65.94 Matthews Correlation with Dot-Product: 48.82 Accuracy with Euclidean-Distance: 67.70 (Threshold: -10.0062) F1 with Euclidean-Distance: 48.60 (Threshold: -0.2346) Precision with Euclidean-Distance: 32.13 Recall with Euclidean-Distance: 99.69 Average Precision with Euclidean-Distance: 20.52 Matthews Correlation with Euclidean-Distance: -4.59 Accuracy with Manhattan-Distance: 67.70 (Threshold: -103.1993) F1 with Manhattan-Distance: 48.60 (Threshold: -1.1565) Precision with Manhattan-Distance: 32.13 Recall with Manhattan-Distance: 99.69 Average Precision with Manhattan-Distance: 21.05 Matthews Correlation with Manhattan-Distance: -4.59 Model Sparsity Stats: Row Non-Zero Mean: 63.13884735107422, Row Sparsity Mean: 0.9979313611984253 """ # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") # => Primary metric: quora_duplicates_dev_max_ap print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6781
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseBinaryClassificationEvaluator, SparseEncoder, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load a dataset with two text columns and a class label column # Using the Quora Duplicates dataset as an example eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}")
_base_ = '../faster_rcnn/faster-rcnn_r50_fpn_2x_coco.py' model = dict( backbone=dict( type='Res2Net', depth=101, scales=4, base_width=26, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py' model = dict( backbone=dict( type='Res2Net', depth=101, scales=4, base_width=26, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
_base_ = [ '../_base_/models/cascade-mask-rcnn_r50_fpn.py', '../_base_/datasets/lvis_v1_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), roi_head=dict( bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_head=dict(num_classes=1203)), test_cfg=dict( rcnn=dict( score_thr=0.0001, # LVIS allows up to 300 max_per_img=300))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) train_cfg = dict(val_interval=24)
_base_ = [ '../_base_/models/cascade_mask_rcnn_r50_fpn.py', '../_base_/datasets/lvis_v1_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), roi_head=dict( bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_head=dict(num_classes=1203)), test_cfg=dict( rcnn=dict( score_thr=0.0001, # LVIS allows up to 300 max_per_img=300))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) train_cfg = dict(val_interval=24)
from typing import cast import prisma.enums import prisma.types from backend.blocks.io import IO_BLOCK_IDs AGENT_NODE_INCLUDE: prisma.types.AgentNodeInclude = { "Input": True, "Output": True, "Webhook": True, "AgentBlock": True, } AGENT_GRAPH_INCLUDE: prisma.types.AgentGraphInclude = { "Nodes": {"include": AGENT_NODE_INCLUDE} } EXECUTION_RESULT_INCLUDE: prisma.types.AgentNodeExecutionInclude = { "Input": True, "Output": True, "Node": True, "GraphExecution": True, } MAX_NODE_EXECUTIONS_FETCH = 1000 GRAPH_EXECUTION_INCLUDE_WITH_NODES: prisma.types.AgentGraphExecutionInclude = { "NodeExecutions": { "include": { "Input": True, "Output": True, "Node": True, "GraphExecution": True, }, "order_by": [ {"queuedTime": "desc"}, # Fallback: Incomplete execs has no queuedTime. {"addedTime": "desc"}, ], "take": MAX_NODE_EXECUTIONS_FETCH, # Avoid loading excessive node executions. } } GRAPH_EXECUTION_INCLUDE: prisma.types.AgentGraphExecutionInclude = { "NodeExecutions": { **cast( prisma.types.FindManyAgentNodeExecutionArgsFromAgentGraphExecution, GRAPH_EXECUTION_INCLUDE_WITH_NODES["NodeExecutions"], ), "where": { "Node": {"is": {"AgentBlock": {"is": {"id": {"in": IO_BLOCK_IDs}}}}}, "NOT": [{"executionStatus": prisma.enums.AgentExecutionStatus.INCOMPLETE}], }, } } INTEGRATION_WEBHOOK_INCLUDE: prisma.types.IntegrationWebhookInclude = { "AgentNodes": {"include": AGENT_NODE_INCLUDE} } def library_agent_include(user_id: str) -> prisma.types.LibraryAgentInclude: return { "AgentGraph": { "include": { **AGENT_GRAPH_INCLUDE, "Executions": {"where": {"userId": user_id}}, } }, "Creator": True, }
from typing import cast import prisma.enums import prisma.types from backend.blocks.io import IO_BLOCK_IDs from backend.util.type import typed_cast AGENT_NODE_INCLUDE: prisma.types.AgentNodeInclude = { "Input": True, "Output": True, "Webhook": True, "AgentBlock": True, } AGENT_GRAPH_INCLUDE: prisma.types.AgentGraphInclude = { "Nodes": { "include": typed_cast( prisma.types.AgentNodeIncludeFromAgentNodeRecursive1, prisma.types.AgentNodeIncludeFromAgentNode, AGENT_NODE_INCLUDE, ) } } EXECUTION_RESULT_INCLUDE: prisma.types.AgentNodeExecutionInclude = { "Input": True, "Output": True, "Node": True, "GraphExecution": True, } MAX_NODE_EXECUTIONS_FETCH = 1000 GRAPH_EXECUTION_INCLUDE_WITH_NODES: prisma.types.AgentGraphExecutionInclude = { "NodeExecutions": { "include": { "Input": True, "Output": True, "Node": True, "GraphExecution": True, }, "order_by": [ {"queuedTime": "desc"}, # Fallback: Incomplete execs has no queuedTime. {"addedTime": "desc"}, ], "take": MAX_NODE_EXECUTIONS_FETCH, # Avoid loading excessive node executions. } } GRAPH_EXECUTION_INCLUDE: prisma.types.AgentGraphExecutionInclude = { "NodeExecutions": { **cast( prisma.types.FindManyAgentNodeExecutionArgsFromAgentGraphExecution, GRAPH_EXECUTION_INCLUDE_WITH_NODES["NodeExecutions"], ), "where": { "Node": typed_cast( prisma.types.AgentNodeRelationFilter, prisma.types.AgentNodeWhereInput, { "AgentBlock": {"id": {"in": IO_BLOCK_IDs}}, }, ), "NOT": [{"executionStatus": prisma.enums.AgentExecutionStatus.INCOMPLETE}], }, } } INTEGRATION_WEBHOOK_INCLUDE: prisma.types.IntegrationWebhookInclude = { "AgentNodes": { "include": typed_cast( prisma.types.AgentNodeIncludeFromAgentNodeRecursive1, prisma.types.AgentNodeInclude, AGENT_NODE_INCLUDE, ) } } def library_agent_include(user_id: str) -> prisma.types.LibraryAgentInclude: return { "AgentGraph": { "include": { **AGENT_GRAPH_INCLUDE, "Executions": {"where": {"userId": user_id}}, } }, "Creator": True, }
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # please install mmpretrain # import mmpretrain.models to trigger register_module in mmpretrain custom_imports = dict( imports=['mmpretrain.models'], allow_failed_imports=False) model = dict( backbone=dict( _delete_=True, type='mmpretrain.TIMMBackbone', model_name='efficientnet_b1', features_only=True, pretrained=True, out_indices=(1, 2, 3, 4)), neck=dict(in_channels=[24, 40, 112, 320])) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # TODO: delete custom_imports after mmcls supports auto import # please install mmcls>=1.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) model = dict( backbone=dict( _delete_=True, type='mmcls.TIMMBackbone', model_name='efficientnet_b1', features_only=True, pretrained=True, out_indices=(1, 2, 3, 4)), neck=dict(in_channels=[24, 40, 112, 320])) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01))
"""Retriever tool.""" from typing import TYPE_CHECKING, Any, List, Optional from llama_index.core.base.base_retriever import BaseRetriever if TYPE_CHECKING: from llama_index.core.langchain_helpers.agents.tools import LlamaIndexTool from llama_index.core.schema import ( MetadataMode, Node, NodeWithScore, QueryBundle, TextNode, ) from llama_index.core.tools.types import AsyncBaseTool, ToolMetadata, ToolOutput from llama_index.core.postprocessor.types import BaseNodePostprocessor DEFAULT_NAME = "retriever_tool" DEFAULT_DESCRIPTION = """Useful for running a natural language query against a knowledge base and retrieving a set of relevant documents. """ class RetrieverTool(AsyncBaseTool): """Retriever tool. A tool making use of a retriever. Args: retriever (BaseRetriever): A retriever. metadata (ToolMetadata): The associated metadata of the query engine. node_postprocessors (Optional[List[BaseNodePostprocessor]]): A list of node postprocessors. """ def __init__( self, retriever: BaseRetriever, metadata: ToolMetadata, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, ) -> None: self._retriever = retriever self._metadata = metadata self._node_postprocessors = node_postprocessors or [] @classmethod def from_defaults( cls, retriever: BaseRetriever, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, name: Optional[str] = None, description: Optional[str] = None, ) -> "RetrieverTool": name = name or DEFAULT_NAME description = description or DEFAULT_DESCRIPTION metadata = ToolMetadata(name=name, description=description) return cls( retriever=retriever, metadata=metadata, node_postprocessors=node_postprocessors, ) @property def retriever(self) -> BaseRetriever: return self._retriever @property def metadata(self) -> ToolMetadata: return self._metadata def call(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = self._retriever.retrieve(query_str) docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) content = "" for doc in docs: assert isinstance(doc.node, (Node, TextNode)) node_copy = doc.node.model_copy() node_copy.text_template = "{metadata_str}\n{content}" node_copy.metadata_template = "{key} = {value}" content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.name, raw_input={"input": query_str}, raw_output=docs, ) async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = await self._retriever.aretrieve(query_str) content = "" docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) for doc in docs: assert isinstance(doc.node, (Node, TextNode)) node_copy = doc.node.model_copy() node_copy.text_template = "{metadata_str}\n{content}" node_copy.metadata_template = "{key} = {value}" content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.name, raw_input={"input": query_str}, raw_output=docs, ) def as_langchain_tool(self) -> "LlamaIndexTool": raise NotImplementedError("`as_langchain_tool` not implemented here.") def _apply_node_postprocessors( self, nodes: List[NodeWithScore], query_bundle: QueryBundle ) -> List[NodeWithScore]: for node_postprocessor in self._node_postprocessors: nodes = node_postprocessor.postprocess_nodes( nodes, query_bundle=query_bundle ) return nodes
"""Retriever tool.""" from typing import TYPE_CHECKING, Any, List, Optional from llama_index.core.base.base_retriever import BaseRetriever if TYPE_CHECKING: from llama_index.core.langchain_helpers.agents.tools import LlamaIndexTool from llama_index.core.schema import MetadataMode, NodeWithScore, QueryBundle from llama_index.core.tools.types import AsyncBaseTool, ToolMetadata, ToolOutput from llama_index.core.postprocessor.types import BaseNodePostprocessor DEFAULT_NAME = "retriever_tool" DEFAULT_DESCRIPTION = """Useful for running a natural language query against a knowledge base and retrieving a set of relevant documents. """ class RetrieverTool(AsyncBaseTool): """Retriever tool. A tool making use of a retriever. Args: retriever (BaseRetriever): A retriever. metadata (ToolMetadata): The associated metadata of the query engine. node_postprocessors (Optional[List[BaseNodePostprocessor]]): A list of node postprocessors. """ def __init__( self, retriever: BaseRetriever, metadata: ToolMetadata, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, ) -> None: self._retriever = retriever self._metadata = metadata self._node_postprocessors = node_postprocessors or [] @classmethod def from_defaults( cls, retriever: BaseRetriever, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, name: Optional[str] = None, description: Optional[str] = None, ) -> "RetrieverTool": name = name or DEFAULT_NAME description = description or DEFAULT_DESCRIPTION metadata = ToolMetadata(name=name, description=description) return cls( retriever=retriever, metadata=metadata, node_postprocessors=node_postprocessors, ) @property def retriever(self) -> BaseRetriever: return self._retriever @property def metadata(self) -> ToolMetadata: return self._metadata def call(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = self._retriever.retrieve(query_str) docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) content = "" for doc in docs: node_copy = doc.node.model_copy() node_copy.text_template = "{metadata_str}\n{content}" node_copy.metadata_template = "{key} = {value}" content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.name, raw_input={"input": query_str}, raw_output=docs, ) async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = await self._retriever.aretrieve(query_str) content = "" docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) for doc in docs: node_copy = doc.node.model_copy() node_copy.text_template = "{metadata_str}\n{content}" node_copy.metadata_template = "{key} = {value}" content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.name, raw_input={"input": query_str}, raw_output=docs, ) def as_langchain_tool(self) -> "LlamaIndexTool": raise NotImplementedError("`as_langchain_tool` not implemented here.") def _apply_node_postprocessors( self, nodes: List[NodeWithScore], query_bundle: QueryBundle ) -> List[NodeWithScore]: for node_postprocessor in self._node_postprocessors: nodes = node_postprocessor.postprocess_nodes( nodes, query_bundle=query_bundle ) return nodes
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from packaging import version from .. import __version__ from .constants import ( CONFIG_NAME, DEPRECATED_REVISION_ARGS, DIFFUSERS_DYNAMIC_MODULE_NAME, FLAX_WEIGHTS_NAME, GGUF_FILE_EXTENSION, HF_MODULES_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MIN_PEFT_VERSION, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_FILE_EXTENSION, SAFETENSORS_WEIGHTS_NAME, USE_PEFT_BACKEND, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .deprecation_utils import deprecate from .doc_utils import replace_example_docstring from .dynamic_modules_utils import get_class_from_dynamic_module from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video from .hub_utils import ( PushToHubMixin, _add_variant, _get_checkpoint_shard_files, _get_model_file, extract_commit_hash, http_user_agent, ) from .import_utils import ( BACKENDS_MAPPING, DIFFUSERS_SLOW_IMPORT, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_accelerate_available, is_accelerate_version, is_bitsandbytes_available, is_bitsandbytes_version, is_bs4_available, is_flax_available, is_ftfy_available, is_gguf_available, is_gguf_version, is_google_colab, is_hf_hub_version, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_matplotlib_available, is_note_seq_available, is_onnx_available, is_peft_available, is_peft_version, is_safetensors_available, is_scipy_available, is_sentencepiece_available, is_tensorboard_available, is_timm_available, is_torch_available, is_torch_npu_available, is_torch_version, is_torch_xla_available, is_torch_xla_version, is_torchao_available, is_torchsde_available, is_torchvision_available, is_transformers_available, is_transformers_version, is_unidecode_available, is_wandb_available, is_xformers_available, requires_backends, ) from .loading_utils import get_module_from_name, get_submodule_by_name, load_image, load_video from .logging import get_logger from .outputs import BaseOutput from .peft_utils import ( check_peft_version, delete_adapter_layers, get_adapter_name, get_peft_kwargs, recurse_remove_peft_layers, scale_lora_layers, set_adapter_layers, set_weights_and_activate_adapters, unscale_lora_layers, ) from .pil_utils import PIL_INTERPOLATION, make_image_grid, numpy_to_pil, pt_to_pil from .state_dict_utils import ( convert_all_state_dict_to_peft, convert_state_dict_to_diffusers, convert_state_dict_to_kohya, convert_state_dict_to_peft, convert_unet_state_dict_to_peft, ) logger = get_logger(__name__) def check_min_version(min_version): if version.parse(__version__) < version.parse(min_version): if "dev" in min_version: error_message = ( "This example requires a source install from HuggingFace diffusers (see " "`https://huggingface.co/docs/diffusers/installation#install-from-source`)," ) else: error_message = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError(error_message)
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from packaging import version from .. import __version__ from .constants import ( CONFIG_NAME, DEPRECATED_REVISION_ARGS, DIFFUSERS_DYNAMIC_MODULE_NAME, FLAX_WEIGHTS_NAME, GGUF_FILE_EXTENSION, HF_MODULES_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MIN_PEFT_VERSION, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_FILE_EXTENSION, SAFETENSORS_WEIGHTS_NAME, USE_PEFT_BACKEND, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .deprecation_utils import deprecate from .doc_utils import replace_example_docstring from .dynamic_modules_utils import get_class_from_dynamic_module from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video from .hub_utils import ( PushToHubMixin, _add_variant, _get_checkpoint_shard_files, _get_model_file, extract_commit_hash, http_user_agent, ) from .import_utils import ( BACKENDS_MAPPING, DIFFUSERS_SLOW_IMPORT, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_accelerate_available, is_accelerate_version, is_bitsandbytes_available, is_bitsandbytes_version, is_bs4_available, is_flax_available, is_ftfy_available, is_gguf_available, is_gguf_version, is_google_colab, is_hf_hub_version, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_matplotlib_available, is_note_seq_available, is_onnx_available, is_peft_available, is_peft_version, is_safetensors_available, is_scipy_available, is_sentencepiece_available, is_tensorboard_available, is_timm_available, is_torch_available, is_torch_npu_available, is_torch_version, is_torch_xla_available, is_torch_xla_version, is_torchao_available, is_torchsde_available, is_torchvision_available, is_transformers_available, is_transformers_version, is_unidecode_available, is_wandb_available, is_xformers_available, requires_backends, ) from .loading_utils import get_module_from_name, get_submodule_by_name, load_image, load_video from .logging import get_logger from .outputs import BaseOutput from .peft_utils import ( check_peft_version, delete_adapter_layers, get_adapter_name, get_peft_kwargs, recurse_remove_peft_layers, scale_lora_layers, set_adapter_layers, set_weights_and_activate_adapters, unscale_lora_layers, ) from .pil_utils import PIL_INTERPOLATION, make_image_grid, numpy_to_pil, pt_to_pil from .state_dict_utils import ( convert_all_state_dict_to_peft, convert_state_dict_to_diffusers, convert_state_dict_to_kohya, convert_state_dict_to_peft, convert_unet_state_dict_to_peft, ) logger = get_logger(__name__) def check_min_version(min_version): if version.parse(__version__) < version.parse(min_version): if "dev" in min_version: error_message = ( "This example requires a source install from HuggingFace diffusers (see " "`https://huggingface.co/docs/diffusers/installation#install-from-source`)," ) else: error_message = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError(error_message)
# Copyright 2024 The OpenXLA Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Public API for codegen testlib.""" from xla.codegen.testlib import _extension # Classes # go/keep-sorted start BufferAssignment = _extension.BufferAssignment ComparisonDirection = _extension.ComparisonDirection DotDimensionNumbers = _extension.DotDimensionNumbers HloComputation = _extension.HloComputation HloInstruction = _extension.HloInstruction HloModule = _extension.HloModule HloModuleConfig = _extension.HloModuleConfig HloOpcode = _extension.HloOpcode KernelDefinitionBase = _extension.KernelDefinitionBase KernelEmitterBase = _extension.KernelEmitterBase KernelRunner = _extension.KernelRunner KernelSpec = _extension.KernelSpec LlvmIrKernelSource = _extension.LlvmIrKernelSource LlvmKernelDefinition = _extension.LlvmKernelDefinition LlvmKernelEmitter = _extension.LlvmKernelEmitter MlirKernelDefinition = _extension.MlirKernelDefinition MlirKernelEmitter = _extension.MlirKernelEmitter MlirKernelSource = _extension.MlirKernelSource ScatterDimensionNumbers = _extension.ScatterDimensionNumbers # go/keep-sorted end # Functions # go/keep-sorted start build_hlo_computation = _extension.build_hlo_computation # go/keep-sorted end
# Copyright 2024 The OpenXLA Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Public API for codegen testlib.""" from xla.codegen.testlib import _extension # Classes # go/keep-sorted start BufferAssignment = _extension.BufferAssignment ComparisonDirection = _extension.ComparisonDirection HloInstruction = _extension.HloInstruction HloModule = _extension.HloModule HloOpcode = _extension.HloOpcode KernelEmmitter = _extension.KernelEmitter KernelRunner = _extension.KernelRunner KernelSpec = _extension.KernelSpec # go/keep-sorted end
from datetime import timedelta from typing import Optional from torch._C._distributed_c10d import _DEFAULT_PG_TIMEOUT __all__ = ["default_pg_timeout", "default_pg_nccl_timeout"] # Default process group wide timeout, if applicable. # This only applies to the non-nccl backends # To make an attempt at backwards compatibility with THD, we use an # extraordinarily high default timeout, given that THD did not have timeouts. default_pg_timeout: timedelta = _DEFAULT_PG_TIMEOUT # Separate timeout for PGNCCL mainly because it's always been that way in the C++ layer, but until recently # there was one default that applied across all backends in the python layer. # Later, we could consider merging them back together at the c++ layer if we can align on a same value. # (only if TORCH_NCCL_BLOCKING_WAIT or TORCH_NCCL_ASYNC_ERROR_HANDLING is set to 1). try: from torch._C._distributed_c10d import _DEFAULT_PG_NCCL_TIMEOUT default_pg_nccl_timeout: Optional[timedelta] = _DEFAULT_PG_NCCL_TIMEOUT except ImportError: # if C++ NCCL support is not compiled, we don't have access to the default nccl value. # if anyone is actually trying to use nccl in this state, it should error. default_pg_nccl_timeout = None
from datetime import timedelta from typing import Optional from torch._C._distributed_c10d import _DEFAULT_PG_TIMEOUT __all__ = ["default_pg_timeout", "default_pg_nccl_timeout"] # Default process group wide timeout, if applicable. # This only applies to the non-nccl backends # To make an attempt at backwards compatibility with THD, we use an # extraordinarily high default timeout, given that THD did not have timeouts. default_pg_timeout: timedelta = _DEFAULT_PG_TIMEOUT # Separate timeout for PGNCCL mainly becuase it's always been that way in the C++ layer, but until recently # there was one default that applied across all backends in the python layer. # Later, we could consider merging them back together at the c++ layer if we can align on a same value. # (only if TORCH_NCCL_BLOCKING_WAIT or TORCH_NCCL_ASYNC_ERROR_HANDLING is set to 1). try: from torch._C._distributed_c10d import _DEFAULT_PG_NCCL_TIMEOUT default_pg_nccl_timeout: Optional[timedelta] = _DEFAULT_PG_NCCL_TIMEOUT except ImportError: # if C++ NCCL support is not compiled, we don't have access to the default nccl value. # if anyone is actually trying to use nccl in this state, it should error. default_pg_nccl_timeout = None
import PIL.Image import pytest import torch import torchvision.transforms.v2.utils from prototype_common_utils import make_bounding_box, make_detection_mask, make_image from torchvision import datapoints from torchvision.transforms.v2.functional import to_image_pil from torchvision.transforms.v2.utils import has_all, has_any IMAGE = make_image(color_space="RGB") BOUNDING_BOX = make_bounding_box(format=datapoints.BoundingBoxFormat.XYXY, spatial_size=IMAGE.spatial_size) MASK = make_detection_mask(size=IMAGE.spatial_size) @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox, datapoints.Mask), True), ((MASK,), (datapoints.Image, datapoints.BoundingBox), False), ((BOUNDING_BOX,), (datapoints.Image, datapoints.Mask), False), ((IMAGE,), (datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, datapoints.Image),), True), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ((IMAGE,), (datapoints.Image, PIL.Image.Image, torchvision.transforms.v2.utils.is_simple_tensor), True), ( (torch.Tensor(IMAGE),), (datapoints.Image, PIL.Image.Image, torchvision.transforms.v2.utils.is_simple_tensor), True, ), ( (to_image_pil(IMAGE),), (datapoints.Image, PIL.Image.Image, torchvision.transforms.v2.utils.is_simple_tensor), True, ), ], ) def test_has_any(sample, types, expected): assert has_any(sample, *types) is expected @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox, datapoints.Mask), True), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), False), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), False), ((IMAGE, MASK), (datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, BOUNDING_BOX), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, (datapoints.Image, datapoints.BoundingBox, datapoints.Mask)),), True, ), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ], ) def test_has_all(sample, types, expected): assert has_all(sample, *types) is expected
import PIL.Image import pytest import torch import torchvision.prototype.transforms.utils from prototype_common_utils import make_bounding_box, make_detection_mask, make_image from torchvision.prototype import datapoints from torchvision.prototype.transforms.functional import to_image_pil from torchvision.prototype.transforms.utils import has_all, has_any IMAGE = make_image(color_space="RGB") BOUNDING_BOX = make_bounding_box(format=datapoints.BoundingBoxFormat.XYXY, spatial_size=IMAGE.spatial_size) MASK = make_detection_mask(size=IMAGE.spatial_size) @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox, datapoints.Mask), True), ((MASK,), (datapoints.Image, datapoints.BoundingBox), False), ((BOUNDING_BOX,), (datapoints.Image, datapoints.Mask), False), ((IMAGE,), (datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, datapoints.Image),), True), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ((IMAGE,), (datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor), True), ( (torch.Tensor(IMAGE),), (datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor), True, ), ( (to_image_pil(IMAGE),), (datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor), True, ), ], ) def test_has_any(sample, types, expected): assert has_any(sample, *types) is expected @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox, datapoints.Mask), True), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), False), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), False), ((IMAGE, MASK), (datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, BOUNDING_BOX), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, (datapoints.Image, datapoints.BoundingBox, datapoints.Mask)),), True, ), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ], ) def test_has_all(sample, types, expected): assert has_all(sample, *types) is expected
"""**OutputParser** classes parse the output of an LLM call. **Class hierarchy:** .. code-block:: BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser **Main helpers:** .. code-block:: Serializable, Generation, PromptValue """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.output_parsers.base import ( BaseGenerationOutputParser, BaseLLMOutputParser, BaseOutputParser, ) from langchain_core.output_parsers.json import ( JsonOutputParser, SimpleJsonOutputParser, ) from langchain_core.output_parsers.list import ( CommaSeparatedListOutputParser, ListOutputParser, MarkdownListOutputParser, NumberedListOutputParser, ) from langchain_core.output_parsers.openai_tools import ( JsonOutputKeyToolsParser, JsonOutputToolsParser, PydanticToolsParser, ) from langchain_core.output_parsers.pydantic import PydanticOutputParser from langchain_core.output_parsers.string import StrOutputParser from langchain_core.output_parsers.transform import ( BaseCumulativeTransformOutputParser, BaseTransformOutputParser, ) from langchain_core.output_parsers.xml import XMLOutputParser __all__ = [ "BaseLLMOutputParser", "BaseGenerationOutputParser", "BaseOutputParser", "ListOutputParser", "CommaSeparatedListOutputParser", "NumberedListOutputParser", "MarkdownListOutputParser", "StrOutputParser", "BaseTransformOutputParser", "BaseCumulativeTransformOutputParser", "SimpleJsonOutputParser", "XMLOutputParser", "JsonOutputParser", "PydanticOutputParser", "JsonOutputToolsParser", "JsonOutputKeyToolsParser", "PydanticToolsParser", ] _dynamic_imports = { "BaseLLMOutputParser": "base", "BaseGenerationOutputParser": "base", "BaseOutputParser": "base", "JsonOutputParser": "json", "SimpleJsonOutputParser": "json", "ListOutputParser": "list", "CommaSeparatedListOutputParser": "list", "MarkdownListOutputParser": "list", "NumberedListOutputParser": "list", "JsonOutputKeyToolsParser": "openai_tools", "JsonOutputToolsParser": "openai_tools", "PydanticToolsParser": "openai_tools", "PydanticOutputParser": "pydantic", "StrOutputParser": "string", "BaseTransformOutputParser": "transform", "BaseCumulativeTransformOutputParser": "transform", "XMLOutputParser": "xml", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**OutputParser** classes parse the output of an LLM call. **Class hierarchy:** .. code-block:: BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser **Main helpers:** .. code-block:: Serializable, Generation, PromptValue """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.output_parsers.base import ( BaseGenerationOutputParser, BaseLLMOutputParser, BaseOutputParser, ) from langchain_core.output_parsers.json import ( JsonOutputParser, SimpleJsonOutputParser, ) from langchain_core.output_parsers.list import ( CommaSeparatedListOutputParser, ListOutputParser, MarkdownListOutputParser, NumberedListOutputParser, ) from langchain_core.output_parsers.openai_tools import ( JsonOutputKeyToolsParser, JsonOutputToolsParser, PydanticToolsParser, ) from langchain_core.output_parsers.pydantic import PydanticOutputParser from langchain_core.output_parsers.string import StrOutputParser from langchain_core.output_parsers.transform import ( BaseCumulativeTransformOutputParser, BaseTransformOutputParser, ) from langchain_core.output_parsers.xml import XMLOutputParser __all__ = [ "BaseLLMOutputParser", "BaseGenerationOutputParser", "BaseOutputParser", "ListOutputParser", "CommaSeparatedListOutputParser", "NumberedListOutputParser", "MarkdownListOutputParser", "StrOutputParser", "BaseTransformOutputParser", "BaseCumulativeTransformOutputParser", "SimpleJsonOutputParser", "XMLOutputParser", "JsonOutputParser", "PydanticOutputParser", "JsonOutputToolsParser", "JsonOutputKeyToolsParser", "PydanticToolsParser", ] _dynamic_imports = { "BaseLLMOutputParser": "base", "BaseGenerationOutputParser": "base", "BaseOutputParser": "base", "JsonOutputParser": "json", "SimpleJsonOutputParser": "json", "ListOutputParser": "list", "CommaSeparatedListOutputParser": "list", "MarkdownListOutputParser": "list", "NumberedListOutputParser": "list", "JsonOutputKeyToolsParser": "openai_tools", "JsonOutputToolsParser": "openai_tools", "PydanticToolsParser": "openai_tools", "PydanticOutputParser": "pydantic", "StrOutputParser": "string", "BaseTransformOutputParser": "transform", "BaseCumulativeTransformOutputParser": "transform", "XMLOutputParser": "xml", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
from typing import List import torch import torchaudio.prototype.transforms as T from torch.autograd import gradcheck, gradgradcheck from torchaudio_unittest.common_utils import get_spectrogram, get_whitenoise, nested_params, TestBaseMixin class Autograd(TestBaseMixin): def assert_grad( self, transform: torch.nn.Module, inputs: List[torch.Tensor], *, nondet_tol: float = 0.0, ): transform = transform.to(dtype=torch.float64, device=self.device) # gradcheck and gradgradcheck only pass if the input tensors are of dtype `torch.double` or # `torch.cdouble`, when the default eps and tolerance values are used. inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(dtype=torch.cdouble if i.is_complex() else torch.double, device=self.device) i.requires_grad = True inputs_.append(i) assert gradcheck(transform, inputs_) assert gradgradcheck(transform, inputs_, nondet_tol=nondet_tol) @nested_params( [T.Convolve, T.FFTConvolve], ["full", "valid", "same"], ) def test_Convolve(self, cls, mode): leading_dims = (4, 3, 2) L_x, L_y = 23, 40 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) convolve = cls(mode=mode).to(dtype=self.dtype, device=self.device) self.assert_grad(convolve, [x, y]) def test_barkspectrogram(self): # replication_pad1d_backward_cuda is not deteministic and # gives very small (~e-16) difference. sample_rate = 8000 transform = T.BarkSpectrogram(sample_rate=sample_rate) waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform], nondet_tol=1e-10) def test_barkscale(self): sample_rate = 8000 n_fft = 400 n_barks = n_fft // 2 + 1 transform = T.BarkScale(sample_rate=sample_rate, n_barks=n_barks) spec = get_spectrogram( get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1 ) self.assert_grad(transform, [spec]) def test_Speed(self): leading_dims = (3, 2) time = 200 waveform = torch.rand(*leading_dims, time, dtype=torch.float64, device=self.device, requires_grad=True) lengths = torch.randint(1, time, leading_dims, dtype=torch.float64, device=self.device) speed = T.Speed(1000, 1.1).to(device=self.device, dtype=torch.float64) assert gradcheck(speed, (waveform, lengths)) assert gradgradcheck(speed, (waveform, lengths)) def test_SpeedPerturbation(self): leading_dims = (3, 2) time = 200 waveform = torch.rand(*leading_dims, time, dtype=torch.float64, device=self.device, requires_grad=True) lengths = torch.randint(1, time, leading_dims, dtype=torch.float64, device=self.device) speed = T.SpeedPerturbation(1000, [0.9]).to(device=self.device, dtype=torch.float64) assert gradcheck(speed, (waveform, lengths)) assert gradgradcheck(speed, (waveform, lengths)) @nested_params([True, False]) def test_AddNoise(self, use_lengths): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=torch.float64, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=torch.float64, device=self.device, requires_grad=True) if use_lengths: lengths = torch.rand(*leading_dims, dtype=torch.float64, device=self.device, requires_grad=True) else: lengths = None snr = torch.rand(*leading_dims, dtype=torch.float64, device=self.device, requires_grad=True) * 10 add_noise = T.AddNoise().to(self.device, torch.float64) assert gradcheck(add_noise, (waveform, noise, snr, lengths)) assert gradgradcheck(add_noise, (waveform, noise, snr, lengths)) def test_Preemphasis(self): waveform = torch.rand(3, 4, 10, dtype=torch.float64, device=self.device, requires_grad=True) preemphasis = T.Preemphasis(coeff=0.97).to(dtype=torch.float64, device=self.device) assert gradcheck(preemphasis, (waveform,)) assert gradgradcheck(preemphasis, (waveform,)) def test_Deemphasis(self): waveform = torch.rand(3, 4, 10, dtype=torch.float64, device=self.device, requires_grad=True) deemphasis = T.Deemphasis(coeff=0.97).to(dtype=torch.float64, device=self.device) assert gradcheck(deemphasis, (waveform,)) assert gradgradcheck(deemphasis, (waveform,))
