input
stringlengths 33
5k
| output
stringlengths 32
5k
|
---|---|
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any, Callable
from sentence_transformers.evaluation import InformationRetrievalEvaluator
if TYPE_CHECKING:
import numpy as np
from torch import Tensor
from sentence_transformers.similarity_functions import SimilarityFunction
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
logger = logging.getLogger(__name__)
class SparseInformationRetrievalEvaluator(InformationRetrievalEvaluator):
def __init__(
self,
queries: dict[str, str], # qid => query
corpus: dict[str, str], # cid => doc
relevant_docs: dict[str, set[str]], # qid => Set[cid]
corpus_chunk_size: int = 50000,
mrr_at_k: list[int] = [10],
ndcg_at_k: list[int] = [10],
accuracy_at_k: list[int] = [1, 3, 5, 10],
precision_recall_at_k: list[int] = [1, 3, 5, 10],
map_at_k: list[int] = [100],
show_progress_bar: bool = False,
batch_size: int = 32,
name: str = "",
write_csv: bool = True,
truncate_dim: int | None = None,
score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] | None = None,
main_score_function: str | SimilarityFunction | None = None,
query_prompt: str | None = None,
query_prompt_name: str | None = None,
corpus_prompt: str | None = None,
corpus_prompt_name: str | None = None,
) -> None:
return super().__init__(
queries=queries,
corpus=corpus,
relevant_docs=relevant_docs,
corpus_chunk_size=corpus_chunk_size,
mrr_at_k=mrr_at_k,
ndcg_at_k=ndcg_at_k,
accuracy_at_k=accuracy_at_k,
precision_recall_at_k=precision_recall_at_k,
map_at_k=map_at_k,
show_progress_bar=show_progress_bar,
batch_size=batch_size,
name=name,
write_csv=write_csv,
truncate_dim=truncate_dim,
score_functions=score_functions,
main_score_function=main_score_function,
query_prompt=query_prompt,
query_prompt_name=query_prompt_name,
corpus_prompt=corpus_prompt,
corpus_prompt_name=corpus_prompt_name,
)
def __call__(
self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs
) -> dict[str, float]:
return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps, *args, **kwargs)
def compute_metrices(
self, model: SparseEncoder, corpus_model=None, corpus_embeddings: Tensor | None = None
) -> dict[str, float]:
return super().compute_metrices(model=model, corpus_model=corpus_model, corpus_embeddings=corpus_embeddings)
def embed_inputs(
self,
model: SparseEncoder,
sentences: str | list[str] | np.ndarray,
prompt_name: str | None = None,
prompt: str | None = None,
**kwargs,
) -> Tensor:
kwargs["truncate_dim"] = self.truncate_dim
embeddings = model.encode(
sentences,
prompt_name=prompt_name,
prompt=prompt,
batch_size=self.batch_size,
show_progress_bar=self.show_progress_bar,
convert_to_sparse_tensor=True,
save_on_cpu=True,
**kwargs,
)
sparsity_infos = model.get_sparsity_stats(embeddings)
if sparsity_infos["num_rows"] == self.queries_info["num_rows"] and "num_cols" not in self.queries_info.keys():
self.queries_info.update(
{
"num_cols": sparsity_infos["num_cols"],
"row_non_zero_mean": sparsity_infos["row_non_zero_mean"],
"row_sparsity_mean": sparsity_infos["row_sparsity_mean"],
}
)
else:
self.corpus_info.update(
{
"num_cols": sparsity_infos["num_cols"],
"row_non_zero_mean": sparsity_infos["row_non_zero_mean"],
"row_sparsity_mean": sparsity_infos["row_sparsity_mean"],
}
)
return embeddings
def store_metrics_in_model_card_data(
self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0
) -> None:
model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
|
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any, Callable
from sentence_transformers.evaluation import InformationRetrievalEvaluator
if TYPE_CHECKING:
import numpy as np
from torch import Tensor
from sentence_transformers.similarity_functions import SimilarityFunction
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
logger = logging.getLogger(__name__)
class SparseInformationRetrievalEvaluator(InformationRetrievalEvaluator):
def __init__(
self,
queries: dict[str, str], # qid => query
corpus: dict[str, str], # cid => doc
relevant_docs: dict[str, set[str]], # qid => Set[cid]
corpus_chunk_size: int = 50000,
mrr_at_k: list[int] = [10],
ndcg_at_k: list[int] = [10],
accuracy_at_k: list[int] = [1, 3, 5, 10],
precision_recall_at_k: list[int] = [1, 3, 5, 10],
map_at_k: list[int] = [100],
show_progress_bar: bool = False,
batch_size: int = 32,
name: str = "",
write_csv: bool = True,
truncate_dim: int | None = None,
score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] | None = None,
main_score_function: str | SimilarityFunction | None = None,
query_prompt: str | None = None,
query_prompt_name: str | None = None,
corpus_prompt: str | None = None,
corpus_prompt_name: str | None = None,
) -> None:
return super().__init__(
queries=queries,
corpus=corpus,
relevant_docs=relevant_docs,
corpus_chunk_size=corpus_chunk_size,
mrr_at_k=mrr_at_k,
ndcg_at_k=ndcg_at_k,
accuracy_at_k=accuracy_at_k,
precision_recall_at_k=precision_recall_at_k,
map_at_k=map_at_k,
show_progress_bar=show_progress_bar,
batch_size=batch_size,
name=name,
write_csv=write_csv,
truncate_dim=truncate_dim,
score_functions=score_functions,
main_score_function=main_score_function,
query_prompt=query_prompt,
query_prompt_name=query_prompt_name,
corpus_prompt=corpus_prompt,
corpus_prompt_name=corpus_prompt_name,
)
def __call__(
self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs
) -> dict[str, float]:
return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps, *args, **kwargs)
def compute_metrices(
self, model: SparseEncoder, corpus_model=None, corpus_embeddings: Tensor | None = None
) -> dict[str, float]:
return super().compute_metrices(model=model, corpus_model=corpus_model, corpus_embeddings=corpus_embeddings)
def embed_inputs(
self,
model: SparseEncoder,
sentences: str | list[str] | np.ndarray,
prompt_name: str | None = None,
prompt: str | None = None,
**kwargs,
) -> Tensor:
kwargs["truncate_dim"] = self.truncate_dim
return model.encode(
sentences,
prompt_name=prompt_name,
prompt=prompt,
batch_size=self.batch_size,
show_progress_bar=self.show_progress_bar,
convert_to_sparse_tensor=True,
save_on_cpu=True,
**kwargs,
)
def store_metrics_in_model_card_data(
self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0
) -> None:
model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
|
import json
import os
from typing import Dict
import torch
from torch import Tensor, nn
class WeightedLayerPooling(nn.Module):
"""Token embeddings are weighted mean of their different hidden layer representations"""
def __init__(
self, word_embedding_dimension, num_hidden_layers: int = 12, layer_start: int = 4, layer_weights=None
):
super(WeightedLayerPooling, self).__init__()
self.config_keys = ["word_embedding_dimension", "layer_start", "num_hidden_layers"]
self.word_embedding_dimension = word_embedding_dimension
self.layer_start = layer_start
self.num_hidden_layers = num_hidden_layers
self.layer_weights = (
layer_weights
if layer_weights is not None
else nn.Parameter(torch.tensor([1] * (num_hidden_layers + 1 - layer_start), dtype=torch.float))
)
def forward(self, features: Dict[str, Tensor]):
ft_all_layers = features["all_layer_embeddings"]
all_layer_embedding = torch.stack(ft_all_layers)
all_layer_embedding = all_layer_embedding[self.layer_start :, :, :, :] # Start from 4th layers output
weight_factor = self.layer_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(all_layer_embedding.size())
weighted_average = (weight_factor * all_layer_embedding).sum(dim=0) / self.layer_weights.sum()
features.update({"token_embeddings": weighted_average})
return features
def get_word_embedding_dimension(self):
return self.word_embedding_dimension
def get_config_dict(self):
return {key: self.__dict__[key] for key in self.config_keys}
def save(self, output_path):
with open(os.path.join(output_path, "config.json"), "w") as fOut:
json.dump(self.get_config_dict(), fOut, indent=2)
torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
@staticmethod
def load(input_path):
with open(os.path.join(input_path, "config.json")) as fIn:
config = json.load(fIn)
model = WeightedLayerPooling(**config)
model.load_state_dict(
torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"))
)
return model
|
import torch
from torch import Tensor
from torch import nn
from typing import Union, Tuple, List, Iterable, Dict
import os
import json
class WeightedLayerPooling(nn.Module):
"""
Token embeddings are weighted mean of their different hidden layer representations
"""
def __init__(self, word_embedding_dimension, num_hidden_layers: int = 12, layer_start: int = 4, layer_weights = None):
super(WeightedLayerPooling, self).__init__()
self.config_keys = ['word_embedding_dimension', 'layer_start', 'num_hidden_layers']
self.word_embedding_dimension = word_embedding_dimension
self.layer_start = layer_start
self.num_hidden_layers = num_hidden_layers
self.layer_weights = layer_weights if layer_weights is not None else nn.Parameter(torch.tensor([1] * (num_hidden_layers+1 - layer_start), dtype=torch.float))
def forward(self, features: Dict[str, Tensor]):
ft_all_layers = features['all_layer_embeddings']
all_layer_embedding = torch.stack(ft_all_layers)
all_layer_embedding = all_layer_embedding[self.layer_start:, :, :, :] # Start from 4th layers output
weight_factor = self.layer_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(all_layer_embedding.size())
weighted_average = (weight_factor*all_layer_embedding).sum(dim=0) / self.layer_weights.sum()
features.update({'token_embeddings': weighted_average})
return features
def get_word_embedding_dimension(self):
return self.word_embedding_dimension
def get_config_dict(self):
return {key: self.__dict__[key] for key in self.config_keys}
def save(self, output_path):
with open(os.path.join(output_path, 'config.json'), 'w') as fOut:
json.dump(self.get_config_dict(), fOut, indent=2)
torch.save(self.state_dict(), os.path.join(output_path, 'pytorch_model.bin'))
@staticmethod
def load(input_path):
with open(os.path.join(input_path, 'config.json')) as fIn:
config = json.load(fIn)
model = WeightedLayerPooling(**config)
model.load_state_dict(torch.load(os.path.join(input_path, 'pytorch_model.bin'), map_location=torch.device('cpu')))
return model
|
# mypy: allow-untyped-defs
from dataclasses import dataclass
from typing import Callable
import torch
import torch.fx.node
import torch.utils._pytree as pytree
from torch._ops import HigherOrderOperator
def is_graphable(val) -> bool:
"""Definition: a graphable type is a type that that is an acceptable input/output type to a FX node."""
return isinstance(val, torch.fx.node.base_types)
def is_graphable_type(typ) -> bool:
"""Return whether the given type is graphable"""
return issubclass(typ, torch.fx.node.base_types)
def to_graphable(stuff):
"""Flattens stuff into a flat list of graphable types."""
# We can consider preserving things like List[int] to improve
# perf and readability (right now that is all flattened out)
flat_args, spec = pytree.tree_flatten(stuff)
for arg in flat_args:
if not is_graphable(arg):
raise RuntimeError(
f"Expected all pytree.tree_leaves of (args, kwargs) to be graphable types, but found "
f"non-fx-graphable type {type(arg)}. If this type is meant to be constant, mark it as "
f"via pytree.register_constant; otherwise, register it as a pytree."
)
return flat_args, spec
def from_graphable(flat_args, spec):
"""The inverse of to_graphable."""
stuff = pytree.tree_unflatten(flat_args, spec)
return stuff
def func_to_graphable(func):
"""
Pack and flatten a function type into graphable types.
This is useful for legalizing the function argument of `flat_apply`.
"""
return pytree.tree_flatten(_ConstantFunction(func))
@dataclass(frozen=True)
class _ConstantFunction:
func: Callable
def __call__(self, *args, **kwargs):
return self.func(*args, **kwargs)
pytree.register_constant(_ConstantFunction)
_op_types = (
torch._ops.OpOverload,
torch._ops.OpOverloadPacket,
torch._ops.HigherOrderOperator,
)
class FlatApply(HigherOrderOperator):
def __init__(self) -> None:
super().__init__("flat_apply")
def __call__(self, func, in_spec, *flat_args, **_unused):
"""
Functions that take in non-graphable types cannot directly be put into FX graph.
Given func(*args, **kwargs), if all of the non-graphable types are pytrees,
then we're able to store a call to flat_apply(func, in_spec, *flat_args) in the FX graph.
The semantics of flat_apply(func, in_spec, *flat_args) are roughly equivalent to:
>>> def flat_apply_impl(func, in_spec, *flat_args):
>>> args, kwargs = pytree.tree_unflatten(flat_args, in_spec)
>>> output = func(*args, **kwargs)
>>> return output
flat_apply supports the following two cases:
- an input type is a container type (e.g. of tensors) registered as a pytree.
We'll tree_flatten the input type and store the spec.
- an input type is a constant type (i.e. torch.compile will specialize on it)
registered with pytree.register_constant. The constant type goes directly
into the spec.
"""
assert isinstance(func, _op_types) or pytree._is_constant_holder(func)
assert len(_unused) == 0
return impl(func, in_spec, *flat_args)
def impl(func, in_spec, *flat_args):
if not isinstance(func, _op_types):
# assume _ConstantFunction
func = pytree._retrieve_constant(func)
assert isinstance(func, _ConstantFunction)
args, kwargs = from_graphable(flat_args, in_spec)
out = func(*args, **kwargs)
# Right now, all outputs must either be graphable or lists/tuples of graphables.
#
# TODO: The following can be updated to support non-graphable outputs and pytrees.
# For non-graphable constant outputs: the assumption would be that they are constant
# (everytime the function runs those MUST be the same)
# For pytree outputs:
# I'm not sure if we need to return (flat_output, spec) or just (flat_output,):
# in the latter case the tracers need to carry out the output specs
# (they need to know how to reconstruct the object from just the flat_output).
def is_valid_output(x):
if isinstance(x, (tuple, list)):
return all(map(is_valid_output, x))
return is_graphable(x)
assert is_valid_output(out)
return out
flat_apply = FlatApply()
|
# mypy: allow-untyped-defs
from dataclasses import dataclass
from typing import Callable
import torch
import torch.fx.node
import torch.utils._pytree as pytree
from torch._ops import HigherOrderOperator
def is_graphable(val) -> bool:
"""Definition: a graphable type is a type that that is an acceptable input/output type to a FX node."""
return isinstance(val, torch.fx.node.base_types)
def is_graphable_type(typ) -> bool:
"""Return whether the given type is graphable"""
return issubclass(typ, torch.fx.node.base_types)
def to_graphable(stuff):
"""Flattens stuff into a flat list of graphable types."""
# We can consider preserving things like List[int] to improve
# perf and readability (right now that is all flattened out)
flat_args, spec = pytree.tree_flatten(stuff)
for arg in flat_args:
if not is_graphable(arg):
raise RuntimeError(
f"Expected all pytree.tree_leaves of (args, kwargs) to be graphable types, but found "
f"non-fx-graphable type {type(arg)}. If this type is meant to be constant, mark it as "
f"via pytree.register_constant; otherwise, register it as a pytree."
)
return flat_args, spec
def from_graphable(flat_args, spec):
"""The inverse of to_graphable."""
stuff = pytree.tree_unflatten(flat_args, spec)
return stuff
def func_to_graphable(func):
"""
Pack and flatten a function type into graphable types.
This is useful for legalizing the function argument of `flat_apply`.
"""
return pytree.tree_flatten(_ConstantFunction(func))
@dataclass(frozen=True)
class _ConstantFunction:
func: Callable
def __call__(self, *args, **kwargs):
return self.func(*args, **kwargs)
pytree.register_constant(_ConstantFunction)
_op_types = (
torch._ops.OpOverload,
torch._ops.OpOverloadPacket,
torch._ops.HigherOrderOperator,
)
class FlatApply(HigherOrderOperator):
def __init__(self) -> None:
super().__init__("flat_apply")
def __call__(self, func, in_spec, *flat_args, **_unused):
"""
Functions that take in non-graphable types cannot directly be put into FX graph.
Given func(*args, **kwargs), if all of the non-graphable types are pytrees,
then we're able to store a call to flat_apply(func, in_spec, *flat_args) in the FX graph.
The semantics of flat_apply(func, in_spec, *flat_args) are roughly equivalent to:
>>> def flat_apply_impl(func, in_spec, *flat_args):
>>> args, kwargs = pytree.tree_unflatten(flat_args, in_spec)
>>> output = func(*args, **kwargs)
>>> return output
flat_apply supports the following two cases:
- an input type is a container type (e.g. of tensors) registered as a pytree.
We'll tree_flatten the input type and store the spec.
- an input type is a constant type (i.e. torch.compile will specialize on it)
registered with pytree.register_constant. The constant type goes directly
into the spec.
"""
assert isinstance(func, _op_types) or pytree._is_constant_holder(func)
assert len(_unused) == 0
return impl(func, in_spec, *flat_args)
def impl(func, in_spec, *flat_args):
if not isinstance(func, _op_types):
# assume _ConstantFunction
func = pytree._retrieve_constant(func)
assert isinstance(func, _ConstantFunction)
args, kwargs = from_graphable(flat_args, in_spec)
out = func(*args, **kwargs)
# Right now, all outputs must either be graphable or lists/tuples of graphables.
#
# TODO: The following can be updated to support non-graphable outputs and pytrees.
# For non-graphable constant outputs: the assumption would be that they are constant
# (every time the function runs those MUST be the same)
# For pytree outputs:
# I'm not sure if we need to return (flat_output, spec) or just (flat_output,):
# in the latter case the tracers need to carry out the output specs
# (they need to know how to reconstruct the object from just the flat_output).
def is_valid_output(x):
if isinstance(x, (tuple, list)):
return all(map(is_valid_output, x))
return is_graphable(x)
assert is_valid_output(out)
return out
flat_apply = FlatApply()
|
# Copyright (c) OpenMMLab. All rights reserved.
from .collect_env import collect_env
from .compat_config import compat_cfg
from .logger import get_caller_name, get_root_logger, log_img_scale
from .memory import AvoidCUDAOOM, AvoidOOM
from .misc import find_latest_checkpoint, update_data_root
from .parallel import MMDataParallel, MMDistributedDataParallel
from .setup_env import register_all_modules, setup_multi_processes
from .split_batch import split_batch
from .util_distribution import build_ddp, build_dp, get_device
__all__ = [
'get_root_logger', 'collect_env', 'find_latest_checkpoint',
'update_data_root', 'setup_multi_processes', 'get_caller_name',
'log_img_scale', 'compat_cfg', 'split_batch', 'build_ddp', 'build_dp',
'get_device', 'MMDataParallel', 'MMDistributedDataParallel',
'register_all_modules'
]
|
# Copyright (c) OpenMMLab. All rights reserved.
from .collect_env import collect_env
from .compat_config import compat_cfg
from .logger import get_caller_name, get_root_logger, log_img_scale
from .memory import AvoidCUDAOOM, AvoidOOM
from .misc import find_latest_checkpoint, update_data_root
from .replace_cfg_vals import replace_cfg_vals
from .setup_env import setup_multi_processes
from .split_batch import split_batch
from .util_distribution import build_ddp, build_dp, get_device
__all__ = [
'get_root_logger', 'collect_env', 'find_latest_checkpoint',
'update_data_root', 'setup_multi_processes', 'get_caller_name',
'log_img_scale', 'compat_cfg', 'split_batch', 'build_ddp', 'build_dp',
'get_device', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM'
]
|
# Licensed to the LF AI & Data foundation under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import uuid
import pytest
import qdrant_client
from docarray.index import QdrantDocumentIndex
cur_dir = os.path.dirname(os.path.abspath(__file__))
qdrant_yml = os.path.abspath(os.path.join(cur_dir, "docker-compose.yml"))
@pytest.fixture(scope="session", autouse=True)
def start_storage():
os.system(f"docker compose -f {qdrant_yml} up -d --remove-orphans")
time.sleep(1)
yield
os.system(f"docker compose -f {qdrant_yml} down --remove-orphans")
@pytest.fixture(scope="function")
def tmp_collection_name():
return uuid.uuid4().hex
@pytest.fixture
def qdrant() -> qdrant_client.QdrantClient:
"""This fixture takes care of removing the collection before each test case"""
client = qdrant_client.QdrantClient(path="/tmp/qdrant-local")
for collection in client.get_collections().collections:
client.delete_collection(collection.name)
return client
@pytest.fixture
def qdrant_config(qdrant) -> QdrantDocumentIndex.DBConfig:
return QdrantDocumentIndex.DBConfig(path=qdrant._client.location)
|
# Licensed to the LF AI & Data foundation under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import uuid
import pytest
import qdrant_client
from docarray.index import QdrantDocumentIndex
cur_dir = os.path.dirname(os.path.abspath(__file__))
qdrant_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml'))
@pytest.fixture(scope='session', autouse=True)
def start_storage():
os.system(f"docker-compose -f {qdrant_yml} up -d --remove-orphans")
time.sleep(1)
yield
os.system(f"docker-compose -f {qdrant_yml} down --remove-orphans")
@pytest.fixture(scope='function')
def tmp_collection_name():
return uuid.uuid4().hex
@pytest.fixture
def qdrant() -> qdrant_client.QdrantClient:
"""This fixture takes care of removing the collection before each test case"""
client = qdrant_client.QdrantClient(path='/tmp/qdrant-local')
for collection in client.get_collections().collections:
client.delete_collection(collection.name)
return client
@pytest.fixture
def qdrant_config(qdrant) -> QdrantDocumentIndex.DBConfig:
return QdrantDocumentIndex.DBConfig(path=qdrant._client.location)
|
"""Different methods for rendering Tools to be passed to LLMs.