from typing import List import torch import torchaudio.prototype.transforms as T from torch.autograd import gradcheck, gradgradcheck from torchaudio_unittest.common_utils import get_spectrogram, get_whitenoise, nested_params, TestBaseMixin class Autograd(TestBaseMixin): def assert_grad( self, transform: torch.nn.Module, inputs: List[torch.Tensor], *, nondet_tol: float = 0.0, ): transform = transform.to(dtype=torch.float64, device=self.device) # gradcheck and gradgradcheck only pass if the input tensors are of dtype `torch.double` or # `torch.cdouble`, when the default eps and tolerance values are used. inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(dtype=torch.cdouble if i.is_complex() else torch.double, device=self.device) i.requires_grad = True inputs_.append(i) assert gradcheck(transform, inputs_) assert gradgradcheck(transform, inputs_, nondet_tol=nondet_tol) @nested_params( [T.Convolve, T.FFTConvolve], ["full", "valid", "same"], ) def test_Convolve(self, cls, mode): leading_dims = (4, 3, 2) L_x, L_y = 23, 40 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) convolve = cls(mode=mode).to(dtype=self.dtype, device=self.device) self.assert_grad(convolve, [x, y]) def test_barkspectrogram(self): # replication_pad1d_backward_cuda is not deteministic and # gives very small (~e-16) difference. sample_rate = 8000 transform = T.BarkSpectrogram(sample_rate=sample_rate) waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform], nondet_tol=1e-10) def test_barkscale(self): sample_rate = 8000 n_fft = 400 n_barks = n_fft // 2 + 1 transform = T.BarkScale(sample_rate=sample_rate, n_barks=n_barks) spec = get_spectrogram( get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1 ) self.assert_grad(transform, [spec]) def test_Speed(self): leading_dims = (3, 2) time = 200 waveform = torch.rand(*leading_dims, time, dtype=torch.float64, device=self.device, requires_grad=True) lengths = torch.randint(1, time, leading_dims, dtype=torch.float64, device=self.device) speed = T.Speed(1000, 1.1).to(device=self.device, dtype=torch.float64) assert gradcheck(speed, (waveform, lengths)) assert gradgradcheck(speed, (waveform, lengths)) def test_SpeedPerturbation(self): leading_dims = (3, 2) time = 200 waveform = torch.rand(*leading_dims, time, dtype=torch.float64, device=self.device, requires_grad=True) lengths = torch.randint(1, time, leading_dims, dtype=torch.float64, device=self.device) speed = T.SpeedPerturbation(1000, [0.9]).to(device=self.device, dtype=torch.float64) assert gradcheck(speed, (waveform, lengths)) assert gradgradcheck(speed, (waveform, lengths)) def test_AddNoise(self): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=torch.float64, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=torch.float64, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=torch.float64, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=torch.float64, device=self.device, requires_grad=True) * 10 add_noise = T.AddNoise().to(self.device, torch.float64) assert gradcheck(add_noise, (waveform, noise, lengths, snr)) assert gradgradcheck(add_noise, (waveform, noise, lengths, snr)) def test_Preemphasis(self): waveform = torch.rand(3, 4, 10, dtype=torch.float64, device=self.device, requires_grad=True) preemphasis = T.Preemphasis(coeff=0.97).to(dtype=torch.float64, device=self.device) assert gradcheck(preemphasis, (waveform,)) assert gradgradcheck(preemphasis, (waveform,)) def test_Deemphasis(self): waveform = torch.rand(3, 4, 10, dtype=torch.float64, device=self.device, requires_grad=True) deemphasis = T.Deemphasis(coeff=0.97).to(dtype=torch.float64, device=self.device) assert gradcheck(deemphasis, (waveform,)) assert gradgradcheck(deemphasis, (waveform,))
from docarray.array.documentarray import DocumentArray __all__ = ['DocumentArray']
from docarray.array.documentarray import DocumentArray
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import AnchorHead class TestAnchorHead(TestCase): def test_anchor_head_loss(self): """Tests anchor head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False)) anchor_head = AnchorHead(num_classes=4, in_channels=1, train_cfg=cfg) # Anchor head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) for i in range(len(anchor_head.prior_generator.strides))) cls_scores, bbox_preds = anchor_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero'
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.data import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import AnchorHead class TestAnchorHead(TestCase): def test_anchor_head_loss(self): """Tests anchor head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False)) anchor_head = AnchorHead(num_classes=4, in_channels=1, train_cfg=cfg) # Anchor head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) for i in range(len(anchor_head.prior_generator.strides))) cls_scores, bbox_preds = anchor_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero'
"""Map-reduce chain. Splits up a document, sends the smaller parts to the LLM with one prompt, then combines the results with another one. """ from __future__ import annotations from collections.abc import Mapping from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.callbacks import CallbackManagerForChainRun, Callbacks from langchain_core.documents import Document from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate from langchain_text_splitters import TextSplitter from pydantic import ConfigDict from langchain.chains import ReduceDocumentsChain from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain @deprecated( since="0.2.13", removal="1.0", message=( "Refer to migration guide here for a recommended implementation using " "LangGraph: https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/" # noqa: E501 ". See also LangGraph guides for map-reduce: " "https://langchain-ai.github.io/langgraph/how-tos/map-reduce/." ), ) class MapReduceChain(Chain): """Map-reduce chain.""" combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine documents.""" text_splitter: TextSplitter """Text splitter to use.""" input_key: str = "input_text" #: :meta private: output_key: str = "output_text" #: :meta private: @classmethod def from_params( cls, llm: BaseLanguageModel, prompt: BasePromptTemplate, text_splitter: TextSplitter, callbacks: Callbacks = None, combine_chain_kwargs: Optional[Mapping[str, Any]] = None, reduce_chain_kwargs: Optional[Mapping[str, Any]] = None, **kwargs: Any, ) -> MapReduceChain: """Construct a map-reduce chain that uses the chain for map and reduce.""" llm_chain = LLMChain(llm=llm, prompt=prompt, callbacks=callbacks) stuff_chain = StuffDocumentsChain( llm_chain=llm_chain, callbacks=callbacks, **(reduce_chain_kwargs if reduce_chain_kwargs else {}), ) reduce_documents_chain = ReduceDocumentsChain( combine_documents_chain=stuff_chain ) combine_documents_chain = MapReduceDocumentsChain( llm_chain=llm_chain, reduce_documents_chain=reduce_documents_chain, callbacks=callbacks, **(combine_chain_kwargs if combine_chain_kwargs else {}), ) return cls( combine_documents_chain=combine_documents_chain, text_splitter=text_splitter, callbacks=callbacks, **kwargs, ) model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> list[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> list[str]: """Return output key. :meta private: """ return [self.output_key] def _call( self, inputs: dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() # Split the larger text into smaller chunks. doc_text = inputs.pop(self.input_key) texts = self.text_splitter.split_text(doc_text) docs = [Document(page_content=text) for text in texts] _inputs: dict[str, Any] = { **inputs, self.combine_documents_chain.input_key: docs, } outputs = self.combine_documents_chain.run( _inputs, callbacks=_run_manager.get_child() ) return {self.output_key: outputs}
"""Map-reduce chain. Splits up a document, sends the smaller parts to the LLM with one prompt, then combines the results with another one. """ from __future__ import annotations from typing import Any, Dict, List, Mapping, Optional from langchain_core._api import deprecated from langchain_core.callbacks import CallbackManagerForChainRun, Callbacks from langchain_core.documents import Document from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate from langchain_text_splitters import TextSplitter from pydantic import ConfigDict from langchain.chains import ReduceDocumentsChain from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain @deprecated( since="0.2.13", removal="1.0", message=( "Refer to migration guide here for a recommended implementation using " "LangGraph: https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/" # noqa: E501 ". See also LangGraph guides for map-reduce: " "https://langchain-ai.github.io/langgraph/how-tos/map-reduce/." ), ) class MapReduceChain(Chain): """Map-reduce chain.""" combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine documents.""" text_splitter: TextSplitter """Text splitter to use.""" input_key: str = "input_text" #: :meta private: output_key: str = "output_text" #: :meta private: @classmethod def from_params( cls, llm: BaseLanguageModel, prompt: BasePromptTemplate, text_splitter: TextSplitter, callbacks: Callbacks = None, combine_chain_kwargs: Optional[Mapping[str, Any]] = None, reduce_chain_kwargs: Optional[Mapping[str, Any]] = None, **kwargs: Any, ) -> MapReduceChain: """Construct a map-reduce chain that uses the chain for map and reduce.""" llm_chain = LLMChain(llm=llm, prompt=prompt, callbacks=callbacks) stuff_chain = StuffDocumentsChain( llm_chain=llm_chain, callbacks=callbacks, **(reduce_chain_kwargs if reduce_chain_kwargs else {}), ) reduce_documents_chain = ReduceDocumentsChain( combine_documents_chain=stuff_chain ) combine_documents_chain = MapReduceDocumentsChain( llm_chain=llm_chain, reduce_documents_chain=reduce_documents_chain, callbacks=callbacks, **(combine_chain_kwargs if combine_chain_kwargs else {}), ) return cls( combine_documents_chain=combine_documents_chain, text_splitter=text_splitter, callbacks=callbacks, **kwargs, ) model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() # Split the larger text into smaller chunks. doc_text = inputs.pop(self.input_key) texts = self.text_splitter.split_text(doc_text) docs = [Document(page_content=text) for text in texts] _inputs: Dict[str, Any] = { **inputs, self.combine_documents_chain.input_key: docs, } outputs = self.combine_documents_chain.run( _inputs, callbacks=_run_manager.get_child() ) return {self.output_key: outputs}
from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.Adadelta"]) class Adadelta(optimizer.Optimizer): """Optimizer that implements the Adadelta algorithm. Adadelta optimization is a stochastic gradient descent method that is based on adaptive learning rate per dimension to address two drawbacks: - The continual decay of learning rates throughout training. - The need for a manually selected global learning rate. Adadelta is a more robust extension of Adagrad that adapts learning rates based on a moving window of gradient updates, instead of accumulating all past gradients. This way, Adadelta continues learning even when many updates have been done. Compared to Adagrad, in the original version of Adadelta you don't have to set an initial learning rate. In this version, the initial learning rate can be set, as in most other Keras optimizers. Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. Note that `Adadelta` tends to benefit from higher initial learning rate values compared to other optimizers. To match the exact form in the original paper, use 1.0. rho: A floating point value. The decay rate. Defaults to `0.95`. epsilon: Small floating point value for maintaining numerical stability. {{base_optimizer_keyword_args}} Reference: - [Zeiler, 2012](http://arxiv.org/abs/1212.5701) """ def __init__( self, learning_rate=0.001, rho=0.95, epsilon=1e-7, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="adadelta", **kwargs, ): super().__init__( learning_rate=learning_rate, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, name=name, **kwargs, ) self.rho = rho self.epsilon = epsilon def build(self, var_list): if self.built: return super().build(var_list) self._accumulated_grads, self._accumulated_delta_vars = ( self.add_optimizer_variables( var_list, ["accumulated_grad", "accumulated_delta_var"] ) ) def update_step(self, grad, variable, learning_rate): """Update step given gradient and the associated model variable.""" lr = ops.cast(learning_rate, variable.dtype) grad = ops.cast(grad, variable.dtype) rho = self.rho accumulated_grad = self._accumulated_grads[ self._get_variable_index(variable) ] accumulated_delta_var = self._accumulated_delta_vars[ self._get_variable_index(variable) ] def rms(x): return ops.sqrt(ops.add(x, self.epsilon)) self.assign( accumulated_grad, ops.add( rho * accumulated_grad, ops.multiply(1 - rho, ops.square(grad)) ), ) delta_var = ops.negative( ops.divide( ops.multiply(rms(accumulated_delta_var), grad), rms(accumulated_grad), ) ) self.assign( accumulated_delta_var, ops.add( ops.multiply(rho, accumulated_delta_var), ops.multiply(1 - rho, ops.square(delta_var)), ), ) self.assign_add(variable, ops.multiply(lr, delta_var)) def get_config(self): config = super().get_config() config.update( { "rho": self.rho, "epsilon": self.epsilon, } ) return config Adadelta.__doc__ = Adadelta.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.Adadelta"]) class Adadelta(optimizer.Optimizer): """Optimizer that implements the Adadelta algorithm. Adadelta optimization is a stochastic gradient descent method that is based on adaptive learning rate per dimension to address two drawbacks: - The continual decay of learning rates throughout training. - The need for a manually selected global learning rate. Adadelta is a more robust extension of Adagrad that adapts learning rates based on a moving window of gradient updates, instead of accumulating all past gradients. This way, Adadelta continues learning even when many updates have been done. Compared to Adagrad, in the original version of Adadelta you don't have to set an initial learning rate. In this version, the initial learning rate can be set, as in most other Keras optimizers. Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. Note that `Adadelta` tends to benefit from higher initial learning rate values compared to other optimizers. To match the exact form in the original paper, use 1.0. rho: A floating point value. The decay rate. Defaults to `0.95`. epsilon: Small floating point value for maintaining numerical stability. {{base_optimizer_keyword_args}} Reference: - [Zeiler, 2012](http://arxiv.org/abs/1212.5701) """ def __init__( self, learning_rate=0.001, rho=0.95, epsilon=1e-7, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="adadelta", **kwargs, ): super().__init__( learning_rate=learning_rate, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, name=name, **kwargs, ) self.rho = rho self.epsilon = epsilon def build(self, var_list): if self.built: return super().build(var_list) self._accumulated_grads = self.add_optimizer_variables( var_list, "accumulated_grad" ) self._accumulated_delta_vars = self.add_optimizer_variables( var_list, "accumulated_delta_var" ) def update_step(self, grad, variable, learning_rate): """Update step given gradient and the associated model variable.""" lr = ops.cast(learning_rate, variable.dtype) grad = ops.cast(grad, variable.dtype) rho = self.rho accumulated_grad = self._accumulated_grads[ self._get_variable_index(variable) ] accumulated_delta_var = self._accumulated_delta_vars[ self._get_variable_index(variable) ] def rms(x): return ops.sqrt(ops.add(x, self.epsilon)) self.assign( accumulated_grad, ops.add( rho * accumulated_grad, ops.multiply(1 - rho, ops.square(grad)) ), ) delta_var = ops.negative( ops.divide( ops.multiply(rms(accumulated_delta_var), grad), rms(accumulated_grad), ) ) self.assign( accumulated_delta_var, ops.add( ops.multiply(rho, accumulated_delta_var), ops.multiply(1 - rho, ops.square(delta_var)), ), ) self.assign_add(variable, ops.multiply(lr, delta_var)) def get_config(self): config = super().get_config() config.update( { "rho": self.rho, "epsilon": self.epsilon, } ) return config Adadelta.__doc__ = Adadelta.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
# coding: utf-8 from pathlib import Path import pandas as pd from sklearn.metrics import mean_squared_error import lightgbm as lgb print('Loading data...') # load or create your dataset regression_example_dir = Path(__file__).absolute().parents[1] / 'regression' df_train = pd.read_csv(str(regression_example_dir / 'regression.train'), header=None, sep='\t') df_test = pd.read_csv(str(regression_example_dir / 'regression.test'), header=None, sep='\t') y_train = df_train[0] y_test = df_test[0] X_train = df_train.drop(0, axis=1) X_test = df_test.drop(0, axis=1) # create dataset for lightgbm lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # specify your configurations as a dict params = { 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': {'l2', 'l1'}, 'num_leaves': 31, 'learning_rate': 0.05, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'verbose': 0 } print('Starting training...') # train gbm = lgb.train(params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, callbacks=[lgb.early_stopping(stopping_rounds=5)]) print('Saving model...') # save model to file gbm.save_model('model.txt') print('Starting predicting...') # predict y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration) # eval rmse_test = mean_squared_error(y_test, y_pred) ** 0.5 print(f'The RMSE of prediction is: {rmse_test}')
# coding: utf-8 from pathlib import Path import pandas as pd from sklearn.metrics import mean_squared_error import lightgbm as lgb print('Loading data...') # load or create your dataset regression_example_dir = Path(__file__).absolute().parents[1] / 'regression' df_train = pd.read_csv(str(regression_example_dir / 'regression.train'), header=None, sep='\t') df_test = pd.read_csv(str(regression_example_dir / 'regression.test'), header=None, sep='\t') y_train = df_train[0] y_test = df_test[0] X_train = df_train.drop(0, axis=1) X_test = df_test.drop(0, axis=1) # create dataset for lightgbm lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # specify your configurations as a dict params = { 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': {'l2', 'l1'}, 'num_leaves': 31, 'learning_rate': 0.05, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'verbose': 0 } print('Starting training...') # train gbm = lgb.train(params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, early_stopping_rounds=5) print('Saving model...') # save model to file gbm.save_model('model.txt') print('Starting predicting...') # predict y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration) # eval rmse_test = mean_squared_error(y_test, y_pred) ** 0.5 print(f'The RMSE of prediction is: {rmse_test}')
# Copyright (c) OpenMMLab. All rights reserved. from .hook import Hook from .iter_timer_hook import IterTimerHook from .optimizer_hook import OptimizerHook from .param_scheduler_hook import ParamSchedulerHook from .sampler_seed_hook import DistSamplerSeedHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'OptimizerHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .hook import Hook from .iter_timer_hook import IterTimerHook from .sampler_seed_hook import DistSamplerSeedHook from .param_scheduler_hook import ParamSchedulerHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook' ]
from typing import TYPE_CHECKING, TypeVar, List, Union, Optional, Dict, Sequence if TYPE_CHECKING: import numpy as np import tensorflow import torch # Define the expected input type that your ANN search supports MilvusArrayType = TypeVar( 'MilvusArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) from docarray import Document, DocumentArray class FindMixin: def _find( self, query: 'MilvusArrayType', limit: int = 10, filter: Optional[Dict] = None, param=None, **kwargs ) -> List['DocumentArray']: """Returns `limit` approximate nearest neighbors given a batch of input queries. If the query is a single query, should return a DocumentArray, otherwise a list of DocumentArrays containing the closest Documents for each query. """ if param is None: param = dict() kwargs = self._update_kwargs_from_config('consistency_level', **kwargs) with self.loaded_collection(): results = self._collection.search( data=query, anns_field='embedding', limit=limit, expr=filter, param=param, output_fields=['serialized'], **kwargs, ) return self._docs_from_search_response(results, distance=self._config.distance) def _filter(self, filter, limit=10, **kwargs): kwargs = self._update_kwargs_from_config('consistency_level', **kwargs) with self.loaded_collection(): results = self._collection.query( expr=filter, limit=limit, output_fields=['serialized'], **kwargs, ) return self._docs_from_query_response(results)[:limit]
from typing import TYPE_CHECKING, TypeVar, List, Union, Optional, Dict, Sequence if TYPE_CHECKING: import numpy as np import tensorflow import torch # Define the expected input type that your ANN search supports MilvusArrayType = TypeVar( 'MilvusArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) from docarray import Document, DocumentArray class FindMixin: def _find( self, query: 'MilvusArrayType', limit: int = 10, filter: Optional[Dict] = None, param=None, **kwargs ) -> List['DocumentArray']: """Returns `limit` approximate nearest neighbors given a batch of input queries. If the query is a single query, should return a DocumentArray, otherwise a list of DocumentArrays containing the closest Documents for each query. """ if param is None: param = dict() kwargs = self._update_kwargs_from_config('consistency_level', **kwargs) with self.loaded_collection(): results = self._collection.search( data=query, anns_field='embedding', limit=limit, expr=filter, param=param, output_fields=['serialized'], **kwargs, ) return self._docs_from_search_response(results) def _filter(self, filter, limit=10, **kwargs): kwargs = self._update_kwargs_from_config('consistency_level', **kwargs) with self.loaded_collection(): results = self._collection.query( expr=filter, limit=limit, output_fields=['serialized'], **kwargs, ) return self._docs_from_query_response(results)[:limit]
from .backend_utils import set_audio_backend from .case_utils import ( HttpServerMixin, is_ffmpeg_available, PytorchTestCase, skipIfNoCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoKaldi, skipIfNoModule, skipIfNoQengine, skipIfNoSox, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoCtcDecoder", "skipIfNoCuda", "skipIfNoExec", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfPy310", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", ]
from .backend_utils import ( set_audio_backend, ) from .case_utils import ( TempDirMixin, HttpServerMixin, TestBaseMixin, PytorchTestCase, TorchaudioTestCase, is_ffmpeg_available, skipIfNoCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoModule, skipIfNoKaldi, skipIfNoSox, skipIfRocm, skipIfNoQengine, skipIfNoFFmpeg, skipIfPy310, ) from .data_utils import ( get_asset_path, get_whitenoise, get_sinusoid, get_spectrogram, ) from .func_utils import torch_script from .image_utils import ( save_image, get_image, ) from .parameterized_utils import load_params, nested_params from .wav_utils import ( get_wav_data, normalize_wav, load_wav, save_wav, ) __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoCtcDecoder", "skipIfNoCuda", "skipIfNoExec", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfPy310", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", ]
import numpy as np from absl.testing import parameterized from keras.src import backend from keras.src import testing from keras.src.backend import KerasTensor from keras.src.layers import InputLayer class InputLayerTest(testing.TestCase): # Testing happy path for layer without input tensor @parameterized.named_parameters( [ {"testcase_name": "dense", "sparse": False}, {"testcase_name": "sparse", "sparse": True}, ] ) def test_input_basic(self, sparse): input_shape = (2, 3) batch_size = 4 dtype = "float32" ndim = len(tuple((batch_size,) + input_shape)) init_kwargs = { "shape": input_shape, "batch_size": batch_size, "dtype": dtype, "sparse": sparse, } if sparse and not backend.SUPPORTS_SPARSE_TENSORS: with self.assertRaisesRegex( ValueError, "`sparse=True` is not supported" ): InputLayer(**init_kwargs) return values = InputLayer(**init_kwargs) self.assertEqual(values.dtype, dtype) self.assertEqual(values.batch_shape[0], batch_size) self.assertEqual(values.batch_shape[1:], input_shape) self.assertEqual(values.sparse, sparse) self.assertEqual(values.trainable, True) self.assertIsInstance(values.output, KerasTensor) self.assertEqual(values.output.ndim, ndim) self.assertEqual(values.output.dtype, dtype) self.assertEqual(values.output.sparse, sparse) # Testing shape is not None and batch_shape is not None condition def test_input_error1(self): input_shape = (2, 3) with self.assertRaisesRegex( ValueError, "cannot pass both `shape` and `batch_shape`" ): InputLayer(shape=input_shape, batch_shape=input_shape) # Testing batch_size is not None and batch_shape is not None def test_input_error2(self): input_shape = (2, 3) batch_size = 4 with self.assertRaisesRegex( ValueError, "cannot pass both `batch_size` and `batch_shape`" ): InputLayer(batch_size=batch_size, batch_shape=input_shape) # Testing shape is None and batch_shape is None def test_input_error3(self): with self.assertRaisesRegex(ValueError, "pass a `shape` argument."): InputLayer(shape=None, batch_shape=None) # Testing Input tensor is not Keras tensor def test_input_tensor_error(self): input_shape = (2, 3) batch_size = 4 input_tensor = np.zeros(input_shape) with self.assertRaisesRegex( ValueError, "Argument `input_tensor` must be a KerasTensor" ): InputLayer( shape=input_shape, batch_size=batch_size, input_tensor=input_tensor, ) # Testing happy path for layer with input tensor def testing_input_tensor(self): input_shape = (2, 3) batch_size = 4 dtype = "float32" input_tensor = KerasTensor(shape=input_shape, dtype=dtype) values = InputLayer( shape=input_shape, batch_size=batch_size, input_tensor=input_tensor, dtype=dtype, ) self.assertEqual(values.dtype, dtype) self.assertEqual(values.batch_shape[0], batch_size) self.assertEqual(values.batch_shape[1:], input_shape) self.assertEqual(values.trainable, True) self.assertIsInstance(values.output, KerasTensor) self.assertEqual(values.output, input_tensor) self.assertEqual(values.output.ndim, input_tensor.ndim) self.assertEqual(values.output.dtype, dtype) def test_input_shape_deprecated(self): input_shape = (2, 3) batch_size = 4 dtype = "float32" with self.assertWarnsRegex( UserWarning, "Argument `input_shape` is deprecated. Use `shape` instead.", ): layer = InputLayer( input_shape=input_shape, batch_size=batch_size, dtype=dtype ) self.assertEqual(layer.batch_shape[0], batch_size) self.assertEqual(layer.batch_shape[1:], input_shape) self.assertEqual(layer.dtype, dtype) self.assertIsInstance(layer.output, KerasTensor) def test_call_method(self): layer = InputLayer(shape=(32,)) output = layer.call() self.assertIsNone(output) def test_numpy_shape(self): # non-python int type shapes should be ok InputLayer(shape=(np.int64(32),))
import numpy as np from absl.testing import parameterized from keras.src import backend from keras.src import testing from keras.src.backend import KerasTensor from keras.src.layers import InputLayer class InputLayerTest(testing.TestCase, parameterized.TestCase): # Testing happy path for layer without input tensor @parameterized.named_parameters( [ {"testcase_name": "dense", "sparse": False}, {"testcase_name": "sparse", "sparse": True}, ] ) def test_input_basic(self, sparse): input_shape = (2, 3) batch_size = 4 dtype = "float32" ndim = len(tuple((batch_size,) + input_shape)) init_kwargs = { "shape": input_shape, "batch_size": batch_size, "dtype": dtype, "sparse": sparse, } if sparse and not backend.SUPPORTS_SPARSE_TENSORS: with self.assertRaisesRegex( ValueError, "`sparse=True` is not supported" ): InputLayer(**init_kwargs) return values = InputLayer(**init_kwargs) self.assertEqual(values.dtype, dtype) self.assertEqual(values.batch_shape[0], batch_size) self.assertEqual(values.batch_shape[1:], input_shape) self.assertEqual(values.sparse, sparse) self.assertEqual(values.trainable, True) self.assertIsInstance(values.output, KerasTensor) self.assertEqual(values.output.ndim, ndim) self.assertEqual(values.output.dtype, dtype) self.assertEqual(values.output.sparse, sparse) # Testing shape is not None and batch_shape is not None condition def test_input_error1(self): input_shape = (2, 3) with self.assertRaisesRegex( ValueError, "cannot pass both `shape` and `batch_shape`" ): InputLayer(shape=input_shape, batch_shape=input_shape) # Testing batch_size is not None and batch_shape is not None def test_input_error2(self): input_shape = (2, 3) batch_size = 4 with self.assertRaisesRegex( ValueError, "cannot pass both `batch_size` and `batch_shape`" ): InputLayer(batch_size=batch_size, batch_shape=input_shape) # Testing shape is None and batch_shape is None def test_input_error3(self): with self.assertRaisesRegex(ValueError, "pass a `shape` argument."): InputLayer(shape=None, batch_shape=None) # Testing Input tensor is not Keras tensor def test_input_tensor_error(self): input_shape = (2, 3) batch_size = 4 input_tensor = np.zeros(input_shape) with self.assertRaisesRegex( ValueError, "Argument `input_tensor` must be a KerasTensor" ): InputLayer( shape=input_shape, batch_size=batch_size, input_tensor=input_tensor, ) # Testing happy path for layer with input tensor def testing_input_tensor(self): input_shape = (2, 3) batch_size = 4 dtype = "float32" input_tensor = KerasTensor(shape=input_shape, dtype=dtype) values = InputLayer( shape=input_shape, batch_size=batch_size, input_tensor=input_tensor, dtype=dtype, ) self.assertEqual(values.dtype, dtype) self.assertEqual(values.batch_shape[0], batch_size) self.assertEqual(values.batch_shape[1:], input_shape) self.assertEqual(values.trainable, True) self.assertIsInstance(values.output, KerasTensor) self.assertEqual(values.output, input_tensor) self.assertEqual(values.output.ndim, input_tensor.ndim) self.assertEqual(values.output.dtype, dtype) def test_input_shape_deprecated(self): input_shape = (2, 3) batch_size = 4 dtype = "float32" with self.assertWarnsRegex( UserWarning, "Argument `input_shape` is deprecated. Use `shape` instead.", ): layer = InputLayer( input_shape=input_shape, batch_size=batch_size, dtype=dtype ) self.assertEqual(layer.batch_shape[0], batch_size) self.assertEqual(layer.batch_shape[1:], input_shape) self.assertEqual(layer.dtype, dtype) self.assertIsInstance(layer.output, KerasTensor) def test_call_method(self): layer = InputLayer(shape=(32,)) output = layer.call() self.assertIsNone(output) def test_numpy_shape(self): # non-python int type shapes should be ok InputLayer(shape=(np.int64(32),))
from parameterized import parameterized from torchaudio.io import AudioEffector from torchaudio_unittest.common_utils import get_sinusoid, skipIfNoFFmpeg, TorchaudioTestCase from .common import lt42 @skipIfNoFFmpeg class EffectorTest(TorchaudioTestCase): def test_null(self): """No effect and codec will return the same result""" sample_rate = 8000 frames_per_chunk = 256 effector = AudioEffector(effect=None, format=None) original = get_sinusoid(n_channels=3, sample_rate=sample_rate, channels_first=False) # one-go output = effector.apply(original, sample_rate) self.assertEqual(original, output) # streaming for i, chunk in enumerate(effector.stream(original, sample_rate, frames_per_chunk)): start = i * frames_per_chunk end = (i + 1) * frames_per_chunk self.assertEqual(original[start:end, :], chunk) @parameterized.expand( [ ("ogg", "flac"), # flac only supports s16 and s32 ("ogg", "opus"), # opus only supports 48k Hz ("ogg", "vorbis"), # vorbis only supports stereo # ("ogg", "vorbis", 44100), # this fails with small descrepancy; 441024 vs 441000 # TODO: investigate ("wav", None), ("wav", "pcm_u8"), ("mp3", None), ("mulaw", None, 44100), # mulaw is encoded without header ] ) def test_formats(self, format, encoder, sample_rate=8000): """Formats (some with restrictions) just work without an issue in effector""" effector = AudioEffector(format=format, encoder=encoder) original = get_sinusoid(n_channels=3, sample_rate=sample_rate, channels_first=False) output = effector.apply(original, sample_rate) # On 4.1 OPUS produces 8020 samples (extra 20) # this has been fixed on 4.2+ if encoder == "opus" and lt42(): return self.assertEqual(original.shape, output.shape) # Note # MP3 adds padding which cannot be removed when the encoded data is written to # file-like object without seek method. # The number of padding is retrievable as `AVCoedcContext::initial_padding` # https://ffmpeg.org/doxygen/4.1/structAVCodecContext.html#a8f95550ce04f236e9915516d04d3d1ab # but this is not exposed yet. # These "priming" samples have negative time stamp, so we can also add logic # to discard them at decoding, however, as far as I checked, when data is loaded # with StreamReader, the time stamp is reset. I tried options like avoid_negative_ts, # https://ffmpeg.org/ffmpeg-formats.html # but it made no difference. Perhaps this is because the information about negative # timestamp is only available at encoding side, and it presumably is written to # header file, but it is not happening somehow with file-like object. # Need to investigate more to remove MP3 padding if format == "mp3": return for chunk in effector.stream(original, sample_rate, frames_per_chunk=original.size(0)): self.assertEqual(original.shape, chunk.shape) @parameterized.expand([("loudnorm=I=-16:LRA=11:TP=-1.5",), ("volume=2",)]) def test_effect(self, effect): sample_rate = 8000 effector = AudioEffector(effect=effect) original = get_sinusoid(n_channels=3, sample_rate=sample_rate, channels_first=False) output = effector.apply(original, sample_rate) self.assertEqual(original.shape, output.shape) def test_resample(self): """Resample option allows to change the sampling rate""" sample_rate = 8000 output_sample_rate = 16000 num_channels = 3 effector = AudioEffector(effect="lowpass") original = get_sinusoid(n_channels=num_channels, sample_rate=sample_rate, channels_first=False) output = effector.apply(original, sample_rate, output_sample_rate) self.assertEqual(output.shape, [output_sample_rate, num_channels]) for chunk in effector.stream( original, sample_rate, output_sample_rate=output_sample_rate, frames_per_chunk=output_sample_rate ): self.assertEqual(chunk.shape, [output_sample_rate, num_channels])
from parameterized import parameterized from torchaudio.io import AudioEffector from torchaudio_unittest.common_utils import get_sinusoid, skipIfNoFFmpeg, TorchaudioTestCase from .common import lt42 @skipIfNoFFmpeg class EffectorTest(TorchaudioTestCase): def test_null(self): """No effect and codec will return the same result""" sample_rate = 8000 frames_per_chunk = 256 effector = AudioEffector(effect=None, format=None) original = get_sinusoid(n_channels=3, sample_rate=sample_rate, channels_first=False) # one-go output = effector.apply(original, sample_rate) self.assertEqual(original, output) # streaming for i, chunk in enumerate(effector.stream(original, sample_rate, frames_per_chunk)): start = i * frames_per_chunk end = (i + 1) * frames_per_chunk self.assertEqual(original[start:end, :], chunk) @parameterized.expand( [ ("ogg", "flac"), # flac only supports s16 and s32 ("ogg", "opus"), # opus only supports 48k Hz ("ogg", "vorbis"), # vorbis only supports stereo # ("ogg", "vorbis", 44100), # this fails with small descrepancy; 441024 vs 441000 # TODO: investigate ("wav", None), ("wav", "pcm_u8"), ("mp3", None), ("mulaw", None, 44100), # mulaw is encoded without header ] ) def test_formats(self, format, encoder, sample_rate=8000): """Formats (some with restrictions) just work without an issue in effector""" effector = AudioEffector(format=format, encoder=encoder) original = get_sinusoid(n_channels=3, sample_rate=sample_rate, channels_first=False) output = effector.apply(original, sample_rate) # On 4.1 OPUS produces 8020 samples (extra 20) # this has been fixed on 4.2+ if encoder == "opus" and lt42(): return self.assertEqual(original.shape, output.shape) # Note # MP3 adds padding which cannot be removed when the encoded data is written to # file-like object without seek method. # The number of padding is retrievable as `AVCoedcContext::initial_padding` # https://ffmpeg.org/doxygen/4.1/structAVCodecContext.html#a8f95550ce04f236e9915516d04d3d1ab # but this is not exposed yet. # These "priming" samples have negative time stamp, so we can also add logic # to discard them at decoding, however, as far as I checked, when data is loaded # with StreamReader, the time stamp is reset. I tried options like avoid_negative_ts, # https://ffmpeg.org/ffmpeg-formats.html # but it made no difference. Perhaps this is because the information about negative # timestamp is only available at encoding side, and it presumably is written to # header file, but it is not happening somehow with file-like object. # Need to investigate more to remove MP3 padding if format == "mp3": return for chunk in effector.stream(original, sample_rate, frames_per_chunk=original.size(0)): self.assertEqual(original.shape, chunk.shape) @parameterized.expand([("loudnorm=I=-16:LRA=11:TP=-1.5",), ("volume=2",)]) def test_effect(self, effect): sample_rate = 8000 effector = AudioEffector(effect=effect) original = get_sinusoid(n_channels=3, sample_rate=sample_rate, channels_first=False) output = effector.apply(original, sample_rate) self.assertEqual(original.shape, output.shape)
import numpy as np from numpy.typing import ArrayLike def oscillator_bank( frequencies: ArrayLike, amplitudes: ArrayLike, sample_rate: float, time_axis: int = -2, ) -> ArrayLike: """Reference implementation of oscillator_bank""" invalid = np.abs(frequencies) >= sample_rate / 2 if np.any(invalid): amplitudes = np.where(invalid, 0.0, amplitudes) pi2 = 2.0 * np.pi freqs = frequencies * pi2 / sample_rate % pi2 phases = np.cumsum(freqs, axis=time_axis, dtype=freqs.dtype) waveform = amplitudes * np.sin(phases) return waveform def sinc_ir(cutoff: ArrayLike, window_size: int = 513, high_pass: bool = False): if window_size % 2 == 0: raise ValueError(f"`window_size` must be odd. Given: {window_size}") half = window_size // 2 dtype = cutoff.dtype idx = np.linspace(-half, half, window_size, dtype=dtype) filt = np.sinc(cutoff[..., None] * idx[None, ...]) filt *= np.hamming(window_size).astype(dtype)[None, ...] filt /= np.abs(filt.sum(axis=-1, keepdims=True)) if high_pass: filt *= -1 filt[..., half] = 1.0 + filt[..., half] return filt def freq_ir(magnitudes): ir = np.fft.fftshift(np.fft.irfft(magnitudes), axes=-1) window = np.hanning(ir.shape[-1]) return (ir * window).astype(magnitudes.dtype)
import numpy as np from numpy.typing import ArrayLike def oscillator_bank( frequencies: ArrayLike, amplitudes: ArrayLike, sample_rate: float, time_axis: int = -2, ) -> ArrayLike: """Reference implementation of oscillator_bank""" invalid = np.abs(frequencies) >= sample_rate / 2 if np.any(invalid): amplitudes = np.where(invalid, 0.0, amplitudes) pi2 = 2.0 * np.pi freqs = frequencies * pi2 / sample_rate % pi2 phases = np.cumsum(freqs, axis=time_axis, dtype=freqs.dtype) waveform = amplitudes * np.sin(phases) return waveform def sinc_ir(cutoff: ArrayLike, window_size: int = 513, high_pass: bool = False): if window_size % 2 == 0: raise ValueError(f"`window_size` must be odd. Given: {window_size}") half = window_size // 2 dtype = cutoff.dtype idx = np.linspace(-half, half, window_size, dtype=dtype) filt = np.sinc(cutoff[..., None] * idx[None, ...]) filt *= np.hamming(window_size).astype(dtype)[None, ...] filt /= np.abs(filt.sum(axis=-1, keepdims=True)) if high_pass: filt *= -1 filt[..., half] = 1.0 + filt[..., half] return filt
# Copyright (c) OpenMMLab. All rights reserved. from .coarse_mask_head import CoarseMaskHead from .dynamic_mask_head import DynamicMaskHead from .fcn_mask_head import FCNMaskHead from .feature_relay_head import FeatureRelayHead from .fused_semantic_head import FusedSemanticHead from .global_context_head import GlobalContextHead from .grid_head import GridHead from .htc_mask_head import HTCMaskHead from .mask_point_head import MaskPointHead from .maskiou_head import MaskIoUHead from .scnet_mask_head import SCNetMaskHead from .scnet_semantic_head import SCNetSemanticHead __all__ = [ 'FCNMaskHead', 'HTCMaskHead', 'FusedSemanticHead', 'GridHead', 'MaskIoUHead', 'CoarseMaskHead', 'MaskPointHead', 'SCNetMaskHead', 'SCNetSemanticHead', 'GlobalContextHead', 'FeatureRelayHead', 'DynamicMaskHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .coarse_mask_head import CoarseMaskHead from .fcn_mask_head import FCNMaskHead from .feature_relay_head import FeatureRelayHead from .fused_semantic_head import FusedSemanticHead from .global_context_head import GlobalContextHead from .grid_head import GridHead from .htc_mask_head import HTCMaskHead from .mask_point_head import MaskPointHead from .maskiou_head import MaskIoUHead from .scnet_mask_head import SCNetMaskHead from .scnet_semantic_head import SCNetSemanticHead __all__ = [ 'FCNMaskHead', 'HTCMaskHead', 'FusedSemanticHead', 'GridHead', 'MaskIoUHead', 'CoarseMaskHead', 'MaskPointHead', 'SCNetMaskHead', 'SCNetSemanticHead', 'GlobalContextHead', 'FeatureRelayHead' ]
from jina.clients.mixin import AsyncHealthCheckMixin, AsyncPostMixin, AsyncProfileMixin from jina.orchestrate.flow.base import Flow class AsyncFlow(AsyncPostMixin, AsyncProfileMixin, AsyncHealthCheckMixin, Flow): """ Asynchronous version of :class:`jina.Flow`. They share the same interface, except in :class:`AsyncFlow` :meth:`train`, :meth:`index`, :meth:`search` methods are coroutines (i.e. declared with the async/await syntax), simply calling them will not schedule them to be executed. To actually run a coroutine, user need to put them in an eventloop, e.g. via ``asyncio.run()``, ``asyncio.create_task()``. :class:`AsyncFlow` can be very useful in the integration settings, where Jina/Jina Flow is NOT the main logic, but rather served as a part of other program. In this case, users often do not want to let Jina control the ``asyncio.eventloop``. On contrary, :class:`Flow` is controlling and wrapping the eventloop internally, making the Flow looks synchronous from outside. In particular, :class:`AsyncFlow` makes Jina usage in Jupyter Notebook more natural and reliable. For example, the following code will use the eventloop that already spawned in Jupyter/ipython to run Jina Flow (instead of creating a new one). .. highlight:: python .. code-block:: python from jina import AsyncFlow from jina.types.document.generators import from_ndarray import numpy as np with AsyncFlow().add() as f: await f.index(from_ndarray(np.random.random([5, 4])), on_done=print) Notice that the above code will NOT work in standard Python REPL, as only Jupyter/ipython implements "autoawait". .. seealso:: Asynchronous in REPL: Autoawait https://ipython.readthedocs.io/en/stable/interactive/autoawait.html Another example is when using Jina as an integration. Say you have another IO-bounded job ``heavylifting()``, you can use this feature to schedule Jina ``index()`` and ``heavylifting()`` concurrently. One can think of :class:`Flow` as Jina-managed eventloop, whereas :class:`AsyncFlow` is self-managed eventloop. """
from jina.clients.mixin import AsyncPostMixin from jina.orchestrate.flow.base import Flow class AsyncFlow(AsyncPostMixin, Flow): """ Asynchronous version of :class:`jina.Flow`. They share the same interface, except in :class:`AsyncFlow` :meth:`train`, :meth:`index`, :meth:`search` methods are coroutines (i.e. declared with the async/await syntax), simply calling them will not schedule them to be executed. To actually run a coroutine, user need to put them in an eventloop, e.g. via ``asyncio.run()``, ``asyncio.create_task()``. :class:`AsyncFlow` can be very useful in the integration settings, where Jina/Jina Flow is NOT the main logic, but rather served as a part of other program. In this case, users often do not want to let Jina control the ``asyncio.eventloop``. On contrary, :class:`Flow` is controlling and wrapping the eventloop internally, making the Flow looks synchronous from outside. In particular, :class:`AsyncFlow` makes Jina usage in Jupyter Notebook more natural and reliable. For example, the following code will use the eventloop that already spawned in Jupyter/ipython to run Jina Flow (instead of creating a new one). .. highlight:: python .. code-block:: python from jina import AsyncFlow from jina.types.document.generators import from_ndarray import numpy as np with AsyncFlow().add() as f: await f.index(from_ndarray(np.random.random([5, 4])), on_done=print) Notice that the above code will NOT work in standard Python REPL, as only Jupyter/ipython implements "autoawait". .. seealso:: Asynchronous in REPL: Autoawait https://ipython.readthedocs.io/en/stable/interactive/autoawait.html Another example is when using Jina as an integration. Say you have another IO-bounded job ``heavylifting()``, you can use this feature to schedule Jina ``index()`` and ``heavylifting()`` concurrently. One can think of :class:`Flow` as Jina-managed eventloop, whereas :class:`AsyncFlow` is self-managed eventloop. """
import numpy as np from docarray.array import DocumentArray from docarray.document import BaseDocument from docarray.typing import Tensor def test_get_bulk_attributes_function(): class Mmdoc(BaseDocument): text: str tensor: Tensor N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da._get_documents_attribute('tensor') assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da._get_documents_attribute('text') assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}' def test_get_bulk_attributes(): class Mmdoc(BaseDocument): text: str tensor: Tensor N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da.tensor assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da.text assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}'
import numpy as np from docarray.array import DocumentArray from docarray.document import BaseDocument from docarray.typing import Tensor def test_get_bulk_attributes(): class Mmdoc(BaseDocument): text: str tensor: Tensor N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da._get_documents_attribute('tensor') assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da._get_documents_attribute('text') assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}' def test_get_bulk_attributes(): class Mmdoc(BaseDocument): text: str tensor: Tensor N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da.tensor assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da.text assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}'
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import InformationRetrievalEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseInformationRetrievalEvaluator(InformationRetrievalEvaluator): def __init__( self, queries: dict[str, str], # qid => query corpus: dict[str, str], # cid => doc relevant_docs: dict[str, set[str]], # qid => Set[cid] corpus_chunk_size: int = 50000, mrr_at_k: list[int] = [10], ndcg_at_k: list[int] = [10], accuracy_at_k: list[int] = [1, 3, 5, 10], precision_recall_at_k: list[int] = [1, 3, 5, 10], map_at_k: list[int] = [100], show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] | None = None, main_score_function: str | SimilarityFunction | None = None, query_prompt: str | None = None, query_prompt_name: str | None = None, corpus_prompt: str | None = None, corpus_prompt_name: str | None = None, ) -> None: return super().__init__( queries=queries, corpus=corpus, relevant_docs=relevant_docs, corpus_chunk_size=corpus_chunk_size, mrr_at_k=mrr_at_k, ndcg_at_k=ndcg_at_k, accuracy_at_k=accuracy_at_k, precision_recall_at_k=precision_recall_at_k, map_at_k=map_at_k, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, write_csv=write_csv, truncate_dim=truncate_dim, score_functions=score_functions, main_score_function=main_score_function, query_prompt=query_prompt, query_prompt_name=query_prompt_name, corpus_prompt=corpus_prompt, corpus_prompt_name=corpus_prompt_name, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps, *args, **kwargs) def compute_metrices( self, model: SparseEncoder, corpus_model=None, corpus_embeddings: Tensor | None = None ) -> dict[str, float]: return super().compute_metrices(model=model, corpus_model=corpus_model, corpus_embeddings=corpus_embeddings) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, prompt_name: str | None = None, prompt: str | None = None, **kwargs, ) -> Tensor: return model.encode( sentences, prompt_name=prompt_name, prompt=prompt, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import InformationRetrievalEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseInformationRetrievalEvaluator(InformationRetrievalEvaluator): def __init__( self, queries: dict[str, str], # qid => query corpus: dict[str, str], # cid => doc relevant_docs: dict[str, set[str]], # qid => Set[cid] corpus_chunk_size: int = 50000, mrr_at_k: list[int] = [10], ndcg_at_k: list[int] = [10], accuracy_at_k: list[int] = [1, 3, 5, 10], precision_recall_at_k: list[int] = [1, 3, 5, 10], map_at_k: list[int] = [100], show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] | None = None, main_score_function: str | SimilarityFunction | None = None, query_prompt: str | None = None, query_prompt_name: str | None = None, corpus_prompt: str | None = None, corpus_prompt_name: str | None = None, ) -> None: super().__init__( queries=queries, corpus=corpus, relevant_docs=relevant_docs, corpus_chunk_size=corpus_chunk_size, mrr_at_k=mrr_at_k, ndcg_at_k=ndcg_at_k, accuracy_at_k=accuracy_at_k, precision_recall_at_k=precision_recall_at_k, map_at_k=map_at_k, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, write_csv=write_csv, truncate_dim=truncate_dim, score_functions=score_functions, main_score_function=main_score_function, query_prompt=query_prompt, query_prompt_name=query_prompt_name, corpus_prompt=corpus_prompt, corpus_prompt_name=corpus_prompt_name, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs ) -> dict[str, float]: return super().__call__(model, output_path, epoch, steps, *args, **kwargs) def compute_metrices( self, model: SparseEncoder, corpus_model=None, corpus_embeddings: Tensor | None = None ) -> dict[str, float]: return super().compute_metrices(model, corpus_model, corpus_embeddings) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, prompt_name: str | None = None, prompt: str | None = None, **kwargs, ) -> Tensor: return model.encode( sentences, prompt_name=prompt_name, prompt=prompt, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step)
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', # 270k iterations with batch_size 64 is roughly equivalent to 144 epochs '../common/ssj_270k_coco-instance.py', ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # the model is trained from scratch, so init_cfg is None data_preprocessor=dict( # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', # 270k iterations with batch_size 64 is roughly equivalent to 144 epochs '../common/ssj_270k_coco-instance.py', ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # the model is trained from scratch, so init_cfg is None data_preprocessor=dict( # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
__version__ = '0.1.0' from docarray.array.array import DocumentArray from docarray.document.document import BaseDocument as Document from docarray.predefined_document import Image, Mesh3D, PointCloud3D, Text __all__ = ['Document', 'DocumentArray', 'Image', 'Text', 'Mesh3D', 'PointCloud3D']
__version__ = '0.1.0' from docarray.array import DocumentArray from docarray.document.document import BaseDocument as Document from docarray.predefined_document import Image, Mesh3D, PointCloud3D, Text __all__ = ['Document', 'DocumentArray', 'Image', 'Text', 'Mesh3D', 'PointCloud3D']
_base_ = './rtmdet_s_8xb32-300e_coco.py' checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa model = dict( backbone=dict( deepen_factor=0.167, widen_factor=0.375, init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), neck=dict(in_channels=[96, 192, 384], out_channels=96, num_csp_blocks=1), bbox_head=dict(in_channels=96, feat_channels=96, exp_on_reg=False)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='CachedMosaic', img_scale=(640, 640), pad_val=114.0, max_cached_images=20, random_pop=False), dict( type='RandomResize', scale=(1280, 1280), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type='CachedMixUp', img_scale=(640, 640), ratio_range=(1.0, 1.0), max_cached_images=10, random_pop=False, pad_val=(114, 114, 114), prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './rtmdet_s_8xb32-300e_coco.py' checkpoint = 'TODO:imagenet_pretrain' # noqa model = dict( backbone=dict( deepen_factor=0.167, widen_factor=0.375, init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), neck=dict(in_channels=[96, 192, 384], out_channels=96, num_csp_blocks=1), bbox_head=dict(in_channels=96, feat_channels=96, exp_on_reg=False)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='CachedMosaic', img_scale=(640, 640), pad_val=114.0, max_cached_images=20, random_pop=False), dict( type='RandomResize', scale=(1280, 1280), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type='CachedMixUp', img_scale=(640, 640), ratio_range=(1.0, 1.0), max_cached_images=10, random_pop=False, pad_val=(114, 114, 114), prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
from typing import Union, Iterable, Dict from ..base.seqlike import BaseSequenceLikeMixin from .... import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with Elastic as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses Elastic as storage :return: the length of this :class:`DocumentArrayElastic` object """ try: return self._client.count(index=self._config.index_name)["count"] except: return 0 def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with Elastic storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._doc_id_exists(x) elif isinstance(x, Document): return self._doc_id_exists(x.id) else: return False def __del__(self): """Delete this :class:`DocumentArrayElastic` object""" self._save_offset2ids() # if not self._persist: # self._offset2ids.clear() def __repr__(self): """Return the string representation of :class:`DocumentArrayElastic` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' def _upload_batch(self, docs: Iterable['Document']): batch = [] for doc in docs: batch.append(self._document_to_elastic(doc)) if len(batch) > self._config.batch_size: self._send_requests(batch) self._refresh(self._config.index_name) batch = [] if len(batch) > 0: self._send_requests(batch) self._refresh(self._config.index_name) def extend(self, docs: Iterable['Document']): docs = list(docs) self._upload_batch(docs) self._offset2ids.extend([doc.id for doc in docs])
from typing import Union, Iterable, Dict from ..base.seqlike import BaseSequenceLikeMixin from .... import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with Elastic as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses Elastic as storage :return: the length of this :class:`DocumentArrayElastic` object """ try: return self._client.count(index=self._config.index_name)["count"] except: return 0 def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with Elastic storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._doc_id_exists(x) elif isinstance(x, Document): return self._doc_id_exists(x.id) else: return False def __del__(self): """Delete this :class:`DocumentArrayElastic` object""" self._save_offset2ids() # if not self._persist: # self._offset2ids.clear() def __repr__(self): """Return the string representation of :class:`DocumentArrayElastic` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' def _document_to_elastic(self, doc: 'Document') -> Dict: return { "_op_type": "index", '_id': doc.id, '_index': self._config.index_name, 'embedding': self._map_embedding(doc.embedding), 'blob': doc.to_base64(), } def _upload_batch(self, docs: Iterable['Document']): batch = [] for doc in docs: batch.append(self._document_to_elastic(doc)) if len(batch) > self._config.batch_size: self._send_requests(batch) self._refresh(self._config.index_name) batch = [] if len(batch) > 0: self._send_requests(batch) self._refresh(self._config.index_name) def extend(self, docs: Iterable['Document']): docs = list(docs) self._upload_batch(docs) self._offset2ids.extend([doc.id for doc in docs])
import functools import importlib import os import re from pathlib import Path from typing import TYPE_CHECKING, TypeVar if TYPE_CHECKING: from backend.data.block import Block T = TypeVar("T") @functools.cache def load_all_blocks() -> dict[str, type["Block"]]: from backend.data.block import Block # Dynamically load all modules under backend.blocks current_dir = Path(__file__).parent modules = [ str(f.relative_to(current_dir))[:-3].replace(os.path.sep, ".") for f in current_dir.rglob("*.py") if f.is_file() and f.name != "__init__.py" ] for module in modules: if not re.match("^[a-z0-9_.]+$", module): raise ValueError( f"Block module {module} error: module name must be lowercase, " "and contain only alphanumeric characters and underscores." ) importlib.import_module(f".{module}", package=__name__) # Load all Block instances from the available modules available_blocks: dict[str, type["Block"]] = {} for block_cls in all_subclasses(Block): class_name = block_cls.__name__ if class_name.endswith("Base"): continue if not class_name.endswith("Block"): raise ValueError( f"Block class {class_name} does not end with 'Block'. " "If you are creating an abstract class, " "please name the class with 'Base' at the end" ) block = block_cls.create() if not isinstance(block.id, str) or len(block.id) != 36: raise ValueError( f"Block ID {block.name} error: {block.id} is not a valid UUID" ) if block.id in available_blocks: raise ValueError( f"Block ID {block.name} error: {block.id} is already in use" ) input_schema = block.input_schema.model_fields output_schema = block.output_schema.model_fields # Make sure `error` field is a string in the output schema if "error" in output_schema and output_schema["error"].annotation is not str: raise ValueError( f"{block.name} `error` field in output_schema must be a string" ) # Ensure all fields in input_schema and output_schema are annotated SchemaFields for field_name, field in [*input_schema.items(), *output_schema.items()]: if field.annotation is None: raise ValueError( f"{block.name} has a field {field_name} that is not annotated" ) if field.json_schema_extra is None: raise ValueError( f"{block.name} has a field {field_name} not defined as SchemaField" ) for field in block.input_schema.model_fields.values(): if field.annotation is bool and field.default not in (True, False): raise ValueError( f"{block.name} has a boolean field with no default value" ) available_blocks[block.id] = block_cls return available_blocks __all__ = ["load_all_blocks"] def all_subclasses(cls: type[T]) -> list[type[T]]: subclasses = cls.__subclasses__() for subclass in subclasses: subclasses += all_subclasses(subclass) return subclasses
import importlib import os import re from pathlib import Path from typing import TYPE_CHECKING, TypeVar if TYPE_CHECKING: from backend.data.block import Block T = TypeVar("T") _AVAILABLE_BLOCKS: dict[str, type["Block"]] = {} def load_all_blocks() -> dict[str, type["Block"]]: from backend.data.block import Block if _AVAILABLE_BLOCKS: return _AVAILABLE_BLOCKS # Dynamically load all modules under backend.blocks AVAILABLE_MODULES = [] current_dir = Path(__file__).parent modules = [ str(f.relative_to(current_dir))[:-3].replace(os.path.sep, ".") for f in current_dir.rglob("*.py") if f.is_file() and f.name != "__init__.py" ] for module in modules: if not re.match("^[a-z0-9_.]+$", module): raise ValueError( f"Block module {module} error: module name must be lowercase, " "and contain only alphanumeric characters and underscores." ) importlib.import_module(f".{module}", package=__name__) AVAILABLE_MODULES.append(module) # Load all Block instances from the available modules for block_cls in all_subclasses(Block): class_name = block_cls.__name__ if class_name.endswith("Base"): continue if not class_name.endswith("Block"): raise ValueError( f"Block class {class_name} does not end with 'Block'. " "If you are creating an abstract class, " "please name the class with 'Base' at the end" ) block = block_cls.create() if not isinstance(block.id, str) or len(block.id) != 36: raise ValueError( f"Block ID {block.name} error: {block.id} is not a valid UUID" ) if block.id in _AVAILABLE_BLOCKS: raise ValueError( f"Block ID {block.name} error: {block.id} is already in use" ) input_schema = block.input_schema.model_fields output_schema = block.output_schema.model_fields # Make sure `error` field is a string in the output schema if "error" in output_schema and output_schema["error"].annotation is not str: raise ValueError( f"{block.name} `error` field in output_schema must be a string" ) # Ensure all fields in input_schema and output_schema are annotated SchemaFields for field_name, field in [*input_schema.items(), *output_schema.items()]: if field.annotation is None: raise ValueError( f"{block.name} has a field {field_name} that is not annotated" ) if field.json_schema_extra is None: raise ValueError( f"{block.name} has a field {field_name} not defined as SchemaField" ) for field in block.input_schema.model_fields.values(): if field.annotation is bool and field.default not in (True, False): raise ValueError( f"{block.name} has a boolean field with no default value" ) _AVAILABLE_BLOCKS[block.id] = block_cls return _AVAILABLE_BLOCKS __all__ = ["load_all_blocks"] def all_subclasses(cls: type[T]) -> list[type[T]]: subclasses = cls.__subclasses__() for subclass in subclasses: subclasses += all_subclasses(subclass) return subclasses
"""Argparser module for Deployment runtimes""" import argparse from jina import helper from jina.enums import DeploymentRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group def mixin_base_deployment_parser(parser): """Add mixin arguments required by :class:`BaseDeployment` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Deployment') gp.add_argument( '--uses-before', type=str, help='The executor attached before the Pods described by --uses, typically before sending to all ' 'shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--uses-after', type=str, help='The executor attached after the Pods described by --uses, typically used for receiving from ' 'all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--when', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The condition that the documents need to fulfill before reaching the Executor.' 'The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>`', ) gp.add_argument( '--external', action='store_true', default=False, help='The Deployment will be considered an external Deployment that has been started independently from the Flow.' 'This Deployment will not be context managed by the Flow.', ) # hidden CLI used for internal only gp.add_argument( '--deployment-role', type=DeploymentRoleType.from_string, choices=list(DeploymentRoleType), help='The role of this deployment in the flow' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--tls', action='store_true', default=False, help='If set, connect to deployment using tls encryption', ) gp.add_argument( '--port-monitoring', type=str, default=str(helper.random_port()), dest='port_monitoring', help=f'The port on which the prometheus server is exposed, default is a random port between [49152, 65535]', )
"""Argparser module for Deployment runtimes""" import argparse from jina.enums import DeploymentRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group def mixin_base_deployment_parser(parser): """Add mixin arguments required by :class:`BaseDeployment` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Deployment') gp.add_argument( '--uses-before', type=str, help='The executor attached before the Pods described by --uses, typically before sending to all ' 'shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--uses-after', type=str, help='The executor attached after the Pods described by --uses, typically used for receiving from ' 'all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--when', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The condition that the documents need to fulfill before reaching the Executor.' 'The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>`', ) gp.add_argument( '--external', action='store_true', default=False, help='The Deployment will be considered an external Deployment that has been started independently from the Flow.' 'This Deployment will not be context managed by the Flow.', ) # hidden CLI used for internal only gp.add_argument( '--deployment-role', type=DeploymentRoleType.from_string, choices=list(DeploymentRoleType), help='The role of this deployment in the flow' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--tls', action='store_true', default=False, help='If set, connect to deployment using tls encryption', )
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDocument from docarray.base_document.io.json import orjson_dumps from docarray.typing import AudioTorchTensor, AudioUrl from tests import TOYDATA_DIR AUDIO_FILES = [ str(TOYDATA_DIR / 'hello.wav'), str(TOYDATA_DIR / 'olleh.wav'), ] REMOTE_AUDIO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/olleh.wav?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) tensor = uri.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_torch_tensor_field(file_url): class MyAudioDoc(BaseDocument): audio_url: AudioUrl tensor: Optional[AudioTorchTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor = doc.audio_url.load() assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, AudioTorchTensor) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load(file_url): url = parse_obj_as(AudioUrl, file_url) tensor = url.load() assert isinstance(tensor, np.ndarray) def test_json_schema(): schema_json_of(AudioUrl) def test_dump_json(): url = parse_obj_as(AudioUrl, REMOTE_AUDIO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [ *[file for file in AUDIO_FILES], REMOTE_AUDIO_FILE, ], ) def test_validation(path_to_file): url = parse_obj_as(AudioUrl, path_to_file) assert isinstance(url, AudioUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'path_to_file', [ 'illegal', 'https://www.google.com', 'my/local/text/file.txt', 'my/local/text/file.png', ], ) def test_illegal_validation(path_to_file): with pytest.raises(ValueError, match='AudioUrl'): parse_obj_as(AudioUrl, path_to_file) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_proto_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) proto = uri._to_node_protobuf() assert 'audio_url' in str(proto)
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDocument from docarray.base_document.io.json import orjson_dumps from docarray.typing import AudioNdArray, AudioTorchTensor, AudioUrl from tests import TOYDATA_DIR AUDIO_FILES = [ str(TOYDATA_DIR / 'hello.wav'), str(TOYDATA_DIR / 'olleh.wav'), ] REMOTE_AUDIO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/olleh.wav?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) tensor = uri.load() assert isinstance(tensor, np.ndarray) assert isinstance(tensor, AudioNdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_torch_tensor_field(file_url): class MyAudioDoc(BaseDocument): audio_url: AudioUrl tensor: Optional[AudioTorchTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor = doc.audio_url.load() assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, AudioTorchTensor) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load(file_url): url = parse_obj_as(AudioUrl, file_url) tensor = url.load() assert isinstance(tensor, np.ndarray) def test_json_schema(): schema_json_of(AudioUrl) def test_dump_json(): url = parse_obj_as(AudioUrl, REMOTE_AUDIO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [ *[file for file in AUDIO_FILES], REMOTE_AUDIO_FILE, ], ) def test_validation(path_to_file): url = parse_obj_as(AudioUrl, path_to_file) assert isinstance(url, AudioUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'path_to_file', [ 'illegal', 'https://www.google.com', 'my/local/text/file.txt', 'my/local/text/file.png', ], ) def test_illegal_validation(path_to_file): with pytest.raises(ValueError, match='AudioUrl'): parse_obj_as(AudioUrl, path_to_file) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_proto_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) proto = uri._to_node_protobuf() assert 'audio_url' in str(proto)
import argparse from abc import ABC from typing import TYPE_CHECKING, Optional, Union from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime if TYPE_CHECKING: import asyncio import multiprocessing import threading class GatewayRuntime(AsyncNewLoopRuntime, ABC): """ The Runtime from which the GatewayRuntimes need to inherit """ def __init__( self, args: argparse.Namespace, cancel_event: Optional[ Union['asyncio.Event', 'multiprocessing.Event', 'threading.Event'] ] = None, **kwargs, ): # this order is intentional: The timeout is needed in _create_topology_graph(), called by super self.timeout_send = args.timeout_send if self.timeout_send: self.timeout_send /= 1e3 # convert ms to seconds super().__init__(args, cancel_event, **kwargs)
import argparse from abc import ABC from typing import TYPE_CHECKING, Optional, Union from jina.serve.networking import GrpcConnectionPool from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.gateway.graph.topology_graph import TopologyGraph if TYPE_CHECKING: import asyncio import multiprocessing import threading class GatewayRuntime(AsyncNewLoopRuntime, ABC): """ The Runtime from which the GatewayRuntimes need to inherit """ def __init__( self, args: argparse.Namespace, cancel_event: Optional[ Union['asyncio.Event', 'multiprocessing.Event', 'threading.Event'] ] = None, **kwargs, ): # this order is intentional: The timeout is needed in _set_topology_graph(), called by super self.timeout_send = args.timeout_send if self.timeout_send: self.timeout_send /= 1e3 # convert ms to seconds super().__init__(args, cancel_event, **kwargs) def _set_topology_graph(self): # check if it should be in K8s, maybe ConnectionPoolFactory to be created import json graph_description = json.loads(self.args.graph_description) graph_conditions = json.loads(self.args.graph_conditions) deployments_disable_reduce = json.loads(self.args.deployments_disable_reduce) self._topology_graph = TopologyGraph( graph_description, graph_conditions, deployments_disable_reduce, timeout_send=self.timeout_send, retries=self.args.retries, ) def _set_connection_pool(self): import json deployments_addresses = json.loads(self.args.deployments_addresses) # add the connections needed self._connection_pool = GrpcConnectionPool( logger=self.logger, compression=self.args.compression, metrics_registry=self.metrics_registry, ) for deployment_name, addresses in deployments_addresses.items(): for address in addresses: self._connection_pool.add_connection( deployment=deployment_name, address=address, head=True )
""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW_: http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% from time import time import matplotlib.pyplot as plt from scipy.stats import loguniform from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import PCA from sklearn.metrics import ConfusionMatrixDisplay, classification_report from sklearn.model_selection import RandomizedSearchCV, train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC # %% # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) # %% # Split into a training set and a test and keep 25% of the data for testing. X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42 ) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # %% # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print( "Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0]) ) t0 = time() pca = PCA(n_components=n_components, svd_solver="randomized", whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) # %% # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = { "C": loguniform(1e3, 1e5), "gamma": loguniform(1e-4, 1e-1), } clf = RandomizedSearchCV( SVC(kernel="rbf", class_weight="balanced"), param_grid, n_iter=10 ) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) # %% # Quantitative evaluation of the model quality on the test set print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) ConfusionMatrixDisplay.from_estimator( clf, X_test_pca, y_test, display_labels=target_names, xticks_rotation="vertical" ) plt.tight_layout() plt.show() # %% # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=0.01, right=0.99, top=0.90, hspace=0.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # %% # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(" ", 1)[-1] true_name = target_names[y_test[i]].rsplit(" ", 1)[-1] return "predicted: %s\ntrue: %s" % (pred_name, true_name) prediction_titles = [ title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0]) ] plot_gallery(X_test, prediction_titles, h, w) # %% # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show() # %% # Face recognition problem would be much more effectively solved by training # convolutional neural networks but this family of models is outside of the scope of # the scikit-learn library. Interested readers should instead try to use pytorch or # tensorflow to implement such models.