Depending on the LLM you are using and the prompting strategy you are using,
you may want Tools to be rendered in a different way.
This module contains various ways to render tools.
"""
# For backwards compatibility
from langchain_core.tools import (
render_text_description,
render_text_description_and_args,
)
from langchain_core.utils.function_calling import (
format_tool_to_openai_function,
format_tool_to_openai_tool,
)
__all__ = [
"format_tool_to_openai_function",
"format_tool_to_openai_tool",
"render_text_description",
"render_text_description_and_args",
]
|
"""Different methods for rendering Tools to be passed to LLMs.
Depending on the LLM you are using and the prompting strategy you are using,
you may want Tools to be rendered in a different way.
This module contains various ways to render tools.
"""
# For backwards compatibility
from langchain_core.tools import (
render_text_description,
render_text_description_and_args,
)
from langchain_core.utils.function_calling import (
format_tool_to_openai_function,
format_tool_to_openai_tool,
)
__all__ = [
"render_text_description",
"render_text_description_and_args",
"format_tool_to_openai_tool",
"format_tool_to_openai_function",
]
|
"""Utilities for loading configurations from langchain_core-hub."""
import warnings
from typing import Any
from langchain_core._api.deprecation import deprecated
@deprecated(
since="0.1.30",
removal="1.0",
message=(
"Using the hwchase17/langchain-hub "
"repo for prompts is deprecated. Please use "
"<https://smith.langchain.com/hub> instead."
),
)
def try_load_from_hub(
*args: Any,
**kwargs: Any,
) -> Any:
"""[DEPRECATED] Try to load from the old Hub."""
warnings.warn(
"Loading from the deprecated github-based Hub is no longer supported. "
"Please use the new LangChain Hub at https://smith.langchain.com/hub instead.",
DeprecationWarning,
stacklevel=2,
)
# return None, which indicates that we shouldn't load from old hub
# and might just be a filepath for e.g. load_chain
return None
|
"""Utilities for loading configurations from langchain_core-hub."""
import warnings
from typing import Any
from langchain_core._api.deprecation import deprecated
@deprecated(
since="0.1.30",
removal="1.0",
message=(
"Using the hwchase17/langchain-hub "
"repo for prompts is deprecated. Please use "
"<https://smith.langchain.com/hub> instead."
),
)
def try_load_from_hub(
*args: Any,
**kwargs: Any,
) -> Any:
warnings.warn(
"Loading from the deprecated github-based Hub is no longer supported. "
"Please use the new LangChain Hub at https://smith.langchain.com/hub instead.",
DeprecationWarning,
stacklevel=2,
)
# return None, which indicates that we shouldn't load from old hub
# and might just be a filepath for e.g. load_chain
return None
|
_base_ = './fovea_r50_fpn_4xb4-1x_coco.py'
model = dict(
bbox_head=dict(
with_deform=True,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
# learning policy
max_epochs = 24
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
train_cfg = dict(max_epochs=max_epochs)
optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
|
_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
model = dict(
bbox_head=dict(
with_deform=True,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
# learning policy
max_epochs = 24
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
train_cfg = dict(max_epochs=max_epochs)
optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
|
import asyncio
import logging
from abc import ABC, abstractmethod
from typing import Any, AsyncGenerator, Generator, Generic, Optional, TypeVar
from pydantic import BaseModel
from redis.asyncio.client import PubSub as AsyncPubSub
from redis.client import PubSub
from backend.data import redis
logger = logging.getLogger(__name__)
M = TypeVar("M", bound=BaseModel)
class BaseRedisEventBus(Generic[M], ABC):
Model: type[M]
@property
@abstractmethod
def event_bus_name(self) -> str:
pass
@property
def Message(self) -> type["_EventPayloadWrapper[M]"]:
return _EventPayloadWrapper[self.Model]
def _serialize_message(self, item: M, channel_key: str) -> tuple[str, str]:
message = self.Message(payload=item).model_dump_json()
channel_name = f"{self.event_bus_name}/{channel_key}"
logger.debug(f"[{channel_name}] Publishing an event to Redis {message}")
return message, channel_name
def _deserialize_message(self, msg: Any, channel_key: str) -> M | None:
message_type = "pmessage" if "*" in channel_key else "message"
if msg["type"] != message_type:
return None
try:
logger.debug(f"[{channel_key}] Consuming an event from Redis {msg['data']}")
return self.Message.model_validate_json(msg["data"]).payload
except Exception as e:
logger.error(f"Failed to parse event result from Redis {msg} {e}")
def _get_pubsub_channel(
self, connection: redis.Redis | redis.AsyncRedis, channel_key: str
) -> tuple[PubSub | AsyncPubSub, str]:
full_channel_name = f"{self.event_bus_name}/{channel_key}"
pubsub = connection.pubsub()
return pubsub, full_channel_name
class _EventPayloadWrapper(BaseModel, Generic[M]):
"""
Wrapper model to allow `RedisEventBus.Model` to be a discriminated union
of multiple event types.
"""
payload: M
class RedisEventBus(BaseRedisEventBus[M], ABC):
@property
def connection(self) -> redis.Redis:
return redis.get_redis()
def publish_event(self, event: M, channel_key: str):
message, full_channel_name = self._serialize_message(event, channel_key)
self.connection.publish(full_channel_name, message)
def listen_events(self, channel_key: str) -> Generator[M, None, None]:
pubsub, full_channel_name = self._get_pubsub_channel(
self.connection, channel_key
)
assert isinstance(pubsub, PubSub)
if "*" in channel_key:
pubsub.psubscribe(full_channel_name)
else:
pubsub.subscribe(full_channel_name)
for message in pubsub.listen():
if event := self._deserialize_message(message, channel_key):
yield event
class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
@property
async def connection(self) -> redis.AsyncRedis:
return await redis.get_redis_async()
async def publish_event(self, event: M, channel_key: str):
message, full_channel_name = self._serialize_message(event, channel_key)
connection = await self.connection
await connection.publish(full_channel_name, message)
async def listen_events(self, channel_key: str) -> AsyncGenerator[M, None]:
pubsub, full_channel_name = self._get_pubsub_channel(
await self.connection, channel_key
)
assert isinstance(pubsub, AsyncPubSub)
if "*" in channel_key:
await pubsub.psubscribe(full_channel_name)
else:
await pubsub.subscribe(full_channel_name)
async for message in pubsub.listen():
if event := self._deserialize_message(message, channel_key):
yield event
async def wait_for_event(
self, channel_key: str, timeout: Optional[float] = None
) -> M | None:
try:
return await asyncio.wait_for(
anext(aiter(self.listen_events(channel_key))), timeout
)
except TimeoutError:
return None
|
import asyncio
import json
import logging
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Any, AsyncGenerator, Generator, Generic, Optional, TypeVar
from pydantic import BaseModel
from redis.asyncio.client import PubSub as AsyncPubSub
from redis.client import PubSub
from backend.data import redis
logger = logging.getLogger(__name__)
class DateTimeEncoder(json.JSONEncoder):
def default(self, o):
if isinstance(o, datetime):
return o.isoformat()
return super().default(o)
M = TypeVar("M", bound=BaseModel)
class BaseRedisEventBus(Generic[M], ABC):
Model: type[M]
@property
@abstractmethod
def event_bus_name(self) -> str:
pass
def _serialize_message(self, item: M, channel_key: str) -> tuple[str, str]:
message = json.dumps(item.model_dump(), cls=DateTimeEncoder)
channel_name = f"{self.event_bus_name}/{channel_key}"
logger.debug(f"[{channel_name}] Publishing an event to Redis {message}")
return message, channel_name
def _deserialize_message(self, msg: Any, channel_key: str) -> M | None:
message_type = "pmessage" if "*" in channel_key else "message"
if msg["type"] != message_type:
return None
try:
data = json.loads(msg["data"])
logger.debug(f"Consuming an event from Redis {data}")
return self.Model(**data)
except Exception as e:
logger.error(f"Failed to parse event result from Redis {msg} {e}")
def _get_pubsub_channel(
self, connection: redis.Redis | redis.AsyncRedis, channel_key: str
) -> tuple[PubSub | AsyncPubSub, str]:
full_channel_name = f"{self.event_bus_name}/{channel_key}"
pubsub = connection.pubsub()
return pubsub, full_channel_name
class RedisEventBus(BaseRedisEventBus[M], ABC):
Model: type[M]
@property
def connection(self) -> redis.Redis:
return redis.get_redis()
def publish_event(self, event: M, channel_key: str):
message, full_channel_name = self._serialize_message(event, channel_key)
self.connection.publish(full_channel_name, message)
def listen_events(self, channel_key: str) -> Generator[M, None, None]:
pubsub, full_channel_name = self._get_pubsub_channel(
self.connection, channel_key
)
assert isinstance(pubsub, PubSub)
if "*" in channel_key:
pubsub.psubscribe(full_channel_name)
else:
pubsub.subscribe(full_channel_name)
for message in pubsub.listen():
if event := self._deserialize_message(message, channel_key):
yield event
class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
Model: type[M]
@property
async def connection(self) -> redis.AsyncRedis:
return await redis.get_redis_async()
async def publish_event(self, event: M, channel_key: str):
message, full_channel_name = self._serialize_message(event, channel_key)
connection = await self.connection
await connection.publish(full_channel_name, message)
async def listen_events(self, channel_key: str) -> AsyncGenerator[M, None]:
pubsub, full_channel_name = self._get_pubsub_channel(
await self.connection, channel_key
)
assert isinstance(pubsub, AsyncPubSub)
if "*" in channel_key:
await pubsub.psubscribe(full_channel_name)
else:
await pubsub.subscribe(full_channel_name)
async for message in pubsub.listen():
if event := self._deserialize_message(message, channel_key):
yield event
async def wait_for_event(
self, channel_key: str, timeout: Optional[float] = None
) -> M | None:
try:
return await asyncio.wait_for(
anext(aiter(self.listen_events(channel_key))), timeout
)
except TimeoutError:
return None
|
import warnings
from abc import ABC
from typing import TYPE_CHECKING, Any, BinaryIO, Dict, TypeVar, Union
from docarray.typing.tensor.abstract_tensor import AbstractTensor
from docarray.utils._internal.misc import import_library, is_notebook
if TYPE_CHECKING:
from docarray.typing.bytes.audio_bytes import AudioBytes
T = TypeVar('T', bound='AbstractAudioTensor')
MAX_INT_16 = 2**15
class AbstractAudioTensor(AbstractTensor, ABC):
def to_bytes(self) -> 'AudioBytes':
"""
Convert audio tensor to [`AudioBytes`][docarray.typrin.AudioBytes].
"""
from docarray.typing.bytes.audio_bytes import AudioBytes
tensor = self.get_comp_backend().to_numpy(self)
tensor = (tensor * MAX_INT_16).astype('<h')
return AudioBytes(tensor.tobytes())
def save(
self: 'T',
file_path: Union[str, BinaryIO],
format: str = 'wav',
frame_rate: int = 44100,
sample_width: int = 2,
pydub_args: Dict[str, Any] = {},
) -> None:
"""
Save audio tensor to an audio file. Mono/stereo is preserved.
:param file_path: path to an audio file. If file is a string, open the file by
that name, otherwise treat it as a file-like object.
:param format: format for the audio file ('mp3', 'wav', 'raw', 'ogg' or other ffmpeg/avconv supported files)
:param frame_rate: sampling frequency
:param sample_width: sample width in bytes
:param pydub_args: dictionary of additional arguments for pydub.AudioSegment.export function
"""
pydub = import_library('pydub', raise_error=True) # noqa: F841
from pydub import AudioSegment
comp_backend = self.get_comp_backend()
channels = 2 if comp_backend.n_dim(array=self) > 1 else 1 # type: ignore
segment = AudioSegment(
self.to_bytes(),
frame_rate=frame_rate,
sample_width=sample_width,
channels=channels,
)
segment.export(file_path, format=format, **pydub_args)
def display(self, rate=44100):
"""
Play audio data from tensor in notebook.
"""
if is_notebook():
from IPython.display import Audio, display
audio_np = self.get_comp_backend().to_numpy(self)
display(Audio(audio_np, rate=rate))
else:
warnings.warn('Display of audio is only possible in a notebook.')
|
import warnings
from abc import ABC
from typing import TYPE_CHECKING, Any, BinaryIO, Dict, TypeVar, Union
from docarray.typing.tensor.abstract_tensor import AbstractTensor
from docarray.utils._internal.misc import import_library, is_notebook
if TYPE_CHECKING:
from docarray.typing.bytes.audio_bytes import AudioBytes
T = TypeVar('T', bound='AbstractAudioTensor')
MAX_INT_16 = 2**15
class AbstractAudioTensor(AbstractTensor, ABC):
def to_bytes(self) -> 'AudioBytes':
"""
Convert audio tensor to AudioBytes.
"""
from docarray.typing.bytes.audio_bytes import AudioBytes
tensor = self.get_comp_backend().to_numpy(self)
tensor = (tensor * MAX_INT_16).astype('<h')
return AudioBytes(tensor.tobytes())
def save(
self: 'T',
file_path: Union[str, BinaryIO],
format: str = 'wav',
frame_rate: int = 44100,
sample_width: int = 2,
pydub_args: Dict[str, Any] = {},
) -> None:
"""
Save audio tensor to an audio file. Mono/stereo is preserved.
:param file_path: path to an audio file. If file is a string, open the file by
that name, otherwise treat it as a file-like object.
:param format: format for the audio file ('mp3', 'wav', 'raw', 'ogg' or other ffmpeg/avconv supported files)
:param frame_rate: sampling frequency
:param sample_width: sample width in bytes
:param pydub_args: dictionary of additional arguments for pydub.AudioSegment.export function
"""
pydub = import_library('pydub', raise_error=True) # noqa: F841
from pydub import AudioSegment
comp_backend = self.get_comp_backend()
channels = 2 if comp_backend.n_dim(array=self) > 1 else 1 # type: ignore
segment = AudioSegment(
self.to_bytes(),
frame_rate=frame_rate,
sample_width=sample_width,
channels=channels,
)
segment.export(file_path, format=format, **pydub_args)
def display(self, rate=44100):
"""
Play audio data from tensor in notebook.
"""
if is_notebook():
from IPython.display import Audio, display
audio_np = self.get_comp_backend().to_numpy(self)
display(Audio(audio_np, rate=rate))
else:
warnings.warn('Display of audio is only possible in a notebook.')
|
from keras.src.api_export import keras_export
# Unique source of truth for the version number.
__version__ = "3.4.1"
@keras_export("keras.version")
def version():