""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW_: http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% from time import time import matplotlib.pyplot as plt from scipy.stats import loguniform from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import PCA from sklearn.metrics import ConfusionMatrixDisplay, classification_report from sklearn.model_selection import RandomizedSearchCV, train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC # %% # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) # %% # Split into a training set and a test and keep 25% of the data for testing. X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42 ) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # %% # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print( "Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0]) ) t0 = time() pca = PCA(n_components=n_components, svd_solver="randomized", whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) # %% # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = { "C": loguniform(1e3, 1e5), "gamma": loguniform(1e-4, 1e-1), } clf = RandomizedSearchCV( SVC(kernel="rbf", class_weight="balanced"), param_grid, n_iter=10 ) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) # %% # Quantitative evaluation of the model quality on the test set print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) ConfusionMatrixDisplay.from_estimator( clf, X_test_pca, y_test, display_labels=target_names, xticks_rotation="vertical" ) plt.tight_layout() plt.show() # %% # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=0.01, right=0.99, top=0.90, hspace=0.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # %% # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(" ", 1)[-1] true_name = target_names[y_test[i]].rsplit(" ", 1)[-1] return "predicted: %s\ntrue: %s" % (pred_name, true_name) prediction_titles = [ title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0]) ] plot_gallery(X_test, prediction_titles, h, w) # %% # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show() # %% # Face recognition problem would be much more effectively solved by training # convolutional neural networks but this family of models is outside of the scope of # the scikit-learn library. Interested readers should instead try to use pytorch or # tensorflow to implement such models.
""" Script to generate meta.json to store metadata for a nightly build of XGBoost Python package. """ import argparse import json import pathlib def main(args: argparse.Namespace) -> None: wheel_path = pathlib.Path(args.wheel_path).expanduser().resolve() if not wheel_path.exists(): raise ValueError(f"Wheel cannot be found at path {wheel_path}") if not wheel_path.is_file(): raise ValueError(f"Path {wheel_path} is not a valid file") wheel_name = wheel_path.name meta_path = pathlib.Path(args.meta_path) if not meta_path.exists(): raise ValueError(f"Path {meta_path} does not exist") if not meta_path.is_dir(): raise ValueError(f"Path {meta_path} is not a valid directory") tokens = wheel_name.split("-") assert len(tokens) == 5 version = tokens[1].split("+")[0] meta_info = { "wheel_path": f"{args.commit_hash}/{wheel_name}", "wheel_name": wheel_name, "platform_tag": args.platform_tag, "version": version, "commit_id": args.commit_hash, } with open(meta_path / "meta.json", "w") as f: json.dump(meta_info, f, indent=4) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Format meta.json encoding the latest nightly version of the Python wheel" ) parser.add_argument( "--wheel-path", type=str, required=True, help="Path to the wheel" ) parser.add_argument( "--commit-hash", type=str, required=True, help="Git commit hash" ) parser.add_argument( "--platform-tag", type=str, required=True, help="Platform tag (e.g. manylinux_2_28_x86_64)", ) parser.add_argument( "--meta-path", type=str, required=True, help="Directory to place meta.json" ) parsed_args = parser.parse_args() main(parsed_args)
""" Script to generate meta.json to store metadata for a nightly build of XGBoost Python package. """ import argparse import json import pathlib def main(args: argparse.Namespace) -> None: wheel_path = pathlib.Path(args.wheel_path).expanduser().resolve() if not wheel_path.exists(): raise ValueError(f"Wheel cannot be found at path {wheel_path}") if not wheel_path.is_file(): raise ValueError(f"Path {wheel_path} is not a valid file") wheel_name = wheel_path.name meta_path = pathlib.Path(args.meta_path) if not meta_path.exists(): raise ValueError(f"Path {meta_path} does not exist") if not meta_path.is_dir(): raise ValueError(f"Path {meta_path} is not a valid directory") tokens = wheel_name.split("-") assert len(tokens) == 5 version = tokens[1].split("+")[0] meta_info = { "wheel_name": wheel_name, "platform_tag": args.platform_tag, "version": version, "commit_id": args.commit_hash, } with open(meta_path / "meta.json", "w") as f: json.dump(meta_info, f, indent=4) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Format meta.json encoding the latest nightly version of the Python wheel" ) parser.add_argument( "--wheel-path", type=str, required=True, help="Path to the wheel" ) parser.add_argument( "--commit-hash", type=str, required=True, help="Git commit hash" ) parser.add_argument( "--platform-tag", type=str, required=True, help="Platform tag (e.g. manylinux_2_28_x86_64)", ) parser.add_argument( "--meta-path", type=str, required=True, help="Directory to place meta.json" ) parsed_args = parser.parse_args() main(parsed_args)
import string from typing import Any from langchain.evaluation.schema import StringEvaluator class ExactMatchStringEvaluator(StringEvaluator): """Compute an exact match between the prediction and the reference. Examples ---------- >>> evaluator = ExactMatchChain() >>> evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="Mindy is the CTO", ) # This will return {'score': 1.0} >>> evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="Mindy is the CEO", ) # This will return {'score': 0.0} """ def __init__( self, *, ignore_case: bool = False, ignore_punctuation: bool = False, ignore_numbers: bool = False, **kwargs: Any, ): super().__init__() self.ignore_case = ignore_case self.ignore_punctuation = ignore_punctuation self.ignore_numbers = ignore_numbers @property def requires_input(self) -> bool: """ This evaluator does not require input. """ return False @property def requires_reference(self) -> bool: """ This evaluator requires a reference. """ return True @property def input_keys(self) -> list[str]: """ Get the input keys. Returns: List[str]: The input keys. """ return ["reference", "prediction"] @property def evaluation_name(self) -> str: """ Get the evaluation name. Returns: str: The evaluation name. """ return "exact_match" def _evaluate_strings( # type: ignore[override] self, *, prediction: str, reference: str, **kwargs: Any, ) -> dict: """ Evaluate the exact match between the prediction and the reference. Args: prediction (str): The prediction string. reference (Optional[str], optional): The reference string. Returns: dict: The evaluation results containing the score. """ if self.ignore_case: prediction = prediction.lower() reference = reference.lower() if self.ignore_punctuation: prediction = prediction.translate(str.maketrans("", "", string.punctuation)) reference = reference.translate(str.maketrans("", "", string.punctuation)) if self.ignore_numbers: prediction = prediction.translate(str.maketrans("", "", string.digits)) reference = reference.translate(str.maketrans("", "", string.digits)) return {"score": int(prediction == reference)}
import string from typing import Any from langchain.evaluation.schema import StringEvaluator class ExactMatchStringEvaluator(StringEvaluator): """Compute an exact match between the prediction and the reference. Examples ---------- >>> evaluator = ExactMatchChain() >>> evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="Mindy is the CTO", ) # This will return {'score': 1.0} >>> evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="Mindy is the CEO", ) # This will return {'score': 0.0} """ def __init__( self, *, ignore_case: bool = False, ignore_punctuation: bool = False, ignore_numbers: bool = False, **kwargs: Any, ): super().__init__() self.ignore_case = ignore_case self.ignore_punctuation = ignore_punctuation self.ignore_numbers = ignore_numbers @property def requires_input(self) -> bool: """ This evaluator does not require input. """ return False @property def requires_reference(self) -> bool: """ This evaluator requires a reference. """ return True @property def input_keys(self) -> list[str]: """ Get the input keys. Returns: List[str]: The input keys. """ return ["reference", "prediction"] @property def evaluation_name(self) -> str: """ Get the evaluation name. Returns: str: The evaluation name. """ return "exact_match" def _evaluate_strings( # type: ignore[arg-type,override] self, *, prediction: str, reference: str, **kwargs: Any, ) -> dict: """ Evaluate the exact match between the prediction and the reference. Args: prediction (str): The prediction string. reference (Optional[str], optional): The reference string. Returns: dict: The evaluation results containing the score. """ if self.ignore_case: prediction = prediction.lower() reference = reference.lower() if self.ignore_punctuation: prediction = prediction.translate(str.maketrans("", "", string.punctuation)) reference = reference.translate(str.maketrans("", "", string.punctuation)) if self.ignore_numbers: prediction = prediction.translate(str.maketrans("", "", string.digits)) reference = reference.translate(str.maketrans("", "", string.digits)) return {"score": int(prediction == reference)}
import sys import traceback from importlib.machinery import SourceFileLoader if __name__ == "__main__": files = sys.argv[1:] has_failure = False for file in files: try: SourceFileLoader("x", file).load_module() except Exception: # noqa: PERF203 has_failure = True print(file) # noqa: T201 traceback.print_exc() print() # noqa: T201 sys.exit(1 if has_failure else 0)
import sys import traceback from importlib.machinery import SourceFileLoader if __name__ == "__main__": files = sys.argv[1:] has_failure = False for file in files: try: SourceFileLoader("x", file).load_module() except Exception: has_failure = True print(file) # noqa: T201 traceback.print_exc() print() # noqa: T201 sys.exit(1 if has_failure else 0)
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( frozen_stages=0, norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, init_cfg=dict( type='Pretrained', checkpoint='./swav_800ep_pretrain.pth.tar'))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( frozen_stages=0, norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, init_cfg=dict( type='Pretrained', checkpoint='./swav_800ep_pretrain.pth.tar'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = [ '../_base_/models/cascade-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( roi_head=dict(bbox_head=[ dict( type='SABLHead', num_classes=80, cls_in_channels=256, reg_in_channels=256, roi_feat_size=7, reg_feat_up_ratio=2, reg_pre_kernel=3, reg_post_kernel=3, reg_pre_num=2, reg_post_num=1, cls_out_channels=1024, reg_offset_out_channels=256, reg_cls_out_channels=256, num_cls_fcs=1, num_reg_fcs=0, reg_class_agnostic=True, norm_cfg=None, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.7), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1, loss_weight=1.0)), dict( type='SABLHead', num_classes=80, cls_in_channels=256, reg_in_channels=256, roi_feat_size=7, reg_feat_up_ratio=2, reg_pre_kernel=3, reg_post_kernel=3, reg_pre_num=2, reg_post_num=1, cls_out_channels=1024, reg_offset_out_channels=256, reg_cls_out_channels=256, num_cls_fcs=1, num_reg_fcs=0, reg_class_agnostic=True, norm_cfg=None, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.5), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1, loss_weight=1.0)), dict( type='SABLHead', num_classes=80, cls_in_channels=256, reg_in_channels=256, roi_feat_size=7, reg_feat_up_ratio=2, reg_pre_kernel=3, reg_post_kernel=3, reg_pre_num=2, reg_post_num=1, cls_out_channels=1024, reg_offset_out_channels=256, reg_cls_out_channels=256, num_cls_fcs=1, num_reg_fcs=0, reg_class_agnostic=True, norm_cfg=None, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.3), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1, loss_weight=1.0)) ]))
_base_ = [ '../_base_/models/cascade_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( roi_head=dict(bbox_head=[ dict( type='SABLHead', num_classes=80, cls_in_channels=256, reg_in_channels=256, roi_feat_size=7, reg_feat_up_ratio=2, reg_pre_kernel=3, reg_post_kernel=3, reg_pre_num=2, reg_post_num=1, cls_out_channels=1024, reg_offset_out_channels=256, reg_cls_out_channels=256, num_cls_fcs=1, num_reg_fcs=0, reg_class_agnostic=True, norm_cfg=None, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.7), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1, loss_weight=1.0)), dict( type='SABLHead', num_classes=80, cls_in_channels=256, reg_in_channels=256, roi_feat_size=7, reg_feat_up_ratio=2, reg_pre_kernel=3, reg_post_kernel=3, reg_pre_num=2, reg_post_num=1, cls_out_channels=1024, reg_offset_out_channels=256, reg_cls_out_channels=256, num_cls_fcs=1, num_reg_fcs=0, reg_class_agnostic=True, norm_cfg=None, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.5), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1, loss_weight=1.0)), dict( type='SABLHead', num_classes=80, cls_in_channels=256, reg_in_channels=256, roi_feat_size=7, reg_feat_up_ratio=2, reg_pre_kernel=3, reg_post_kernel=3, reg_pre_num=2, reg_post_num=1, cls_out_channels=1024, reg_offset_out_channels=256, reg_cls_out_channels=256, num_cls_fcs=1, num_reg_fcs=0, reg_class_agnostic=True, norm_cfg=None, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.3), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1, loss_weight=1.0)) ]))
import numpy as np import pytest from keras.src import testing from keras.src.layers.activations import relu class ReLUTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_relu(self): self.run_layer_test( relu.ReLU, init_kwargs={ "max_value": 10, "negative_slope": 1, "threshold": 0.5, }, input_shape=(2, 3, 4), supports_masking=True, assert_built_after_instantiation=True, ) def test_normal_relu_correctness(self): relu_layer = relu.ReLU(max_value=10, negative_slope=0.0, threshold=0) input = np.array([-10, -5, 0.0, 5, 10]) expected_output = np.array([0.0, 0.0, 0.0, 5.0, 10.0]) result = relu_layer(input) self.assertAllClose(result, expected_output) def test_leaky_relu_correctness(self): relu_layer = relu.ReLU(max_value=10, negative_slope=0.5, threshold=0) input = np.array([-10, -5, 0.0, 5, 10]) expected_output = np.array([-5.0, -2.5, 0.0, 5.0, 10.0]) result = relu_layer(input) self.assertAllClose(result, expected_output) def test_threshold_relu_correctness(self): relu_layer = relu.ReLU(max_value=8, negative_slope=0.0, threshold=5) input = np.array([6.0, 7.0, 0.0, 5, 10]) expected_output = np.array([6.0, 7.0, 0.0, 0.0, 8.0]) result = relu_layer(input) self.assertAllClose(result, expected_output) def test_invalid_usage(self): with self.assertRaisesRegex( ValueError, "max_value of a ReLU layer cannot be a negative value", ): self.run_layer_test( relu.ReLU, init_kwargs={ "max_value": -10, "negative_slope": 1, "threshold": 0.5, }, input_shape=(2, 3, 4), supports_masking=True, ) with self.assertRaisesRegex( ValueError, "negative_slope of a ReLU layer cannot be a negative value", ): self.run_layer_test( relu.ReLU, init_kwargs={ "max_value": 10, "negative_slope": -10, "threshold": 0.5, }, input_shape=(2, 3, 4), supports_masking=True, ) with self.assertRaisesRegex( ValueError, "threshold of a ReLU layer cannot be a negative value" ): self.run_layer_test( relu.ReLU, init_kwargs={ "max_value": 10, "negative_slope": 1, "threshold": -10, }, input_shape=(2, 3, 4), supports_masking=True, )
import numpy as np import pytest from keras.src import testing from keras.src.layers.activations import relu class ReLUTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_relu(self): self.run_layer_test( relu.ReLU, init_kwargs={ "max_value": 10, "negative_slope": 1, "threshold": 0.5, }, input_shape=(2, 3, 4), supports_masking=True, ) def test_normal_relu_correctness(self): relu_layer = relu.ReLU(max_value=10, negative_slope=0.0, threshold=0) input = np.array([-10, -5, 0.0, 5, 10]) expected_output = np.array([0.0, 0.0, 0.0, 5.0, 10.0]) result = relu_layer(input) self.assertAllClose(result, expected_output) def test_leaky_relu_correctness(self): relu_layer = relu.ReLU(max_value=10, negative_slope=0.5, threshold=0) input = np.array([-10, -5, 0.0, 5, 10]) expected_output = np.array([-5.0, -2.5, 0.0, 5.0, 10.0]) result = relu_layer(input) self.assertAllClose(result, expected_output) def test_threshold_relu_correctness(self): relu_layer = relu.ReLU(max_value=8, negative_slope=0.0, threshold=5) input = np.array([6.0, 7.0, 0.0, 5, 10]) expected_output = np.array([6.0, 7.0, 0.0, 0.0, 8.0]) result = relu_layer(input) self.assertAllClose(result, expected_output) def test_invalid_usage(self): with self.assertRaisesRegex( ValueError, "max_value of a ReLU layer cannot be a negative value", ): self.run_layer_test( relu.ReLU, init_kwargs={ "max_value": -10, "negative_slope": 1, "threshold": 0.5, }, input_shape=(2, 3, 4), supports_masking=True, ) with self.assertRaisesRegex( ValueError, "negative_slope of a ReLU layer cannot be a negative value", ): self.run_layer_test( relu.ReLU, init_kwargs={ "max_value": 10, "negative_slope": -10, "threshold": 0.5, }, input_shape=(2, 3, 4), supports_masking=True, ) with self.assertRaisesRegex( ValueError, "threshold of a ReLU layer cannot be a negative value" ): self.run_layer_test( relu.ReLU, init_kwargs={ "max_value": 10, "negative_slope": 1, "threshold": -10, }, input_shape=(2, 3, 4), supports_masking=True, )
import os import boto3 import fsspec import pytest from moto import mock_s3 from datasets.filesystems import ( COMPRESSION_FILESYSTEMS, HfFileSystem, S3FileSystem, extract_path_from_uri, is_remote_filesystem, ) from datasets.utils._hf_hub_fixes import dataset_info as hf_api_dataset_info from .utils import require_lz4, require_zstandard @pytest.fixture(scope="function") def aws_credentials(): """Mocked AWS Credentials for moto.""" os.environ["AWS_ACCESS_KEY_ID"] = "fake_access_key" os.environ["AWS_SECRET_ACCESS_KEY"] = "fake_secret_key" os.environ["AWS_SECURITY_TOKEN"] = "fake_secrurity_token" os.environ["AWS_SESSION_TOKEN"] = "fake_session_token" @pytest.fixture(scope="function") def s3(aws_credentials): with mock_s3(): yield boto3.client("s3", region_name="us-east-1") def test_extract_path_from_uri(s3): mock_bucket = "moto-mock-s3-bucket" # We need to create the bucket since this is all in Moto's 'virtual' AWS account s3.create_bucket(Bucket=mock_bucket) dataset_path = f"s3://{mock_bucket}" dataset_path = extract_path_from_uri(dataset_path) assert dataset_path.startswith("s3://") is False dataset_path = "./local/path" new_dataset_path = extract_path_from_uri(dataset_path) assert dataset_path == new_dataset_path def test_is_remote_filesystem(): fs = S3FileSystem(key="fake_access_key", secret="fake_secret") is_remote = is_remote_filesystem(fs) assert is_remote is True fs = fsspec.filesystem("file") is_remote = is_remote_filesystem(fs) assert is_remote is False @pytest.mark.parametrize("compression_fs_class", COMPRESSION_FILESYSTEMS) def test_compression_filesystems(compression_fs_class, gz_file, bz2_file, lz4_file, zstd_file, xz_file, text_file): input_paths = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bz2_file, "lz4": lz4_file} input_path = input_paths[compression_fs_class.protocol] if input_path is None: reason = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lz4.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) fs = fsspec.filesystem(compression_fs_class.protocol, fo=input_path) assert isinstance(fs, compression_fs_class) expected_filename = os.path.basename(input_path) expected_filename = expected_filename[: expected_filename.rindex(".")] assert fs.ls("/") == [expected_filename] with fs.open(expected_filename, "r", encoding="utf-8") as f, open(text_file, encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol", ["zip", "gzip"]) def test_fs_isfile(protocol, zip_jsonl_path, jsonl_gz_path): compressed_file_paths = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} compressed_file_path = compressed_file_paths[protocol] member_file_path = "dataset.jsonl" path = f"{protocol}://{member_file_path}::{compressed_file_path}" fs, *_ = fsspec.get_fs_token_paths(path) assert fs.isfile(member_file_path) assert not fs.isfile("non_existing_" + member_file_path) @pytest.mark.integration def test_hf_filesystem(hf_token, hf_api, hf_private_dataset_repo_txt_data, text_file): repo_info = hf_api_dataset_info(hf_api, hf_private_dataset_repo_txt_data, use_auth_token=hf_token) hffs = HfFileSystem(repo_info=repo_info, token=hf_token) assert sorted(hffs.glob("*")) == [".gitattributes", "data"] assert hffs.isdir("data") assert hffs.isfile(".gitattributes") and hffs.isfile("data/text_data.txt") with open(text_file) as f: assert hffs.open("data/text_data.txt", "r").read() == f.read()
import os import boto3 import fsspec import pytest from moto import mock_s3 from datasets.filesystems import ( COMPRESSION_FILESYSTEMS, HfFileSystem, S3FileSystem, extract_path_from_uri, is_remote_filesystem, ) from .utils import require_lz4, require_zstandard @pytest.fixture(scope="function") def aws_credentials(): """Mocked AWS Credentials for moto.""" os.environ["AWS_ACCESS_KEY_ID"] = "fake_access_key" os.environ["AWS_SECRET_ACCESS_KEY"] = "fake_secret_key" os.environ["AWS_SECURITY_TOKEN"] = "fake_secrurity_token" os.environ["AWS_SESSION_TOKEN"] = "fake_session_token" @pytest.fixture(scope="function") def s3(aws_credentials): with mock_s3(): yield boto3.client("s3", region_name="us-east-1") def test_extract_path_from_uri(s3): mock_bucket = "moto-mock-s3-bucket" # We need to create the bucket since this is all in Moto's 'virtual' AWS account s3.create_bucket(Bucket=mock_bucket) dataset_path = f"s3://{mock_bucket}" dataset_path = extract_path_from_uri(dataset_path) assert dataset_path.startswith("s3://") is False dataset_path = "./local/path" new_dataset_path = extract_path_from_uri(dataset_path) assert dataset_path == new_dataset_path def test_is_remote_filesystem(): fs = S3FileSystem(key="fake_access_key", secret="fake_secret") is_remote = is_remote_filesystem(fs) assert is_remote is True fs = fsspec.filesystem("file") is_remote = is_remote_filesystem(fs) assert is_remote is False @pytest.mark.parametrize("compression_fs_class", COMPRESSION_FILESYSTEMS) def test_compression_filesystems(compression_fs_class, gz_file, bz2_file, lz4_file, zstd_file, xz_file, text_file): input_paths = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bz2_file, "lz4": lz4_file} input_path = input_paths[compression_fs_class.protocol] if input_path is None: reason = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lz4.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) fs = fsspec.filesystem(compression_fs_class.protocol, fo=input_path) assert isinstance(fs, compression_fs_class) expected_filename = os.path.basename(input_path) expected_filename = expected_filename[: expected_filename.rindex(".")] assert fs.ls("/") == [expected_filename] with fs.open(expected_filename, "r", encoding="utf-8") as f, open(text_file, encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol", ["zip", "gzip"]) def test_fs_isfile(protocol, zip_jsonl_path, jsonl_gz_path): compressed_file_paths = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} compressed_file_path = compressed_file_paths[protocol] member_file_path = "dataset.jsonl" path = f"{protocol}://{member_file_path}::{compressed_file_path}" fs, *_ = fsspec.get_fs_token_paths(path) assert fs.isfile(member_file_path) assert not fs.isfile("non_existing_" + member_file_path) @pytest.mark.integration def test_hf_filesystem(hf_token, hf_api, hf_private_dataset_repo_txt_data, text_file): repo_info = hf_api.dataset_info(hf_private_dataset_repo_txt_data, token=hf_token) hffs = HfFileSystem(repo_info=repo_info, token=hf_token) assert sorted(hffs.glob("*")) == [".gitattributes", "data"] assert hffs.isdir("data") assert hffs.isfile(".gitattributes") and hffs.isfile("data/text_data.txt") with open(text_file) as f: assert hffs.open("data/text_data.txt", "r").read() == f.read()
import numpy as np def oscillator_bank( frequencies, amplitudes, sample_rate: float, time_axis: int = -2, ): """Reference implementation of oscillator_bank""" invalid = np.abs(frequencies) >= sample_rate / 2 if np.any(invalid): amplitudes = np.where(invalid, 0.0, amplitudes) pi2 = 2.0 * np.pi freqs = frequencies * pi2 / sample_rate % pi2 phases = np.cumsum(freqs, axis=time_axis, dtype=freqs.dtype) waveform = amplitudes * np.sin(phases) return waveform def sinc_ir(cutoff, window_size: int = 513, high_pass: bool = False): if window_size % 2 == 0: raise ValueError(f"`window_size` must be odd. Given: {window_size}") half = window_size // 2 dtype = cutoff.dtype idx = np.linspace(-half, half, window_size, dtype=dtype) filt = np.sinc(cutoff[..., None] * idx[None, ...]) filt *= np.hamming(window_size).astype(dtype)[None, ...] filt /= np.abs(filt.sum(axis=-1, keepdims=True)) if high_pass: filt *= -1 filt[..., half] = 1.0 + filt[..., half] return filt def freq_ir(magnitudes): ir = np.fft.fftshift(np.fft.irfft(magnitudes), axes=-1) window = np.hanning(ir.shape[-1]) return (ir * window).astype(magnitudes.dtype)
import numpy as np from numpy.typing import ArrayLike def oscillator_bank( frequencies: ArrayLike, amplitudes: ArrayLike, sample_rate: float, time_axis: int = -2, ) -> ArrayLike: """Reference implementation of oscillator_bank""" invalid = np.abs(frequencies) >= sample_rate / 2 if np.any(invalid): amplitudes = np.where(invalid, 0.0, amplitudes) pi2 = 2.0 * np.pi freqs = frequencies * pi2 / sample_rate % pi2 phases = np.cumsum(freqs, axis=time_axis, dtype=freqs.dtype) waveform = amplitudes * np.sin(phases) return waveform def sinc_ir(cutoff: ArrayLike, window_size: int = 513, high_pass: bool = False): if window_size % 2 == 0: raise ValueError(f"`window_size` must be odd. Given: {window_size}") half = window_size // 2 dtype = cutoff.dtype idx = np.linspace(-half, half, window_size, dtype=dtype) filt = np.sinc(cutoff[..., None] * idx[None, ...]) filt *= np.hamming(window_size).astype(dtype)[None, ...] filt /= np.abs(filt.sum(axis=-1, keepdims=True)) if high_pass: filt *= -1 filt[..., half] = 1.0 + filt[..., half] return filt def freq_ir(magnitudes): ir = np.fft.fftshift(np.fft.irfft(magnitudes), axes=-1) window = np.hanning(ir.shape[-1]) return (ir * window).astype(magnitudes.dtype)
# DO NOT EDIT. Generated by api_gen.sh from keras.api import DTypePolicy from keras.api import FloatDTypePolicy from keras.api import Function from keras.api import Initializer from keras.api import Input from keras.api import InputSpec from keras.api import KerasTensor from keras.api import Layer from keras.api import Loss from keras.api import Metric from keras.api import Model from keras.api import Operation from keras.api import Optimizer from keras.api import Quantizer from keras.api import Regularizer from keras.api import RematScope from keras.api import Sequential from keras.api import StatelessScope from keras.api import SymbolicScope from keras.api import Variable from keras.api import __version__ from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import device from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import name_scope from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import remat from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import version from keras.api import visualization from keras.api import wrappers # END DO NOT EDIT. import os # isort: skip # Add everything in /api/ to the module search path. __path__.append(os.path.join(os.path.dirname(__file__), "api")) # noqa: F405 # Don't pollute namespace. del os # Never autocomplete `.src` or `.api` on an imported keras object. def __dir__(): keys = dict.fromkeys((globals().keys())) keys.pop("src") keys.pop("api") return list(keys) # Don't import `.src` or `.api` during `from keras import *`. __all__ = [ name for name in globals().keys() if not (name.startswith("_") or name in ("src", "api")) ]
# DO NOT EDIT. Generated by api_gen.sh from keras.api import DTypePolicy from keras.api import FloatDTypePolicy from keras.api import Function from keras.api import Initializer from keras.api import Input from keras.api import InputSpec from keras.api import KerasTensor from keras.api import Layer from keras.api import Loss from keras.api import Metric from keras.api import Model from keras.api import Operation from keras.api import Optimizer from keras.api import Quantizer from keras.api import Regularizer from keras.api import Sequential from keras.api import StatelessScope from keras.api import SymbolicScope from keras.api import Variable from keras.api import __version__ from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import device from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import name_scope from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import version from keras.api import visualization from keras.api import wrappers # END DO NOT EDIT. import os # isort: skip # Add everything in /api/ to the module search path. __path__.append(os.path.join(os.path.dirname(__file__), "api")) # noqa: F405 # Don't pollute namespace. del os # Never autocomplete `.src` or `.api` on an imported keras object. def __dir__(): keys = dict.fromkeys((globals().keys())) keys.pop("src") keys.pop("api") return list(keys) # Don't import `.src` or `.api` during `from keras import *`. __all__ = [ name for name in globals().keys() if not (name.startswith("_") or name in ("src", "api")) ]
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseRerankingEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with queries, positives, and negatives eval_dataset = load_dataset("microsoft/ms_marco", "v1.1", split="validation").select(range(1000)) samples = [ { "query": sample["query"], "positive": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if is_selected ], "negative": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if not is_selected ], } for sample in eval_dataset ] # Now evaluate using only the documents from the 1000 samples reranking_evaluator = SparseRerankingEvaluator( samples=samples, name="ms_marco_dev_small", show_progress_bar=True, batch_size=32, ) results = reranking_evaluator(model) """ RerankingEvaluator: Evaluating the model on the ms_marco_dev_small dataset: Queries: 967 Positives: Min 1.0, Mean 1.1, Max 3.0 Negatives: Min 1.0, Mean 7.1, Max 9.0 MAP: 53.41 MRR@10: 54.14 NDCG@10: 65.06 Model Query Sparsity: Active Dimensions: 42.2, Sparsity Ratio: 0.9986 Model Corpus Sparsity: Active Dimensions: 126.5, Sparsity Ratio: 0.9959 """ # Print the results print(f"Primary metric: {reranking_evaluator.primary_metric}") # => Primary metric: ms_marco_dev_small_ndcg@10 print(f"Primary metric value: {results[reranking_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6506
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseRerankingEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with queries, positives, and negatives eval_dataset = load_dataset("microsoft/ms_marco", "v1.1", split="validation").select(range(1000)) samples = [ { "query": sample["query"], "positive": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if is_selected ], "negative": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if not is_selected ], } for sample in eval_dataset ] # Now evaluate using only the documents from the 1000 samples reranking_evaluator = SparseRerankingEvaluator( samples=samples, name="ms_marco_dev_small", show_progress_bar=True, batch_size=32, ) results = reranking_evaluator(model) """ RerankingEvaluator: Evaluating the model on the ms_marco_dev_small dataset: Queries: 967 Positives: Min 1.0, Mean 1.1, Max 3.0 Negatives: Min 1.0, Mean 7.1, Max 9.0 MAP: 53.61 MRR@10: 54.30 NDCG@10: 65.20 Model Query Sparsity: Active Dimensions: 43.9, Sparsity Ratio: 0.9986 Model Corpus Sparsity: Active Dimensions: 128.4, Sparsity Ratio: 0.9958 """ # Print the results print(f"Primary metric: {reranking_evaluator.primary_metric}") # => Primary metric: ms_marco_dev_small_ndcg@10 print(f"Primary metric value: {results[reranking_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6520