return __version__
|
from keras.src.api_export import keras_export
# Unique source of truth for the version number.
__version__ = "3.4.0"
@keras_export("keras.version")
def version():
return __version__
|
_base_ = './mask-rcnn_r50_fpn_sample1e-3_ms-1x_lvis-v1.py'
model = dict(
backbone=dict(
type='ResNeXt',
depth=101,
groups=64,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
style='pytorch',
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
|
_base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py'
model = dict(
backbone=dict(
type='ResNeXt',
depth=101,
groups=64,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
style='pytorch',
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
|
import os
from typing import Optional
import numpy as np
import pytest
import torch
from pydantic import parse_obj_as
from docarray import BaseDocument
from docarray.documents import Audio
from docarray.typing import AudioUrl
from docarray.typing.tensor.audio import AudioNdArray, AudioTorchTensor
from tests import TOYDATA_DIR
LOCAL_AUDIO_FILES = [
str(TOYDATA_DIR / 'hello.wav'),
str(TOYDATA_DIR / 'olleh.wav'),
]
REMOTE_AUDIO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/olleh.wav?raw=true' # noqa: E501
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize('file_url', [*LOCAL_AUDIO_FILES, REMOTE_AUDIO_FILE])
def test_audio(file_url):
audio = Audio(url=file_url)
audio.tensor = audio.url.load()
assert isinstance(audio.tensor, np.ndarray)
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize('file_url', [*LOCAL_AUDIO_FILES, REMOTE_AUDIO_FILE])
def test_save_audio_ndarray(file_url, tmpdir):
tmp_file = str(tmpdir / 'tmp.wav')
audio = Audio(url=file_url)
audio.tensor = audio.url.load()
assert isinstance(audio.tensor, np.ndarray)
assert isinstance(audio.tensor, AudioNdArray)
audio.tensor.save_to_wav_file(tmp_file)
assert os.path.isfile(tmp_file)
audio_from_file = Audio(url=tmp_file)
audio_from_file.tensor = audio_from_file.url.load()
assert np.allclose(audio.tensor, audio_from_file.tensor)
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize('file_url', [*LOCAL_AUDIO_FILES, REMOTE_AUDIO_FILE])
def test_save_audio_torch_tensor(file_url, tmpdir):
tmp_file = str(tmpdir / 'tmp.wav')
audio = Audio(url=file_url)
audio.tensor = parse_obj_as(AudioTorchTensor, torch.from_numpy(audio.url.load()))
assert isinstance(audio.tensor, torch.Tensor)
assert isinstance(audio.tensor, AudioTorchTensor)
audio.tensor.save_to_wav_file(tmp_file)
assert os.path.isfile(tmp_file)
audio_from_file = Audio(url=tmp_file)
audio_from_file.tensor = parse_obj_as(
AudioTorchTensor, torch.from_numpy(audio_from_file.url.load())
)
assert torch.allclose(audio.tensor, audio_from_file.tensor)
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize(
'file_url',
[*LOCAL_AUDIO_FILES, REMOTE_AUDIO_FILE],
)
def test_extend_audio(file_url):
class MyAudio(Audio):
title: str
tensor: Optional[AudioNdArray]
my_audio = MyAudio(title='my extended audio', url=file_url)
my_audio.tensor = parse_obj_as(AudioNdArray, my_audio.url.load())
assert isinstance(my_audio.tensor, AudioNdArray)
assert isinstance(my_audio.url, AudioUrl)
def test_audio_np():
audio = parse_obj_as(Audio, np.zeros((10, 10, 3)))
assert (audio.tensor == np.zeros((10, 10, 3))).all()
def test_audio_torch():
audio = parse_obj_as(Audio, torch.zeros(10, 10, 3))
assert (audio.tensor == torch.zeros(10, 10, 3)).all()
def test_audio_shortcut_doc():
class MyDoc(BaseDocument):
audio: Audio
audio2: Audio
audio3: Audio
doc = MyDoc(
audio='http://myurl.wav',
audio2=np.zeros((10, 10, 3)),
audio3=torch.zeros(10, 10, 3),
)
assert doc.audio.url == 'http://myurl.wav'
assert (doc.audio2.tensor == np.zeros((10, 10, 3))).all()
assert (doc.audio3.tensor == torch.zeros(10, 10, 3)).all()
|
import os
from typing import Optional
import numpy as np
import pytest
import torch
from pydantic import parse_obj_as
from docarray.documents import Audio
from docarray.typing import AudioUrl
from docarray.typing.tensor.audio import AudioNdArray, AudioTorchTensor
from tests import TOYDATA_DIR
LOCAL_AUDIO_FILES = [
str(TOYDATA_DIR / 'hello.wav'),
str(TOYDATA_DIR / 'olleh.wav'),
]
REMOTE_AUDIO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/olleh.wav?raw=true' # noqa: E501
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize('file_url', [*LOCAL_AUDIO_FILES, REMOTE_AUDIO_FILE])
def test_audio(file_url):
audio = Audio(url=file_url)
audio.tensor = audio.url.load()
assert isinstance(audio.tensor, np.ndarray)
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize('file_url', [*LOCAL_AUDIO_FILES, REMOTE_AUDIO_FILE])
def test_save_audio_ndarray(file_url, tmpdir):
tmp_file = str(tmpdir / 'tmp.wav')
audio = Audio(url=file_url)
audio.tensor = audio.url.load()
assert isinstance(audio.tensor, np.ndarray)
assert isinstance(audio.tensor, AudioNdArray)
audio.tensor.save_to_wav_file(tmp_file)
assert os.path.isfile(tmp_file)
audio_from_file = Audio(url=tmp_file)
audio_from_file.tensor = audio_from_file.url.load()
assert np.allclose(audio.tensor, audio_from_file.tensor)
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize('file_url', [*LOCAL_AUDIO_FILES, REMOTE_AUDIO_FILE])
def test_save_audio_torch_tensor(file_url, tmpdir):
tmp_file = str(tmpdir / 'tmp.wav')
audio = Audio(url=file_url)
audio.tensor = parse_obj_as(AudioTorchTensor, torch.from_numpy(audio.url.load()))
assert isinstance(audio.tensor, torch.Tensor)
assert isinstance(audio.tensor, AudioTorchTensor)
audio.tensor.save_to_wav_file(tmp_file)
assert os.path.isfile(tmp_file)
audio_from_file = Audio(url=tmp_file)
audio_from_file.tensor = parse_obj_as(
AudioTorchTensor, torch.from_numpy(audio_from_file.url.load())
)
assert torch.allclose(audio.tensor, audio_from_file.tensor)
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize(
'file_url',
[*LOCAL_AUDIO_FILES, REMOTE_AUDIO_FILE],
)
def test_extend_audio(file_url):
class MyAudio(Audio):
title: str
tensor: Optional[AudioNdArray]
my_audio = MyAudio(title='my extended audio', url=file_url)
my_audio.tensor = parse_obj_as(AudioNdArray, my_audio.url.load())
assert isinstance(my_audio.tensor, AudioNdArray)
assert isinstance(my_audio.url, AudioUrl)
|
import pytest
from keras.src import activations
from keras.src import layers
from keras.src import testing
class ActivationTest(testing.TestCase):
@pytest.mark.requires_trainable_backend
def test_activation_basics(self):
self.run_layer_test(
layers.Activation,
init_kwargs={
"activation": "relu",
},
input_shape=(2, 3),
expected_output_shape=(2, 3),
expected_num_trainable_weights=0,
expected_num_non_trainable_weights=0,
expected_num_seed_generators=0,
expected_num_losses=0,
supports_masking=True,
assert_built_after_instantiation=True,
)
self.run_layer_test(
layers.Activation,
init_kwargs={
"activation": activations.gelu,
},
input_shape=(2, 2),
expected_output_shape=(2, 2),
expected_num_trainable_weights=0,
expected_num_non_trainable_weights=0,
expected_num_seed_generators=0,
expected_num_losses=0,
supports_masking=True,
assert_built_after_instantiation=True,
)
|
import pytest
from keras.src import activations
from keras.src import layers
from keras.src import testing
class ActivationTest(testing.TestCase):
@pytest.mark.requires_trainable_backend
def test_activation_basics(self):
self.run_layer_test(
layers.Activation,
init_kwargs={
"activation": "relu",
},
input_shape=(2, 3),
expected_output_shape=(2, 3),
expected_num_trainable_weights=0,
expected_num_non_trainable_weights=0,
expected_num_seed_generators=0,
expected_num_losses=0,
supports_masking=True,
)
self.run_layer_test(
layers.Activation,
init_kwargs={
"activation": activations.gelu,
},
input_shape=(2, 2),
expected_output_shape=(2, 2),
expected_num_trainable_weights=0,
expected_num_non_trainable_weights=0,
expected_num_seed_generators=0,
expected_num_losses=0,
supports_masking=True,
)
|
_base_ = './faster-rcnn_r50_fpn_1x_coco.py'
model = dict(
roi_head=dict(
bbox_head=dict(
reg_decoded_bbox=True,
loss_bbox=dict(type='BoundedIoULoss', loss_weight=10.0))))
|
_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
model = dict(
roi_head=dict(
bbox_head=dict(
reg_decoded_bbox=True,
loss_bbox=dict(type='BoundedIoULoss', loss_weight=10.0))))
|
import os
import pytest
import torch
import whisper
from whisper.tokenizer import get_tokenizer
@pytest.mark.parametrize("model_name", whisper.available_models())
def test_transcribe(model_name: str):
device = "cuda" if torch.cuda.is_available() else "cpu"
model = whisper.load_model(model_name).to(device)
audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac")
language = "en" if model_name.endswith(".en") else None
result = model.transcribe(
audio_path, language=language, temperature=0.0, word_timestamps=True
)
assert result["language"] == "en"
assert result["text"] == "".join([s["text"] for s in result["segments"]])
transcription = result["text"].lower()
assert "my fellow americans" in transcription
assert "your country" in transcription
assert "do for you" in transcription
tokenizer = get_tokenizer(model.is_multilingual, num_languages=model.num_languages)
all_tokens = [t for s in result["segments"] for t in s["tokens"]]
assert tokenizer.decode(all_tokens) == result["text"]
assert tokenizer.decode_with_timestamps(all_tokens).startswith("<|0.00|>")
timing_checked = False
for segment in result["segments"]:
for timing in segment["words"]:
assert timing["start"] < timing["end"]
if timing["word"].strip(" ,") == "Americans":
assert timing["start"] <= 1.8
assert timing["end"] >= 1.8
timing_checked = True
assert timing_checked
|
import os
import pytest
import torch
import whisper
from whisper.tokenizer import get_tokenizer
@pytest.mark.parametrize("model_name", whisper.available_models())
def test_transcribe(model_name: str):
device = "cuda" if torch.cuda.is_available() else "cpu"
model = whisper.load_model(model_name).to(device)
audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac")
language = "en" if model_name.endswith(".en") else None
result = model.transcribe(
audio_path, language=language, temperature=0.0, word_timestamps=True
)
assert result["language"] == "en"
assert result["text"] == "".join([s["text"] for s in result["segments"]])
transcription = result["text"].lower()
assert "my fellow americans" in transcription
assert "your country" in transcription
assert "do for you" in transcription
tokenizer = get_tokenizer(model.is_multilingual)
all_tokens = [t for s in result["segments"] for t in s["tokens"]]
assert tokenizer.decode(all_tokens) == result["text"]
assert tokenizer.decode_with_timestamps(all_tokens).startswith("<|0.00|>")
timing_checked = False
for segment in result["segments"]:
for timing in segment["words"]:
assert timing["start"] < timing["end"]
if timing["word"].strip(" ,") == "Americans":
assert timing["start"] <= 1.8
assert timing["end"] >= 1.8
timing_checked = True
assert timing_checked
|
def __getattr__(name: str):
import warnings
warnings.warn(
"Torchaudio's I/O functions now support per-call backend dispatch. "
"Importing backend implementation directly is no longer guaranteed to work. "
"Please use `backend` keyword with load/save/info function, instead of "
"calling the underlying implementation directly.",
stacklevel=2,
)
from . import _sox_io_backend
return getattr(_sox_io_backend, name)
|
def __getattr__(name: str):
import warnings
warnings.warn(
"Torchaudio's I/O functions now support par-call bakcend dispatch. "
"Importing backend implementation directly is no longer guaranteed to work. "
"Please use `backend` keyword with load/save/info function, instead of "
"calling the udnerlying implementation directly.",
stacklevel=2,
)
from . import _sox_io_backend
return getattr(_sox_io_backend, name)
|
_base_ = './cornernet_hourglass104_8xb6-210e-mstest_coco.py'
train_dataloader = dict(batch_size=5)
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (10 GPUs) x (5 samples per GPU)
auto_scale_lr = dict(base_batch_size=50)
|
_base_ = './cornernet_hourglass104_mstest_8x6_210e_coco.py'
train_dataloader = dict(batch_size=5)
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (10 GPUs) x (5 samples per GPU)
auto_scale_lr = dict(base_batch_size=50)
|
# TODO: enable ruff qa on this file when we figure out why it thinks weaviate_client is
# redefined at each test that fixture
# ruff: noqa
import numpy as np
import pytest
import torch
from pydantic import Field
from docarray import BaseDoc
from docarray.index.backends.weaviate import WeaviateDocumentIndex
from docarray.typing import NdArray, TorchTensor
from tests.index.weaviate.fixture_weaviate import ( # noqa: F401
start_storage,
weaviate_client,
)
pytestmark = [pytest.mark.slow, pytest.mark.index]
def test_find_torch(weaviate_client):
class TorchDoc(BaseDoc):
tens: TorchTensor[10] = Field(dims=10, is_embedding=True)
index = WeaviateDocumentIndex[TorchDoc]()
index_docs = [
TorchDoc(tens=np.random.rand(10).astype(dtype=np.float32)) for _ in range(10)
]
index.index(index_docs)
query = index_docs[-1]
docs, scores = index.find(query, limit=5)
assert len(docs) == 5
assert len(scores) == 5
for doc in docs:
assert isinstance(doc.tens, TorchTensor)
assert docs[0].id == index_docs[-1].id
assert torch.allclose(docs[0].tens, index_docs[-1].tens)
@pytest.mark.tensorflow
def test_find_tensorflow():
from docarray.typing import TensorFlowTensor
class TfDoc(BaseDoc):
tens: TensorFlowTensor[10] = Field(dims=10, is_embedding=True)
index = WeaviateDocumentIndex[TfDoc]()
index_docs = [
TfDoc(tens=np.random.rand(10).astype(dtype=np.float32)) for _ in range(10)
]
index.index(index_docs)
query = index_docs[-1]
docs, scores = index.find(query, limit=5)
assert len(docs) == 5
assert len(scores) == 5
for doc in docs:
assert isinstance(doc.tens, TensorFlowTensor)
assert docs[0].id == index_docs[-1].id
assert np.allclose(
docs[0].tens.unwrap().numpy(), index_docs[-1].tens.unwrap().numpy()
)
def test_contain():
class SimpleDoc(BaseDoc):
tens: NdArray[10] = Field(dims=1000)
class SimpleSchema(BaseDoc):
tens: NdArray[10]
index = WeaviateDocumentIndex[SimpleSchema]()
index_docs = [SimpleDoc(tens=np.zeros(10)) for _ in range(10)]
assert (index_docs[0] in index) is False
index.index(index_docs)
for doc in index_docs:
assert (doc in index) is True
index_docs_new = [SimpleDoc(tens=np.zeros(10)) for _ in range(10)]
for doc in index_docs_new:
assert (doc in index) is False
|
# TODO: enable ruff qa on this file when we figure out why it thinks weaviate_client is
# redefined at each test that fixture
# ruff: noqa
import numpy as np
import pytest
import torch
from pydantic import Field
from docarray import BaseDoc
from docarray.index.backends.weaviate import WeaviateDocumentIndex
from docarray.typing import TorchTensor
from tests.index.weaviate.fixture_weaviate import ( # noqa: F401
start_storage,
weaviate_client,
)
pytestmark = [pytest.mark.slow, pytest.mark.index]
def test_find_torch(weaviate_client):
class TorchDoc(BaseDoc):
tens: TorchTensor[10] = Field(dims=10, is_embedding=True)
index = WeaviateDocumentIndex[TorchDoc]()
index_docs = [
TorchDoc(tens=np.random.rand(10).astype(dtype=np.float32)) for _ in range(10)
]
index.index(index_docs)
query = index_docs[-1]
docs, scores = index.find(query, limit=5)
assert len(docs) == 5
assert len(scores) == 5
for doc in docs:
assert isinstance(doc.tens, TorchTensor)
assert docs[0].id == index_docs[-1].id
assert torch.allclose(docs[0].tens, index_docs[-1].tens)
@pytest.mark.tensorflow
def test_find_tensorflow():
from docarray.typing import TensorFlowTensor
class TfDoc(BaseDoc):
tens: TensorFlowTensor[10] = Field(dims=10, is_embedding=True)
index = WeaviateDocumentIndex[TfDoc]()
index_docs = [
TfDoc(tens=np.random.rand(10).astype(dtype=np.float32)) for _ in range(10)
]
index.index(index_docs)
query = index_docs[-1]
docs, scores = index.find(query, limit=5)
assert len(docs) == 5
assert len(scores) == 5
for doc in docs:
assert isinstance(doc.tens, TensorFlowTensor)
assert docs[0].id == index_docs[-1].id
assert np.allclose(
docs[0].tens.unwrap().numpy(), index_docs[-1].tens.unwrap().numpy()
)
|
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.core.utils import ConfigType, OptConfigType, OptMultiConfig
from mmdet.registry import MODELS
from .two_stage import TwoStageDetector
@MODELS.register_module()
class MaskScoringRCNN(TwoStageDetector):
"""Mask Scoring RCNN.
https://arxiv.org/abs/1903.00241
"""
def __init__(self,
backbone: ConfigType,
rpn_head: ConfigType,
roi_head: ConfigType,
train_cfg: ConfigType,
test_cfg: ConfigType,
neck: OptConfigType = None,
data_preprocessor: OptConfigType = None,
init_cfg: OptMultiConfig = None) -> None:
super().__init__(
backbone=backbone,
neck=neck,
rpn_head=rpn_head,
roi_head=roi_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
data_preprocessor=data_preprocessor,
init_cfg=init_cfg)
|
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.registry import MODELS
from .two_stage import TwoStageDetector
@MODELS.register_module()
class MaskScoringRCNN(TwoStageDetector):
"""Mask Scoring RCNN.
https://arxiv.org/abs/1903.00241
"""
def __init__(self,
backbone,
rpn_head,
roi_head,
train_cfg,
test_cfg,
neck=None,
pretrained=None,
init_cfg=None):
super(MaskScoringRCNN, self).__init__(
backbone=backbone,
neck=neck,
rpn_head=rpn_head,
roi_head=roi_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
pretrained=pretrained,
init_cfg=init_cfg)
|
from typing import TYPE_CHECKING, Any
from langchain._api import create_importer
if TYPE_CHECKING:
from langchain_community.tools import GoogleSearchResults, GoogleSearchRun
# Create a way to dynamically look up deprecated imports.
# Used to consolidate logic for raising deprecation warnings and
# handling optional imports.
DEPRECATED_LOOKUP = {
"GoogleSearchRun": "langchain_community.tools",
"GoogleSearchResults": "langchain_community.tools",
}
_import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP)
def __getattr__(name: str) -> Any:
"""Look up attributes dynamically."""
return _import_attribute(name)
__all__ = [
"GoogleSearchResults",
"GoogleSearchRun",
]
|
from typing import TYPE_CHECKING, Any
from langchain._api import create_importer
if TYPE_CHECKING:
from langchain_community.tools import GoogleSearchResults, GoogleSearchRun
# Create a way to dynamically look up deprecated imports.
# Used to consolidate logic for raising deprecation warnings and
# handling optional imports.
DEPRECATED_LOOKUP = {
"GoogleSearchRun": "langchain_community.tools",
"GoogleSearchResults": "langchain_community.tools",
}
_import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP)
def __getattr__(name: str) -> Any:
"""Look up attributes dynamically."""
return _import_attribute(name)
__all__ = [
"GoogleSearchRun",
"GoogleSearchResults",
]
|
from pathlib import Path
REPO_ROOT_DIR = Path(__file__).parent.parent.absolute()
TOYDATA_DIR = REPO_ROOT_DIR / 'tests' / 'toydata'
|
import numpy as np
from docarray import DocumentArray, Document
def random_docs(
num_docs,
chunks_per_doc=5,
embed_dim=10,
jitter=1,
start_id=0,
embedding=True,
sparse_embedding=False,
text='hello world',
) -> DocumentArray:
da = DocumentArray()
next_chunk_doc_id = start_id + num_docs
for j in range(num_docs):
doc_id = str(start_id + j)
d = Document(id=doc_id)
d.text = text
d.tags['id'] = f'myself id is: {doc_id}'
if embedding:
if sparse_embedding:
from scipy.sparse import coo_matrix
d.embedding = coo_matrix(
(np.array([1, 1, 1]), (np.array([0, 1, 2]), np.array([1, 2, 1])))
)
else:
d.embedding = np.random.random(
[embed_dim + np.random.randint(0, jitter)]
)
for _ in range(chunks_per_doc):
chunk_doc_id = str(next_chunk_doc_id)
c = Document(id=chunk_doc_id)
c.text = 'i\'m chunk %s from doc %s' % (chunk_doc_id, doc_id)
if embedding:
c.embedding = np.random.random(
[embed_dim + np.random.randint(0, jitter)]
)
c.tags['parent_id'] = f'my parent is: {id}'
c.tags['id'] = f'myself id is: {doc_id}'
d.chunks.append(c)
next_chunk_doc_id += 1
da.append(d)
return da
|
import PIL.Image
import pytest
import torch
import torchvision.prototype.transforms.utils
from prototype_common_utils import make_bounding_box, make_detection_mask, make_image
from torchvision.prototype import datapoints
from torchvision.prototype.transforms.functional import to_image_pil
from torchvision.prototype.transforms.utils import has_all, has_any
IMAGE = make_image(color_space=datapoints.ColorSpace.RGB)
BOUNDING_BOX = make_bounding_box(format=datapoints.BoundingBoxFormat.XYXY, spatial_size=IMAGE.spatial_size)
MASK = make_detection_mask(size=IMAGE.spatial_size)
@pytest.mark.parametrize(
("sample", "types", "expected"),
[
((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True),
((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox,), True),
((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True),
((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), True),
((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True),
((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox, datapoints.Mask), True),
((MASK,), (datapoints.Image, datapoints.BoundingBox), False),
((BOUNDING_BOX,), (datapoints.Image, datapoints.Mask), False),
((IMAGE,), (datapoints.BoundingBox, datapoints.Mask), False),
(
(IMAGE, BOUNDING_BOX, MASK),
(datapoints.Image, datapoints.BoundingBox, datapoints.Mask),
True,
),
((), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False),
((IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, datapoints.Image),), True),
((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False),
((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True),
((IMAGE,), (datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor), True),
(
(torch.Tensor(IMAGE),),
(datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor),
True,
),
(
(to_image_pil(IMAGE),),
(datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor),
True,
),
],
)
def test_has_any(sample, types, expected):
assert has_any(sample, *types) is expected
@pytest.mark.parametrize(
("sample", "types", "expected"),
[
((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True),
((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox,), True),
((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True),
((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), True),
((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True),
((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox, datapoints.Mask), True),
(
(IMAGE, BOUNDING_BOX, MASK),
(datapoints.Image, datapoints.BoundingBox, datapoints.Mask),
True,
),
((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), False),
((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), False),
((IMAGE, MASK), (datapoints.BoundingBox, datapoints.Mask), False),
(
(IMAGE, BOUNDING_BOX, MASK),
(datapoints.Image, datapoints.BoundingBox, datapoints.Mask),
True,
),
((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False),
((IMAGE, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False),
((IMAGE, BOUNDING_BOX), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False),
(
(IMAGE, BOUNDING_BOX, MASK),
(lambda obj: isinstance(obj, (datapoints.Image, datapoints.BoundingBox, datapoints.Mask)),),
True,
),
((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False),
((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True),
],
)
def test_has_all(sample, types, expected):
assert has_all(sample, *types) is expected
|
import PIL.Image
import pytest
import torch
from prototype_common_utils import make_bounding_box, make_detection_mask, make_image
from torchvision.prototype import features
from torchvision.prototype.transforms.functional import to_image_pil
from torchvision.prototype.transforms.utils import has_all, has_any
IMAGE = make_image(color_space=features.ColorSpace.RGB)
BOUNDING_BOX = make_bounding_box(format=features.BoundingBoxFormat.XYXY, spatial_size=IMAGE.spatial_size)
MASK = make_detection_mask(size=IMAGE.spatial_size)
@pytest.mark.parametrize(
("sample", "types", "expected"),
[
((IMAGE, BOUNDING_BOX, MASK), (features.Image,), True),
((IMAGE, BOUNDING_BOX, MASK), (features.BoundingBox,), True),
((IMAGE, BOUNDING_BOX, MASK), (features.Mask,), True),
((IMAGE, BOUNDING_BOX, MASK), (features.Image, features.BoundingBox), True),
((IMAGE, BOUNDING_BOX, MASK), (features.Image, features.Mask), True),
((IMAGE, BOUNDING_BOX, MASK), (features.BoundingBox, features.Mask), True),
((MASK,), (features.Image, features.BoundingBox), False),
((BOUNDING_BOX,), (features.Image, features.Mask), False),
((IMAGE,), (features.BoundingBox, features.Mask), False),
(
(IMAGE, BOUNDING_BOX, MASK),
(features.Image, features.BoundingBox, features.Mask),
True,
),
((), (features.Image, features.BoundingBox, features.Mask), False),
((IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, features.Image),), True),
((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False),
((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True),
((IMAGE,), (features.Image, PIL.Image.Image, features.is_simple_tensor), True),
((torch.Tensor(IMAGE),), (features.Image, PIL.Image.Image, features.is_simple_tensor), True),
((to_image_pil(IMAGE),), (features.Image, PIL.Image.Image, features.is_simple_tensor), True),
],
)
def test_has_any(sample, types, expected):
assert has_any(sample, *types) is expected
@pytest.mark.parametrize(
("sample", "types", "expected"),
[
((IMAGE, BOUNDING_BOX, MASK), (features.Image,), True),
((IMAGE, BOUNDING_BOX, MASK), (features.BoundingBox,), True),
((IMAGE, BOUNDING_BOX, MASK), (features.Mask,), True),
((IMAGE, BOUNDING_BOX, MASK), (features.Image, features.BoundingBox), True),
((IMAGE, BOUNDING_BOX, MASK), (features.Image, features.Mask), True),
((IMAGE, BOUNDING_BOX, MASK), (features.BoundingBox, features.Mask), True),
(
(IMAGE, BOUNDING_BOX, MASK),
(features.Image, features.BoundingBox, features.Mask),
True,
),
((BOUNDING_BOX, MASK), (features.Image, features.BoundingBox), False),
((BOUNDING_BOX, MASK), (features.Image, features.Mask), False),
((IMAGE, MASK), (features.BoundingBox, features.Mask), False),
(
(IMAGE, BOUNDING_BOX, MASK),
(features.Image, features.BoundingBox, features.Mask),
True,
),
((BOUNDING_BOX, MASK), (features.Image, features.BoundingBox, features.Mask), False),
((IMAGE, MASK), (features.Image, features.BoundingBox, features.Mask), False),
((IMAGE, BOUNDING_BOX), (features.Image, features.BoundingBox, features.Mask), False),
(
(IMAGE, BOUNDING_BOX, MASK),
(lambda obj: isinstance(obj, (features.Image, features.BoundingBox, features.Mask)),),
True,
),
((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False),
((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True),
],
)
def test_has_all(sample, types, expected):
assert has_all(sample, *types) is expected
|
from typing import Any, Dict, Optional, Union
import numpy as np
import PIL.Image
import torch
from torchvision import datapoints
from torchvision.transforms.v2 import functional as F, Transform
from torchvision.transforms.v2._utils import is_pure_tensor
class PILToTensor(Transform):
"""[BETA] Convert a PIL Image to a tensor of the same type - this does not scale values.
.. v2betastatus:: PILToTensor transform
This transform does not support torchscript.
Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
"""
_transformed_types = (PIL.Image.Image,)
def _transform(self, inpt: PIL.Image.Image, params: Dict[str, Any]) -> torch.Tensor:
return F.pil_to_tensor(inpt)
class ToImage(Transform):
"""[BETA] Convert a tensor, ndarray, or PIL Image to :class:`~torchvision.datapoints.Image`
; this does not scale values.
.. v2betastatus:: ToImage transform
This transform does not support torchscript.
"""
_transformed_types = (is_pure_tensor, PIL.Image.Image, np.ndarray)
def _transform(
self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any]
) -> datapoints.Image:
return F.to_image(inpt)
class ToPILImage(Transform):
"""[BETA] Convert a tensor or an ndarray to PIL Image - this does not scale values.
.. v2betastatus:: ToPILImage transform
This transform does not support torchscript.
Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
H x W x C to a PIL Image while preserving the value range.
Args:
mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
- If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
- If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
- If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
- If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
``short``).
.. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
"""
_transformed_types = (is_pure_tensor, datapoints.Image, np.ndarray)
def __init__(self, mode: Optional[str] = None) -> None:
super().__init__()
self.mode = mode
def _transform(
self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any]
) -> PIL.Image.Image:
return F.to_pil_image(inpt, mode=self.mode)
class ToPureTensor(Transform):
"""[BETA] Convert all datapoints to pure tensors, removing associated metadata (if any).
.. v2betastatus:: ToPureTensor transform
This doesn't scale or change the values, only the type.
"""
_transformed_types = (datapoints.Datapoint,)
def _transform(self, inpt: Any, params: Dict[str, Any]) -> torch.Tensor:
return inpt.as_subclass(torch.Tensor)
|
from typing import Any, Dict, Optional, Union
import numpy as np
import PIL.Image
import torch
from torchvision import datapoints
from torchvision.transforms.v2 import functional as F, Transform
from torchvision.transforms.v2.utils import is_pure_tensor
class PILToTensor(Transform):
"""[BETA] Convert a PIL Image to a tensor of the same type - this does not scale values.
.. v2betastatus:: PILToTensor transform
This transform does not support torchscript.
Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
"""
_transformed_types = (PIL.Image.Image,)
def _transform(self, inpt: PIL.Image.Image, params: Dict[str, Any]) -> torch.Tensor:
return F.pil_to_tensor(inpt)
class ToImage(Transform):
"""[BETA] Convert a tensor, ndarray, or PIL Image to :class:`~torchvision.datapoints.Image`
; this does not scale values.
.. v2betastatus:: ToImage transform
This transform does not support torchscript.
"""
_transformed_types = (is_pure_tensor, PIL.Image.Image, np.ndarray)
def _transform(
self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any]
) -> datapoints.Image:
return F.to_image(inpt)
class ToPILImage(Transform):
"""[BETA] Convert a tensor or an ndarray to PIL Image - this does not scale values.
.. v2betastatus:: ToPILImage transform
This transform does not support torchscript.
Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
H x W x C to a PIL Image while preserving the value range.
Args:
mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
- If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
- If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
- If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
- If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
``short``).
.. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
"""
_transformed_types = (is_pure_tensor, datapoints.Image, np.ndarray)
def __init__(self, mode: Optional[str] = None) -> None:
super().__init__()
self.mode = mode
def _transform(
self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any]
) -> PIL.Image.Image:
return F.to_pil_image(inpt, mode=self.mode)
class ToPureTensor(Transform):
"""[BETA] Convert all datapoints to pure tensors, removing associated metadata (if any).
.. v2betastatus:: ToPureTensor transform
This doesn't scale or change the values, only the type.
"""
_transformed_types = (datapoints.Datapoint,)
def _transform(self, inpt: Any, params: Dict[str, Any]) -> torch.Tensor:
return inpt.as_subclass(torch.Tensor)
|
from pathlib import Path
from typing import Any
from langchain_core._api.path import as_import_path
def __getattr__(name: str) -> Any:
"""Get attr name."""
if name == "create_xorbits_agent":
# Get directory of langchain package
HERE = Path(__file__).parents[3]
here = as_import_path(Path(__file__).parent, relative_to=HERE)
old_path = "langchain." + here + "." + name
new_path = "langchain_experimental." + here + "." + name
msg = (
"This agent has been moved to langchain experiment. "
"This agent relies on python REPL tool under the hood, so to use it "
"safely please sandbox the python REPL. "
"Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md "
"and https://github.com/langchain-ai/langchain/discussions/11680"
"To keep using this code as is, install langchain experimental and "
f"update your import statement from:\n `{old_path}` to `{new_path}`."
)
raise ImportError(msg)
msg = f"{name} does not exist"
raise AttributeError(msg)
|
from pathlib import Path
from typing import Any
from langchain_core._api.path import as_import_path
def __getattr__(name: str) -> Any:
"""Get attr name."""
if name == "create_xorbits_agent":
# Get directory of langchain package
HERE = Path(__file__).parents[3]
here = as_import_path(Path(__file__).parent, relative_to=HERE)
old_path = "langchain." + here + "." + name
new_path = "langchain_experimental." + here + "." + name
raise ImportError(
"This agent has been moved to langchain experiment. "
"This agent relies on python REPL tool under the hood, so to use it "
"safely please sandbox the python REPL. "
"Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md "
"and https://github.com/langchain-ai/langchain/discussions/11680"
"To keep using this code as is, install langchain experimental and "
f"update your import statement from:\n `{old_path}` to `{new_path}`."
)
raise AttributeError(f"{name} does not exist")
|
from keras.src.api_export import keras_export
# Unique source of truth for the version number.
__version__ = "3.3.3"
@keras_export("keras.version")
def version():
return __version__
|
from keras.src.api_export import keras_export
# Unique source of truth for the version number.
__version__ = "3.3.2"
@keras_export("keras.version")
def version():
return __version__
|
from functools import wraps
from typing import TYPE_CHECKING, List
from jina.excepts import FlowBuildLevelError
# noinspection PyUnreachableCode
if TYPE_CHECKING: # pragma: no cover
from jina.enums import FlowBuildLevel
from jina.orchestrate.flow.base import Flow
def allowed_levels(levels: List['FlowBuildLevel']):
"""Annotate a function so that it requires certain build level to run.
Example:
.. highlight:: python
.. code-block:: python
@build_required(FlowBuildLevel.RUNTIME)
def foo():
print(1)
:param levels: required build level to run this function.
:return: annotated function
"""
def __build_level(func):
@wraps(func)
def arg_wrapper(self, *args, **kwargs):
if hasattr(self, '_build_level'):
if self._build_level in levels:
return func(self, *args, **kwargs)
else:
raise FlowBuildLevelError(
f'build_level check failed for {func!r}, required level: {levels}, actual level: {self._build_level}'
)
else:
raise AttributeError(f'{self!r} has no attribute "_build_level"')
return arg_wrapper
return __build_level
def _hanging_deployments(op_flow: 'Flow') -> List[str]:
"""
:param op_flow: the Flow we're operating on
:return: names of floating Deployments (nobody recv from them) in the Flow.
"""
all_needs = {k for p, v in op_flow for k in v.needs}
all_names = {p for p, v in op_flow if not v.args.floating}
# all_names is always a superset of all_needs
return list(all_names.difference(all_needs))
|
from functools import wraps
from typing import TYPE_CHECKING, List
from jina.excepts import FlowBuildLevelError
# noinspection PyUnreachableCode
if TYPE_CHECKING:
from jina.enums import FlowBuildLevel
from jina.orchestrate.flow.base import Flow
def allowed_levels(levels: List['FlowBuildLevel']):
"""Annotate a function so that it requires certain build level to run.
Example:
.. highlight:: python
.. code-block:: python
@build_required(FlowBuildLevel.RUNTIME)
def foo():
print(1)
:param levels: required build level to run this function.
:return: annotated function
"""
def __build_level(func):
@wraps(func)
def arg_wrapper(self, *args, **kwargs):
if hasattr(self, '_build_level'):
if self._build_level in levels:
return func(self, *args, **kwargs)
else:
raise FlowBuildLevelError(
f'build_level check failed for {func!r}, required level: {levels}, actual level: {self._build_level}'
)
else:
raise AttributeError(f'{self!r} has no attribute "_build_level"')
return arg_wrapper
return __build_level
def _hanging_deployments(op_flow: 'Flow') -> List[str]:
"""
:param op_flow: the Flow we're operating on
:return: names of floating Deployments (nobody recv from them) in the Flow.
"""
all_needs = {k for p, v in op_flow for k in v.needs}
all_names = {p for p, v in op_flow if not v.args.floating}
# all_names is always a superset of all_needs
return list(all_names.difference(all_needs))
|
# Copyright (c) OpenMMLab. All rights reserved.
from .checkloss_hook import CheckInvalidLossHook
from .ema import ExpMomentumEMAHook, LinearMomentumEMAHook
from .memory_profiler_hook import MemoryProfilerHook
from .set_epoch_info_hook import SetEpochInfoHook
from .sync_norm_hook import SyncNormHook
from .sync_random_size_hook import SyncRandomSizeHook
from .wandblogger_hook import MMDetWandbHook
from .yolox_lrupdater_hook import YOLOXLrUpdaterHook
from .yolox_mode_switch_hook import YOLOXModeSwitchHook
__all__ = [
'SyncRandomSizeHook', 'YOLOXModeSwitchHook', 'SyncNormHook',
'ExpMomentumEMAHook', 'LinearMomentumEMAHook', 'YOLOXLrUpdaterHook',
'CheckInvalidLossHook', 'SetEpochInfoHook', 'MemoryProfilerHook',
'MMDetWandbHook'
]