from typing import TYPE_CHECKING from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available def text_encoder_lora_state_dict(text_encoder): deprecate( "text_encoder_load_state_dict in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) state_dict = {} for name, module in text_encoder_attn_modules(text_encoder): for k, v in module.q_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v for k, v in module.k_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v for k, v in module.v_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v for k, v in module.out_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v return state_dict if is_transformers_available(): def text_encoder_attn_modules(text_encoder): deprecate( "text_encoder_attn_modules in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) from transformers import CLIPTextModel, CLIPTextModelWithProjection attn_modules = [] if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): for i, layer in enumerate(text_encoder.text_model.encoder.layers): name = f"text_model.encoder.layers.{i}.self_attn" mod = layer.self_attn attn_modules.append((name, mod)) else: raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}") return attn_modules _import_structure = {} if is_torch_available(): _import_structure["single_file_model"] = ["FromOriginalModelMixin"] _import_structure["transformer_sd3"] = ["SD3Transformer2DLoadersMixin"] _import_structure["unet"] = ["UNet2DConditionLoadersMixin"] _import_structure["utils"] = ["AttnProcsLayers"] if is_transformers_available(): _import_structure["single_file"] = ["FromSingleFileMixin"] _import_structure["lora_pipeline"] = [ "AmusedLoraLoaderMixin", "StableDiffusionLoraLoaderMixin", "SD3LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin", "LTXVideoLoraLoaderMixin", "LoraLoaderMixin", "FluxLoraLoaderMixin", "CogVideoXLoraLoaderMixin", "Mochi1LoraLoaderMixin", "HunyuanVideoLoraLoaderMixin", "SanaLoraLoaderMixin", ] _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"] _import_structure["ip_adapter"] = [ "IPAdapterMixin", "SD3IPAdapterMixin", ] _import_structure["peft"] = ["PeftAdapterMixin"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: if is_torch_available(): from .single_file_model import FromOriginalModelMixin from .transformer_sd3 import SD3Transformer2DLoadersMixin from .unet import UNet2DConditionLoadersMixin from .utils import AttnProcsLayers if is_transformers_available(): from .ip_adapter import ( IPAdapterMixin, SD3IPAdapterMixin, ) from .lora_pipeline import ( AmusedLoraLoaderMixin, CogVideoXLoraLoaderMixin, FluxLoraLoaderMixin, HunyuanVideoLoraLoaderMixin, LoraLoaderMixin, LTXVideoLoraLoaderMixin, Mochi1LoraLoaderMixin, SanaLoraLoaderMixin, SD3LoraLoaderMixin, StableDiffusionLoraLoaderMixin, StableDiffusionXLLoraLoaderMixin, ) from .single_file import FromSingleFileMixin from .textual_inversion import TextualInversionLoaderMixin from .peft import PeftAdapterMixin else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
from typing import TYPE_CHECKING from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available def text_encoder_lora_state_dict(text_encoder): deprecate( "text_encoder_load_state_dict in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) state_dict = {} for name, module in text_encoder_attn_modules(text_encoder): for k, v in module.q_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v for k, v in module.k_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v for k, v in module.v_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v for k, v in module.out_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v return state_dict if is_transformers_available(): def text_encoder_attn_modules(text_encoder): deprecate( "text_encoder_attn_modules in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) from transformers import CLIPTextModel, CLIPTextModelWithProjection attn_modules = [] if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): for i, layer in enumerate(text_encoder.text_model.encoder.layers): name = f"text_model.encoder.layers.{i}.self_attn" mod = layer.self_attn attn_modules.append((name, mod)) else: raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}") return attn_modules _import_structure = {} if is_torch_available(): _import_structure["single_file_model"] = ["FromOriginalModelMixin"] _import_structure["unet"] = ["UNet2DConditionLoadersMixin"] _import_structure["utils"] = ["AttnProcsLayers"] if is_transformers_available(): _import_structure["single_file"] = ["FromSingleFileMixin"] _import_structure["lora_pipeline"] = [ "AmusedLoraLoaderMixin", "StableDiffusionLoraLoaderMixin", "SD3LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin", "LTXVideoLoraLoaderMixin", "LoraLoaderMixin", "FluxLoraLoaderMixin", "CogVideoXLoraLoaderMixin", "Mochi1LoraLoaderMixin", "HunyuanVideoLoraLoaderMixin", "SanaLoraLoaderMixin", ] _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"] _import_structure["ip_adapter"] = ["IPAdapterMixin"] _import_structure["peft"] = ["PeftAdapterMixin"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: if is_torch_available(): from .single_file_model import FromOriginalModelMixin from .unet import UNet2DConditionLoadersMixin from .utils import AttnProcsLayers if is_transformers_available(): from .ip_adapter import IPAdapterMixin from .lora_pipeline import ( AmusedLoraLoaderMixin, CogVideoXLoraLoaderMixin, FluxLoraLoaderMixin, HunyuanVideoLoraLoaderMixin, LoraLoaderMixin, LTXVideoLoraLoaderMixin, Mochi1LoraLoaderMixin, SanaLoraLoaderMixin, SD3LoraLoaderMixin, StableDiffusionLoraLoaderMixin, StableDiffusionXLLoraLoaderMixin, ) from .single_file import FromSingleFileMixin from .textual_inversion import TextualInversionLoaderMixin from .peft import PeftAdapterMixin else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_base_ = '../grounding_dino_swin-t_pretrain_obj365.py' data_root = 'data/coco/' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[ [ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', # The radio of all image in train dataset < 7 # follow the original implement scales=[(400, 4200), (500, 4200), (600, 4200)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ] ]), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction', 'text', 'custom_entities')) ] train_dataloader = dict( dataset=dict( _delete_=True, type='CocoDataset', data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), return_classes=True, filter_cfg=dict(filter_empty_gt=False, min_size=32), pipeline=train_pipeline)) optim_wrapper = dict( _delete_=True, type='OptimWrapper', optimizer=dict(type='AdamW', lr=0.0002, weight_decay=0.0001), clip_grad=dict(max_norm=0.1, norm_type=2), paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'backbone': dict(lr_mult=0.1), 'language_model': dict(lr_mult=0.1), })) # learning policy max_epochs = 12 param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs, val_interval=1) default_hooks = dict(checkpoint=dict(max_keep_ckpts=1, save_best='auto')) load_from = 'https://download.openmmlab.com/mmdetection/v3.0/mm_grounding_dino/grounding_dino_swin-t_pretrain_obj365_goldg_grit9m_v3det/grounding_dino_swin-t_pretrain_obj365_goldg_grit9m_v3det_20231204_095047-b448804b.pth' # noqa
_base_ = '../grounding_dino_swin-t_pretrain_obj365.py' data_root = 'data/coco/' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[ [ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', # The radio of all image in train dataset < 7 # follow the original implement scales=[(400, 4200), (500, 4200), (600, 4200)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ] ]), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction', 'text', 'custom_entities')) ] train_dataloader = dict( dataset=dict( _delete_=True, type='CocoDataset', data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), return_classes=True, filter_cfg=dict(filter_empty_gt=False, min_size=32), pipeline=train_pipeline)) optim_wrapper = dict( _delete_=True, type='OptimWrapper', optimizer=dict(type='AdamW', lr=0.0002, weight_decay=0.0001), clip_grad=dict(max_norm=0.1, norm_type=2), paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'backbone': dict(lr_mult=0.1), # 'language_model': dict(lr_mult=0), })) # learning policy max_epochs = 12 param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[11], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs, val_interval=1) default_hooks = dict(checkpoint=dict(max_keep_ckpts=1, save_best='auto')) load_from = ''
from sentence_transformers.similarity_functions import SimilarityFunction __all__ = ["SimilarityFunction"]
from enum import Enum class SimilarityFunction(Enum): COSINE = 0 EUCLIDEAN = 1 MANHATTAN = 2 DOT_PRODUCT = 3
import csv import gzip import logging import os from datetime import datetime import torch from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 16 pos_neg_ratio = 8 # batch_size must be devisible by pos_neg_ratio epochs = 1 max_seq_length = 75 # Save path to store our model model_save_path = "output/train_stsb_ct-{}-{}".format(model_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ################# Train sentences ################# # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = "data/wiki1m_for_simcse.txt" if not os.path.exists(wikipedia_dataset_path): util.http_get( "https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt", wikipedia_dataset_path, ) # train_sentences are simply your list of sentences train_sentences = [] with open(wikipedia_dataset_path, "r", encoding="utf8") as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) ################# Download and load STSb ################# data_folder = "data/stsbenchmark" sts_dataset_path = f"{data_folder}/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader( train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio ) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=1, evaluation_steps=1000, weight_decay=0, warmup_steps=0, optimizer_class=torch.optim.RMSprop, optimizer_params={"lr": 1e-5}, output_path=model_save_path, use_amp=False, # Set to True, if your GPU has optimized FP16 cores ) ########### Load the model and evaluate on test set model = SentenceTransformer(model_save_path) test_evaluator(model)
import torch from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers import SentenceTransformer, LoggingHandler, models, util, InputExample from sentence_transformers import losses import os import gzip import csv from datetime import datetime import logging #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 16 pos_neg_ratio = 8 # batch_size must be devisible by pos_neg_ratio epochs = 1 max_seq_length = 75 # Save path to store our model model_save_path = "output/train_stsb_ct-{}-{}".format(model_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ################# Train sentences ################# # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = "data/wiki1m_for_simcse.txt" if not os.path.exists(wikipedia_dataset_path): util.http_get( "https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt", wikipedia_dataset_path, ) # train_sentences are simply your list of sentences train_sentences = [] with open(wikipedia_dataset_path, "r", encoding="utf8") as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) ################# Download and load STSb ################# data_folder = "data/stsbenchmark" sts_dataset_path = f"{data_folder}/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader( train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio ) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=1, evaluation_steps=1000, weight_decay=0, warmup_steps=0, optimizer_class=torch.optim.RMSprop, optimizer_params={"lr": 1e-5}, output_path=model_save_path, use_amp=False, # Set to True, if your GPU has optimized FP16 cores ) ########### Load the model and evaluate on test set model = SentenceTransformer(model_save_path) test_evaluator(model)
_base_ = './centernet-update_r50_fpn_8xb8-amp-lsj-200e_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512]))
_base_ = './centernet_update_r50_fpn_fp16_lsj_200e_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512]))
import os import subprocess import sys import pytest from xgboost import testing as tm DEMO_DIR = tm.demo_dir(__file__) PYTHON_DEMO_DIR = os.path.join(DEMO_DIR, "guide-python") @pytest.mark.skipif(**tm.no_cupy()) def test_data_iterator(): script = os.path.join(PYTHON_DEMO_DIR, "quantile_data_iterator.py") cmd = ["python", script] subprocess.check_call(cmd) def test_update_process_demo(): script = os.path.join(PYTHON_DEMO_DIR, "update_process.py") cmd = ["python", script] subprocess.check_call(cmd) def test_categorical_demo(): script = os.path.join(PYTHON_DEMO_DIR, "categorical.py") cmd = ["python", script] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_rmm()) @pytest.mark.skipif(**tm.no_cupy()) def test_external_memory_demo(): script = os.path.join(PYTHON_DEMO_DIR, "external_memory.py") cmd = ["python", script, "--device=cuda"] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_rmm()) @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.mgpu def test_distributed_extmem_basic_demo(): script = os.path.join(PYTHON_DEMO_DIR, "distributed_extmem_basic.py") cmd = ["python", script, "--device=cuda"] subprocess.check_call(cmd)
import os import subprocess import sys import pytest from xgboost import testing as tm DEMO_DIR = tm.demo_dir(__file__) PYTHON_DEMO_DIR = os.path.join(DEMO_DIR, "guide-python") @pytest.mark.skipif(**tm.no_cupy()) def test_data_iterator(): script = os.path.join(PYTHON_DEMO_DIR, "quantile_data_iterator.py") cmd = ["python", script] subprocess.check_call(cmd) def test_update_process_demo(): script = os.path.join(PYTHON_DEMO_DIR, "update_process.py") cmd = ["python", script] subprocess.check_call(cmd) def test_categorical_demo(): script = os.path.join(PYTHON_DEMO_DIR, "categorical.py") cmd = ["python", script] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_rmm()) @pytest.mark.skipif(**tm.no_cupy()) def test_external_memory_demo(): script = os.path.join(PYTHON_DEMO_DIR, "external_memory.py") cmd = ["python", script, "--device=cuda"] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_rmm()) @pytest.mark.skipif(**tm.no_cupy()) def test_distributed_extmem_basic_demo(): script = os.path.join(PYTHON_DEMO_DIR, "distributed_extmem_basic.py") cmd = ["python", script, "--device=cuda"] subprocess.check_call(cmd)
import os import signal from threading import Thread from time import sleep from typing import Optional _IN_TOPLEVEL_PROCESS = True def in_toplevel_process() -> bool: global _IN_TOPLEVEL_PROCESS return _IN_TOPLEVEL_PROCESS # If this process dies abnormally (e.g. segfault) # it will not shut down the workers. Instead, # the workers will have their parent reassigned to the # init process. This launches a separate thread to # watch for the worker getting reassigned, # and cleans it up in this case. # # This function cannot be an inner function since otherwise mp_context="spawn" would # not work for ProcessPoolExecutor since inner functions cannot be pickled. def _async_compile_initializer(orig_ppid: int) -> None: import torch._C def run() -> None: while True: sleep(1) if orig_ppid != os.getppid(): os.kill(os.getpid(), signal.SIGKILL) global _watchdog_thread, _original_parent _original_parent = orig_ppid _watchdog_thread = Thread(target=run, daemon=True) _watchdog_thread.start() # Ignore Ctrl-C (i.e. SIGINT) sent to pool workers to avoid meaningless log spam. signal.signal(signal.SIGINT, signal.SIG_IGN) # Install a crash handler to print out the stacktrace for SEGV torch._C._initCrashHandler() # Set a bit to distinguish async_compile subprocesses from the toplevel process. global _IN_TOPLEVEL_PROCESS _IN_TOPLEVEL_PROCESS = False _watchdog_thread: Optional[Thread] = None _original_parent: Optional[int] = None def has_parent_changed() -> bool: return _original_parent != os.getppid()
import os import signal from threading import Thread from time import sleep from typing import Optional _IN_TOPLEVEL_PROCESS = True def in_toplevel_process() -> bool: global _IN_TOPLEVEL_PROCESS return _IN_TOPLEVEL_PROCESS # If this process dies abnormally (e.g. segfault) # it will not shut down the workers. Instead, # the workers will have their parent reassigned to the # init process. This launches a separate thread to # watch for the worker getting reassigned, # and cleans it up in this case. # # This function cannot be an inner function since otherwise mp_context="spawn" would # not work for ProcessPoolExecutor since inner functions cannot be pickled. def _async_compile_initializer(orig_ppid: int) -> None: def run() -> None: while True: sleep(1) if orig_ppid != os.getppid(): os.kill(os.getpid(), signal.SIGKILL) global _watchdog_thread, _original_parent _original_parent = orig_ppid _watchdog_thread = Thread(target=run, daemon=True) _watchdog_thread.start() # Ignore Ctrl-C (i.e. SIGINT) sent to pool workers to avoid meaningless log spam. signal.signal(signal.SIGINT, signal.SIG_IGN) # Set a bit to distinguish async_compile subprocesses from the toplevel process. global _IN_TOPLEVEL_PROCESS _IN_TOPLEVEL_PROCESS = False _watchdog_thread: Optional[Thread] = None _original_parent: Optional[int] = None def has_parent_changed() -> bool: return _original_parent != os.getppid()
"""Dump objects to json.""" import json from typing import Any from pydantic import BaseModel from langchain_core.load.serializable import Serializable, to_json_not_implemented def default(obj: Any) -> Any: """Return a default value for an object. Args: obj: The object to serialize to json if it is a Serializable object. Returns: A json serializable object or a SerializedNotImplemented object. """ if isinstance(obj, Serializable): return obj.to_json() else: return to_json_not_implemented(obj) def _dump_pydantic_models(obj: Any) -> Any: from langchain_core.messages import AIMessage from langchain_core.outputs import ChatGeneration if ( isinstance(obj, ChatGeneration) and isinstance(obj.message, AIMessage) and (parsed := obj.message.additional_kwargs.get("parsed")) and isinstance(parsed, BaseModel) ): obj_copy = obj.model_copy(deep=True) obj_copy.message.additional_kwargs["parsed"] = parsed.model_dump() return obj_copy else: return obj def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str: """Return a json string representation of an object. Args: obj: The object to dump. pretty: Whether to pretty print the json. If true, the json will be indented with 2 spaces (if no indent is provided as part of kwargs). Default is False. kwargs: Additional arguments to pass to json.dumps Returns: A json string representation of the object. Raises: ValueError: If `default` is passed as a kwarg. """ if "default" in kwargs: msg = "`default` should not be passed to dumps" raise ValueError(msg) try: obj = _dump_pydantic_models(obj) if pretty: indent = kwargs.pop("indent", 2) return json.dumps(obj, default=default, indent=indent, **kwargs) else: return json.dumps(obj, default=default, **kwargs) except TypeError: if pretty: indent = kwargs.pop("indent", 2) return json.dumps(to_json_not_implemented(obj), indent=indent, **kwargs) else: return json.dumps(to_json_not_implemented(obj), **kwargs) def dumpd(obj: Any) -> Any: """Return a dict representation of an object. Note: Unfortunately this function is not as efficient as it could be because it first dumps the object to a json string and then loads it back into a dictionary. Args: obj: The object to dump. Returns: dictionary that can be serialized to json using json.dumps """ return json.loads(dumps(obj))
import json from typing import Any from pydantic import BaseModel from langchain_core.load.serializable import Serializable, to_json_not_implemented def default(obj: Any) -> Any: """Return a default value for a Serializable object or a SerializedNotImplemented object. Args: obj: The object to serialize to json if it is a Serializable object. Returns: A json serializable object or a SerializedNotImplemented object. """ if isinstance(obj, Serializable): return obj.to_json() else: return to_json_not_implemented(obj) def _dump_pydantic_models(obj: Any) -> Any: from langchain_core.messages import AIMessage from langchain_core.outputs import ChatGeneration if ( isinstance(obj, ChatGeneration) and isinstance(obj.message, AIMessage) and (parsed := obj.message.additional_kwargs.get("parsed")) and isinstance(parsed, BaseModel) ): obj_copy = obj.model_copy(deep=True) obj_copy.message.additional_kwargs["parsed"] = parsed.model_dump() return obj_copy else: return obj def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str: """Return a json string representation of an object. Args: obj: The object to dump. pretty: Whether to pretty print the json. If true, the json will be indented with 2 spaces (if no indent is provided as part of kwargs). Default is False. kwargs: Additional arguments to pass to json.dumps Returns: A json string representation of the object. Raises: ValueError: If `default` is passed as a kwarg. """ if "default" in kwargs: msg = "`default` should not be passed to dumps" raise ValueError(msg) try: obj = _dump_pydantic_models(obj) if pretty: indent = kwargs.pop("indent", 2) return json.dumps(obj, default=default, indent=indent, **kwargs) else: return json.dumps(obj, default=default, **kwargs) except TypeError: if pretty: indent = kwargs.pop("indent", 2) return json.dumps(to_json_not_implemented(obj), indent=indent, **kwargs) else: return json.dumps(to_json_not_implemented(obj), **kwargs) def dumpd(obj: Any) -> Any: """Return a dict representation of an object. Note: Unfortunately this function is not as efficient as it could be because it first dumps the object to a json string and then loads it back into a dictionary. Args: obj: The object to dump. Returns: dictionary that can be serialized to json using json.dumps """ return json.loads(dumps(obj))
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import activations from keras.api import applications from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import legacy from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import tree from keras.api import utils from keras.api._tf_keras.keras import backend from keras.api._tf_keras.keras import layers from keras.api._tf_keras.keras import losses from keras.api._tf_keras.keras import metrics from keras.api._tf_keras.keras import preprocessing from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.backend.exports import Variable from keras.src.backend.exports import device from keras.src.backend.exports import name_scope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import activations from keras.api import applications from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import legacy from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import tree from keras.api import utils from keras.api._tf_keras.keras import backend from keras.api._tf_keras.keras import layers from keras.api._tf_keras.keras import losses from keras.api._tf_keras.keras import metrics from keras.api._tf_keras.keras import preprocessing from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.exports import Variable from keras.src.backend.exports import device from keras.src.backend.exports import name_scope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Dict, List, Optional, Union from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class BitNetHfQuantizer(HfQuantizer): """ 1.58-bit quantization from BitNet quantization method: Before loading: it converts the linear layers into BitLinear layers during loading. Checkout the paper introducing this method : https://arxiv.org/pdf/2402.17764 """ requires_parameters_quantization = False requires_calibration = True required_packages = ["accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Loading a BitNet quantized model requires accelerate (`pip install accelerate`)") if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Loading ternary weights from tf/flax is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): logger.warning_once( "You don't have a GPU available to load the model, the inference will be slow because of weight unpacking" ) return device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded a BitNet model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load a BitNet model with a device_map that contains a CPU or disk device." "This is not supported. Please remove the CPU or disk device from the device_map." ) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations import replace_with_bitnet_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model = replace_with_bitnet_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": target_dtype = torch.int8 return target_dtype def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return ( self.quantization_config.linear_class == "autobitlinear" and self.quantization_config.quantization_mode == "online" ) @property def is_qat_trainable(self) -> bool: """Flag indicating whether the quantized model can carry out quantization aware training""" return ( self.quantization_config.linear_class == "autobitlinear" and self.quantization_config.quantization_mode == "online" )
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Dict, List, Optional, Union from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class BitNetHfQuantizer(HfQuantizer): """ 1.58-bit quantization from BitNet quantization method: Before loading: it converts the linear layers into BitLinear layers during loading. Checkout the paper introducing this method : https://arxiv.org/pdf/2402.17764 """ requires_parameters_quantization = False requires_calibration = True required_packages = ["accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Loading a BitNet quantized model requires accelerate (`pip install accelerate`)") if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Loading ternary weights from tf/flax is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): logger.warning_once( "You don't have a GPU available to load the model, the inference will be slow because of weight unpacking" ) return device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded a BitNet model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load a BitNet model with a device_map that contains a CPU or disk device." "This is not supported. Please remove the CPU or disk device from the device_map." ) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations import replace_with_bitnet_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model = replace_with_bitnet_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": target_dtype = torch.int8 return target_dtype def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return False
from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.audio_url import AudioUrl from docarray.typing.url.image_url import ImageUrl from docarray.typing.url.text_url import TextUrl from docarray.typing.url.url_3d.mesh_url import Mesh3DUrl from docarray.typing.url.url_3d.point_cloud_url import PointCloud3DUrl from docarray.typing.url.video_url import VideoUrl __all__ = [ 'ImageUrl', 'AudioUrl', 'AnyUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl', 'VideoUrl', ]
from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.audio_url import AudioUrl from docarray.typing.url.image_url import ImageUrl from docarray.typing.url.text_url import TextUrl from docarray.typing.url.url_3d.mesh_url import Mesh3DUrl from docarray.typing.url.url_3d.point_cloud_url import PointCloud3DUrl __all__ = ['ImageUrl', 'AudioUrl', 'AnyUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl']
import os from unittest import TestCase import cv2 import numpy as np import torch from mmengine.structures import InstanceData, PixelData from mmdet.evaluation import INSTANCE_OFFSET from mmdet.structures import DetDataSample from mmdet.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w) tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h) br_x = ((cx * w) + (w * bw / 2)).clamp(0, w) br_y = ((cy * h) + (h * bh / 2)).clamp(0, h) bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=0).T return bboxes def _create_panoptic_data(num_boxes, h, w): sem_seg = np.zeros((h, w), dtype=np.int64) + 2 bboxes = _rand_bboxes(num_boxes, h, w).int() labels = torch.randint(2, (num_boxes, )) for i in range(num_boxes): x, y, w, h = bboxes[i] sem_seg[y:y + h, x:x + w] = (i + 1) * INSTANCE_OFFSET + labels[i] return sem_seg[None] class TestDetLocalVisualizer(TestCase): def test_add_datasample(self): h = 12 w = 10 num_class = 3 num_bboxes = 5 out_file = 'out_file.jpg' image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8') # test gt_instances gt_instances = InstanceData() gt_instances.bboxes = _rand_bboxes(num_bboxes, h, w) gt_instances.labels = torch.randint(0, num_class, (num_bboxes, )) det_data_sample = DetDataSample() det_data_sample.gt_instances = gt_instances det_local_visualizer = DetLocalVisualizer() det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False) # test out_file det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False, out_file=out_file) assert os.path.exists(out_file) drawn_img = cv2.imread(out_file) assert drawn_img.shape == (h, w, 3) os.remove(out_file) # test gt_instances and pred_instances pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(num_bboxes, h, w) pred_instances.labels = torch.randint(0, num_class, (num_bboxes, )) pred_instances.scores = torch.rand((num_bboxes, )) det_data_sample.pred_instances = pred_instances det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) self._assert_image_and_shape(out_file, (h, w * 2, 3)) det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_gt=False, out_file=out_file) self._assert_image_and_shape(out_file, (h, w, 3)) det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False, out_file=out_file) self._assert_image_and_shape(out_file, (h, w, 3)) # test gt_panoptic_seg and pred_panoptic_seg det_local_visualizer.dataset_meta = dict(CLASSES=('1', '2')) gt_sem_seg = _create_panoptic_data(num_bboxes, h, w) panoptic_seg = PixelData(sem_seg=gt_sem_seg) det_data_sample = DetDataSample() det_data_sample.gt_panoptic_seg = panoptic_seg pred_sem_seg = _create_panoptic_data(num_bboxes, h, w) panoptic_seg = PixelData(sem_seg=pred_sem_seg) det_data_sample.pred_panoptic_seg = panoptic_seg det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) self._assert_image_and_shape(out_file, (h, w * 2, 3)) # class information must be provided det_local_visualizer.dataset_meta = {} with self.assertRaises(AssertionError): det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) def _assert_image_and_shape(self, out_file, out_shape): assert os.path.exists(out_file) drawn_img = cv2.imread(out_file) assert drawn_img.shape == out_shape os.remove(out_file)
import os from unittest import TestCase import cv2 import numpy as np import torch from mmengine.structures import InstanceData, PixelData from mmdet.evaluation import INSTANCE_OFFSET from mmdet.structures import DetDataSample from mmdet.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w) tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h) br_x = ((cx * w) + (w * bw / 2)).clamp(0, w) br_y = ((cy * h) + (h * bh / 2)).clamp(0, h) bboxes = torch.vstack([tl_x, tl_y, br_x, br_y]).T return bboxes def _create_panoptic_data(num_boxes, h, w): sem_seg = np.zeros((h, w), dtype=np.int64) + 2 bboxes = _rand_bboxes(num_boxes, h, w).int() labels = torch.randint(2, (num_boxes, )) for i in range(num_boxes): x, y, w, h = bboxes[i] sem_seg[y:y + h, x:x + w] = (i + 1) * INSTANCE_OFFSET + labels[i] return sem_seg[None] class TestDetLocalVisualizer(TestCase): def test_add_datasample(self): h = 12 w = 10 num_class = 3 num_bboxes = 5 out_file = 'out_file.jpg' image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8') # test gt_instances gt_instances = InstanceData() gt_instances.bboxes = _rand_bboxes(num_bboxes, h, w) gt_instances.labels = torch.randint(0, num_class, (num_bboxes, )) det_data_sample = DetDataSample() det_data_sample.gt_instances = gt_instances det_local_visualizer = DetLocalVisualizer() det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False) # test out_file det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False, out_file=out_file) assert os.path.exists(out_file) drawn_img = cv2.imread(out_file) assert drawn_img.shape == (h, w, 3) os.remove(out_file) # test gt_instances and pred_instances pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(num_bboxes, h, w) pred_instances.labels = torch.randint(0, num_class, (num_bboxes, )) pred_instances.scores = torch.rand((num_bboxes, )) det_data_sample.pred_instances = pred_instances det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) self._assert_image_and_shape(out_file, (h, w * 2, 3)) det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_gt=False, out_file=out_file) self._assert_image_and_shape(out_file, (h, w, 3)) det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False, out_file=out_file) self._assert_image_and_shape(out_file, (h, w, 3)) # test gt_panoptic_seg and pred_panoptic_seg det_local_visualizer.dataset_meta = dict(CLASSES=('1', '2')) gt_sem_seg = _create_panoptic_data(num_bboxes, h, w) panoptic_seg = PixelData(sem_seg=gt_sem_seg) det_data_sample = DetDataSample() det_data_sample.gt_panoptic_seg = panoptic_seg pred_sem_seg = _create_panoptic_data(num_bboxes, h, w) panoptic_seg = PixelData(sem_seg=pred_sem_seg) det_data_sample.pred_panoptic_seg = panoptic_seg det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) self._assert_image_and_shape(out_file, (h, w * 2, 3)) # class information must be provided det_local_visualizer.dataset_meta = {} with self.assertRaises(AssertionError): det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) def _assert_image_and_shape(self, out_file, out_shape): assert os.path.exists(out_file) drawn_img = cv2.imread(out_file) assert drawn_img.shape == out_shape os.remove(out_file)
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow T = TypeVar('T', bound='AudioTensorFlowTensor') @_register_proto(proto_type_name='audio_tensorflow_tensor') class AudioTensorFlowTensor( AbstractAudioTensor, TensorFlowTensor, metaclass=metaTensorFlow ): """ Subclass of TensorFlowTensor, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import tensorflow as tf from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing import AudioTensorFlowTensor, AudioUrl class MyAudioDoc(BaseDocument): title: str audio_tensor: Optional[AudioTensorFlowTensor] url: Optional[AudioUrl] bytes_: Optional[bytes] doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=tf.random.normal((1000, 2)), ) doc_1.audio_tensor.save(file_path='path/to/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = doc_2.url.load() doc_2.audio_tensor.save(file_path='path/to/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() """ ...