|
# Copyright (c) OpenMMLab. All rights reserved.
from .checkloss_hook import CheckInvalidLossHook
from .ema import ExpMomentumEMAHook, LinearMomentumEMAHook
from .memory_profiler_hook import MemoryProfilerHook
from .set_epoch_info_hook import SetEpochInfoHook
from .sync_norm_hook import SyncNormHook
from .sync_random_size_hook import SyncRandomSizeHook
from .yolox_lrupdater_hook import YOLOXLrUpdaterHook
from .yolox_mode_switch_hook import YOLOXModeSwitchHook
__all__ = [
'SyncRandomSizeHook', 'YOLOXModeSwitchHook', 'SyncNormHook',
'ExpMomentumEMAHook', 'LinearMomentumEMAHook', 'YOLOXLrUpdaterHook',
'CheckInvalidLossHook', 'SetEpochInfoHook', 'MemoryProfilerHook'
]
|
"""
Python polyfills for sys
"""
from __future__ import annotations
import sys
from ..decorators import substitute_in_graph
__all__ = [
"intern",
"getrecursionlimit",
]
@substitute_in_graph(sys.intern, can_constant_fold_through=True)
def intern(string: str, /) -> str:
return string
@substitute_in_graph(sys.getrecursionlimit, can_constant_fold_through=True)
def getrecursionlimit() -> int:
return sys.getrecursionlimit()
|
"""
Python polyfills for sys
"""
from __future__ import annotations
import sys
from ..decorators import substitute_in_graph
__all__ = [
"intern",
"getrecursionlimit",
]
@substitute_in_graph(sys.intern, can_constant_fold_through=True)
def intern(string: str, /) -> str:
return string
@substitute_in_graph(sys.getrecursionlimit, can_constant_fold_through=True)
def getrecursionlimit() -> int:
return sys.getrecursionlimit()
@substitute_in_graph(sys.get_int_max_str_digits, can_constant_fold_through=True)
def get_int_max_str_digits() -> int:
return sys.get_int_max_str_digits()
|
_base_ = [
'./bytetrack_yolox_x_8xb4-80e_crowdhuman-mot17halftrain_'
'test-mot17halfval.py'
]
dataset_type = 'MOTChallengeDataset'
img_scale = (1600, 896) # weight, height
model = dict(
data_preprocessor=dict(
type='TrackDataPreprocessor',
use_det_processor=True,
pad_size_divisor=32,
batch_augments=[
dict(type='BatchSyncRandomResize', random_size_range=(640, 1152))
]),
tracker=dict(
weight_iou_with_det_scores=False,
match_iou_thrs=dict(high=0.3),
))
train_pipeline = [
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
bbox_clip_border=True),
dict(
type='RandomAffine',
scaling_ratio_range=(0.1, 2),
border=(-img_scale[0] // 2, -img_scale[1] // 2),
bbox_clip_border=True),
dict(
type='MixUp',
img_scale=img_scale,
ratio_range=(0.8, 1.6),
pad_val=114.0,
bbox_clip_border=True),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(
type='Resize',
scale=img_scale,
keep_ratio=True,
clip_object_border=True),
dict(type='Pad', size_divisor=32, pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(
type='TransformBroadcaster',
transforms=[
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='Resize', scale=img_scale, keep_ratio=True),
dict(
type='Pad',
size_divisor=32,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='LoadTrackAnnotations'),
]),
dict(type='PackTrackInputs')
]
train_dataloader = dict(
dataset=dict(
type='MultiImageMixDataset',
dataset=dict(
type='ConcatDataset',
datasets=[
dict(
type='CocoDataset',
data_root='data/MOT20',
ann_file='annotations/train_cocoformat.json',
# TODO: mmdet use img as key, but img_path is needed
data_prefix=dict(img='train'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
metainfo=dict(classes=('pedestrian', )),
pipeline=[
dict(
type='LoadImageFromFile',
backend_args=_base_.backend_args),
dict(type='LoadAnnotations', with_bbox=True),
]),
dict(
type='CocoDataset',
data_root='data/crowdhuman',
ann_file='annotations/crowdhuman_train.json',
data_prefix=dict(img='train'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
metainfo=dict(classes=('pedestrian', )),
pipeline=[
dict(
type='LoadImageFromFile',
backend_args=_base_.backend_args),
dict(type='LoadAnnotations', with_bbox=True),
]),
dict(
type='CocoDataset',
data_root='data/crowdhuman',
ann_file='annotations/crowdhuman_val.json',
data_prefix=dict(img='val'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
metainfo=dict(classes=('pedestrian', )),
pipeline=[
dict(
type='LoadImageFromFile',
backend_args=_base_.backend_args),
dict(type='LoadAnnotations', with_bbox=True),
]),
]),
pipeline=train_pipeline))
val_dataloader = dict(
dataset=dict(ann_file='annotations/train_cocoformat.json'))
test_dataloader = dict(
dataset=dict(
data_root='data/MOT20', ann_file='annotations/test_cocoformat.json'))
test_evaluator = dict(
type='MOTChallengeMetrics',
postprocess_tracklet_cfg=[
dict(type='InterpolateTracklets', min_num_frames=5, max_num_frames=20)
],
format_only=True,
outfile_prefix='./mot_20_test_res')
|
_base_ = [
'./bytetrack_yolox_x_8xb4-80e_crowdhuman-mot17halftrain_'
'test-mot17halfval.py'
]
dataset_type = 'MOTChallengeDataset'
img_scale = (1600, 896) # weight, height
model = dict(
data_preprocessor=dict(
type='TrackDataPreprocessor',
use_det_processor=True,
pad_size_divisor=32,
batch_augments=[
dict(type='BatchSyncRandomResize', random_size_range=(640, 1152))
]),
tracker=dict(
weight_iou_with_det_scores=False,
match_iou_thrs=dict(high=0.3),
))
train_pipeline = [
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
bbox_clip_border=True),
dict(
type='RandomAffine',
scaling_ratio_range=(0.1, 2),
border=(-img_scale[0] // 2, -img_scale[1] // 2),
bbox_clip_border=True),
dict(
type='MixUp',
img_scale=img_scale,
ratio_range=(0.8, 1.6),
pad_val=114.0,
bbox_clip_border=True),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(
type='Resize',
scale=img_scale,
keep_ratio=True,
clip_object_border=True),
dict(type='Pad', size_divisor=32, pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(
type='TransformBroadcaster',
transforms=[
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=img_scale, keep_ratio=True),
dict(
type='Pad',
size_divisor=32,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='LoadTrackAnnotations'),
]),
dict(type='PackTrackInputs')
]
train_dataloader = dict(
dataset=dict(
type='MultiImageMixDataset',
dataset=dict(
type='ConcatDataset',
datasets=[
dict(
type='CocoDataset',
data_root='data/MOT20',
ann_file='annotations/train_cocoformat.json',
# TODO: mmdet use img as key, but img_path is needed
data_prefix=dict(img='train'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
metainfo=dict(classes=('pedestrian', )),
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
]),
dict(
type='CocoDataset',
data_root='data/crowdhuman',
ann_file='annotations/crowdhuman_train.json',
data_prefix=dict(img='train'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
metainfo=dict(classes=('pedestrian', )),
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
]),
dict(
type='CocoDataset',
data_root='data/crowdhuman',
ann_file='annotations/crowdhuman_val.json',
data_prefix=dict(img='val'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
metainfo=dict(classes=('pedestrian', )),
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
]),
]),
pipeline=train_pipeline))
val_dataloader = dict(
dataset=dict(ann_file='annotations/train_cocoformat.json'))
test_dataloader = dict(
dataset=dict(
data_root='data/MOT20', ann_file='annotations/test_cocoformat.json'))
test_evaluator = dict(
type='MOTChallengeMetrics',
postprocess_tracklet_cfg=[
dict(type='InterpolateTracklets', min_num_frames=5, max_num_frames=20)
],
format_only=True,
outfile_prefix='./mot_20_test_res')
|
_base_ = './faster-rcnn_hrnetv2p-w32-1x_coco.py'
model = dict(
backbone=dict(
type='HRNet',
extra=dict(
stage2=dict(num_channels=(40, 80)),
stage3=dict(num_channels=(40, 80, 160)),
stage4=dict(num_channels=(40, 80, 160, 320))),
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')),
neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
|
_base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py'
model = dict(
backbone=dict(
type='HRNet',
extra=dict(
stage2=dict(num_channels=(40, 80)),
stage3=dict(num_channels=(40, 80, 160)),
stage4=dict(num_channels=(40, 80, 160, 320))),
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')),
neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
|
_base_ = ['./ld_r18-gflv1-r101_fpn_1x_coco.py']
teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth' # noqa
model = dict(
teacher_config='configs/gfl/gfl_r101-dconv-c3-c5_fpn_ms-2x_coco.py',
teacher_ckpt=teacher_ckpt,
backbone=dict(
type='ResNet',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained',
checkpoint='torchvision://resnet101')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_output',
num_outs=5))
max_epochs = 24
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
train_cfg = dict(max_epochs=max_epochs)
# multi-scale training
train_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomResize', scale=[(1333, 480), (1333, 800)],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
_base_ = ['./ld_r18-gflv1-r101_fpn_1x_coco.py']
teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth' # noqa
model = dict(
teacher_config='configs/gfl/gfl_r101-dconv-c3-c5_fpn_ms-2x_coco.py',
teacher_ckpt=teacher_ckpt,
backbone=dict(
type='ResNet',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained',
checkpoint='torchvision://resnet101')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_output',
num_outs=5))
max_epochs = 24
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
train_cfg = dict(max_epochs=max_epochs)
# multi-scale training
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args={{_base_.file_client_args}}),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomResize', scale=[(1333, 480), (1333, 800)],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
import torch
from torchaudio_unittest.common_utils import PytorchTestCase
from .functional_test_impl import Functional64OnlyTestImpl, FunctionalTestImpl
class FunctionalFloat32CPUTest(FunctionalTestImpl, PytorchTestCase):
dtype = torch.float32
device = torch.device("cpu")
class FunctionalFloat64CPUTest(FunctionalTestImpl, PytorchTestCase):
dtype = torch.float64
device = torch.device("cpu")
class FunctionalFloat64OnlyCPUTest(Functional64OnlyTestImpl, PytorchTestCase):
dtype = torch.float64
device = torch.device("cpu")
|
import torch
from torchaudio_unittest.common_utils import PytorchTestCase
from .functional_test_impl import Functional64OnlyTestImpl, FunctionalCPUOnlyTestImpl, FunctionalTestImpl
class FunctionalFloat32CPUTest(FunctionalTestImpl, PytorchTestCase):
dtype = torch.float32
device = torch.device("cpu")
class FunctionalFloat64CPUTest(FunctionalTestImpl, PytorchTestCase):
dtype = torch.float64
device = torch.device("cpu")
class FunctionalFloat64OnlyCPUTest(Functional64OnlyTestImpl, PytorchTestCase):
dtype = torch.float64
device = torch.device("cpu")
class FunctionalCPUOnlyFloat32Test(FunctionalCPUOnlyTestImpl, PytorchTestCase):
dtype = torch.float32
device = torch.device("cpu")
class FunctionalCPUOnlyFloat64Test(FunctionalCPUOnlyTestImpl, PytorchTestCase):
dtype = torch.float64
device = torch.device("cpu")
|
from typing import Any, Dict, List, Optional, Sequence, Type, Union
import PIL.Image
import torch
from torchvision import datapoints
from torchvision.prototype.datapoints import Label, OneHotLabel
from torchvision.transforms.v2 import functional as F, Transform
from torchvision.transforms.v2._utils import _setup_fill_arg, _setup_size
from torchvision.transforms.v2.utils import has_any, is_simple_tensor, query_bounding_boxes, query_size
class FixedSizeCrop(Transform):
def __init__(
self,
size: Union[int, Sequence[int]],
fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
padding_mode: str = "constant",
) -> None:
super().__init__()
size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."))
self.crop_height = size[0]
self.crop_width = size[1]
self.fill = fill
self._fill = _setup_fill_arg(fill)
self.padding_mode = padding_mode
def _check_inputs(self, flat_inputs: List[Any]) -> None:
if not has_any(
flat_inputs,
PIL.Image.Image,
datapoints.Image,
is_simple_tensor,
datapoints.Video,
):
raise TypeError(
f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video."
)
if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel):
raise TypeError(
f"If a BoundingBoxes is contained in the input sample, "
f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel."
)
def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
height, width = query_size(flat_inputs)
new_height = min(height, self.crop_height)
new_width = min(width, self.crop_width)
needs_crop = new_height != height or new_width != width
offset_height = max(height - self.crop_height, 0)
offset_width = max(width - self.crop_width, 0)
r = torch.rand(1)
top = int(offset_height * r)
left = int(offset_width * r)
bounding_boxes: Optional[torch.Tensor]
try:
bounding_boxes = query_bounding_boxes(flat_inputs)
except ValueError:
bounding_boxes = None
if needs_crop and bounding_boxes is not None:
format = bounding_boxes.format
bounding_boxes, canvas_size = F.crop_bounding_boxes(
bounding_boxes.as_subclass(torch.Tensor),
format=format,
top=top,
left=left,
height=new_height,
width=new_width,
)
bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size)
height_and_width = F.convert_format_bounding_boxes(
bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH
)[..., 2:]
is_valid = torch.all(height_and_width > 0, dim=-1)
else:
is_valid = None
pad_bottom = max(self.crop_height - new_height, 0)
pad_right = max(self.crop_width - new_width, 0)
needs_pad = pad_bottom != 0 or pad_right != 0
return dict(
needs_crop=needs_crop,
top=top,
left=left,
height=new_height,
width=new_width,
is_valid=is_valid,
padding=[0, 0, pad_right, pad_bottom],
needs_pad=needs_pad,
)
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
if params["needs_crop"]:
inpt = F.crop(
inpt,
top=params["top"],
left=params["left"],
height=params["height"],
width=params["width"],
)
if params["is_valid"] is not None:
if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)):
inpt = inpt.wrap_like(inpt, inpt[params["is_valid"]]) # type: ignore[arg-type]
elif isinstance(inpt, datapoints.BoundingBoxes):
inpt = datapoints.BoundingBoxes.wrap_like(
inpt,
F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size),
)
if params["needs_pad"]:
fill = self._fill[type(inpt)]
inpt = F.pad(inpt, params["padding"], fill=fill, padding_mode=self.padding_mode)
return inpt
|
from typing import Any, Dict, List, Optional, Sequence, Type, Union
import PIL.Image
import torch
from torchvision import datapoints
from torchvision.prototype.datapoints import Label, OneHotLabel
from torchvision.transforms.v2 import functional as F, Transform
from torchvision.transforms.v2._utils import _setup_fill_arg, _setup_size
from torchvision.transforms.v2.utils import has_any, is_simple_tensor, query_bounding_boxes, query_spatial_size
class FixedSizeCrop(Transform):
def __init__(
self,
size: Union[int, Sequence[int]],
fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
padding_mode: str = "constant",
) -> None:
super().__init__()
size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."))
self.crop_height = size[0]
self.crop_width = size[1]
self.fill = fill
self._fill = _setup_fill_arg(fill)
self.padding_mode = padding_mode
def _check_inputs(self, flat_inputs: List[Any]) -> None:
if not has_any(
flat_inputs,
PIL.Image.Image,
datapoints.Image,
is_simple_tensor,
datapoints.Video,
):
raise TypeError(
f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video."
)
if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel):
raise TypeError(
f"If a BoundingBoxes is contained in the input sample, "
f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel."
)
def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
height, width = query_spatial_size(flat_inputs)
new_height = min(height, self.crop_height)
new_width = min(width, self.crop_width)
needs_crop = new_height != height or new_width != width
offset_height = max(height - self.crop_height, 0)
offset_width = max(width - self.crop_width, 0)
r = torch.rand(1)
top = int(offset_height * r)
left = int(offset_width * r)
bounding_boxes: Optional[torch.Tensor]
try:
bounding_boxes = query_bounding_boxes(flat_inputs)
except ValueError:
bounding_boxes = None
if needs_crop and bounding_boxes is not None:
format = bounding_boxes.format
bounding_boxes, spatial_size = F.crop_bounding_boxes(
bounding_boxes.as_subclass(torch.Tensor),
format=format,
top=top,
left=left,
height=new_height,
width=new_width,
)
bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, spatial_size=spatial_size)
height_and_width = F.convert_format_bounding_boxes(
bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH
)[..., 2:]
is_valid = torch.all(height_and_width > 0, dim=-1)
else:
is_valid = None
pad_bottom = max(self.crop_height - new_height, 0)
pad_right = max(self.crop_width - new_width, 0)
needs_pad = pad_bottom != 0 or pad_right != 0
return dict(
needs_crop=needs_crop,
top=top,
left=left,
height=new_height,
width=new_width,
is_valid=is_valid,
padding=[0, 0, pad_right, pad_bottom],
needs_pad=needs_pad,
)
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
if params["needs_crop"]:
inpt = F.crop(
inpt,
top=params["top"],
left=params["left"],
height=params["height"],
width=params["width"],
)
if params["is_valid"] is not None:
if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)):
inpt = inpt.wrap_like(inpt, inpt[params["is_valid"]]) # type: ignore[arg-type]
elif isinstance(inpt, datapoints.BoundingBoxes):
inpt = datapoints.BoundingBoxes.wrap_like(
inpt,
F.clamp_bounding_boxes(
inpt[params["is_valid"]], format=inpt.format, spatial_size=inpt.spatial_size
),
)
if params["needs_pad"]:
fill = self._fill[type(inpt)]
inpt = F.pad(inpt, params["padding"], fill=fill, padding_mode=self.padding_mode)
return inpt
|
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.registry import DATASETS
from .coco import CocoDataset
@DATASETS.register_module()
class DeepFashionDataset(CocoDataset):
CLASSES = ('top', 'skirt', 'leggings', 'dress', 'outer', 'pants', 'bag',
'neckwear', 'headwear', 'eyeglass', 'belt', 'footwear', 'hair',
'skin', 'face')
PALETTE = [(0, 192, 64), (0, 64, 96), (128, 192, 192), (0, 64, 64),
(0, 192, 224), (0, 192, 192), (128, 192, 64), (0, 192, 96),
(128, 32, 192), (0, 0, 224), (0, 0, 64), (0, 160, 192),
(128, 0, 96), (128, 0, 192), (0, 32, 192)]
|
# Copyright (c) OpenMMLab. All rights reserved.
from .builder import DATASETS
from .coco import CocoDataset
@DATASETS.register_module()
class DeepFashionDataset(CocoDataset):
CLASSES = ('top', 'skirt', 'leggings', 'dress', 'outer', 'pants', 'bag',
'neckwear', 'headwear', 'eyeglass', 'belt', 'footwear', 'hair',
'skin', 'face')
PALETTE = [(0, 192, 64), (0, 64, 96), (128, 192, 192), (0, 64, 64),
(0, 192, 224), (0, 192, 192), (128, 192, 64), (0, 192, 96),
(128, 32, 192), (0, 0, 224), (0, 0, 64), (0, 160, 192),
(128, 0, 96), (128, 0, 192), (0, 32, 192)]
|
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
import re
from typing import Dict, List, Optional, Tuple
from jina import Document, DocumentArray, Executor, requests
from jina.logging.logger import JinaLogger
class Sentencizer(Executor):
"""
:class:`Sentencizer` split the text on the doc-level
into sentences on the chunk-level with a rule-base strategy.
The text is split by the punctuation characters listed in ``punct_chars``.
The sentences that are shorter than the ``min_sent_len``
or longer than the ``max_sent_len`` after stripping will be discarded.
"""
def __init__(
self,
min_sent_len: int = 1,
max_sent_len: int = 512,
punct_chars: Optional[List[str]] = None,
uniform_weight: bool = True,
traversal_paths: Tuple[str] = ('r',),
*args,
**kwargs
):
"""
:param min_sent_len: the minimal number of characters,
(including white spaces) of the sentence, by default 1.
:param max_sent_len: the maximal number of characters,
(including white spaces) of the sentence, by default 512.
:param punct_chars: the punctuation characters to split on,
whatever is in the list will be used,
for example ['!', '.', '?'] will use '!', '.' and '?'
:param uniform_weight: the definition of it should have
uniform weight or should be calculated
:param traversal_paths: traverse path on docs, e.g. ['r'], ['c']
"""
super().__init__(*args, **kwargs)
self.min_sent_len = min_sent_len
self.max_sent_len = max_sent_len
self.punct_chars = punct_chars
self.uniform_weight = uniform_weight
self.logger = JinaLogger(self.__class__.__name__)
self.traversal_paths = traversal_paths
if not punct_chars:
self.punct_chars = [
'!',
'.',
'?',
'։',
'؟',
'۔',
'܀',
'܁',
'܂',
'‼',
'‽',
'⁇',
'⁈',
'⁉',
'⸮',
'﹖',
'﹗',
'!',
'.',
'?',
'。',
'。',
'\n',
]
if self.min_sent_len > self.max_sent_len:
self.logger.warning(
'the min_sent_len (={}) should be smaller or equal to the max_sent_len (={})'.format(
self.min_sent_len, self.max_sent_len
)
)
self._slit_pat = re.compile(
r'\s*([^{0}]+)(?<!\s)[{0}]*'.format(''.join(set(self.punct_chars)))
)
@requests
def segment(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs):
"""
Split the text into sentences.
:param docs: Documents that contain the text
:param parameters: Dictionary of parameters
:param kwargs: Additional keyword arguments
:return: a list of chunk dicts with the split sentences
"""
if not docs:
return
traversal_path = parameters.get('traversal_paths', self.traversal_paths)
flat_docs = docs.traverse_flat(traversal_path)
for doc in flat_docs:
text = doc.text
ret = [
(m.group(0), m.start(), m.end())
for m in re.finditer(self._slit_pat, text)
]
if not ret:
ret = [(text, 0, len(text))]
for ci, (r, s, e) in enumerate(ret):
f = re.sub('\n+', ' ', r).strip()
f = f[: self.max_sent_len]
if len(f) > self.min_sent_len:
doc.chunks.append(
Document(
text=f,
offset=ci,
weight=1.0 if self.uniform_weight else len(f) / len(text),
location=[s, e],
)
)
|
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
import re
from typing import Dict, Iterable, List, Optional
from jina import Document, DocumentArray, Executor, requests
from jina.logging.logger import JinaLogger
class Sentencizer(Executor):
"""
:class:`Sentencizer` split the text on the doc-level
into sentences on the chunk-level with a rule-base strategy.
The text is split by the punctuation characters listed in ``punct_chars``.
The sentences that are shorter than the ``min_sent_len``
or longer than the ``max_sent_len`` after stripping will be discarded.
"""
def __init__(
self,
min_sent_len: int = 1,
max_sent_len: int = 512,
punct_chars: Optional[List[str]] = None,
uniform_weight: bool = True,
traversal_paths: Iterable[str] = ('r',),
*args,
**kwargs
):
"""
:param min_sent_len: the minimal number of characters,
(including white spaces) of the sentence, by default 1.
:param max_sent_len: the maximal number of characters,
(including white spaces) of the sentence, by default 512.
:param punct_chars: the punctuation characters to split on,
whatever is in the list will be used,
for example ['!', '.', '?'] will use '!', '.' and '?'
:param uniform_weight: the definition of it should have
uniform weight or should be calculated
:param traversal_paths: traverse path on docs, e.g. ['r'], ['c']
"""
super().__init__(*args, **kwargs)
self.min_sent_len = min_sent_len
self.max_sent_len = max_sent_len
self.punct_chars = punct_chars
self.uniform_weight = uniform_weight
self.logger = JinaLogger(self.__class__.__name__)
self.traversal_paths = traversal_paths
if not punct_chars:
self.punct_chars = [
'!',
'.',
'?',
'։',
'؟',
'۔',
'܀',
'܁',
'܂',
'‼',
'‽',
'⁇',
'⁈',
'⁉',
'⸮',
'﹖',
'﹗',
'!',
'.',
'?',
'。',
'。',
'\n',
]
if self.min_sent_len > self.max_sent_len:
self.logger.warning(
'the min_sent_len (={}) should be smaller or equal to the max_sent_len (={})'.format(
self.min_sent_len, self.max_sent_len
)
)
self._slit_pat = re.compile(
r'\s*([^{0}]+)(?<!\s)[{0}]*'.format(''.join(set(self.punct_chars)))
)
@requests
def segment(
self, docs: Optional[DocumentArray] = None, parameters: Dict = {}, **kwargs
):
"""
Split the text into sentences.
:param docs: Documents that contain the text
:param parameters: Dictionary of parameters
:param kwargs: Additional keyword arguments
:return: a list of chunk dicts with the split sentences
"""
if not docs:
return
traversal_path = parameters.get('traversal_paths', self.traversal_paths)
flat_docs = docs.traverse_flat(traversal_path)
for doc in flat_docs:
text = doc.text
ret = [
(m.group(0), m.start(), m.end())
for m in re.finditer(self._slit_pat, text)
]
if not ret:
ret = [(text, 0, len(text))]
for ci, (r, s, e) in enumerate(ret):
f = re.sub('\n+', ' ', r).strip()
f = f[: self.max_sent_len]
if len(f) > self.min_sent_len:
doc.chunks.append(
Document(
text=f,
offset=ci,
weight=1.0 if self.uniform_weight else len(f) / len(text),
location=[s, e],
)
)
|
import warnings
from typing import Any, List, Union
import PIL.Image
import torch
from torchvision.prototype import datapoints
from torchvision.transforms import functional as _F
@torch.jit.unused
def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image:
call = ", num_output_channels=3" if num_output_channels == 3 else ""
replacement = "convert_color_space(..., color_space=datapoints.ColorSpace.GRAY)"
if num_output_channels == 3:
replacement = f"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB)"
warnings.warn(
f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. "
f"Instead, please use `{replacement}`.",
)
return _F.to_grayscale(inpt, num_output_channels=num_output_channels)
@torch.jit.unused
def to_tensor(inpt: Any) -> torch.Tensor:
warnings.warn(
"The function `to_tensor(...)` is deprecated and will be removed in a future release. "
"Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`."
)
return _F.to_tensor(inpt)
def get_image_size(inpt: Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT]) -> List[int]:
warnings.warn(
"The function `get_image_size(...)` is deprecated and will be removed in a future release. "
"Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`."
)
return _F.get_image_size(inpt)
|
import warnings
from typing import Any, List, Union
import PIL.Image
import torch
from torchvision.prototype import datapoints
from torchvision.transforms import functional as _F
from ._utils import is_simple_tensor
@torch.jit.unused
def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image:
call = ", num_output_channels=3" if num_output_channels == 3 else ""
replacement = "convert_color_space(..., color_space=datapoints.ColorSpace.GRAY)"
if num_output_channels == 3:
replacement = f"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB)"
warnings.warn(
f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. "
f"Instead, please use `{replacement}`.",
)
return _F.to_grayscale(inpt, num_output_channels=num_output_channels)
def rgb_to_grayscale(
inpt: Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT], num_output_channels: int = 1
) -> Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT]:
old_color_space = None # TODO: remove when un-deprecating
if not (torch.jit.is_scripting() or is_simple_tensor(inpt)) and isinstance(
inpt, (datapoints.Image, datapoints.Video)
):
inpt = inpt.as_subclass(torch.Tensor)
call = ", num_output_channels=3" if num_output_channels == 3 else ""
replacement = (
f"convert_color_space(..., color_space=datapoints.ColorSpace.GRAY"
f"{f', old_color_space=datapoints.ColorSpace.{old_color_space}' if old_color_space is not None else ''})"
)
if num_output_channels == 3:
replacement = (
f"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB"
f"{f', old_color_space=datapoints.ColorSpace.GRAY' if old_color_space is not None else ''})"
)
warnings.warn(
f"The function `rgb_to_grayscale(...{call})` is deprecated in will be removed in a future release. "
f"Instead, please use `{replacement}`.",
)
return _F.rgb_to_grayscale(inpt, num_output_channels=num_output_channels)
@torch.jit.unused
def to_tensor(inpt: Any) -> torch.Tensor:
warnings.warn(
"The function `to_tensor(...)` is deprecated and will be removed in a future release. "
"Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`."
)
return _F.to_tensor(inpt)
def get_image_size(inpt: Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT]) -> List[int]:
warnings.warn(
"The function `get_image_size(...)` is deprecated and will be removed in a future release. "
"Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`."
)
return _F.get_image_size(inpt)
|
__version__ = '0.12.10'
import os
from .document import Document
from .array import DocumentArray
from .dataclasses import dataclass, field
if 'DA_NO_RICH_HANDLER' not in os.environ:
from rich.traceback import install
install()
if 'NO_VERSION_CHECK' not in os.environ:
from .helper import is_latest_version
is_latest_version()
|
__version__ = '0.12.10'
import os
from .document import Document
from .array import DocumentArray
from .dataclasses import dataclass, field
if 'DA_NO_RICH_HANDLER' not in os.environ:
from rich.traceback import install
install()
|
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
logger = datasets.utils.logging.get_logger(__name__)
@dataclass
class ParquetConfig(datasets.BuilderConfig):
"""BuilderConfig for Parquet."""
batch_size: int = 10_000
columns: Optional[List[str]] = None
features: Optional[datasets.Features] = None
class Parquet(datasets.ArrowBasedBuilder):
BUILDER_CONFIG_CLASS = ParquetConfig
def _info(self):
return datasets.DatasetInfo(features=self.config.features)
def _split_generators(self, dl_manager):
"""We handle string, list and dicts in datafiles"""
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}")
data_files = dl_manager.download_and_extract(self.config.data_files)
if isinstance(data_files, (str, list, tuple)):
files = data_files
if isinstance(files, str):
files = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
files = [dl_manager.iter_files(file) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})]
splits = []
for split_name, files in data_files.items():
if isinstance(files, str):
files = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
files = [dl_manager.iter_files(file) for file in files]
# Infer features if they are stored in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(files):
with open(file, "rb") as f:
features = datasets.Features.from_arrow_schema(pq.read_schema(f))
if self.config.columns is not None:
self.info.features = datasets.Features(
{col: feat for col, feat in features.items() if col in self.config.columns}
)
self.info.features = features
break
splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files}))
return splits
def _cast_table(self, pa_table: pa.Table) -> pa.Table:
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
pa_table = table_cast(pa_table, self.info.features.arrow_schema)
return pa_table
def _generate_tables(self, files):
if self.config.features is not None and self.config.columns is not None:
if sorted(field.name for field in self.info.features.arrow_schema) != sorted(self.config.columns):
raise ValueError(
f"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'"
)
for file_idx, file in enumerate(itertools.chain.from_iterable(files)):
with open(file, "rb") as f:
parquet_file = pq.ParquetFile(f)
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size, columns=self.config.columns)
):
pa_table = pa.Table.from_batches([record_batch])
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table)
except ValueError as e:
logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}")
raise
|
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
logger = datasets.utils.logging.get_logger(__name__)
@dataclass
class ParquetConfig(datasets.BuilderConfig):
"""BuilderConfig for Parquet."""
batch_size: int = 10_000
columns: Optional[List[str]] = None
features: Optional[datasets.Features] = None
class Parquet(datasets.ArrowBasedBuilder):
BUILDER_CONFIG_CLASS = ParquetConfig
def _info(self):
return datasets.DatasetInfo(features=self.config.features)
def _split_generators(self, dl_manager):
"""We handle string, list and dicts in datafiles"""
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}")
data_files = dl_manager.download_and_extract(self.config.data_files)
if isinstance(data_files, (str, list, tuple)):
files = data_files
if isinstance(files, str):
files = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
files = [dl_manager.iter_files(file) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})]
splits = []
for split_name, files in data_files.items():
if isinstance(files, str):
files = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
files = [dl_manager.iter_files(file) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(files):
with open(file, "rb") as f:
self.info.features = datasets.Features.from_arrow_schema(pq.read_schema(f))
break
splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files}))
return splits
def _cast_table(self, pa_table: pa.Table) -> pa.Table:
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
pa_table = table_cast(pa_table, self.info.features.arrow_schema)
return pa_table
def _generate_tables(self, files):
schema = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema) != sorted(self.config.columns):
raise ValueError(
f"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'"
)
for file_idx, file in enumerate(itertools.chain.from_iterable(files)):
with open(file, "rb") as f:
parquet_file = pq.ParquetFile(f)
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size, columns=self.config.columns)
):
pa_table = pa.Table.from_batches([record_batch])
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table)
except ValueError as e:
logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}")
raise
|
#!/usr/bin/env python3
"""
Create a data preprocess pipeline that can be run with libtorchaudio
"""
import argparse
import os
import torch
import torchaudio
class Pipeline(torch.nn.Module):
"""Example audio process pipeline.
This example load waveform from a file then apply effects and save it to a file.
"""
def __init__(self, rir_path: str):
super().__init__()
rir, sample_rate = torchaudio.load(rir_path)
self.register_buffer("rir", rir)
self.rir_sample_rate: int = sample_rate
def forward(self, input_path: str, output_path: str):
torchaudio.sox_effects.init_sox_effects()
# 1. load audio
waveform, sample_rate = torchaudio.load(input_path)
# 2. Add background noise
alpha = 0.01
waveform = alpha * torch.randn_like(waveform) + (1 - alpha) * waveform
# 3. Reample the RIR filter to much the audio sample rate
rir, _ = torchaudio.sox_effects.apply_effects_tensor(
self.rir, self.rir_sample_rate, effects=[["rate", str(sample_rate)]]
)
rir = rir / torch.linalg.vector_norm(rir, ord=2)
rir = torch.flip(rir, [1])
# 4. Apply RIR filter
waveform = torch.nn.functional.pad(waveform, (rir.shape[1] - 1, 0))
waveform = torch.nn.functional.conv1d(waveform[None, ...], rir[None, ...])[0]
# Save
torchaudio.save(output_path, waveform, sample_rate)
def _create_jit_pipeline(rir_path, output_path):
module = torch.jit.script(Pipeline(rir_path))
print("*" * 40)
print("* Pipeline code")
print("*" * 40)
print()
print(module.code)
print("*" * 40)
module.save(output_path)
def _get_path(*paths):
return os.path.join(os.path.dirname(__file__), *paths)
def _parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--rir-path", default=_get_path("..", "data", "rir.wav"), help="Audio dara for room impulse response."
)
parser.add_argument("--output-path", default=_get_path("pipeline.zip"), help="Output JIT file.")
return parser.parse_args()
def _main():
args = _parse_args()
_create_jit_pipeline(args.rir_path, args.output_path)
if __name__ == "__main__":
_main()
|
#!/usr/bin/env python3
"""
Create a data preprocess pipeline that can be run with libtorchaudio
"""
import argparse
import os
import torch
import torchaudio
class Pipeline(torch.nn.Module):
"""Example audio process pipeline.
This example load waveform from a file then apply effects and save it to a file.
"""
def __init__(self, rir_path: str):
super().__init__()
rir, sample_rate = torchaudio.load(rir_path)
self.register_buffer("rir", rir)
self.rir_sample_rate: int = sample_rate
def forward(self, input_path: str, output_path: str):
torchaudio.sox_effects.init_sox_effects()
# 1. load audio
waveform, sample_rate = torchaudio.load(input_path)
# 2. Add background noise
alpha = 0.01
waveform = alpha * torch.randn_like(waveform) + (1 - alpha) * waveform
# 3. Reample the RIR filter to much the audio sample rate
rir, _ = torchaudio.sox_effects.apply_effects_tensor(
self.rir, self.rir_sample_rate, effects=[["rate", str(sample_rate)]]
)
rir = rir / torch.norm(rir, p=2)
rir = torch.flip(rir, [1])
# 4. Apply RIR filter
waveform = torch.nn.functional.pad(waveform, (rir.shape[1] - 1, 0))
waveform = torch.nn.functional.conv1d(waveform[None, ...], rir[None, ...])[0]
# Save
torchaudio.save(output_path, waveform, sample_rate)
def _create_jit_pipeline(rir_path, output_path):
module = torch.jit.script(Pipeline(rir_path))
print("*" * 40)
print("* Pipeline code")
print("*" * 40)
print()
print(module.code)
print("*" * 40)
module.save(output_path)
def _get_path(*paths):
return os.path.join(os.path.dirname(__file__), *paths)
def _parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--rir-path", default=_get_path("..", "data", "rir.wav"), help="Audio dara for room impulse response."
)
parser.add_argument("--output-path", default=_get_path("pipeline.zip"), help="Output JIT file.")
return parser.parse_args()
def _main():
args = _parse_args()
_create_jit_pipeline(args.rir_path, args.output_path)
if __name__ == "__main__":
_main()
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from packaging import version
from .. import __version__
from .constants import (
CONFIG_NAME,
DEPRECATED_REVISION_ARGS,
DIFFUSERS_DYNAMIC_MODULE_NAME,
FLAX_WEIGHTS_NAME,
GGUF_FILE_EXTENSION,
HF_MODULES_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MIN_PEFT_VERSION,
ONNX_EXTERNAL_WEIGHTS_NAME,
ONNX_WEIGHTS_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFETENSORS_FILE_EXTENSION,
SAFETENSORS_WEIGHTS_NAME,
USE_PEFT_BACKEND,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .deprecation_utils import deprecate
from .doc_utils import replace_example_docstring
from .dynamic_modules_utils import get_class_from_dynamic_module
from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video
from .hub_utils import (
PushToHubMixin,
_add_variant,
_get_checkpoint_shard_files,
_get_model_file,
extract_commit_hash,
http_user_agent,
)
from .import_utils import (
BACKENDS_MAPPING,
DIFFUSERS_SLOW_IMPORT,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_accelerate_available,
is_accelerate_version,
is_bitsandbytes_available,
is_bitsandbytes_version,
is_bs4_available,
is_flax_available,
is_ftfy_available,
is_gguf_available,
is_gguf_version,
is_google_colab,
is_hf_hub_version,
is_hpu_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_matplotlib_available,
is_note_seq_available,
is_onnx_available,
is_opencv_available,
is_optimum_quanto_available,
is_optimum_quanto_version,
is_peft_available,
is_peft_version,
is_safetensors_available,
is_scipy_available,
is_sentencepiece_available,
is_tensorboard_available,
is_timm_available,
is_torch_available,
is_torch_npu_available,
is_torch_version,
is_torch_xla_available,
is_torch_xla_version,
is_torchao_available,
is_torchao_version,
is_torchsde_available,
is_torchvision_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
is_wandb_available,
is_xformers_available,
requires_backends,
)
from .loading_utils import get_module_from_name, get_submodule_by_name, load_image, load_video
from .logging import get_logger
from .outputs import BaseOutput
from .peft_utils import (
check_peft_version,
delete_adapter_layers,
get_adapter_name,
get_peft_kwargs,
recurse_remove_peft_layers,
scale_lora_layers,
set_adapter_layers,
set_weights_and_activate_adapters,
unscale_lora_layers,
)
from .pil_utils import PIL_INTERPOLATION, make_image_grid, numpy_to_pil, pt_to_pil
from .remote_utils import remote_decode
from .state_dict_utils import (
convert_all_state_dict_to_peft,
convert_state_dict_to_diffusers,
convert_state_dict_to_kohya,
convert_state_dict_to_peft,
convert_unet_state_dict_to_peft,
state_dict_all_zero,
)
from .typing_utils import _get_detailed_type, _is_valid_type
logger = get_logger(__name__)
def check_min_version(min_version):
if version.parse(__version__) < version.parse(min_version):
if "dev" in min_version:
error_message = (
"This example requires a source install from HuggingFace diffusers (see "
"`https://huggingface.co/docs/diffusers/installation#install-from-source`),"
)
else:
error_message = f"This example requires a minimum version of {min_version},"
error_message += f" but the version found is {__version__}.\n"
raise ImportError(error_message)
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from packaging import version
from .. import __version__
from .constants import (
CONFIG_NAME,
DEPRECATED_REVISION_ARGS,
DIFFUSERS_DYNAMIC_MODULE_NAME,
FLAX_WEIGHTS_NAME,
GGUF_FILE_EXTENSION,
HF_MODULES_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MIN_PEFT_VERSION,
ONNX_EXTERNAL_WEIGHTS_NAME,
ONNX_WEIGHTS_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFETENSORS_FILE_EXTENSION,
SAFETENSORS_WEIGHTS_NAME,
USE_PEFT_BACKEND,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .deprecation_utils import deprecate
from .doc_utils import replace_example_docstring
from .dynamic_modules_utils import get_class_from_dynamic_module
from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video
from .hub_utils import (
PushToHubMixin,
_add_variant,
_get_checkpoint_shard_files,
_get_model_file,
extract_commit_hash,
http_user_agent,
)
from .import_utils import (
BACKENDS_MAPPING,
DIFFUSERS_SLOW_IMPORT,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_accelerate_available,
is_accelerate_version,
is_bitsandbytes_available,
is_bitsandbytes_version,
is_bs4_available,
is_flax_available,
is_ftfy_available,
is_gguf_available,
is_gguf_version,
is_google_colab,
is_hf_hub_version,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_matplotlib_available,
is_note_seq_available,
is_onnx_available,
is_opencv_available,
is_optimum_quanto_available,
is_optimum_quanto_version,
is_peft_available,
is_peft_version,
is_safetensors_available,
is_scipy_available,
is_sentencepiece_available,
is_tensorboard_available,
is_timm_available,
is_torch_available,
is_torch_npu_available,
is_torch_version,
is_torch_xla_available,
is_torch_xla_version,
is_torchao_available,
is_torchao_version,
is_torchsde_available,
is_torchvision_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
is_wandb_available,
is_xformers_available,
requires_backends,
)
from .loading_utils import get_module_from_name, get_submodule_by_name, load_image, load_video
from .logging import get_logger
from .outputs import BaseOutput
from .peft_utils import (
check_peft_version,
delete_adapter_layers,
get_adapter_name,
get_peft_kwargs,
recurse_remove_peft_layers,
scale_lora_layers,
set_adapter_layers,
set_weights_and_activate_adapters,
unscale_lora_layers,
)
from .pil_utils import PIL_INTERPOLATION, make_image_grid, numpy_to_pil, pt_to_pil
from .remote_utils import remote_decode
from .state_dict_utils import (
convert_all_state_dict_to_peft,
convert_state_dict_to_diffusers,
convert_state_dict_to_kohya,
convert_state_dict_to_peft,
convert_unet_state_dict_to_peft,
state_dict_all_zero,
)
from .typing_utils import _get_detailed_type, _is_valid_type
logger = get_logger(__name__)
def check_min_version(min_version):
if version.parse(__version__) < version.parse(min_version):
if "dev" in min_version:
error_message = (
"This example requires a source install from HuggingFace diffusers (see "
"`https://huggingface.co/docs/diffusers/installation#install-from-source`),"
)
else:
error_message = f"This example requires a minimum version of {min_version},"
error_message += f" but the version found is {__version__}.\n"
raise ImportError(error_message)
|
import concurrent.futures
import importlib
import subprocess
from pathlib import Path
def test_importable_all() -> None:
for path in Path("../core/langchain_core/").glob("*"):
module_name = path.stem
if not module_name.startswith(".") and path.suffix != ".typed":
module = importlib.import_module("langchain_core." + module_name)
all_ = getattr(module, "__all__", [])
for cls_ in all_:
getattr(module, cls_)
def try_to_import(module_name: str) -> tuple[int, str]:
"""Try to import a module via subprocess."""
module = importlib.import_module("langchain_core." + module_name)
all_ = getattr(module, "__all__", [])
for cls_ in all_:
getattr(module, cls_)
result = subprocess.run(
["python", "-c", f"import langchain_core.{module_name}"], check=True
)
return result.returncode, module_name
def test_importable_all_via_subprocess() -> None:
"""Test import in isolation.
Note: ImportErrors due to circular imports can be raised
for one sequence of imports but not another.
"""
module_names = []
for path in Path("../core/langchain_core/").glob("*"):
module_name = path.stem
if not module_name.startswith(".") and path.suffix != ".typed":
module_names.append(module_name)
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = [
executor.submit(try_to_import, module_name) for module_name in module_names
]
for future in concurrent.futures.as_completed(futures):
result = future.result() # Will raise an exception if the callable raised
code, module_name = result
if code != 0:
msg = f"Failed to import {module_name}."
raise ValueError(msg)
|
import concurrent.futures
import importlib
import subprocess
from pathlib import Path
def test_importable_all() -> None:
for path in Path("../core/langchain_core/").glob("*"):
module_name = path.stem
if not module_name.startswith(".") and path.suffix != ".typed":
module = importlib.import_module("langchain_core." + module_name)
all_ = getattr(module, "__all__", [])
for cls_ in all_:
getattr(module, cls_)
def try_to_import(module_name: str) -> tuple[int, str]:
"""Try to import a module via subprocess."""
module = importlib.import_module("langchain_core." + module_name)
all_ = getattr(module, "__all__", [])
for cls_ in all_:
getattr(module, cls_)
result = subprocess.run(
["python", "-c", f"import langchain_core.{module_name}"],
)
return result.returncode, module_name
def test_importable_all_via_subprocess() -> None:
"""Test import in isolation.
Note: ImportErrors due to circular imports can be raised
for one sequence of imports but not another.