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow T = TypeVar('T', bound='AudioTensorFlowTensor') @_register_proto(proto_type_name='audio_tensorflow_tensor') class AudioTensorFlowTensor( AbstractAudioTensor, TensorFlowTensor, metaclass=metaTensorFlow ): """ Subclass of TensorFlowTensor, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import tensorflow as tf from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing import AudioTensorFlowTensor, AudioUrl class MyAudioDoc(BaseDocument): title: str audio_tensor: Optional[AudioTensorFlowTensor] url: Optional[AudioUrl] bytes_: Optional[bytes] doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=tf.random.normal((1000, 2)), ) doc_1.audio_tensor.save_to_wav_file(file_path='path/to/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = doc_2.url.load() doc_2.audio_tensor.save_to_wav_file(file_path='path/to/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() """ ...
from __future__ import annotations import torch.nn as nn from sentence_transformers.losses.CosineSimilarityLoss import CosineSimilarityLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCosineSimilarityLoss(CosineSimilarityLoss): def __init__( self, model: SparseEncoder, loss_fct: nn.Module = nn.MSELoss(), cos_score_transformation: nn.Module = nn.Identity(), ) -> None: """ SparseCosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two. By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``. Args: model: SparseEncoder model loss_fct: Which pytorch loss function should be used to compare the ``cosine_similarity(u, v)`` with the input_label? By default, MSE is used: ``||input_label - cosine_sim(u, v)||_2`` cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). References: # TODO: Not yet for sparse might want it ? - `Training Examples > Semantic Textual Similarity <../../../examples/sentence_transformer/training/sts/README.html>`_ Requirements: 1. Sentence pairs with corresponding similarity scores in range `[0, 1]` Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` seems to produce a stronger training signal than CosineSimilarityLoss. In our experiments, SparseCoSENTLoss is recommended. - :class:`SparseAnglELoss` is :class:`SparseCoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. It also produces a stronger training signal than SparseCosineSimilarityLoss. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SparseCosineSimilarityLoss(model) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, loss_fct=loss_fct, cos_score_transformation=cos_score_transformation)
from __future__ import annotations import torch.nn as nn from sentence_transformers.losses.CosineSimilarityLoss import CosineSimilarityLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCosineSimilarityLoss(CosineSimilarityLoss): def __init__( self, model: SparseEncoder, loss_fct: nn.Module = nn.MSELoss(), cos_score_transformation: nn.Module = nn.Identity(), ) -> None: """ SparseCosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two. By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``. Args: model: SparseEncoder model loss_fct: Which pytorch loss function should be used to compare the ``cosine_similarity(u, v)`` with the input_label? By default, MSE is used: ``||input_label - cosine_sim(u, v)||_2`` cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). References: # TODO: Not yet for sparse might want it ? - `Training Examples > Semantic Textual Similarity <../../../examples/sentence_transformer/training/sts/README.html>`_ Requirements: 1. Sentence pairs with corresponding similarity scores in range `[0, 1]` Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` seems to produce a stronger training signal than CosineSimilarityLoss. In our experiments, SparseCoSENTLoss is recommended. - :class:`SparseAnglELoss` is :class:`SparseCoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. It also produces a stronger training signal than SparseCosineSimilarityLoss. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SparseCosineSimilarityLoss(model) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, loss_fct=loss_fct, cos_score_transformation=cos_score_transformation)
# Copyright (c) OpenMMLab. All rights reserved. from .config import Config, ConfigDict, DictAction __all__ = ['Config', 'ConfigDict', 'DictAction']
# Copyright (c) OpenMMLab. All rights reserved. from .config import Config, ConfigDict, DictAction from .get_config_model import get_config, get_model __all__ = ['Config', 'ConfigDict', 'DictAction', 'get_config', 'get_model']
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import mmcv from PIL import Image def parse_args(): parser = argparse.ArgumentParser( description='Convert images to coco format without annotations') parser.add_argument('img_path', help='The root path of images') parser.add_argument( 'classes', type=str, help='The text file name of storage class list') parser.add_argument( 'out', type=str, help='The output annotation json file name, The save dir is in the ' 'same directory as img_path') parser.add_argument( '-e', '--exclude-extensions', type=str, nargs='+', help='The suffix of images to be excluded, such as "png" and "bmp"') args = parser.parse_args() return args def collect_image_infos(path, exclude_extensions=None): img_infos = [] images_generator = mmcv.scandir(path, recursive=True) for image_path in mmcv.track_iter_progress(list(images_generator)): if exclude_extensions is None or ( exclude_extensions is not None and not image_path.lower().endswith(exclude_extensions)): image_path = os.path.join(path, image_path) img_pillow = Image.open(image_path) img_info = { 'filename': image_path, 'width': img_pillow.width, 'height': img_pillow.height, } img_infos.append(img_info) return img_infos def cvt_to_coco_json(img_infos, classes): image_id = 0 coco = dict() coco['images'] = [] coco['type'] = 'instance' coco['categories'] = [] coco['annotations'] = [] image_set = set() for category_id, name in enumerate(classes): category_item = dict() category_item['supercategory'] = str('none') category_item['id'] = int(category_id) category_item['name'] = str(name) coco['categories'].append(category_item) for img_dict in img_infos: file_name = img_dict['filename'] assert file_name not in image_set image_item = dict() image_item['id'] = int(image_id) image_item['file_name'] = str(file_name) image_item['height'] = int(img_dict['height']) image_item['width'] = int(img_dict['width']) coco['images'].append(image_item) image_set.add(file_name) image_id += 1 return coco def main(): args = parse_args() assert args.out.endswith( 'json'), 'The output file name must be json suffix' # 1 load image list info img_infos = collect_image_infos(args.img_path, args.exclude_extensions) # 2 convert to coco format data classes = mmcv.list_from_file(args.classes) coco_info = cvt_to_coco_json(img_infos, classes) # 3 dump save_dir = os.path.join(args.img_path, '..', 'annotations') mmcv.mkdir_or_exist(save_dir) save_path = os.path.join(save_dir, args.out) mmcv.dump(coco_info, save_path) print(f'save json file: {save_path}') if __name__ == '__main__': main()
import argparse import os import mmcv from PIL import Image def parse_args(): parser = argparse.ArgumentParser( description='Convert images to coco format without annotations') parser.add_argument('img_path', help='The root path of images') parser.add_argument( 'classes', type=str, help='The text file name of storage class list') parser.add_argument( 'out', type=str, help='The output annotation json file name, The save dir is in the ' 'same directory as img_path') parser.add_argument( '-e', '--exclude-extensions', type=str, nargs='+', help='The suffix of images to be excluded, such as "png" and "bmp"') args = parser.parse_args() return args def collect_image_infos(path, exclude_extensions=None): img_infos = [] images_generator = mmcv.scandir(path, recursive=True) for image_path in mmcv.track_iter_progress(list(images_generator)): if exclude_extensions is None or ( exclude_extensions is not None and not image_path.lower().endswith(exclude_extensions)): image_path = os.path.join(path, image_path) img_pillow = Image.open(image_path) img_info = { 'filename': image_path, 'width': img_pillow.width, 'height': img_pillow.height, } img_infos.append(img_info) return img_infos def cvt_to_coco_json(img_infos, classes): image_id = 0 coco = dict() coco['images'] = [] coco['type'] = 'instance' coco['categories'] = [] coco['annotations'] = [] image_set = set() for category_id, name in enumerate(classes): category_item = dict() category_item['supercategory'] = str('none') category_item['id'] = int(category_id) category_item['name'] = str(name) coco['categories'].append(category_item) for img_dict in img_infos: file_name = img_dict['filename'] assert file_name not in image_set image_item = dict() image_item['id'] = int(image_id) image_item['file_name'] = str(file_name) image_item['height'] = int(img_dict['height']) image_item['width'] = int(img_dict['width']) coco['images'].append(image_item) image_set.add(file_name) image_id += 1 return coco def main(): args = parse_args() assert args.out.endswith( 'json'), 'The output file name must be json suffix' # 1 load image list info img_infos = collect_image_infos(args.img_path, args.exclude_extensions) # 2 convert to coco format data classes = mmcv.list_from_file(args.classes) coco_info = cvt_to_coco_json(img_infos, classes) # 3 dump save_dir = os.path.join(args.img_path, '..', 'annotations') mmcv.mkdir_or_exist(save_dir) save_path = os.path.join(save_dir, args.out) mmcv.dump(coco_info, save_path) print(f'save json file: {save_path}') if __name__ == '__main__': main()
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _FillType, _get_fill, _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import get_bounding_boxes, has_any, is_simple_tensor, query_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_format_bounding_boxes( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = self._call_kernel( F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = datapoints.wrap(inpt[params["is_valid"]], like=inpt) elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.wrap( F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), like=inpt, ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = self._call_kernel(F.pad, inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _FillType, _get_fill, _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import get_bounding_boxes, has_any, is_simple_tensor, query_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_format_bounding_boxes( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = self._call_kernel( F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = inpt.wrap_like(inpt, inpt[params["is_valid"]]) # type: ignore[arg-type] elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.BoundingBoxes.wrap_like( inpt, F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = self._call_kernel(F.pad, inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=True) class Summarization(TaskTemplate): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization task: str = field(default="summarization", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"text": Value("string")}) label_schema: ClassVar[Features] = Features({"summary": Value("string")}) text_column: str = "text" summary_column: str = "summary" @property def column_mapping(self) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
from dataclasses import dataclass from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=True) class Summarization(TaskTemplate): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization task: str = "summarization" input_schema: ClassVar[Features] = Features({"text": Value("string")}) label_schema: ClassVar[Features] = Features({"summary": Value("string")}) text_column: str = "text" summary_column: str = "summary" @property def column_mapping(self) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
import os from pathlib import Path from torchaudio.datasets import vctk from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase # Used to generate a unique transcript for each dummy audio file _TRANSCRIPT = [ "Please call Stella", "Ask her to bring these things", "with her from the store", "Six spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother Bob", "We also need a small plastic snake and a big toy frog for the kids", "She can scoop these things into three red bags, and we will go meet her Wednesday at the train station", "When the sunlight strikes raindrops in the air, they act as a prism and form a rainbow", "The rainbow is a division of white light into many beautiful colors", "These take the shape of a long round arch, with its path high above, and its two ends \ apparently beyond the horizon", "There is, according to legend, a boiling pot of gold at one end", ] def get_mock_dataset(root_dir): """ root_dir: root directory of the mocked data """ mocked_samples = [] dataset_dir = os.path.join(root_dir, "VCTK-Corpus-0.92") os.makedirs(dataset_dir, exist_ok=True) sample_rate = 48000 seed = 0 for speaker in range(225, 230): speaker_id = "p" + str(speaker) audio_dir = os.path.join(dataset_dir, "wav48_silence_trimmed", speaker_id) os.makedirs(audio_dir, exist_ok=True) file_dir = os.path.join(dataset_dir, "txt", speaker_id) os.makedirs(file_dir, exist_ok=True) for utterance_id in range(1, 11): filename = f"{speaker_id}_{utterance_id:03d}_mic2" audio_file_path = os.path.join(audio_dir, filename + ".wav") data = get_whitenoise(sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="float32", seed=seed) save_wav(audio_file_path, data, sample_rate) txt_file_path = os.path.join(file_dir, filename[:-5] + ".txt") transcript = _TRANSCRIPT[utterance_id - 1] with open(txt_file_path, "w") as f: f.write(transcript) sample = (normalize_wav(data), sample_rate, transcript, speaker_id, utterance_id) mocked_samples.append(sample) seed += 1 return mocked_samples class TestVCTK(TempDirMixin, TorchaudioTestCase): root_dir = None samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) def _test_vctk(self, dataset): num_samples = 0 for i, (data, sample_rate, transcript, speaker_id, utterance_id) in enumerate(dataset): self.assertEqual(data, self.samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.samples[i][1] assert transcript == self.samples[i][2] assert speaker_id == self.samples[i][3] assert int(utterance_id) == self.samples[i][4] num_samples += 1 assert num_samples == len(self.samples) def test_vctk_str(self): dataset = vctk.VCTK_092(self.root_dir, audio_ext=".wav") self._test_vctk(dataset) def test_vctk_path(self): dataset = vctk.VCTK_092(Path(self.root_dir), audio_ext=".wav") self._test_vctk(dataset)
import os from pathlib import Path from torchaudio.datasets import vctk from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase # Used to generate a unique transcript for each dummy audio file _TRANSCRIPT = [ "Please call Stella", "Ask her to bring these things", "with her from the store", "Six spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother Bob", "We also need a small plastic snake and a big toy frog for the kids", "She can scoop these things into three red bags, and we will go meet her Wednesday at the train station", "When the sunlight strikes raindrops in the air, they act as a prism and form a rainbow", "The rainbow is a division of white light into many beautiful colors", "These take the shape of a long round arch, with its path high above, and its two ends \ apparently beyond the horizon", "There is, according to legend, a boiling pot of gold at one end", ] def get_mock_dataset(root_dir): """ root_dir: root directory of the mocked data """ mocked_samples = [] dataset_dir = os.path.join(root_dir, "VCTK-Corpus-0.92") os.makedirs(dataset_dir, exist_ok=True) sample_rate = 48000 seed = 0 for speaker in range(225, 230): speaker_id = "p" + str(speaker) audio_dir = os.path.join(dataset_dir, "wav48_silence_trimmed", speaker_id) os.makedirs(audio_dir, exist_ok=True) file_dir = os.path.join(dataset_dir, "txt", speaker_id) os.makedirs(file_dir, exist_ok=True) for utterance_id in range(1, 11): filename = f"{speaker_id}_{utterance_id:03d}_mic2" audio_file_path = os.path.join(audio_dir, filename + ".wav") data = get_whitenoise(sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="float32", seed=seed) save_wav(audio_file_path, data, sample_rate) txt_file_path = os.path.join(file_dir, filename[:-5] + ".txt") transcript = _TRANSCRIPT[utterance_id - 1] with open(txt_file_path, "w") as f: f.write(transcript) sample = (normalize_wav(data), sample_rate, transcript, speaker_id, utterance_id) mocked_samples.append(sample) seed += 1 return mocked_samples class TestVCTK(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) def _test_vctk(self, dataset): num_samples = 0 for i, (data, sample_rate, transcript, speaker_id, utterance_id) in enumerate(dataset): self.assertEqual(data, self.samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.samples[i][1] assert transcript == self.samples[i][2] assert speaker_id == self.samples[i][3] assert int(utterance_id) == self.samples[i][4] num_samples += 1 assert num_samples == len(self.samples) def test_vctk_str(self): dataset = vctk.VCTK_092(self.root_dir, audio_ext=".wav") self._test_vctk(dataset) def test_vctk_path(self): dataset = vctk.VCTK_092(Path(self.root_dir), audio_ext=".wav") self._test_vctk(dataset)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import DATASETS from .xml_style import XMLDataset @DATASETS.register_module() class VOCDataset(XMLDataset): """Dataset for PASCAL VOC.""" METAINFO = { 'classes': ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'), # palette is a list of color tuples, which is used for visualization. 'palette': [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192), (197, 226, 255), (0, 60, 100), (0, 0, 142), (255, 77, 255), (153, 69, 1), (120, 166, 157), (0, 182, 199), (0, 226, 252), (182, 182, 255), (0, 0, 230), (220, 20, 60), (163, 255, 0), (0, 82, 0), (3, 95, 161), (0, 80, 100), (183, 130, 88)] } def __init__(self, **kwargs): super().__init__(**kwargs) if 'VOC2007' in self.sub_data_root: self._metainfo['dataset_type'] = 'VOC2007' elif 'VOC2012' in self.sub_data_root: self._metainfo['dataset_type'] = 'VOC2012' else: self._metainfo['dataset_type'] = None
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import DATASETS from .xml_style import XMLDataset @DATASETS.register_module() class VOCDataset(XMLDataset): """Dataset for PASCAL VOC.""" METAINFO = { 'CLASSES': ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'), # PALETTE is a list of color tuples, which is used for visualization. 'PALETTE': [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192), (197, 226, 255), (0, 60, 100), (0, 0, 142), (255, 77, 255), (153, 69, 1), (120, 166, 157), (0, 182, 199), (0, 226, 252), (182, 182, 255), (0, 0, 230), (220, 20, 60), (163, 255, 0), (0, 82, 0), (3, 95, 161), (0, 80, 100), (183, 130, 88)] } def __init__(self, **kwargs): super().__init__(**kwargs) if 'VOC2007' in self.sub_data_root: self._metainfo['DATASET_TYPE'] = 'VOC2007' elif 'VOC2012' in self.sub_data_root: self._metainfo['DATASET_TYPE'] = 'VOC2012' else: self._metainfo['DATASET_TYPE'] = None
# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import mmcv import numpy as np import pytest from mmdet.core.mask import BitmapMasks from mmdet.datasets.pipelines import (FilterAnnotations, LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles) class TestLoading: @classmethod def setup_class(cls): cls.data_prefix = osp.join(osp.dirname(__file__), '../../data') def test_load_img(self): results = dict( img_prefix=self.data_prefix, img_info=dict(filename='color.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['filename'] == osp.join(self.data_prefix, 'color.jpg') assert results['ori_filename'] == 'color.jpg' assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3) assert results['ori_shape'] == (288, 512, 3) assert repr(transform) == transform.__class__.__name__ + \ "(to_float32=False, color_type='color', channel_order='bgr', " + \ "file_client_args={'backend': 'disk'})" # no img_prefix results = dict( img_prefix=None, img_info=dict(filename='tests/data/color.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['filename'] == 'tests/data/color.jpg' assert results['ori_filename'] == 'tests/data/color.jpg' assert results['img'].shape == (288, 512, 3) # to_float32 transform = LoadImageFromFile(to_float32=True) results = transform(copy.deepcopy(results)) assert results['img'].dtype == np.float32 # gray image results = dict( img_prefix=self.data_prefix, img_info=dict(filename='gray.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 transform = LoadImageFromFile(color_type='unchanged') results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512) assert results['img'].dtype == np.uint8 def test_load_multi_channel_img(self): results = dict( img_prefix=self.data_prefix, img_info=dict(filename=['color.jpg', 'color.jpg'])) transform = LoadMultiChannelImageFromFiles() results = transform(copy.deepcopy(results)) assert results['filename'] == [ osp.join(self.data_prefix, 'color.jpg'), osp.join(self.data_prefix, 'color.jpg') ] assert results['ori_filename'] == ['color.jpg', 'color.jpg'] assert results['img'].shape == (288, 512, 3, 2) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3, 2) assert results['ori_shape'] == (288, 512, 3, 2) assert results['pad_shape'] == (288, 512, 3, 2) assert results['scale_factor'] == 1.0 assert repr(transform) == transform.__class__.__name__ + \ "(to_float32=False, color_type='unchanged', " + \ "file_client_args={'backend': 'disk'})" def test_load_webcam_img(self): img = mmcv.imread(osp.join(self.data_prefix, 'color.jpg')) results = dict(img=img) transform = LoadImageFromWebcam() results = transform(copy.deepcopy(results)) assert results['filename'] is None assert results['ori_filename'] is None assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3) assert results['ori_shape'] == (288, 512, 3) def _build_filter_annotations_args(): kwargs = (dict(min_gt_bbox_wh=(100, 100)), dict(min_gt_bbox_wh=(100, 100), keep_empty=False), dict(min_gt_bbox_wh=(1, 1)), dict(min_gt_bbox_wh=(.01, .01)), dict(min_gt_bbox_wh=(.01, .01), by_mask=True), dict(by_mask=True), dict(by_box=False, by_mask=True)) targets = (None, 0, 1, 2, 1, 1, 1) return list(zip(targets, kwargs)) @pytest.mark.parametrize('target, kwargs', _build_filter_annotations_args()) def test_filter_annotations(target, kwargs): filter_ann = FilterAnnotations(**kwargs) bboxes = np.array([[2., 10., 4., 14.], [2., 10., 2.1, 10.1]]) raw_masks = np.zeros((2, 24, 24)) raw_masks[0, 10:14, 2:4] = 1 bitmap_masks = BitmapMasks(raw_masks, 24, 24) results = dict(gt_bboxes=bboxes, gt_masks=bitmap_masks) results = filter_ann(results) if results is not None: results = results['gt_bboxes'].shape[0] assert results == target
# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import mmcv import numpy as np from mmdet.datasets.pipelines import (LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles) class TestLoading: @classmethod def setup_class(cls): cls.data_prefix = osp.join(osp.dirname(__file__), '../../data') def test_load_img(self): results = dict( img_prefix=self.data_prefix, img_info=dict(filename='color.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['filename'] == osp.join(self.data_prefix, 'color.jpg') assert results['ori_filename'] == 'color.jpg' assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3) assert results['ori_shape'] == (288, 512, 3) assert repr(transform) == transform.__class__.__name__ + \ "(to_float32=False, color_type='color', channel_order='bgr', " + \ "file_client_args={'backend': 'disk'})" # no img_prefix results = dict( img_prefix=None, img_info=dict(filename='tests/data/color.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['filename'] == 'tests/data/color.jpg' assert results['ori_filename'] == 'tests/data/color.jpg' assert results['img'].shape == (288, 512, 3) # to_float32 transform = LoadImageFromFile(to_float32=True) results = transform(copy.deepcopy(results)) assert results['img'].dtype == np.float32 # gray image results = dict( img_prefix=self.data_prefix, img_info=dict(filename='gray.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 transform = LoadImageFromFile(color_type='unchanged') results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512) assert results['img'].dtype == np.uint8 def test_load_multi_channel_img(self): results = dict( img_prefix=self.data_prefix, img_info=dict(filename=['color.jpg', 'color.jpg'])) transform = LoadMultiChannelImageFromFiles() results = transform(copy.deepcopy(results)) assert results['filename'] == [ osp.join(self.data_prefix, 'color.jpg'), osp.join(self.data_prefix, 'color.jpg') ] assert results['ori_filename'] == ['color.jpg', 'color.jpg'] assert results['img'].shape == (288, 512, 3, 2) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3, 2) assert results['ori_shape'] == (288, 512, 3, 2) assert results['pad_shape'] == (288, 512, 3, 2) assert results['scale_factor'] == 1.0 assert repr(transform) == transform.__class__.__name__ + \ "(to_float32=False, color_type='unchanged', " + \ "file_client_args={'backend': 'disk'})" def test_load_webcam_img(self): img = mmcv.imread(osp.join(self.data_prefix, 'color.jpg')) results = dict(img=img) transform = LoadImageFromWebcam() results = transform(copy.deepcopy(results)) assert results['filename'] is None assert results['ori_filename'] is None assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3) assert results['ori_shape'] == (288, 512, 3)
"""Chain-of-Abstraction Output Parser.""" import asyncio import json import networkx as nx import re from collections import defaultdict from typing import Dict, Tuple from llama_index.core.tools import AsyncBaseTool, ToolOutput from llama_index.core.types import BaseOutputParser class ChainOfAbstractionParser(BaseOutputParser): """ Chain of abstraction output parser. This parser is used to parse the output using the default prompt defined in prompts.py. If the prompt formatting changes the function format, this parser will not work and should be updated. """ def __init__(self, verbose: bool = False): """Init params.""" self._verbose = verbose def parse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: return asyncio.run(self.aparse(solution, tools_by_name)) async def aparse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: # Extract function calls and placeholders func_calls = re.findall(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution) placeholders = set() for match in re.finditer(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution): placeholders.add(match.group(3)) # Create a dependency graph graph = nx.DiGraph() for func_name, inputs, output in func_calls: inputs = json.loads("[" + inputs + "]") graph.add_node(output, func_name=func_name, inputs=inputs) for inp in inputs: graph.add_edge(inp, output) # Find the execution levels execution_levels = defaultdict(list) for node in nx.topological_sort(graph): level = ( max( [execution_levels[pred] for pred in graph.predecessors(node)], default=-1, ) + 1 ) execution_levels[node] = level # Group nodes by execution level level_groups = defaultdict(list) for node, level in execution_levels.items(): level_groups[level].append(node) # Execute functions and replace placeholders results = {} tool_outputs = [] graph_nodes = {node[0]: node[1] for node in graph.nodes(data=True)} for level in sorted(level_groups.keys()): level_nodes = level_groups[level] parallel_results = {} for placeholder in level_nodes: if len(graph_nodes[placeholder]) == 0: continue # get function name and inputs func_name, inputs = ( graph_nodes[placeholder]["func_name"], graph_nodes[placeholder]["inputs"], ) # loop up any inputs that depend on other functions breakpoint() input_values = [results.get(inp, inp) for inp in inputs] if self._verbose: print( f"==== Executing {func_name} with inputs {input_values} ====", flush=True, ) # execute function and store result try: tool_output = await tools_by_name[func_name].acall(*input_values) tool_outputs.append(tool_output) except Exception as e: tool_outputs.append( ToolOutput( content=str(e), tool_name=func_name, raw_output=None, raw_input={"args": input_values}, is_error=True, ) ) # If an error occurs, stop execution break parallel_results[placeholder] = tool_output.raw_output results.update(parallel_results) # Replace placeholders in the solution text for placeholder, value in results.items(): solution = solution.replace(f"{placeholder}", '"' + str(value) + '"') return solution, tool_outputs
"""Chain-of-Abstraction Output Parser.""" import asyncio import json import networkx as nx import re from collections import defaultdict from typing import Dict, Tuple from llama_index.core.tools import AsyncBaseTool, ToolOutput from llama_index.core.types import BaseOutputParser class ChainOfAbstractionParser(BaseOutputParser): """ Chain of abstraction output parser. This parser is used to parse the output using the default prompt defined in prompts.py. If the prompt formatting changes the function format, this parser will not work and should be updated. """ def __init__(self, verbose: bool = False): """Init params.""" self._verbose = verbose def parse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: return asyncio.run(self.aparse(solution, tools_by_name)) async def aparse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: # Extract function calls and placeholders func_calls = re.findall(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution) placeholders = set() for match in re.finditer(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution): placeholders.add(match.group(3)) # Create a dependency graph graph = nx.DiGraph() for func_name, inputs, output in func_calls: inputs = json.loads("[" + inputs + "]") graph.add_node(output, func_name=func_name, inputs=inputs) for inp in inputs: graph.add_edge(inp, output) # Find the execution levels execution_levels = defaultdict(list) for node in nx.topological_sort(graph): level = ( max( [execution_levels[pred] for pred in graph.predecessors(node)], default=-1, ) + 1 ) execution_levels[node] = level # Group nodes by execution level level_groups = defaultdict(list) for node, level in execution_levels.items(): level_groups[level].append(node) # Execute functions and replace placeholders results = {} tool_outputs = [] graph_nodes = {node[0]: node[1] for node in graph.nodes(data=True)} for level in sorted(level_groups.keys()): level_nodes = level_groups[level] parallel_results = {} for placeholder in level_nodes: if len(graph_nodes[placeholder]) == 0: continue # get function name and inputs func_name, inputs = ( graph_nodes[placeholder]["func_name"], graph_nodes[placeholder]["inputs"], ) # loop up any inputs that depend on other functions input_values = [results.get(inp, inp) for inp in inputs] if self._verbose: print( f"==== Executing {func_name} with inputs {input_values} ====", flush=True, ) # execute function and store result try: raw_tool_output = await tools_by_name[func_name].acall( *input_values ) tool_outputs.append( ToolOutput( content=str(raw_tool_output), tool_name=func_name, raw_output=raw_tool_output, raw_input={"args": input_values}, is_error=False, ) ) except Exception as e: tool_outputs.append( ToolOutput( content=str(e), tool_name=func_name, raw_output=None, raw_input={"args": input_values}, is_error=True, ) ) # If an error occurs, stop execution break parallel_results[placeholder] = str(raw_tool_output) results.update(parallel_results) # Replace placeholders in the solution text for placeholder, value in results.items(): solution = solution.replace(f"{placeholder}", '"' + str(value) + '"') return solution, tool_outputs
import warnings from langchain_core.globals import get_debug as core_get_debug from langchain_core.globals import get_verbose as core_get_verbose from langchain_core.globals import set_debug as core_set_debug from langchain_core.globals import set_verbose as core_set_verbose from langchain.globals import get_debug, get_verbose, set_debug, set_verbose def test_no_warning() -> None: with warnings.catch_warnings(): warnings.simplefilter("error") get_debug() set_debug(False) get_verbose() set_verbose(False) core_get_debug() core_set_debug(False) core_get_verbose() core_set_verbose(False) def test_debug_is_settable_directly() -> None: from langchain_core.callbacks.manager import _get_debug import langchain previous_value = langchain.debug previous_fn_reading = _get_debug() assert previous_value == previous_fn_reading # Flip the value of the flag. langchain.debug = not previous_value new_value = langchain.debug new_fn_reading = _get_debug() try: # We successfully changed the value of `debug`. assert new_value != previous_value # If we access `debug` via a function used elsewhere in langchain, # it also sees the same new value. assert new_value == new_fn_reading # If we access `debug` via `get_debug()` we also get the same value. assert new_value == get_debug() finally: # Make sure we don't alter global state, even if the test fails. # Always reset `debug` to the value it had before. set_debug(previous_value) def test_debug_is_settable_via_setter() -> None: from langchain_core.callbacks.manager import _get_debug from langchain import globals as langchain_globals previous_value = langchain_globals._debug previous_fn_reading = _get_debug() assert previous_value == previous_fn_reading # Flip the value of the flag. set_debug(not previous_value) new_value = langchain_globals._debug new_fn_reading = _get_debug() try: # We successfully changed the value of `debug`. assert new_value != previous_value # If we access `debug` via a function used elsewhere in langchain, # it also sees the same new value. assert new_value == new_fn_reading # If we access `debug` via `get_debug()` we also get the same value. assert new_value == get_debug() finally: # Make sure we don't alter global state, even if the test fails. # Always reset `debug` to the value it had before. set_debug(previous_value) def test_verbose_is_settable_directly() -> None: import langchain from langchain.chains.base import _get_verbosity previous_value = langchain.verbose previous_fn_reading = _get_verbosity() assert previous_value == previous_fn_reading # Flip the value of the flag. langchain.verbose = not previous_value new_value = langchain.verbose new_fn_reading = _get_verbosity() try: # We successfully changed the value of `verbose`. assert new_value != previous_value # If we access `verbose` via a function used elsewhere in langchain, # it also sees the same new value. assert new_value == new_fn_reading # If we access `verbose` via `get_verbose()` we also get the same value. assert new_value == get_verbose() finally: # Make sure we don't alter global state, even if the test fails. # Always reset `verbose` to the value it had before. set_verbose(previous_value) def test_verbose_is_settable_via_setter() -> None: from langchain import globals as langchain_globals from langchain.chains.base import _get_verbosity previous_value = langchain_globals._verbose previous_fn_reading = _get_verbosity() assert previous_value == previous_fn_reading # Flip the value of the flag. set_verbose(not previous_value) new_value = langchain_globals._verbose new_fn_reading = _get_verbosity() try: # We successfully changed the value of `verbose`. assert new_value != previous_value # If we access `verbose` via a function used elsewhere in langchain, # it also sees the same new value. assert new_value == new_fn_reading # If we access `verbose` via `get_verbose()` we also get the same value. assert new_value == get_verbose() finally: # Make sure we don't alter global state, even if the test fails. # Always reset `verbose` to the value it had before. set_verbose(previous_value)