"""
module_names = []
for path in Path("../core/langchain_core/").glob("*"):
module_name = path.stem
if not module_name.startswith(".") and path.suffix != ".typed":
module_names.append(module_name)
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = [
executor.submit(try_to_import, module_name) for module_name in module_names
]
for future in concurrent.futures.as_completed(futures):
result = future.result() # Will raise an exception if the callable raised
code, module_name = result
if code != 0:
msg = f"Failed to import {module_name}."
raise ValueError(msg)
|
# Copyright (c) OpenMMLab. All rights reserved.
from pathlib import Path
from typing import Any, Optional, Union
import torch
import torch.nn as nn
from mmengine.config import Config
from mmengine.runner import load_checkpoint
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.utils import ConfigType, OptConfigType
from .single_stage import SingleStageDetector
@MODELS.register_module()
class KnowledgeDistillationSingleStageDetector(SingleStageDetector):
r"""Implementation of `Distilling the Knowledge in a Neural Network.
<https://arxiv.org/abs/1503.02531>`_.
Args:
backbone (:obj:`ConfigDict` or dict): The backbone module.
neck (:obj:`ConfigDict` or dict): The neck module.
bbox_head (:obj:`ConfigDict` or dict): The bbox head module.
teacher_config (:obj:`ConfigDict` | dict | str | Path): Config file
path or the config object of teacher model.
teacher_ckpt (str, optional): Checkpoint path of teacher model.
If left as None, the model will not load any weights.
Defaults to True.
eval_teacher (bool): Set the train mode for teacher.
Defaults to True.
train_cfg (:obj:`ConfigDict` or dict, optional): The training config
of ATSS. Defaults to None.
test_cfg (:obj:`ConfigDict` or dict, optional): The testing config
of ATSS. Defaults to None.
data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of
:class:`DetDataPreprocessor` to process the input data.
Defaults to None.
"""
def __init__(
self,
backbone: ConfigType,
neck: ConfigType,
bbox_head: ConfigType,
teacher_config: Union[ConfigType, str, Path],
teacher_ckpt: Optional[str] = None,
eval_teacher: bool = True,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
) -> None:
super().__init__(
backbone=backbone,
neck=neck,
bbox_head=bbox_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
data_preprocessor=data_preprocessor)
self.eval_teacher = eval_teacher
# Build teacher model
if isinstance(teacher_config, (str, Path)):
teacher_config = Config.fromfile(teacher_config)
self.teacher_model = MODELS.build(teacher_config['model'])
if teacher_ckpt is not None:
load_checkpoint(
self.teacher_model, teacher_ckpt, map_location='cpu')
def loss(self, batch_inputs: Tensor,
batch_data_samples: SampleList) -> dict:
"""
Args:
batch_inputs (Tensor): Input images of shape (N, C, H, W).
These should usually be mean centered and std scaled.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
x = self.extract_feat(batch_inputs)
with torch.no_grad():
teacher_x = self.teacher_model.extract_feat(batch_inputs)
out_teacher = self.teacher_model.bbox_head(teacher_x)
losses = self.bbox_head.loss(x, out_teacher, batch_data_samples)
return losses
def cuda(self, device: Optional[str] = None) -> nn.Module:
"""Since teacher_model is registered as a plain object, it is necessary
to put the teacher model to cuda when calling ``cuda`` function."""
self.teacher_model.cuda(device=device)
return super().cuda(device=device)
def to(self, device: Optional[str] = None) -> nn.Module:
"""Since teacher_model is registered as a plain object, it is necessary
to put the teacher model to other device when calling ``to``
function."""
self.teacher_model.to(device=device)
return super().to(device=device)
def train(self, mode: bool = True) -> None:
"""Set the same train mode for teacher and student model."""
if self.eval_teacher:
self.teacher_model.train(False)
else:
self.teacher_model.train(mode)
super().train(mode)
def __setattr__(self, name: str, value: Any) -> None:
"""Set attribute, i.e. self.name = value
This reloading prevent the teacher model from being registered as a
nn.Module. The teacher module is registered as a plain object, so that
the teacher parameters will not show up when calling
``self.parameters``, ``self.modules``, ``self.children`` methods.
"""
if name == 'teacher_model':
object.__setattr__(self, name, value)
else:
super().__setattr__(name, value)
|
# Copyright (c) OpenMMLab. All rights reserved.
from pathlib import Path
from typing import Any, Optional, Union
import torch
import torch.nn as nn
from mmengine.config import Config
from mmengine.runner import load_checkpoint
from torch import Tensor
from mmdet.data_elements import SampleList
from mmdet.registry import MODELS
from mmdet.utils import ConfigType, OptConfigType
from .single_stage import SingleStageDetector
@MODELS.register_module()
class KnowledgeDistillationSingleStageDetector(SingleStageDetector):
r"""Implementation of `Distilling the Knowledge in a Neural Network.
<https://arxiv.org/abs/1503.02531>`_.
Args:
backbone (:obj:`ConfigDict` or dict): The backbone module.
neck (:obj:`ConfigDict` or dict): The neck module.
bbox_head (:obj:`ConfigDict` or dict): The bbox head module.
teacher_config (:obj:`ConfigDict` | dict | str | Path): Config file
path or the config object of teacher model.
teacher_ckpt (str, optional): Checkpoint path of teacher model.
If left as None, the model will not load any weights.
Defaults to True.
eval_teacher (bool): Set the train mode for teacher.
Defaults to True.
train_cfg (:obj:`ConfigDict` or dict, optional): The training config
of ATSS. Defaults to None.
test_cfg (:obj:`ConfigDict` or dict, optional): The testing config
of ATSS. Defaults to None.
data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of
:class:`DetDataPreprocessor` to process the input data.
Defaults to None.
"""
def __init__(
self,
backbone: ConfigType,
neck: ConfigType,
bbox_head: ConfigType,
teacher_config: Union[ConfigType, str, Path],
teacher_ckpt: Optional[str] = None,
eval_teacher: bool = True,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
) -> None:
super().__init__(
backbone=backbone,
neck=neck,
bbox_head=bbox_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
data_preprocessor=data_preprocessor)
self.eval_teacher = eval_teacher
# Build teacher model
if isinstance(teacher_config, (str, Path)):
teacher_config = Config.fromfile(teacher_config)
self.teacher_model = MODELS.build(teacher_config['model'])
if teacher_ckpt is not None:
load_checkpoint(
self.teacher_model, teacher_ckpt, map_location='cpu')
def loss(self, batch_inputs: Tensor,
batch_data_samples: SampleList) -> dict:
"""
Args:
batch_inputs (Tensor): Input images of shape (N, C, H, W).
These should usually be mean centered and std scaled.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
x = self.extract_feat(batch_inputs)
with torch.no_grad():
teacher_x = self.teacher_model.extract_feat(batch_inputs)
out_teacher = self.teacher_model.bbox_head(teacher_x)
losses = self.bbox_head.loss(x, out_teacher, batch_data_samples)
return losses
def cuda(self, device: Optional[str] = None) -> nn.Module:
"""Since teacher_model is registered as a plain object, it is necessary
to put the teacher model to cuda when calling ``cuda`` function."""
self.teacher_model.cuda(device=device)
return super().cuda(device=device)
def to(self, device: Optional[str] = None) -> nn.Module:
"""Since teacher_model is registered as a plain object, it is necessary
to put the teacher model to other device when calling ``to``
function."""
self.teacher_model.to(device=device)
return super().to(device=device)
def train(self, mode: bool = True) -> None:
"""Set the same train mode for teacher and student model."""
if self.eval_teacher:
self.teacher_model.train(False)
else:
self.teacher_model.train(mode)
super().train(mode)
def __setattr__(self, name: str, value: Any) -> None:
"""Set attribute, i.e. self.name = value
This reloading prevent the teacher model from being registered as a
nn.Module. The teacher module is registered as a plain object, so that
the teacher parameters will not show up when calling
``self.parameters``, ``self.modules``, ``self.children`` methods.
"""
if name == 'teacher_model':
object.__setattr__(self, name, value)
else:
super().__setattr__(name, value)
|
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
from typing import Dict, Iterable, Optional
import torch
from jina import DocumentArray, Executor, requests
from sentence_transformers import SentenceTransformer
class TransformerSentenceEncoder(Executor):
"""
Encode the Document text into embedding.
"""
def __init__(
self,
model_name: str = 'all-MiniLM-L6-v2',
traversal_paths: Iterable[str] = ('r',),
batch_size: int = 32,
device: str = 'cpu',
*args,
**kwargs
):
"""
:param model_name: The name of the sentence transformer to be used
:param device: Torch device to put the model on (e.g. 'cpu', 'cuda', 'cuda:1')
:param traversal_paths: Default traversal paths
:param batch_size: Batch size to be used in the encoder model
"""
super().__init__(*args, **kwargs)
self.batch_size = batch_size
self.traversal_paths = traversal_paths
self.model = SentenceTransformer(model_name, device=device)
@requests
def encode(
self, docs: Optional[DocumentArray] = None, parameters: Dict = {}, **kwargs
):
"""
Encode all docs with text and store the encodings in the ``embedding`` attribute
of the docs.
:param docs: Documents to send to the encoder. They need to have the ``text``
attribute get an embedding.
:param parameters: Any additional parameters for the `encode` function.
"""
if docs is None:
return
for batch in docs.traverse_flat(
traversal_paths=parameters.get('traversal_paths', self.traversal_paths),
filter_fn=lambda doc: len(doc.text) > 0,
).batch(
batch_size=parameters.get('batch_size', self.batch_size),
):
texts = batch.get_attributes('text')
with torch.inference_mode():
embeddings = self.model.encode(texts)
for doc, embedding in zip(batch, embeddings):
doc.embedding = embedding
|
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
from typing import Dict, Iterable, Optional
import torch
from jina import DocumentArray, Executor, requests
from sentence_transformers import SentenceTransformer
class TransformerSentenceEncoder(Executor):
"""
Encode the Document text into embedding.
"""
def __init__(
self,
model_name: str = 'all-MiniLM-L6-v2',
traversal_paths: Iterable[str] = ('r',),
batch_size: int = 32,
device: str = 'cpu',
*args,
**kwargs
):
"""
:param model_name: The name of the sentence transformer to be used
:param device: Torch device to put the model on (e.g. 'cpu', 'cuda', 'cuda:1')
:param traversal_paths: Default traversal paths
:param batch_size: Batch size to be used in the encoder model
"""
super().__init__(*args, **kwargs)
self.batch_size = batch_size
self.traversal_paths = traversal_paths
self.model = SentenceTransformer(model_name, device=device)
@requests
def encode(
self, docs: Optional[DocumentArray] = None, parameters: Dict = {}, **kwargs
):
"""
Encode all docs with text and store the encodings in the ``embedding`` attribute
of the docs.
:param docs: Documents to send to the encoder. They need to have the ``text``
attribute get an embedding.
:param parameters: Any additional parameters for the `encode` function.
"""
if docs is None:
return
for batch in docs.traverse_flat(
traversal_paths=parameters.get('traversal_paths', self.traversal_paths),
filter_fn=lambda doc: len(doc.text)>0
).batch(
batch_size=parameters.get('batch_size', self.batch_size),
):
texts = batch.get_attributes('text')
with torch.inference_mode():
embeddings = self.model.encode(texts)
for doc, embedding in zip(batch, embeddings):
doc.embedding = embedding
|
from __future__ import annotations
from collections.abc import Iterable
import torch.nn as nn
from torch import Tensor
from sentence_transformers.losses.CosineSimilarityLoss import CosineSimilarityLoss
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
class SparseCosineSimilarityLoss(CosineSimilarityLoss):
def __init__(
self,
model: SparseEncoder,
loss_fct: nn.Module = nn.MSELoss(),
cos_score_transformation: nn.Module = nn.Identity(),
) -> None:
"""
SparseCosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the
vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two.
By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``.
Args:
model: SparseEncoder model
loss_fct: Which pytorch loss function should be used to
compare the ``cosine_similarity(u, v)`` with the
input_label? By default, MSE is used: ``||input_label -
cosine_sim(u, v)||_2``
cos_score_transformation: The cos_score_transformation
function is applied on top of cosine_similarity. By
default, the identify function is used (i.e. no change).
Requirements:
- Need to be used in SpladeLoss or CSRLoss as a loss function.
- Sentence pairs with corresponding similarity scores in range `[0, 1]`
Inputs:
+--------------------------------+------------------------+
| Texts | Labels |
+================================+========================+
| (sentence_A, sentence_B) pairs | float similarity score |
+--------------------------------+------------------------+
Relations:
- :class:`SparseAnglELoss` is :class:`SparseCoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``.
Example:
::
from datasets import Dataset
from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses
model = SparseEncoder("distilbert/distilbert-base-uncased")
train_dataset = Dataset.from_dict(
{
"sentence1": ["It's nice weather outside today.", "He drove to work."],
"sentence2": ["It's so sunny.", "She walked to the store."],
"score": [1.0, 0.3],
}
)
loss = losses.SpladeLoss(
model=model,
loss=losses.SparseCosineSimilarityLoss(model),
corpus_regularizer_weight=5e-5,
use_corpus_regularizer_only=True,
)
trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss)
trainer.train()
"""
model.similarity_fn_name = "cosine"
return super().__init__(model, loss_fct=loss_fct, cos_score_transformation=cos_score_transformation)
def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor:
raise AttributeError("SparseCosineSimilarityLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
|
from __future__ import annotations
from collections.abc import Iterable
import torch.nn as nn
from torch import Tensor
from sentence_transformers.losses.CosineSimilarityLoss import CosineSimilarityLoss
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
class SparseCosineSimilarityLoss(CosineSimilarityLoss):
def __init__(
self,
model: SparseEncoder,
loss_fct: nn.Module = nn.MSELoss(),
cos_score_transformation: nn.Module = nn.Identity(),
) -> None:
"""
SparseCosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the
vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two.
By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``.
Args:
model: SparseEncoder model
loss_fct: Which pytorch loss function should be used to
compare the ``cosine_similarity(u, v)`` with the
input_label? By default, MSE is used: ``||input_label -
cosine_sim(u, v)||_2``
cos_score_transformation: The cos_score_transformation
function is applied on top of cosine_similarity. By
default, the identify function is used (i.e. no change).
Requirements:
- Need to be used in SpladeLoss or CSRLoss as a loss function.
- Sentence pairs with corresponding similarity scores in range `[0, 1]`
Inputs:
+--------------------------------+------------------------+
| Texts | Labels |
+================================+========================+
| (sentence_A, sentence_B) pairs | float similarity score |
+--------------------------------+------------------------+
Relations:
- :class:`SparseAnglELoss` is :class:`SparseCoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``.
Example:
::
from datasets import Dataset
from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses
model = SparseEncoder("distilbert/distilbert-base-uncased")
train_dataset = Dataset.from_dict(
{
"sentence1": ["It's nice weather outside today.", "He drove to work."],
"sentence2": ["It's so sunny.", "She walked to the store."],
"score": [1.0, 0.3],
}
)
loss = losses.SpladeLoss(model=model, loss=losses.SparseCosineSimilarityLoss(model), lambda_corpus=5e-5, all_docs=True)
trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss)
trainer.train()
"""
model.similarity_fn_name = "cosine"
return super().__init__(model, loss_fct=loss_fct, cos_score_transformation=cos_score_transformation)
def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor:
raise AttributeError("SparseCosineSimilarityLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
|
from __future__ import annotations
import logging
from typing import Optional, Type
from langchain_core.callbacks import CallbackManagerForToolRun
from pydantic import BaseModel, Field
from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool
logger = logging.getLogger(__name__)
class TextModerationInput(BaseModel):
query: str = Field(description="Text to moderate")
class EdenAiTextModerationTool(EdenaiTool):
"""Tool that queries the Eden AI Explicit text detection.
for api reference check edenai documentation:
https://docs.edenai.co/reference/image_explicit_content_create.
To use, you should have
the environment variable ``EDENAI_API_KEY`` set with your API token.
You can find your token here: https://app.edenai.run/admin/account/settings
"""
name: str = "edenai_explicit_content_detection_text"
description: str = (
"A wrapper around edenai Services explicit content detection for text. "
"""Useful for when you have to scan text for offensive,
sexually explicit or suggestive content,
it checks also if there is any content of self-harm,
violence, racist or hate speech."""
"""the structure of the output is :
'the type of the explicit content : the likelihood of it being explicit'
the likelihood is a number
between 1 and 5, 1 being the lowest and 5 the highest.
something is explicit if the likelihood is equal or higher than 3.
for example :
nsfw_likelihood: 1
this is not explicit.
for example :
nsfw_likelihood: 3
this is explicit.
"""
"Input should be a string."
)
args_schema: Type[BaseModel] = TextModerationInput
language: str
feature: str = "text"
subfeature: str = "moderation"
def _parse_response(self, response: list) -> str:
formatted_result = []
for result in response:
if "nsfw_likelihood" in result.keys():
formatted_result.append(
"nsfw_likelihood: " + str(result["nsfw_likelihood"])
)
for label, likelihood in zip(result["label"], result["likelihood"]):
formatted_result.append(f'"{label}": {str(likelihood)}')
return "\n".join(formatted_result)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
query_params = {"text": query, "language": self.language}
return self._call_eden_ai(query_params)
|
from __future__ import annotations
import logging
from typing import Optional, Type
from langchain_core.callbacks import CallbackManagerForToolRun
from pydantic import BaseModel, Field
from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool
logger = logging.getLogger(__name__)
class TextModerationInput(BaseModel):
query: str = Field(description="Text to moderate")
class EdenAiTextModerationTool(EdenaiTool): # type: ignore[override, override, override]
"""Tool that queries the Eden AI Explicit text detection.
for api reference check edenai documentation:
https://docs.edenai.co/reference/image_explicit_content_create.
To use, you should have
the environment variable ``EDENAI_API_KEY`` set with your API token.
You can find your token here: https://app.edenai.run/admin/account/settings
"""
name: str = "edenai_explicit_content_detection_text"
description: str = (
"A wrapper around edenai Services explicit content detection for text. "
"""Useful for when you have to scan text for offensive,
sexually explicit or suggestive content,
it checks also if there is any content of self-harm,
violence, racist or hate speech."""
"""the structure of the output is :
'the type of the explicit content : the likelihood of it being explicit'
the likelihood is a number
between 1 and 5, 1 being the lowest and 5 the highest.
something is explicit if the likelihood is equal or higher than 3.
for example :
nsfw_likelihood: 1
this is not explicit.
for example :
nsfw_likelihood: 3
this is explicit.
"""
"Input should be a string."