import warnings from langchain_core.globals import get_debug as core_get_debug from langchain_core.globals import get_verbose as core_get_verbose from langchain_core.globals import set_debug as core_set_debug from langchain_core.globals import set_verbose as core_set_verbose from langchain.globals import get_debug, get_verbose, set_debug, set_verbose def test_no_warning() -> None: with warnings.catch_warnings(): warnings.simplefilter("error") get_debug() set_debug(False) get_verbose() set_verbose(False) core_get_debug() core_set_debug(False) core_get_verbose() core_set_verbose(False) def test_debug_is_settable_directly() -> None: from langchain_core.callbacks.manager import _get_debug import langchain previous_value = langchain.debug previous_fn_reading = _get_debug() assert previous_value == previous_fn_reading # Flip the value of the flag. langchain.debug = not previous_value new_value = langchain.debug new_fn_reading = _get_debug() try: # We successfully changed the value of `debug`. assert new_value != previous_value # If we access `debug` via a function used elsewhere in langchain, # it also sees the same new value. assert new_value == new_fn_reading # If we access `debug` via `get_debug()` we also get the same value. assert new_value == get_debug() finally: # Make sure we don't alter global state, even if the test fails. # Always reset `debug` to the value it had before. set_debug(previous_value) def test_debug_is_settable_via_setter() -> None: from langchain_core.callbacks.manager import _get_debug from langchain import globals previous_value = globals._debug previous_fn_reading = _get_debug() assert previous_value == previous_fn_reading # Flip the value of the flag. set_debug(not previous_value) new_value = globals._debug new_fn_reading = _get_debug() try: # We successfully changed the value of `debug`. assert new_value != previous_value # If we access `debug` via a function used elsewhere in langchain, # it also sees the same new value. assert new_value == new_fn_reading # If we access `debug` via `get_debug()` we also get the same value. assert new_value == get_debug() finally: # Make sure we don't alter global state, even if the test fails. # Always reset `debug` to the value it had before. set_debug(previous_value) def test_verbose_is_settable_directly() -> None: import langchain from langchain.chains.base import _get_verbosity previous_value = langchain.verbose previous_fn_reading = _get_verbosity() assert previous_value == previous_fn_reading # Flip the value of the flag. langchain.verbose = not previous_value new_value = langchain.verbose new_fn_reading = _get_verbosity() try: # We successfully changed the value of `verbose`. assert new_value != previous_value # If we access `verbose` via a function used elsewhere in langchain, # it also sees the same new value. assert new_value == new_fn_reading # If we access `verbose` via `get_verbose()` we also get the same value. assert new_value == get_verbose() finally: # Make sure we don't alter global state, even if the test fails. # Always reset `verbose` to the value it had before. set_verbose(previous_value) def test_verbose_is_settable_via_setter() -> None: from langchain import globals from langchain.chains.base import _get_verbosity previous_value = globals._verbose previous_fn_reading = _get_verbosity() assert previous_value == previous_fn_reading # Flip the value of the flag. set_verbose(not previous_value) new_value = globals._verbose new_fn_reading = _get_verbosity() try: # We successfully changed the value of `verbose`. assert new_value != previous_value # If we access `verbose` via a function used elsewhere in langchain, # it also sees the same new value. assert new_value == new_fn_reading # If we access `verbose` via `get_verbose()` we also get the same value. assert new_value == get_verbose() finally: # Make sure we don't alter global state, even if the test fails. # Always reset `verbose` to the value it had before. set_verbose(previous_value)
import unittest import torch import torchaudio.prototype.functional as F from parameterized import parameterized from torchaudio_unittest.common_utils import skipIfNoRIR, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum")) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern))) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, False)) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, True)) def test_freq_ir(self): mags = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.frequency_impulse_response, (mags,)) class TorchScriptConsistencyCPUOnlyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @skipIfNoRIR @parameterized.expand([(1,), (4,)]) def test_simulate_rir_ism_single_band(self, channel): room_dim = torch.rand(3, dtype=self.dtype, device=self.device) + 5 mic_array = torch.rand(channel, 3, dtype=self.dtype, device=self.device) + 1 source = torch.rand(3, dtype=self.dtype, device=self.device) + 4 max_order = 3 absorption = 0.5 center_frequency = torch.tensor([125, 250, 500, 1000, 2000, 4000, 8000], dtype=self.dtype, device=self.device) self._assert_consistency( F.simulate_rir_ism, (room_dim, source, mic_array, max_order, absorption, None, 81, center_frequency, 343.0, 16000.0), ) @skipIfNoRIR @parameterized.expand([(1,), (4,)]) def test_simulate_rir_ism_multi_band(self, channel): room_dim = torch.rand(3, dtype=self.dtype, device=self.device) + 5 mic_array = torch.rand(channel, 3, dtype=self.dtype, device=self.device) + 1 source = torch.rand(3, dtype=self.dtype, device=self.device) + 4 max_order = 3 absorption = torch.rand(7, 6, dtype=self.dtype, device=self.device) center_frequency = torch.tensor([125, 250, 500, 1000, 2000, 4000, 8000], dtype=self.dtype, device=self.device) self._assert_consistency( F.simulate_rir_ism, (room_dim, source, mic_array, max_order, absorption, None, 81, center_frequency, 343.0, 16000.0), )
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum")) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern))) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, False)) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, True)) def test_freq_ir(self): mags = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.frequency_impulse_response, (mags,))
from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.UnitNormalization") class UnitNormalization(Layer): """Unit normalization layer. Normalize a batch of inputs so that each input in the batch has a L2 norm equal to 1 (across the axes specified in `axis`). Example: >>> data = np.arange(6).reshape(2, 3) >>> normalized_data = keras.layers.UnitNormalization()(data) >>> np.sum(normalized_data[0, :] ** 2) 1.0 Args: axis: Integer or list/tuple. The axis or axes to normalize across. Typically, this is the features axis or axes. The left-out axes are typically the batch axis or axes. `-1` is the last dimension in the input. Defaults to `-1`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) if isinstance(axis, (list, tuple)): self.axis = list(axis) elif isinstance(axis, int): self.axis = axis else: raise TypeError( "Invalid value for `axis` argument: " "expected an int or a list/tuple of ints. " f"Received: axis={axis}" ) self.supports_masking = True self.built = True def call(self, inputs): return ops.normalize(inputs, axis=self.axis, order=2, epsilon=1e-12) def compute_output_shape(self, input_shape): # Ensure axis is always treated as a list if isinstance(self.axis, int): axes = [self.axis] else: axes = self.axis for axis in axes: if axis >= len(input_shape) or axis < -len(input_shape): raise ValueError( f"Axis {self.axis} is out of bounds for " f"input shape {input_shape}." ) return input_shape def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config
from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.UnitNormalization") class UnitNormalization(Layer): """Unit normalization layer. Normalize a batch of inputs so that each input in the batch has a L2 norm equal to 1 (across the axes specified in `axis`). Example: >>> data = np.arange(6).reshape(2, 3) >>> normalized_data = keras.layers.UnitNormalization()(data) >>> np.sum(normalized_data[0, :] ** 2) 1.0 Args: axis: Integer or list/tuple. The axis or axes to normalize across. Typically, this is the features axis or axes. The left-out axes are typically the batch axis or axes. `-1` is the last dimension in the input. Defaults to `-1`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) if isinstance(axis, (list, tuple)): self.axis = list(axis) elif isinstance(axis, int): self.axis = axis else: raise TypeError( "Invalid value for `axis` argument: " "expected an int or a list/tuple of ints. " f"Received: axis={axis}" ) self.supports_masking = True self.built = True def call(self, inputs): return ops.normalize(inputs, axis=self.axis, order=2, epsilon=1e-12) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ import logging from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEClassificationEvaluator from sentence_transformers.cross_encoder.losses.CrossEntropyLoss import CrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 1 output_dir = "output/training_ce_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as basis and setup it up to predict 3 labels # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, etc. model = CrossEncoder("distilroberta-base", num_labels=3) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 10k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(10000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) test_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="test") logging.info(train_dataset) # We might want to remap labels from the dataset, you can do that like so: mapping = {0: 1, 1: 2, 2: 0} eval_dataset = eval_dataset.map(lambda x: {"label": mapping[x["label"]]}) test_dataset = test_dataset.map(lambda x: {"label": mapping[x["label"]]}) # 3. Define our training loss: loss = CrossEntropyLoss(model) # During training, we use CEClassificationEvaluator to measure the performance on the dev set dev_cls_evaluator = CEClassificationEvaluator( list(zip(eval_dataset["premise"], eval_dataset["hypothesis"])), eval_dataset["label"], name="AllNLI-dev", ) dev_cls_evaluator(model) # 5. Define the training arguments args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, save_total_limit=2, logging_steps=100, run_name="ce-nli-v1", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_cls_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_cls_evaluator = CEClassificationEvaluator( list(zip(test_dataset["premise"], test_dataset["hypothesis"])), test_dataset["label"], name="AllNLI-test", ) test_cls_evaluator(model) # 8. Evaluate the final model and save it final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir)
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ import logging from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEClassificationEvaluator from sentence_transformers.cross_encoder.losses.CrossEntropyLoss import CrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 1 output_dir = "output/training_ce_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as basis and setup it up to predict 3 labels # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, etc. model = CrossEncoder("distilroberta-base", num_labels=3) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 10k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(10000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) test_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="test") logging.info(train_dataset) # We might want to remap labels from the dataset, you can do that like so: mapping = {0: 1, 1: 2, 2: 0} eval_dataset = eval_dataset.map(lambda x: {"label": mapping[x["label"]]}) test_dataset = test_dataset.map(lambda x: {"label": mapping[x["label"]]}) # 3. Define our training loss: loss = CrossEntropyLoss(model) # During training, we use CESoftmaxAccuracyEvaluator and CEF1Evaluator to measure the performance on the dev set dev_cls_evaluator = CEClassificationEvaluator( list(zip(eval_dataset["premise"], eval_dataset["hypothesis"])), eval_dataset["label"], name="AllNLI-dev" ) dev_cls_evaluator(model) # 5. Define the training arguments args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, save_total_limit=2, logging_steps=100, run_name="ce-nli-v1", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_cls_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_cls_evaluator = CEClassificationEvaluator( list(zip(test_dataset["premise"], test_dataset["hypothesis"])), test_dataset["label"], name="AllNLI-test" ) test_cls_evaluator(model) # 8. Evaluate the final model and save it final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir)
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa model = dict( backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(1, 2, 3), # Please only add indices that would be used # in FPN, otherwise some parameter will not be used with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[192, 384, 768], start_level=0, num_outs=5)) optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa model = dict( backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(1, 2, 3), # Please only add indices that would be used # in FPN, otherwise some parameter will not be used with_cp=False, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[192, 384, 768], start_level=0, num_outs=5)) optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import tanh_shrink
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.amadeus.flight_search import ( AmadeusFlightSearch, FlightSearchSchema, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "FlightSearchSchema": "langchain_community.tools.amadeus.flight_search", "AmadeusFlightSearch": "langchain_community.tools.amadeus.flight_search", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AmadeusFlightSearch", "FlightSearchSchema", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.amadeus.flight_search import ( AmadeusFlightSearch, FlightSearchSchema, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "FlightSearchSchema": "langchain_community.tools.amadeus.flight_search", "AmadeusFlightSearch": "langchain_community.tools.amadeus.flight_search", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "FlightSearchSchema", "AmadeusFlightSearch", ]
# Copyright (c) OpenMMLab. All rights reserved. from .ade20k import (ADE20KInstanceDataset, ADE20KPanopticDataset, ADE20KSegDataset) from .base_det_dataset import BaseDetDataset from .base_semseg_dataset import BaseSegDataset from .base_video_dataset import BaseVideoDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_caption import CocoCaptionDataset from .coco_panoptic import CocoPanopticDataset from .coco_semantic import CocoSegDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import ConcatDataset, MultiImageMixDataset from .deepfashion import DeepFashionDataset from .dsdl import DSDLDetDataset from .isaid import iSAIDDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .mot_challenge_dataset import MOTChallengeDataset from .objects365 import Objects365V1Dataset, Objects365V2Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .refcoco import RefCocoDataset from .reid_dataset import ReIDDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, GroupMultiSourceSampler, MultiSourceSampler, TrackAspectRatioBatchSampler, TrackImgSampler) from .utils import get_loading_pipeline from .v3det import V3DetDataset from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset from .youtube_vis_dataset import YouTubeVISDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset', 'Objects365V1Dataset', 'Objects365V2Dataset', 'DSDLDetDataset', 'BaseVideoDataset', 'MOTChallengeDataset', 'TrackImgSampler', 'ReIDDataset', 'YouTubeVISDataset', 'TrackAspectRatioBatchSampler', 'ADE20KPanopticDataset', 'CocoCaptionDataset', 'RefCocoDataset', 'BaseSegDataset', 'ADE20KSegDataset', 'CocoSegDataset', 'ADE20KInstanceDataset', 'iSAIDDataset', 'V3DetDataset', 'ConcatDataset' ]
# Copyright (c) OpenMMLab. All rights reserved. from .ade20k import (ADE20KInstanceDataset, ADE20KPanopticDataset, ADE20KSegDataset) from .base_det_dataset import BaseDetDataset from .base_semseg_dataset import BaseSegDataset from .base_video_dataset import BaseVideoDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_caption import CocoCaptionDataset from .coco_panoptic import CocoPanopticDataset from .coco_semantic import CocoSegDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import MultiImageMixDataset from .deepfashion import DeepFashionDataset from .dsdl import DSDLDetDataset from .isaid import iSAIDDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .mot_challenge_dataset import MOTChallengeDataset from .objects365 import Objects365V1Dataset, Objects365V2Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .refcoco import RefCocoDataset from .reid_dataset import ReIDDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, GroupMultiSourceSampler, MultiSourceSampler, TrackAspectRatioBatchSampler, TrackImgSampler) from .utils import get_loading_pipeline from .v3det import V3DetDataset from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset from .youtube_vis_dataset import YouTubeVISDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset', 'Objects365V1Dataset', 'Objects365V2Dataset', 'DSDLDetDataset', 'BaseVideoDataset', 'MOTChallengeDataset', 'TrackImgSampler', 'ReIDDataset', 'YouTubeVISDataset', 'TrackAspectRatioBatchSampler', 'ADE20KPanopticDataset', 'CocoCaptionDataset', 'RefCocoDataset', 'BaseSegDataset', 'ADE20KSegDataset', 'CocoSegDataset', 'ADE20KInstanceDataset', 'iSAIDDataset', 'V3DetDataset' ]
from jina.clients.base.http import HTTPBaseClient from jina.clients.mixin import ( AsyncHealthCheckMixin, AsyncMutateMixin, AsyncPostMixin, AsyncProfileMixin, HealthCheckMixin, MutateMixin, PostMixin, ProfileMixin, ) import asyncio class HTTPClient( HTTPBaseClient, PostMixin, ProfileMixin, MutateMixin, HealthCheckMixin ): """A client connecting to a Gateway using gRPC protocol. Instantiate this class through the :meth:`jina.Client` convenience method. EXAMPLE USAGE .. code-block:: python from jina import Client from docarray import Document # select host address to connect to c = Client( protocol='http', asyncio=False, host='http://my.awesome.flow:1234' ) # returns HTTPClient instance c.post(on='/index', inputs=Document(text='hello!')) """ class AsyncHTTPClient( HTTPBaseClient, AsyncPostMixin, AsyncMutateMixin, AsyncProfileMixin, AsyncHealthCheckMixin, ): """ Asynchronous client connecting to a Gateway using HTTP protocol. Instantiate this class through the :meth:`jina.Client` convenience method. Unlike :class:`HTTPClient`, here :meth:`post` is a coroutine (i.e. declared with the async/await syntax), simply calling them will not schedule them to be executed. To actually run a coroutine, user need to put them in an event loop, e.g. via ``asyncio.run()``, ``asyncio.create_task()``. :class:`AsyncHTTPClient` can be very useful in the integration settings, where Jina/Flow/Client is NOT the main logic, but rather served as a part of other program. In this case, users often do not want to let Jina control the ``asyncio.eventloop``. On contrary, :class:`Client` is controlling and wrapping the event loop internally, making the Client looks synchronous from outside. EXAMPLE USAGE .. code-block:: python from jina import Client from docarray import Document # async inputs for the client async def async_inputs(): for _ in range(10): yield Document() await asyncio.sleep(0.1) # select host address to connect to c = Client( protocol='http', asyncio=True, host='http://my.awesome.flow:1234' ) # returns AsyncHTTPClient instance async for resp in client.post(on='/index', async_inputs, request_size=1): print(resp) """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._lock = asyncio.Lock() self.reuse_session = self.args.reuse_session
from jina.clients.base.http import HTTPBaseClient from jina.clients.mixin import ( AsyncHealthCheckMixin, AsyncMutateMixin, AsyncPostMixin, AsyncProfileMixin, HealthCheckMixin, MutateMixin, PostMixin, ProfileMixin, ) class HTTPClient( HTTPBaseClient, PostMixin, ProfileMixin, MutateMixin, HealthCheckMixin ): """A client connecting to a Gateway using gRPC protocol. Instantiate this class through the :meth:`jina.Client` convenience method. EXAMPLE USAGE .. code-block:: python from jina import Client from docarray import Document # select host address to connect to c = Client( protocol='http', asyncio=False, host='http://my.awesome.flow:1234' ) # returns HTTPClient instance c.post(on='/index', inputs=Document(text='hello!')) """ class AsyncHTTPClient( HTTPBaseClient, AsyncPostMixin, AsyncMutateMixin, AsyncProfileMixin, AsyncHealthCheckMixin, ): """ Asynchronous client connecting to a Gateway using HTTP protocol. Instantiate this class through the :meth:`jina.Client` convenience method. Unlike :class:`HTTPClient`, here :meth:`post` is a coroutine (i.e. declared with the async/await syntax), simply calling them will not schedule them to be executed. To actually run a coroutine, user need to put them in an event loop, e.g. via ``asyncio.run()``, ``asyncio.create_task()``. :class:`AsyncHTTPClient` can be very useful in the integration settings, where Jina/Flow/Client is NOT the main logic, but rather served as a part of other program. In this case, users often do not want to let Jina control the ``asyncio.eventloop``. On contrary, :class:`Client` is controlling and wrapping the event loop internally, making the Client looks synchronous from outside. EXAMPLE USAGE .. code-block:: python from jina import Client from docarray import Document # async inputs for the client async def async_inputs(): for _ in range(10): yield Document() await asyncio.sleep(0.1) # select host address to connect to c = Client( protocol='http', asyncio=True, host='http://my.awesome.flow:1234' ) # returns AsyncHTTPClient instance async for resp in client.post(on='/index', async_inputs, request_size=1): print(resp) """
_base_ = './mask-rcnn_regnetx-3.2GF_fpn_1x_coco.py' model = dict( backbone=dict( type='RegNet', arch='regnetx_8.0gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_8.0gf')), neck=dict( type='FPN', in_channels=[80, 240, 720, 1920], out_channels=256, num_outs=5))
_base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py' model = dict( backbone=dict( type='RegNet', arch='regnetx_8.0gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_8.0gf')), neck=dict( type='FPN', in_channels=[80, 240, 720, 1920], out_channels=256, num_outs=5))
"""Helper functions for managing the LangChain API. This module is only relevant for LangChain developers, not for users. .. warning:: This module and its submodules are for internal use only. Do not use them in your own code. We may change the API at any time with no warning. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from .beta_decorator import ( LangChainBetaWarning, beta, suppress_langchain_beta_warning, surface_langchain_beta_warnings, ) from .deprecation import ( LangChainDeprecationWarning, deprecated, suppress_langchain_deprecation_warning, surface_langchain_deprecation_warnings, warn_deprecated, ) from .path import as_import_path, get_relative_path __all__ = [ "as_import_path", "beta", "deprecated", "get_relative_path", "LangChainBetaWarning", "LangChainDeprecationWarning", "suppress_langchain_beta_warning", "surface_langchain_beta_warnings", "suppress_langchain_deprecation_warning", "surface_langchain_deprecation_warnings", "warn_deprecated", ] _dynamic_imports = { "LangChainBetaWarning": "beta_decorator", "beta": "beta_decorator", "suppress_langchain_beta_warning": "beta_decorator", "surface_langchain_beta_warnings": "beta_decorator", "as_import_path": "path", "get_relative_path": "path", "LangChainDeprecationWarning": "deprecation", "deprecated": "deprecation", "surface_langchain_deprecation_warnings": "deprecation", "suppress_langchain_deprecation_warning": "deprecation", "warn_deprecated": "deprecation", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Helper functions for managing the LangChain API. This module is only relevant for LangChain developers, not for users. .. warning:: This module and its submodules are for internal use only. Do not use them in your own code. We may change the API at any time with no warning. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from .beta_decorator import ( LangChainBetaWarning, beta, suppress_langchain_beta_warning, surface_langchain_beta_warnings, ) from .deprecation import ( LangChainDeprecationWarning, deprecated, suppress_langchain_deprecation_warning, surface_langchain_deprecation_warnings, warn_deprecated, ) from .path import as_import_path, get_relative_path __all__ = [ "as_import_path", "beta", "deprecated", "get_relative_path", "LangChainBetaWarning", "LangChainDeprecationWarning", "suppress_langchain_beta_warning", "surface_langchain_beta_warnings", "suppress_langchain_deprecation_warning", "surface_langchain_deprecation_warnings", "warn_deprecated", ] _dynamic_imports = { "LangChainBetaWarning": "beta_decorator", "beta": "beta_decorator", "suppress_langchain_beta_warning": "beta_decorator", "surface_langchain_beta_warnings": "beta_decorator", "as_import_path": "path", "get_relative_path": "path", "LangChainDeprecationWarning": "deprecation", "deprecated": "deprecation", "surface_langchain_deprecation_warnings": "deprecation", "suppress_langchain_deprecation_warning": "deprecation", "warn_deprecated": "deprecation", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
import logging import os import signal import sys from abc import ABC, abstractmethod from multiprocessing import Process, set_start_method from typing import Optional from backend.util.logging import configure_logging from backend.util.metrics import sentry_init logger = logging.getLogger(__name__) _SERVICE_NAME = "MainProcess" def get_service_name(): return _SERVICE_NAME def set_service_name(name: str): global _SERVICE_NAME _SERVICE_NAME = name class AppProcess(ABC): """ A class to represent an object that can be executed in a background process. """ process: Optional[Process] = None set_start_method("spawn", force=True) configure_logging() sentry_init() # Methods that are executed INSIDE the process # @abstractmethod def run(self): """ The method that will be executed in the process. """ pass @classmethod @property def service_name(cls) -> str: return cls.__name__ def cleanup(self): """ Implement this method on a subclass to do post-execution cleanup, e.g. disconnecting from a database or terminating child processes. """ pass def health_check(self) -> str: """ A method to check the health of the process. """ return "OK" def execute_run_command(self, silent): signal.signal(signal.SIGTERM, self._self_terminate) try: if silent: sys.stdout = open(os.devnull, "w") sys.stderr = open(os.devnull, "w") set_service_name(self.service_name) logger.info(f"[{self.service_name}] Starting...") self.run() except (KeyboardInterrupt, SystemExit) as e: logger.warning(f"[{self.service_name}] Terminated: {e}; quitting...") def _self_terminate(self, signum: int, frame): self.cleanup() sys.exit(0) # Methods that are executed OUTSIDE the process # def __enter__(self): self.start(background=True) return self def __exit__(self, *args, **kwargs): self.stop() def start(self, background: bool = False, silent: bool = False, **proc_args) -> int: """ Start the background process. Args: background: Whether to run the process in the background. silent: Whether to disable stdout and stderr. proc_args: Additional arguments to pass to the process. Returns: the process id or 0 if the process is not running in the background. """ if not background: self.execute_run_command(silent) return 0 self.process = Process( name=self.__class__.__name__, target=self.execute_run_command, args=(silent,), **proc_args, ) self.process.start() self.health_check() logger.info(f"[{self.service_name}] started with PID {self.process.pid}") return self.process.pid or 0 def stop(self): """ Stop the background process. """ if not self.process: return self.process.terminate() self.process.join() logger.info(f"[{self.service_name}] with PID {self.process.pid} stopped") self.process = None
import logging import os import signal import sys from abc import ABC, abstractmethod from multiprocessing import Process, set_start_method from typing import Optional from backend.util.logging import configure_logging from backend.util.metrics import sentry_init logger = logging.getLogger(__name__) _SERVICE_NAME = "MainProcess" def get_service_name(): return _SERVICE_NAME def set_service_name(name: str): global _SERVICE_NAME _SERVICE_NAME = name class AppProcess(ABC): """ A class to represent an object that can be executed in a background process. """ process: Optional[Process] = None set_start_method("spawn", force=True) configure_logging() sentry_init() # Methods that are executed INSIDE the process # @abstractmethod def run(self): """ The method that will be executed in the process. """ pass @classmethod @property def service_name(cls) -> str: return cls.__name__ def cleanup(self): """ Implement this method on a subclass to do post-execution cleanup, e.g. disconnecting from a database or terminating child processes. """ pass def health_check(self) -> str: """ A method to check the health of the process. """ return "OK" def execute_run_command(self, silent): signal.signal(signal.SIGTERM, self._self_terminate) try: if silent: sys.stdout = open(os.devnull, "w") sys.stderr = open(os.devnull, "w") set_service_name(self.service_name) logger.info(f"[{self.service_name}] Starting...") self.run() except (KeyboardInterrupt, SystemExit) as e: logger.warning(f"[{self.service_name}] Terminated: {e}; quitting...") def _self_terminate(self, signum: int, frame): self.cleanup() sys.exit(0) # Methods that are executed OUTSIDE the process # def __enter__(self): self.start(background=True) return self def __exit__(self, *args, **kwargs): self.stop() def start(self, background: bool = False, silent: bool = False, **proc_args) -> int: """ Start the background process. Args: background: Whether to run the process in the background. silent: Whether to disable stdout and stderr. proc_args: Additional arguments to pass to the process. Returns: the process id or 0 if the process is not running in the background. """ if not background: self.execute_run_command(silent) return 0 self.process = Process( name=self.__class__.__name__, target=self.execute_run_command, args=(silent,), **proc_args, ) self.process.start() self.health_check() return self.process.pid or 0 def stop(self): """ Stop the background process. """ if not self.process: return self.process.terminate() self.process.join() self.process = None
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import ( IFPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( backend_empty_cache, backend_reset_max_memory_allocated, backend_reset_peak_memory_stats, load_numpy, require_accelerator, require_hf_hub_version_greater, require_torch_accelerator, require_transformers_version_greater, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase): pipeline_class = IFPipeline params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} batch_params = TEXT_TO_IMAGE_BATCH_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} def get_dummy_components(self): return self._get_dummy_components() def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "np", } return inputs def test_save_load_optional_components(self): self._test_save_load_optional_components() @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU") @require_accelerator def test_save_load_float16(self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_float16(expected_max_diff=1e-1) def test_attention_slicing_forward_pass(self): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def test_save_load_local(self): self._test_save_load_local() def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @require_hf_hub_version_greater("0.26.5") @require_transformers_version_greater("4.47.1") def test_save_load_dduf(self): super().test_save_load_dduf(atol=1e-2, rtol=1e-2) @slow @require_torch_accelerator class IFPipelineSlowTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_if_text_to_image(self): pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) pipe.unet.set_attn_processor(AttnAddedKVProcessor()) pipe.enable_model_cpu_offload(device=torch_device) backend_reset_max_memory_allocated(torch_device) backend_empty_cache(torch_device) backend_reset_peak_memory_stats(torch_device) generator = torch.Generator(device="cpu").manual_seed(0) output = pipe( prompt="anime turtle", num_inference_steps=2, generator=generator, output_type="np", ) image = output.images[0] mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 12 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(image, expected_image) pipe.remove_all_hooks()
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import ( IFPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( load_numpy, require_accelerator, require_hf_hub_version_greater, require_torch_gpu, require_transformers_version_greater, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase): pipeline_class = IFPipeline params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} batch_params = TEXT_TO_IMAGE_BATCH_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} def get_dummy_components(self): return self._get_dummy_components() def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "np", } return inputs def test_save_load_optional_components(self): self._test_save_load_optional_components() @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU") @require_accelerator def test_save_load_float16(self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_float16(expected_max_diff=1e-1) def test_attention_slicing_forward_pass(self): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def test_save_load_local(self): self._test_save_load_local() def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @require_hf_hub_version_greater("0.26.5") @require_transformers_version_greater("4.47.1") def test_save_load_dduf(self): super().test_save_load_dduf(atol=1e-2, rtol=1e-2) @slow @require_torch_gpu class IFPipelineSlowTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_if_text_to_image(self): pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) pipe.unet.set_attn_processor(AttnAddedKVProcessor()) pipe.enable_model_cpu_offload() torch.cuda.reset_max_memory_allocated() torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() generator = torch.Generator(device="cpu").manual_seed(0) output = pipe( prompt="anime turtle", num_inference_steps=2, generator=generator, output_type="np", ) image = output.images[0] mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 12 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(image, expected_image) pipe.remove_all_hooks()
from typing import Dict, List, Optional, Set import pytest from docarray import BaseDoc, DocArray from docarray.documents import ImageDoc from docarray.utils.reduce import reduce, reduce_all class InnerDoc(BaseDoc): integer: int inner_list: List class MMDoc(BaseDoc): text: str = '' price: int = 0 categories: Optional[List[str]] = None image: Optional[ImageDoc] = None matches: Optional[DocArray] = None matches_with_same_id: Optional[DocArray] = None opt_int: Optional[int] = None test_set: Optional[Set] = None inner_doc: Optional[InnerDoc] = None test_dict: Optional[Dict] = None @pytest.fixture def doc1(): return MMDoc( text='hey here', categories=['a', 'b', 'c'], price=10, matches=DocArray[MMDoc]([MMDoc()]), matches_with_same_id=DocArray[MMDoc]( [MMDoc(id='a', matches=DocArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'a'}, inner_doc=InnerDoc(integer=2, inner_list=['c', 'd']), test_dict={'a': 0, 'b': 2, 'd': 4, 'z': 3}, ) @pytest.fixture def doc2(doc1): return MMDoc( id=doc1.id, text='hey here 2', categories=['d', 'e', 'f'], price=5, opt_int=5, matches=DocArray[MMDoc]([MMDoc()]), matches_with_same_id=DocArray[MMDoc]( [MMDoc(id='a', matches=DocArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'b'}, inner_doc=InnerDoc(integer=3, inner_list=['a', 'b']), test_dict={'a': 10, 'b': 10, 'c': 3, 'z': None}, ) def test_reduce_different_ids(): da1 = DocArray[MMDoc]([MMDoc() for _ in range(10)]) da2 = DocArray[MMDoc]([MMDoc() for _ in range(10)]) result = reduce(da1, da2) assert len(result) == 20 # da1 is changed in place (no extra memory) assert len(da1) == 20 def test_reduce(doc1, doc2): da1 = DocArray[MMDoc]([doc1, MMDoc()]) da2 = DocArray[MMDoc]([MMDoc(), doc2]) result = reduce(da1, da2) assert len(result) == 3 # da1 is changed in place (no extra memory) assert len(da1) == 3 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == ['a', 'b', 'c', 'd', 'e', 'f'] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.inner_list == ['c', 'd', 'a', 'b'] def test_reduce_all(doc1, doc2): da1 = DocArray[MMDoc]([doc1, MMDoc()]) da2 = DocArray[MMDoc]([MMDoc(), doc2]) da3 = DocArray[MMDoc]([MMDoc(), MMDoc(), doc1]) result = reduce_all([da1, da2, da3]) assert len(result) == 5 # da1 is changed in place (no extra memory) assert len(da1) == 5 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == [ 'a', 'b', 'c', 'd', 'e', 'f', 'a', 'b', 'c', 'd', 'e', 'f', ] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.inner_list == ['c', 'd', 'a', 'b', 'c', 'd', 'a', 'b']
from typing import Dict, List, Optional, Set import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from docarray.utils.reduce import reduce, reduce_all class InnerDoc(BaseDocument): integer: int inner_list: List class MMDoc(BaseDocument): text: str = '' price: int = 0 categories: Optional[List[str]] = None image: Optional[ImageDoc] = None matches: Optional[DocumentArray] = None matches_with_same_id: Optional[DocumentArray] = None opt_int: Optional[int] = None test_set: Optional[Set] = None inner_doc: Optional[InnerDoc] = None test_dict: Optional[Dict] = None @pytest.fixture def doc1(): return MMDoc( text='hey here', categories=['a', 'b', 'c'], price=10, matches=DocumentArray[MMDoc]([MMDoc()]), matches_with_same_id=DocumentArray[MMDoc]( [MMDoc(id='a', matches=DocumentArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'a'}, inner_doc=InnerDoc(integer=2, inner_list=['c', 'd']), test_dict={'a': 0, 'b': 2, 'd': 4, 'z': 3}, ) @pytest.fixture def doc2(doc1): return MMDoc( id=doc1.id, text='hey here 2', categories=['d', 'e', 'f'], price=5, opt_int=5, matches=DocumentArray[MMDoc]([MMDoc()]), matches_with_same_id=DocumentArray[MMDoc]( [MMDoc(id='a', matches=DocumentArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'b'}, inner_doc=InnerDoc(integer=3, inner_list=['a', 'b']), test_dict={'a': 10, 'b': 10, 'c': 3, 'z': None}, ) def test_reduce_different_ids(): da1 = DocumentArray[MMDoc]([MMDoc() for _ in range(10)]) da2 = DocumentArray[MMDoc]([MMDoc() for _ in range(10)]) result = reduce(da1, da2) assert len(result) == 20 # da1 is changed in place (no extra memory) assert len(da1) == 20 def test_reduce(doc1, doc2): da1 = DocumentArray[MMDoc]([doc1, MMDoc()]) da2 = DocumentArray[MMDoc]([MMDoc(), doc2]) result = reduce(da1, da2) assert len(result) == 3 # da1 is changed in place (no extra memory) assert len(da1) == 3 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == ['a', 'b', 'c', 'd', 'e', 'f'] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.inner_list == ['c', 'd', 'a', 'b'] def test_reduce_all(doc1, doc2): da1 = DocumentArray[MMDoc]([doc1, MMDoc()]) da2 = DocumentArray[MMDoc]([MMDoc(), doc2]) da3 = DocumentArray[MMDoc]([MMDoc(), MMDoc(), doc1]) result = reduce_all([da1, da2, da3]) assert len(result) == 5 # da1 is changed in place (no extra memory) assert len(da1) == 5 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == [ 'a', 'b', 'c', 'd', 'e', 'f', 'a', 'b', 'c', 'd', 'e', 'f', ] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.inner_list == ['c', 'd', 'a', 'b', 'c', 'd', 'a', 'b']
_base_ = './scnet_r50_fpn_1x_coco.py' # learning policy max_epochs = 20 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 19], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs)
_base_ = './scnet_r50_fpn_1x_coco.py' # learning policy lr_config = dict(step=[16, 19]) runner = dict(type='EpochBasedRunner', max_epochs=20)
import os from functools import lru_cache from typing import Union import ffmpeg import numpy as np import torch import torch.nn.functional as F from .utils import exact_div # hard-coded audio hyperparameters SAMPLE_RATE = 16000 N_FFT = 400 N_MELS = 80 HOP_LENGTH = 160 CHUNK_LENGTH = 30 N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000: number of frames in a mel spectrogram input N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2 FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 100 mel frames in 1s (10ms each) TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 50 audio tokens in 1s (20ms each) def load_audio(file: str, sr: int = SAMPLE_RATE): """ Open an audio file and read as mono waveform, resampling as necessary Parameters ---------- file: str The audio file to open sr: int The sample rate to resample the audio if necessary Returns ------- A NumPy array containing the audio waveform, in float32 dtype. """ try: # This launches a subprocess to decode audio while down-mixing and resampling as necessary. # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed. out, _ = ( ffmpeg.input(file, threads=0) .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) except ffmpeg.Error as e: raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1): """ Pad or trim the audio array to N_SAMPLES, as expected by the encoder. """ if torch.is_tensor(array): if array.shape[axis] > length: array = array.index_select(dim=axis, index=torch.arange(length, device=array.device)) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes]) else: if array.shape[axis] > length: array = array.take(indices=range(length), axis=axis) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = np.pad(array, pad_widths) return array @lru_cache(maxsize=None) def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor: """ load the mel filterbank matrix for projecting STFT into a Mel spectrogram. Allows decoupling librosa dependency; saved using: np.savez_compressed( "mel_filters.npz", mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), ) """ assert n_mels == 80, f"Unsupported n_mels: {n_mels}" with np.load(os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")) as f: return torch.from_numpy(f[f"mel_{n_mels}"]).to(device) def log_mel_spectrogram(audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS): """ Compute the log-Mel spectrogram of Parameters ---------- audio: Union[str, np.ndarray, torch.Tensor], shape = (*) The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz n_mels: int The number of Mel-frequency filters, only 80 is supported Returns ------- torch.Tensor, shape = (80, n_frames) A Tensor that contains the Mel spectrogram """ if not torch.is_tensor(audio): if isinstance(audio, str): audio = load_audio(audio) audio = torch.from_numpy(audio) window = torch.hann_window(N_FFT).to(audio.device) stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True) magnitudes = stft[..., :-1].abs() ** 2 filters = mel_filters(audio.device, n_mels) mel_spec = filters @ magnitudes log_spec = torch.clamp(mel_spec, min=1e-10).log10() log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 return log_spec
import os from functools import lru_cache from typing import Union import ffmpeg import numpy as np import torch import torch.nn.functional as F from .utils import exact_div # hard-coded audio hyperparameters SAMPLE_RATE = 16000 N_FFT = 400 N_MELS = 80 HOP_LENGTH = 160 CHUNK_LENGTH = 30 N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000: number of frames in a mel spectrogram input def load_audio(file: str, sr: int = SAMPLE_RATE): """ Open an audio file and read as mono waveform, resampling as necessary Parameters ---------- file: str The audio file to open sr: int The sample rate to resample the audio if necessary Returns ------- A NumPy array containing the audio waveform, in float32 dtype. """ try: # This launches a subprocess to decode audio while down-mixing and resampling as necessary. # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed. out, _ = ( ffmpeg.input(file, threads=0) .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) except ffmpeg.Error as e: raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1): """ Pad or trim the audio array to N_SAMPLES, as expected by the encoder. """ if torch.is_tensor(array): if array.shape[axis] > length: array = array.index_select(dim=axis, index=torch.arange(length, device=array.device)) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes]) else: if array.shape[axis] > length: array = array.take(indices=range(length), axis=axis) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = np.pad(array, pad_widths) return array @lru_cache(maxsize=None) def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor: """ load the mel filterbank matrix for projecting STFT into a Mel spectrogram. Allows decoupling librosa dependency; saved using: np.savez_compressed( "mel_filters.npz", mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), ) """ assert n_mels == 80, f"Unsupported n_mels: {n_mels}" with np.load(os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")) as f: return torch.from_numpy(f[f"mel_{n_mels}"]).to(device) def log_mel_spectrogram(audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS): """ Compute the log-Mel spectrogram of Parameters ---------- audio: Union[str, np.ndarray, torch.Tensor], shape = (*) The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz n_mels: int The number of Mel-frequency filters, only 80 is supported Returns ------- torch.Tensor, shape = (80, n_frames) A Tensor that contains the Mel spectrogram """ if not torch.is_tensor(audio): if isinstance(audio, str): audio = load_audio(audio) audio = torch.from_numpy(audio) window = torch.hann_window(N_FFT).to(audio.device) stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True) magnitudes = stft[..., :-1].abs() ** 2 filters = mel_filters(audio.device, n_mels) mel_spec = filters @ magnitudes log_spec = torch.clamp(mel_spec, min=1e-10).log10() log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 return log_spec
from .utils import _init_backend, get_audio_backend, list_audio_backends, set_audio_backend __all__ = ["_init_backend", "get_audio_backend", "list_audio_backends", "set_audio_backend"]
# flake8: noqa import torchaudio from . import utils from .utils import _is_backend_dispatcher_enabled, get_audio_backend, list_audio_backends, set_audio_backend if _is_backend_dispatcher_enabled(): from torchaudio._backend.utils import get_info_func, get_load_func, get_save_func torchaudio.info = get_info_func() torchaudio.load = get_load_func() torchaudio.save = get_save_func() else: utils._init_audio_backend()
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .single_stage import SingleStageDetector @MODELS.register_module() class YOLOX(SingleStageDetector): r"""Implementation of `YOLOX: Exceeding YOLO Series in 2021 <https://arxiv.org/abs/2107.08430>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone config. neck (:obj:`ConfigDict` or dict): The neck config. bbox_head (:obj:`ConfigDict` or dict): The bbox head config. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of YOLOX. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of YOLOX. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of :class:`DetDataPreprocessor` to process the input data. Defaults to None. init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core.utils import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class YOLOX(SingleStageDetector): r"""Implementation of `YOLOX: Exceeding YOLO Series in 2021 <https://arxiv.org/abs/2107.08430>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone config. neck (:obj:`ConfigDict` or dict): The neck config. bbox_head (:obj:`ConfigDict` or dict): The bbox head config. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of YOLOX. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of YOLOX. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of :class:`DetDataPreprocessor` to process the input data. Defaults to None. init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. import copy import inspect from typing import List, Optional import torch import torch.nn as nn from mmengine.registry import OPTIMIZER_CONSTRUCTORS, OPTIMIZERS def register_torch_optimizers() -> List[str]: """Register optimizers in ``torch.optim`` to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ torch_optimizers = [] for module_name in dir(torch.optim): if module_name.startswith('__'): continue _optim = getattr(torch.optim, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) torch_optimizers.append(module_name) return torch_optimizers TORCH_OPTIMIZERS = register_torch_optimizers() def build_optimizer( model: nn.Module, cfg: dict, default_scope: Optional[str] = None) -> torch.optim.Optimizer: """Build function of optimizer. If ``constructor`` is set in the ``cfg``, this method will build an optimizer constructor, and use optimizer constructor to build the optimizer. If ``constructor`` is not set, the ``DefaultOptimizerConstructor`` will be used by default. Args: model (nn.Module): Model to be optimized. cfg (dict): Config of optimizer and optimizer constructor. default_scope (str, optional): The ``default_scope`` is used to reset the current registry. Defaults to None. Returns: torch.optim.Optimizer: The built optimizer. """ optimizer_cfg = copy.deepcopy(cfg) constructor_type = optimizer_cfg.pop('constructor', 'DefaultOptimizerConstructor') paramwise_cfg = optimizer_cfg.pop('paramwise_cfg', None) optim_constructor = OPTIMIZER_CONSTRUCTORS.build( dict( type=constructor_type, optimizer_cfg=optimizer_cfg, paramwise_cfg=paramwise_cfg), default_scope=default_scope) optimizer = optim_constructor(model, default_scope=default_scope) return optimizer
# Copyright (c) OpenMMLab. All rights reserved. import copy import inspect from typing import Callable, List import torch import torch.nn as nn from mmengine.registry import OPTIMIZER_CONSTRUCTORS, OPTIMIZERS def register_torch_optimizers() -> List[str]: torch_optimizers = [] for module_name in dir(torch.optim): if module_name.startswith('__'): continue _optim = getattr(torch.optim, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) torch_optimizers.append(module_name) return torch_optimizers TORCH_OPTIMIZERS = register_torch_optimizers() def build_optimizer_constructor(cfg: dict) -> Callable: return OPTIMIZER_CONSTRUCTORS.build(cfg) def build_optimizer(model: nn.Module, cfg: dict) -> torch.optim.Optimizer: optimizer_cfg = copy.deepcopy(cfg) constructor_type = optimizer_cfg.pop('constructor', 'DefaultOptimizerConstructor') paramwise_cfg = optimizer_cfg.pop('paramwise_cfg', None) optim_constructor = build_optimizer_constructor( dict( type=constructor_type, optimizer_cfg=optimizer_cfg, paramwise_cfg=paramwise_cfg)) optimizer = optim_constructor(model) return optimizer
import os import subprocess import sys import pytest from xgboost import testing as tm sys.path.append("tests/python") import test_demos as td # noqa @pytest.mark.skipif(**tm.no_cupy()) def test_data_iterator(): script = os.path.join(td.PYTHON_DEMO_DIR, "quantile_data_iterator.py") cmd = ["python", script] subprocess.check_call(cmd) def test_update_process_demo(): script = os.path.join(td.PYTHON_DEMO_DIR, "update_process.py") cmd = ["python", script] subprocess.check_call(cmd) def test_categorical_demo(): script = os.path.join(td.PYTHON_DEMO_DIR, "categorical.py") cmd = ["python", script] subprocess.check_call(cmd)
import os import subprocess import sys import pytest from xgboost import testing as tm sys.path.append("tests/python") import test_demos as td # noqa @pytest.mark.skipif(**tm.no_cupy()) def test_data_iterator(): script = os.path.join(td.PYTHON_DEMO_DIR, 'quantile_data_iterator.py') cmd = ['python', script] subprocess.check_call(cmd) def test_update_process_demo(): script = os.path.join(td.PYTHON_DEMO_DIR, 'update_process.py') cmd = ['python', script] subprocess.check_call(cmd) def test_categorical_demo(): script = os.path.join(td.PYTHON_DEMO_DIR, 'categorical.py') cmd = ['python', script] subprocess.check_call(cmd)
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Optional, Tuple from mmengine.utils import is_list_of def calc_dynamic_intervals( start_interval: int, dynamic_interval_list: Optional[List[Tuple[int, int]]] = None ) -> Tuple[List[int], List[int]]: """Calculate dynamic intervals. Args: start_interval (int): The interval used in the beginning. dynamic_interval_list (List[Tuple[int, int]], optional): The first element in the tuple is a milestone and the second element is a interval. The interval is used after the corresponding milestone. Defaults to None. Returns: Tuple[List[int], List[int]]: a list of milestone and its corresponding intervals. """ if dynamic_interval_list is None: return [0], [start_interval] assert is_list_of(dynamic_interval_list, tuple) dynamic_milestones = [0] dynamic_milestones.extend( [dynamic_interval[0] for dynamic_interval in dynamic_interval_list]) dynamic_intervals = [start_interval] dynamic_intervals.extend( [dynamic_interval[1] for dynamic_interval in dynamic_interval_list]) return dynamic_milestones, dynamic_intervals
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Optional, Tuple from mmengine.utils.misc import is_list_of def calc_dynamic_intervals( start_interval: int, dynamic_interval_list: Optional[List[Tuple[int, int]]] = None ) -> Tuple[List[int], List[int]]: """Calculate dynamic intervals. Args: start_interval (int): The interval used in the beginning. dynamic_interval_list (List[Tuple[int, int]], optional): The first element in the tuple is a milestone and the second element is a interval. The interval is used after the corresponding milestone. Defaults to None. Returns: Tuple[List[int], List[int]]: a list of milestone and its corresponding intervals. """ if dynamic_interval_list is None: return [0], [start_interval] assert is_list_of(dynamic_interval_list, tuple) dynamic_milestones = [0] dynamic_milestones.extend( [dynamic_interval[0] for dynamic_interval in dynamic_interval_list]) dynamic_intervals = [start_interval] dynamic_intervals.extend( [dynamic_interval[1] for dynamic_interval in dynamic_interval_list]) return dynamic_milestones, dynamic_intervals
from __future__ import annotations from collections.abc import Mapping from types import ModuleType as Namespace from typing import ( TYPE_CHECKING, Literal, Protocol, TypeAlias, TypedDict, TypeVar, final, ) if TYPE_CHECKING: from _typeshed import Incomplete SupportsBufferProtocol: TypeAlias = Incomplete Array: TypeAlias = Incomplete Device: TypeAlias = Incomplete DType: TypeAlias = Incomplete else: SupportsBufferProtocol = object Array = object Device = object DType = object _T_co = TypeVar("_T_co", covariant=True) # These "Just" types are equivalent to the `Just` type from the `optype` library, # apart from them not being `@runtime_checkable`. # - docs: https://github.com/jorenham/optype/blob/master/README.md#just # - code: https://github.com/jorenham/optype/blob/master/optype/_core/_just.py @final class JustInt(Protocol): @property def __class__(self, /) -> type[int]: ... @__class__.setter def __class__(self, value: type[int], /) -> None: ... # pyright: ignore[reportIncompatibleMethodOverride] @final class JustFloat(Protocol): @property def __class__(self, /) -> type[float]: ... @__class__.setter def __class__(self, value: type[float], /) -> None: ... # pyright: ignore[reportIncompatibleMethodOverride] @final class JustComplex(Protocol): @property def __class__(self, /) -> type[complex]: ... @__class__.setter def __class__(self, value: type[complex], /) -> None: ... # pyright: ignore[reportIncompatibleMethodOverride] # class NestedSequence(Protocol[_T_co]): def __getitem__(self, key: int, /) -> _T_co | NestedSequence[_T_co]: ... def __len__(self, /) -> int: ... class SupportsArrayNamespace(Protocol[_T_co]): def __array_namespace__(self, /, *, api_version: str | None) -> _T_co: ... class HasShape(Protocol[_T_co]): @property def shape(self, /) -> _T_co: ... # Return type of `__array_namespace_info__.default_dtypes` Capabilities = TypedDict( "Capabilities", { "boolean indexing": bool, "data-dependent shapes": bool, "max dimensions": int, }, ) # Return type of `__array_namespace_info__.default_dtypes` DefaultDTypes = TypedDict( "DefaultDTypes", { "real floating": DType, "complex floating": DType, "integral": DType, "indexing": DType, }, ) _DTypeKind: TypeAlias = Literal[ "bool", "signed integer", "unsigned integer", "integral", "real floating", "complex floating", "numeric", ] # Type of the `kind` parameter in `__array_namespace_info__.dtypes` DTypeKind: TypeAlias = _DTypeKind | tuple[_DTypeKind, ...] # `__array_namespace_info__.dtypes(kind="bool")` class DTypesBool(TypedDict): bool: DType # `__array_namespace_info__.dtypes(kind="signed integer")` class DTypesSigned(TypedDict): int8: DType int16: DType int32: DType int64: DType # `__array_namespace_info__.dtypes(kind="unsigned integer")` class DTypesUnsigned(TypedDict): uint8: DType uint16: DType uint32: DType uint64: DType # `__array_namespace_info__.dtypes(kind="integral")` class DTypesIntegral(DTypesSigned, DTypesUnsigned): pass # `__array_namespace_info__.dtypes(kind="real floating")` class DTypesReal(TypedDict): float32: DType float64: DType # `__array_namespace_info__.dtypes(kind="complex floating")` class DTypesComplex(TypedDict): complex64: DType complex128: DType # `__array_namespace_info__.dtypes(kind="numeric")` class DTypesNumeric(DTypesIntegral, DTypesReal, DTypesComplex): pass # `__array_namespace_info__.dtypes(kind=None)` (default) class DTypesAll(DTypesBool, DTypesNumeric): pass # `__array_namespace_info__.dtypes(kind=?)` (fallback) DTypesAny: TypeAlias = Mapping[str, DType] __all__ = [ "Array", "Capabilities", "DType", "DTypeKind", "DTypesAny", "DTypesAll", "DTypesBool", "DTypesNumeric", "DTypesIntegral", "DTypesSigned", "DTypesUnsigned", "DTypesReal", "DTypesComplex", "DefaultDTypes", "Device", "HasShape", "Namespace", "JustInt", "JustFloat", "JustComplex", "NestedSequence", "SupportsArrayNamespace", "SupportsBufferProtocol", ] def __dir__() -> list[str]: return __all__
from __future__ import annotations __all__ = [ "NestedSequence", "SupportsBufferProtocol", ] from types import ModuleType from typing import ( Any, TypeVar, Protocol, ) _T_co = TypeVar("_T_co", covariant=True) class NestedSequence(Protocol[_T_co]): def __getitem__(self, key: int, /) -> _T_co | NestedSequence[_T_co]: ... def __len__(self, /) -> int: ... SupportsBufferProtocol = Any Array = Any Device = Any DType = Any Namespace = ModuleType
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray MAX_INT_16 = 2**15 T = TypeVar('T', bound='AudioNdArray') @_register_proto(proto_type_name='audio_ndarray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional from pydantic import parse_obj_as from docarray import Document from docarray.typing import AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(Document): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save_to_wav_file(file_path='path/to/file_1.wav') # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = parse_obj_as(AudioNdArray, doc_2.url.load()) doc_2.audio_tensor.save_to_wav_file(file_path='path/to/file_2.wav') """ def to_audio_bytes(self): tensor = (self * MAX_INT_16).astype('<h') return tensor.tobytes()
from typing import TypeVar from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray MAX_INT_16 = 2**15 T = TypeVar('T', bound='AudioNdArray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional from pydantic import parse_obj_as from docarray import Document from docarray.typing import AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(Document): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save_to_wav_file(file_path='path/to/file_1.wav') # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = parse_obj_as(AudioNdArray, doc_2.url.load()) doc_2.audio_tensor.save_to_wav_file(file_path='path/to/file_2.wav') """ _PROTO_FIELD_NAME = 'audio_ndarray' def to_audio_bytes(self): tensor = (self * MAX_INT_16).astype('<h') return tensor.tobytes()
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import (find_latest_checkpoint, get_test_pipeline_cfg, update_data_root) from .replace_cfg_vals import replace_cfg_vals from .setup_env import (register_all_modules, setup_cache_size_limit_of_dynamo, setup_multi_processes) from .split_batch import split_batch from .typing_utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) __all__ = [ 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType', 'get_test_pipeline_cfg', 'setup_cache_size_limit_of_dynamo' ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import (find_latest_checkpoint, get_test_pipeline_cfg, update_data_root) from .replace_cfg_vals import replace_cfg_vals from .setup_env import register_all_modules, setup_multi_processes from .split_batch import split_batch from .typing_utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) __all__ = [ 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType', 'get_test_pipeline_cfg' ]
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] norm_cfg = dict(type='BN', requires_grad=True) image_size = (640, 640) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] model = dict( data_preprocessor=dict(pad_size_divisor=64, batch_augments=batch_augments), backbone=dict(norm_cfg=norm_cfg, norm_eval=False), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, norm_cfg=norm_cfg, num_outs=5), roi_head=dict( bbox_head=dict(norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) dataset_type = 'CocoDataset' data_root = 'data/coco/' train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, allow_negative_crop=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=image_size, keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=4, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # learning policy max_epochs = 50 train_cfg = dict(max_epochs=max_epochs, val_interval=2) param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[30, 40], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001), paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True), clip_grad=None) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] norm_cfg = dict(type='BN', requires_grad=True) image_size = (640, 640) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] model = dict( data_preprocessor=dict(pad_size_divisor=64, batch_augments=batch_augments), backbone=dict(norm_cfg=norm_cfg, norm_eval=False), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, norm_cfg=norm_cfg, num_outs=5), roi_head=dict( bbox_head=dict(norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) dataset_type = 'CocoDataset' data_root = 'data/coco/' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, allow_negative_crop=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=image_size, keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=4, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # learning policy max_epochs = 50 train_cfg = dict(max_epochs=max_epochs, val_interval=2) param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[30, 40], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001), paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True), clip_grad=None) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
# Copyright (c) OpenMMLab. All rights reserved. import math import torch from torch.utils.data import DistributedSampler as _DistributedSampler from mmdet.core.utils import sync_random_seed class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0): super().__init__( dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) # In distributed sampling, different ranks should sample # non-overlapped data in the dataset. Therefore, this function # is used to make sure that each rank shuffles the data indices # in the same order based on the same seed. Then different ranks # could use different indices to select non-overlapped data from the # same data list. self.seed = sync_random_seed(seed) def __iter__(self): # deterministically shuffle based on epoch if self.shuffle: g = torch.Generator() # When :attr:`shuffle=True`, this ensures all replicas # use a different random ordering for each epoch. # Otherwise, the next iteration of this sampler will # yield the same ordering. g.manual_seed(self.epoch + self.seed) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible # in case that indices is shorter than half of total_size indices = (indices * math.ceil(self.total_size / len(indices)))[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices)
# Copyright (c) OpenMMLab. All rights reserved. import math import torch from torch.utils.data import DistributedSampler as _DistributedSampler from mmdet.core.utils import sync_random_seed class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0): super().__init__( dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) # Must be the same across all workers. If None, will use a # random seed shared among workers # (require synchronization among all workers) self.seed = sync_random_seed(seed) def __iter__(self): # deterministically shuffle based on epoch if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch + self.seed) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible # in case that indices is shorter than half of total_size indices = (indices * math.ceil(self.total_size / len(indices)))[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices)
""" This examples measures the inference speed of a certain model Usage: python evaluation_inference_speed.py OR python evaluation_inference_speed.py model_name """ from sentence_transformers import SentenceTransformer, util import sys import os import time import torch import gzip import csv # Limit torch to 4 threads torch.set_num_threads(4) model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-nli-mean-tokens" # Load a named sentence model (based on BERT). This will download the model from our server. # Alternatively, you can also pass a filepath to SentenceTransformer() model = SentenceTransformer(model_name) nli_dataset_path = "datasets/AllNLI.tsv.gz" sentences = set() max_sentences = 100000 # Download datasets if needed if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: sentences.add(row["sentence1"]) if len(sentences) >= max_sentences: break sentences = list(sentences) print("Model Name:", model_name) print("Number of sentences:", len(sentences)) for i in range(3): print("Run", i) start_time = time.time() emb = model.encode(sentences, batch_size=32) end_time = time.time() diff_time = end_time - start_time print("Done after {:.2f} seconds".format(diff_time)) print("Speed: {:.2f} sentences / second".format(len(sentences) / diff_time)) print("=====")
""" This examples measures the inference speed of a certain model Usage: python evaluation_inference_speed.py OR python evaluation_inference_speed.py model_name """ from sentence_transformers import SentenceTransformer, util import sys import os import time import torch import gzip import csv # Limit torch to 4 threads torch.set_num_threads(4) model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-nli-mean-tokens" # Load a named sentence model (based on BERT). This will download the model from our server. # Alternatively, you can also pass a filepath to SentenceTransformer() model = SentenceTransformer(model_name) nli_dataset_path = "datasets/AllNLI.tsv.gz" sentences = set() max_sentences = 100000 # Download datasets if needed if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: sentences.add(row["sentence1"]) if len(sentences) >= max_sentences: break sentences = list(sentences) print("Model Name:", model_name) print("Number of sentences:", len(sentences)) for i in range(3): print("Run", i) start_time = time.time() emb = model.encode(sentences, batch_size=32) end_time = time.time() diff_time = end_time - start_time print("Done after {:.2f} seconds".format(diff_time)) print("Speed: {:.2f} sentences / second".format(len(sentences) / diff_time)) print("=====")
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../common/lsj-100e_coco-instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # use caffe norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None, style='caffe'), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline)))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../common/lsj-100e_coco-instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # use caffe norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None, style='caffe'), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline)))
import json import logging import re import zipfile from pathlib import Path from typing import Dict, Iterator, List, Union from langchain_core.chat_loaders import BaseChatLoader from langchain_core.chat_sessions import ChatSession from langchain_core.messages import AIMessage, HumanMessage logger = logging.getLogger(__name__) class SlackChatLoader(BaseChatLoader): """Load `Slack` conversations from a dump zip file.""" def __init__( self, path: Union[str, Path], ): """ Initialize the chat loader with the path to the exported Slack dump zip file. :param path: Path to the exported Slack dump zip file. """ self.zip_path = path if isinstance(path, Path) else Path(path) if not self.zip_path.exists(): raise FileNotFoundError(f"File {self.zip_path} not found") @staticmethod def _load_single_chat_session(messages: List[Dict]) -> ChatSession: results: List[Union[AIMessage, HumanMessage]] = [] previous_sender = None for message in messages: if not isinstance(message, dict): continue text = message.get("text", "") timestamp = message.get("ts", "") sender = message.get("user", "") if not sender: continue skip_pattern = re.compile( r"<@U\d+> has joined the channel", flags=re.IGNORECASE ) if skip_pattern.match(text): continue if sender == previous_sender: results[-1].content += "\n\n" + text results[-1].additional_kwargs["events"].append( {"message_time": timestamp} ) else: results.append( HumanMessage( role=sender, content=text, additional_kwargs={ "sender": sender, "events": [{"message_time": timestamp}], }, ) ) previous_sender = sender return ChatSession(messages=results) @staticmethod def _read_json(zip_file: zipfile.ZipFile, file_path: str) -> List[dict]: """Read JSON data from a zip subfile.""" with zip_file.open(file_path, "r") as f: data = json.load(f) if not isinstance(data, list): raise ValueError(f"Expected list of dictionaries, got {type(data)}") return data def lazy_load(self) -> Iterator[ChatSession]: """ Lazy load the chat sessions from the Slack dump file and yield them in the required format. :return: Iterator of chat sessions containing messages. """ with zipfile.ZipFile(str(self.zip_path), "r") as zip_file: for file_path in zip_file.namelist(): if file_path.endswith(".json"): messages = self._read_json(zip_file, file_path) yield self._load_single_chat_session(messages)
import json import logging import re import zipfile from pathlib import Path from typing import Dict, Iterator, List, Union from langchain_core.chat_loaders import BaseChatLoader from langchain_core.chat_sessions import ChatSession from langchain_core.messages import AIMessage, HumanMessage logger = logging.getLogger(__name__) class SlackChatLoader(BaseChatLoader): """Load `Slack` conversations from a dump zip file.""" def __init__( self, path: Union[str, Path], ): """ Initialize the chat loader with the path to the exported Slack dump zip file. :param path: Path to the exported Slack dump zip file. """ self.zip_path = path if isinstance(path, Path) else Path(path) if not self.zip_path.exists(): raise FileNotFoundError(f"File {self.zip_path} not found") @staticmethod def _load_single_chat_session(messages: List[Dict]) -> ChatSession: results: List[Union[AIMessage, HumanMessage]] = [] previous_sender = None for message in messages: if not isinstance(message, dict): continue text = message.get("text", "") timestamp = message.get("ts", "") sender = message.get("user", "") if not sender: continue skip_pattern = re.compile( r"<@U\d+> has joined the channel", flags=re.IGNORECASE ) if skip_pattern.match(text): continue if sender == previous_sender: results[-1].content += "\n\n" + text results[-1].additional_kwargs["events"].append( {"message_time": timestamp} ) else: results.append( HumanMessage( # type: ignore[call-arg] role=sender, content=text, additional_kwargs={ "sender": sender, "events": [{"message_time": timestamp}], }, ) ) previous_sender = sender return ChatSession(messages=results) @staticmethod def _read_json(zip_file: zipfile.ZipFile, file_path: str) -> List[dict]: """Read JSON data from a zip subfile.""" with zip_file.open(file_path, "r") as f: data = json.load(f) if not isinstance(data, list): raise ValueError(f"Expected list of dictionaries, got {type(data)}") return data def lazy_load(self) -> Iterator[ChatSession]: """ Lazy load the chat sessions from the Slack dump file and yield them in the required format. :return: Iterator of chat sessions containing messages. """ with zipfile.ZipFile(str(self.zip_path), "r") as zip_file: for file_path in zip_file.namelist(): if file_path.endswith(".json"): messages = self._read_json(zip_file, file_path) yield self._load_single_chat_session(messages)
"""A simple progress bar for the console.""" import threading from collections.abc import Sequence from typing import Any, Optional from uuid import UUID from langchain_core.callbacks import base as base_callbacks from langchain_core.documents import Document from langchain_core.outputs import LLMResult class ProgressBarCallback(base_callbacks.BaseCallbackHandler): """A simple progress bar for the console.""" def __init__( self, total: int, ncols: int = 50, end_with: str = "\n", **kwargs: Any ): """Initialize the progress bar. Args: total: int, the total number of items to be processed. ncols: int, the character width of the progress bar. end_with: str, last string to print after progress bar reaches end. """ self.total = total self.ncols = ncols self.end_with = end_with self.counter = 0 self.lock = threading.Lock() self._print_bar() def increment(self) -> None: """Increment the counter and update the progress bar.""" with self.lock: self.counter += 1 self._print_bar() def _print_bar(self) -> None: """Print the progress bar to the console.""" progress = self.counter / self.total arrow = "-" * int(round(progress * self.ncols) - 1) + ">" spaces = " " * (self.ncols - len(arrow)) end = "" if self.counter < self.total else self.end_with print(f"\r[{arrow + spaces}] {self.counter}/{self.total}", end=end) # noqa: T201 def on_chain_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_chain_end( self, outputs: dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_retriever_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_retriever_end( self, documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_llm_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_llm_end( self, response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_tool_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_tool_end( self, output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment()
"""A simple progress bar for the console.""" import threading from collections.abc import Sequence from typing import Any, Optional from uuid import UUID from langchain_core.callbacks import base as base_callbacks from langchain_core.documents import Document from langchain_core.outputs import LLMResult class ProgressBarCallback(base_callbacks.BaseCallbackHandler): """A simple progress bar for the console.""" def __init__(self, total: int, ncols: int = 50, **kwargs: Any): """Initialize the progress bar. Args: total: int, the total number of items to be processed. ncols: int, the character width of the progress bar. """ self.total = total self.ncols = ncols self.counter = 0 self.lock = threading.Lock() self._print_bar() def increment(self) -> None: """Increment the counter and update the progress bar.""" with self.lock: self.counter += 1 self._print_bar() def _print_bar(self) -> None: """Print the progress bar to the console.""" progress = self.counter / self.total arrow = "-" * int(round(progress * self.ncols) - 1) + ">" spaces = " " * (self.ncols - len(arrow)) print(f"\r[{arrow + spaces}] {self.counter}/{self.total}", end="") # noqa: T201 def on_chain_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_chain_end( self, outputs: dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_retriever_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_retriever_end( self, documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_llm_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_llm_end( self, response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_tool_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment() def on_tool_end( self, output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if parent_run_id is None: self.increment()