)
args_schema: Type[BaseModel] = TextModerationInput
language: str
feature: str = "text"
subfeature: str = "moderation"
def _parse_response(self, response: list) -> str:
formatted_result = []
for result in response:
if "nsfw_likelihood" in result.keys():
formatted_result.append(
"nsfw_likelihood: " + str(result["nsfw_likelihood"])
)
for label, likelihood in zip(result["label"], result["likelihood"]):
formatted_result.append(f'"{label}": {str(likelihood)}')
return "\n".join(formatted_result)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
query_params = {"text": query, "language": self.language}
return self._call_eden_ai(query_params)
|
from __future__ import annotations
__version__ = "3.3.0.dev0"
__MODEL_HUB_ORGANIZATION__ = "sentence-transformers"
import importlib
import os
from sentence_transformers.backend import (
export_dynamic_quantized_onnx_model,
export_optimized_onnx_model,
export_static_quantized_openvino_model,
)
from sentence_transformers.cross_encoder.CrossEncoder import CrossEncoder
from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset
from sentence_transformers.LoggingHandler import LoggingHandler
from sentence_transformers.model_card import SentenceTransformerModelCardData
from sentence_transformers.quantization import quantize_embeddings
from sentence_transformers.readers import InputExample
from sentence_transformers.SentenceTransformer import SentenceTransformer
from sentence_transformers.similarity_functions import SimilarityFunction
from sentence_transformers.trainer import SentenceTransformerTrainer
from sentence_transformers.training_args import SentenceTransformerTrainingArguments
# If codecarbon is installed and the log level is not defined,
# automatically overwrite the default to "error"
if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ:
os.environ["CODECARBON_LOG_LEVEL"] = "error"
__all__ = [
"LoggingHandler",
"SentencesDataset",
"ParallelSentencesDataset",
"SentenceTransformer",
"SimilarityFunction",
"InputExample",
"CrossEncoder",
"SentenceTransformerTrainer",
"SentenceTransformerTrainingArguments",
"SentenceTransformerModelCardData",
"quantize_embeddings",
"export_optimized_onnx_model",
"export_dynamic_quantized_onnx_model",
"export_static_quantized_openvino_model",
]
|
from __future__ import annotations
__version__ = "3.3.0.dev0"
__MODEL_HUB_ORGANIZATION__ = "sentence-transformers"
import importlib
import os
from sentence_transformers.backend import export_dynamic_quantized_onnx_model, export_optimized_onnx_model
from sentence_transformers.cross_encoder.CrossEncoder import CrossEncoder
from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset
from sentence_transformers.LoggingHandler import LoggingHandler
from sentence_transformers.model_card import SentenceTransformerModelCardData
from sentence_transformers.quantization import quantize_embeddings
from sentence_transformers.readers import InputExample
from sentence_transformers.SentenceTransformer import SentenceTransformer
from sentence_transformers.similarity_functions import SimilarityFunction
from sentence_transformers.trainer import SentenceTransformerTrainer
from sentence_transformers.training_args import SentenceTransformerTrainingArguments
# If codecarbon is installed and the log level is not defined,
# automatically overwrite the default to "error"
if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ:
os.environ["CODECARBON_LOG_LEVEL"] = "error"
__all__ = [
"LoggingHandler",
"SentencesDataset",
"ParallelSentencesDataset",
"SentenceTransformer",
"SimilarityFunction",
"InputExample",
"CrossEncoder",
"SentenceTransformerTrainer",
"SentenceTransformerTrainingArguments",
"SentenceTransformerModelCardData",
"quantize_embeddings",
"export_optimized_onnx_model",
"export_dynamic_quantized_onnx_model",
]
|
"""
This example starts multiple processes (1 per GPU), which encode
sentences in parallel. This gives a near linear speed-up
when encoding large text collections.
"""
import logging
from sentence_transformers import LoggingHandler, SentenceTransformer
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()]
)
# Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes.
if __name__ == "__main__":
# Create a large list of 100k sentences
sentences = [f"This is sentence {i}" for i in range(100000)]
# Define the model
model = SentenceTransformer("all-MiniLM-L6-v2")
# Start the multi-process pool on all available CUDA devices
pool = model.start_multi_process_pool()
# Compute the embeddings using the multi-process pool
emb = model.encode(sentences, pool=pool)
print("Embeddings computed. Shape:", emb.shape)
# Optional: Stop the processes in the pool
model.stop_multi_process_pool(pool)
|
"""
This example starts multiple processes (1 per GPU), which encode
sentences in parallel. This gives a near linear speed-up
when encoding large text collections.
"""
import logging
from sentence_transformers import LoggingHandler, SentenceTransformer
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()]
)
# Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes.
if __name__ == "__main__":
# Create a large list of 100k sentences
sentences = [f"This is sentence {i}" for i in range(100000)]
# Define the model
model = SentenceTransformer("all-MiniLM-L6-v2")
# Start the multi-process pool on all available CUDA devices
pool = model.start_multi_process_pool()
# Compute the embeddings using the multi-process pool
emb = model.encode_multi_process(sentences, pool)
print("Embeddings computed. Shape:", emb.shape)
# Optional: Stop the processes in the pool
model.stop_multi_process_pool(pool)
|
# pylint: disable=too-many-locals
"""Tests for learning to rank."""
from types import ModuleType
from typing import Any
import numpy as np
import pytest
import xgboost as xgb
from xgboost import testing as tm
def run_ranking_qid_df(impl: ModuleType, tree_method: str) -> None:
"""Test ranking with qid packed into X."""
import scipy.sparse
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import StratifiedGroupKFold, cross_val_score
X, y, q, _ = tm.make_ltr(n_samples=128, n_features=2, n_query_groups=8, max_rel=3)
# pack qid into x using dataframe
df = impl.DataFrame(X)
df["qid"] = q
ranker = xgb.XGBRanker(n_estimators=3, eval_metric="ndcg", tree_method=tree_method)
ranker.fit(df, y)
s = ranker.score(df, y)
assert s > 0.7
# works with validation datasets as well
valid_df = df.copy()
valid_df.iloc[0, 0] = 3.0
ranker.fit(df, y, eval_set=[(valid_df, y)])
# same as passing qid directly
ranker = xgb.XGBRanker(n_estimators=3, eval_metric="ndcg", tree_method=tree_method)
ranker.fit(X, y, qid=q)
s1 = ranker.score(df, y)
assert np.isclose(s, s1)
# Works with standard sklearn cv
if tree_method != "gpu_hist":
# we need cuML for this.
kfold = StratifiedGroupKFold(shuffle=False)
results = cross_val_score(ranker, df, y, cv=kfold, groups=df.qid)
assert len(results) == 5
# Works with custom metric
def neg_mse(*args: Any, **kwargs: Any) -> float:
return -float(mean_squared_error(*args, **kwargs))
ranker = xgb.XGBRanker(
n_estimators=3,
eval_metric=neg_mse,
tree_method=tree_method,
disable_default_eval_metric=True,
)
ranker.fit(df, y, eval_set=[(valid_df, y)])
score = ranker.score(valid_df, y)
assert np.isclose(score, ranker.evals_result()["validation_0"]["neg_mse"][-1])
# Works with sparse data
if tree_method != "gpu_hist":
# no sparse with cuDF
X_csr = scipy.sparse.csr_matrix(X)
df = impl.DataFrame.sparse.from_spmatrix(
X_csr, columns=[str(i) for i in range(X.shape[1])]
)
df["qid"] = q
ranker = xgb.XGBRanker(
n_estimators=3, eval_metric="ndcg", tree_method=tree_method
)
ranker.fit(df, y)
s2 = ranker.score(df, y)
assert np.isclose(s2, s)
with pytest.raises(ValueError, match="Either `group` or `qid`."):
ranker.fit(df, y, eval_set=[(X, y)])
def run_ranking_categorical(device: str) -> None:
"""Test LTR with categorical features."""
from sklearn.model_selection import cross_val_score
X, y = tm.make_categorical(
n_samples=512, n_features=10, n_categories=3, onehot=False
)
rng = np.random.default_rng(1994)
qid = rng.choice(3, size=y.shape[0])
qid = np.sort(qid)
X["qid"] = qid
ltr = xgb.XGBRanker(enable_categorical=True, device=device)
ltr.fit(X, y)
score = ltr.score(X, y)
assert score > 0.9
ltr = xgb.XGBRanker(enable_categorical=True, device=device)
# test using the score function inside sklearn.
scores = cross_val_score(ltr, X, y)
for s in scores:
assert s > 0.7
def run_normalization(device: str) -> None:
"""Test normalization."""
X, y, qid, _ = tm.make_ltr(2048, 4, 64, 3)
ltr = xgb.XGBRanker(objective="rank:pairwise", n_estimators=4, device=device)
ltr.fit(X, y, qid=qid, eval_set=[(X, y)], eval_qid=[qid])
e0 = ltr.evals_result()
ltr = xgb.XGBRanker(
objective="rank:pairwise",
n_estimators=4,
device=device,
lambdarank_normalization=False,
)
ltr.fit(X, y, qid=qid, eval_set=[(X, y)], eval_qid=[qid])
e1 = ltr.evals_result()
assert e1["validation_0"]["ndcg@32"][-1] > e0["validation_0"]["ndcg@32"][-1]
|
# pylint: disable=too-many-locals
"""Tests for learning to rank."""
from types import ModuleType
from typing import Any
import numpy as np
import pytest
import xgboost as xgb
from xgboost import testing as tm
def run_ranking_qid_df(impl: ModuleType, tree_method: str) -> None:
"""Test ranking with qid packed into X."""
import scipy.sparse
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import StratifiedGroupKFold, cross_val_score
X, y, q, _ = tm.make_ltr(n_samples=128, n_features=2, n_query_groups=8, max_rel=3)
# pack qid into x using dataframe
df = impl.DataFrame(X)
df["qid"] = q
ranker = xgb.XGBRanker(n_estimators=3, eval_metric="ndcg", tree_method=tree_method)
ranker.fit(df, y)
s = ranker.score(df, y)
assert s > 0.7
# works with validation datasets as well
valid_df = df.copy()
valid_df.iloc[0, 0] = 3.0
ranker.fit(df, y, eval_set=[(valid_df, y)])
# same as passing qid directly
ranker = xgb.XGBRanker(n_estimators=3, eval_metric="ndcg", tree_method=tree_method)
ranker.fit(X, y, qid=q)
s1 = ranker.score(df, y)
assert np.isclose(s, s1)
# Works with standard sklearn cv
if tree_method != "gpu_hist":
# we need cuML for this.
kfold = StratifiedGroupKFold(shuffle=False)
results = cross_val_score(ranker, df, y, cv=kfold, groups=df.qid)
assert len(results) == 5
# Works with custom metric
def neg_mse(*args: Any, **kwargs: Any) -> float:
return -float(mean_squared_error(*args, **kwargs))
ranker = xgb.XGBRanker(
n_estimators=3,
eval_metric=neg_mse,
tree_method=tree_method,
disable_default_eval_metric=True,
)
ranker.fit(df, y, eval_set=[(valid_df, y)])
score = ranker.score(valid_df, y)
assert np.isclose(score, ranker.evals_result()["validation_0"]["neg_mse"][-1])
# Works with sparse data
if tree_method != "gpu_hist":
# no sparse with cuDF
X_csr = scipy.sparse.csr_matrix(X)
df = impl.DataFrame.sparse.from_spmatrix(
X_csr, columns=[str(i) for i in range(X.shape[1])]
)
df["qid"] = q
ranker = xgb.XGBRanker(
n_estimators=3, eval_metric="ndcg", tree_method=tree_method
)
ranker.fit(df, y)
s2 = ranker.score(df, y)
assert np.isclose(s2, s)
with pytest.raises(ValueError, match="Either `group` or `qid`."):
ranker.fit(df, y, eval_set=[(X, y)])
def run_ranking_categorical(device: str) -> None:
"""Test LTR with categorical features."""
from sklearn.model_selection import cross_val_score
X, y = tm.make_categorical(
n_samples=512, n_features=10, n_categories=3, onehot=False
)
rng = np.random.default_rng(1994)
qid = rng.choice(3, size=y.shape[0])
qid = np.sort(qid)
X["qid"] = qid
ltr = xgb.XGBRanker(enable_categorical=True, device=device)
ltr.fit(X, y)
score = ltr.score(X, y)
assert score > 0.9
ltr = xgb.XGBRanker(enable_categorical=True, device=device)
# test using the score function inside sklearn.
scores = cross_val_score(ltr, X, y)
for s in scores:
assert s > 0.7
|
# Copyright (c) OpenMMLab. All rights reserved.
from .build_functions import (build_from_cfg, build_model_from_cfg,
build_runner_from_cfg, build_scheduler_from_cfg)
from .default_scope import DefaultScope
from .registry import Registry
from .root import (DATA_SAMPLERS, DATASETS, EVALUATOR, HOOKS, INFERENCERS,
LOG_PROCESSORS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS,
OPTIM_WRAPPER_CONSTRUCTORS, OPTIM_WRAPPERS, OPTIMIZERS,
PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS,
TRANSFORMS, VISBACKENDS, VISUALIZERS, WEIGHT_INITIALIZERS)
from .utils import (count_registered_modules, init_default_scope,
traverse_registry_tree)
__all__ = [
'Registry', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS',
'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS',
'OPTIMIZERS', 'OPTIM_WRAPPER_CONSTRUCTORS', 'TASK_UTILS',
'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'OPTIM_WRAPPERS', 'LOOPS',
'VISBACKENDS', 'VISUALIZERS', 'LOG_PROCESSORS', 'EVALUATOR', 'INFERENCERS',
'DefaultScope', 'traverse_registry_tree', 'count_registered_modules',
'build_model_from_cfg', 'build_runner_from_cfg', 'build_from_cfg',
'build_scheduler_from_cfg', 'init_default_scope'
]
|
# Copyright (c) OpenMMLab. All rights reserved.
from .build_functions import (build_from_cfg, build_model_from_cfg,
build_runner_from_cfg, build_scheduler_from_cfg)
from .default_scope import DefaultScope
from .registry import Registry
from .root import (DATA_SAMPLERS, DATASETS, EVALUATOR, HOOKS, LOG_PROCESSORS,
LOOPS, METRICS, MODEL_WRAPPERS, MODELS,
OPTIM_WRAPPER_CONSTRUCTORS, OPTIM_WRAPPERS, OPTIMIZERS,
PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS,
TRANSFORMS, VISBACKENDS, VISUALIZERS, WEIGHT_INITIALIZERS)
from .utils import (count_registered_modules, init_default_scope,
traverse_registry_tree)
__all__ = [
'Registry', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS',
'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS',
'OPTIMIZERS', 'OPTIM_WRAPPER_CONSTRUCTORS', 'TASK_UTILS',
'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'OPTIM_WRAPPERS', 'LOOPS',
'VISBACKENDS', 'VISUALIZERS', 'LOG_PROCESSORS', 'EVALUATOR',
'DefaultScope', 'traverse_registry_tree', 'count_registered_modules',
'build_model_from_cfg', 'build_runner_from_cfg', 'build_from_cfg',
'build_scheduler_from_cfg', 'init_default_scope'
]
|
from torchaudio import _extension # noqa: F401
from torchaudio import (
io,
compliance,
datasets,
functional,
models,
pipelines,
kaldi_io,
utils,
sox_effects,
transforms,
)
from torchaudio.backend import (
list_audio_backends,
get_audio_backend,
set_audio_backend,
)
try:
from .version import __version__, git_version # noqa: F401
except ImportError:
pass
__all__ = [
"io",
"compliance",
"datasets",
"functional",
"models",
"pipelines",
"kaldi_io",
"utils",
"sox_effects",
"transforms",
"list_audio_backends",
"get_audio_backend",
"set_audio_backend",
]
|
from torchaudio import _extension # noqa: F401
from torchaudio import (
compliance,
datasets,
functional,
models,
pipelines,
kaldi_io,
utils,
sox_effects,
transforms,
)
from torchaudio.backend import (
list_audio_backends,
get_audio_backend,
set_audio_backend,
)
try:
from .version import __version__, git_version # noqa: F401
except ImportError:
pass
__all__ = [
"compliance",
"datasets",
"functional",
"models",
"pipelines",
"kaldi_io",
"utils",
"sox_effects",
"transforms",
"list_audio_backends",
"get_audio_backend",
"set_audio_backend",
]
|
from abc import ABC
from docarray.array.mixins.content import ContentPropertyMixin
from docarray.array.mixins.delitem import DelItemMixin
from docarray.array.mixins.embed import EmbedMixin
from docarray.array.mixins.empty import EmptyMixin
from docarray.array.mixins.evaluation import EvaluationMixin
from docarray.array.mixins.find import FindMixin
from docarray.array.mixins.getattr import GetAttributeMixin
from docarray.array.mixins.getitem import GetItemMixin
from docarray.array.mixins.group import GroupMixin
from docarray.array.mixins.io.binary import BinaryIOMixin
from docarray.array.mixins.io.common import CommonIOMixin
from docarray.array.mixins.io.csv import CsvIOMixin
from docarray.array.mixins.io.dataframe import DataframeIOMixin
from docarray.array.mixins.io.from_gen import FromGeneratorMixin
from docarray.array.mixins.io.json import JsonIOMixin
from docarray.array.mixins.io.pushpull import PushPullMixin
from docarray.array.mixins.match import MatchMixin
from docarray.array.mixins.parallel import ParallelMixin
from docarray.array.mixins.plot import PlotMixin
from docarray.array.mixins.post import PostMixin
from docarray.array.mixins.pydantic import PydanticMixin
from docarray.array.mixins.reduce import ReduceMixin
from docarray.array.mixins.sample import SampleMixin
from docarray.array.mixins.setitem import SetItemMixin
from docarray.array.mixins.strawberry import StrawberryMixin
from docarray.array.mixins.text import TextToolsMixin
from docarray.array.mixins.traverse import TraverseMixin
from docarray.array.mixins.dataloader import DataLoaderMixin
class AllMixins(
GetAttributeMixin,
GetItemMixin,
SetItemMixin,
DelItemMixin,
ContentPropertyMixin,
PydanticMixin,
StrawberryMixin,
GroupMixin,
EmptyMixin,
CsvIOMixin,
JsonIOMixin,
BinaryIOMixin,
CommonIOMixin,
EmbedMixin,
PushPullMixin,
FromGeneratorMixin,
FindMixin,
MatchMixin,
TraverseMixin,
PlotMixin,
SampleMixin,
PostMixin,
TextToolsMixin,
EvaluationMixin,
ReduceMixin,
ParallelMixin,
DataframeIOMixin,
DataLoaderMixin,
ABC,
):
"""All plugins that can be used in :class:`DocumentArray`."""
...
|
from abc import ABC
from .content import ContentPropertyMixin
from .delitem import DelItemMixin
from .embed import EmbedMixin
from .empty import EmptyMixin
from .evaluation import EvaluationMixin
from .find import FindMixin
from .getattr import GetAttributeMixin
from .getitem import GetItemMixin
from .group import GroupMixin
from .io.binary import BinaryIOMixin
from .io.common import CommonIOMixin
from .io.csv import CsvIOMixin
from .io.dataframe import DataframeIOMixin
from .io.from_gen import FromGeneratorMixin
from .io.json import JsonIOMixin
from .io.pushpull import PushPullMixin
from .match import MatchMixin
from .parallel import ParallelMixin
from .plot import PlotMixin
from .post import PostMixin
from .pydantic import PydanticMixin
from .reduce import ReduceMixin
from .sample import SampleMixin
from .setitem import SetItemMixin
from .strawberry import StrawberryMixin
from .text import TextToolsMixin
from .traverse import TraverseMixin
from .dataloader import DataLoaderMixin
class AllMixins(
GetAttributeMixin,
GetItemMixin,
SetItemMixin,
DelItemMixin,
ContentPropertyMixin,
PydanticMixin,
StrawberryMixin,
GroupMixin,
EmptyMixin,
CsvIOMixin,
JsonIOMixin,
BinaryIOMixin,
CommonIOMixin,
EmbedMixin,
PushPullMixin,
FromGeneratorMixin,
FindMixin,
MatchMixin,
TraverseMixin,
PlotMixin,
SampleMixin,
PostMixin,
TextToolsMixin,
EvaluationMixin,
ReduceMixin,
ParallelMixin,
DataframeIOMixin,
DataLoaderMixin,
ABC,
):
"""All plugins that can be used in :class:`DocumentArray`."""
...
|
import numpy as np
import pytest
import keras
from keras.src import backend
from keras.src import ops
from keras.src import testing
from keras.src.optimizers.lion import Lion
class LionTest(testing.TestCase):
def test_invalid_beta_1(self):
with self.assertRaisesRegex(
ValueError,
"Argument `beta_1` must be in the \\[0, 1\\] range. Otherwise, the "
"optimizer degenerates to SignSGD. Received: beta_1=-0.1.",
):
Lion(beta_1=-0.1)
with self.assertRaisesRegex(
ValueError,
"Argument `beta_1` must be in the \\[0, 1\\] range. Otherwise, the "
"optimizer degenerates to SignSGD. Received: beta_1=0.0.",
):
Lion(beta_1=0.0)
with self.assertRaisesRegex(
ValueError,
"Argument `beta_1` must be in the \\[0, 1\\] range. Otherwise, the "
"optimizer degenerates to SignSGD. Received: beta_1=1.1.",
):
Lion(beta_1=1.1)
def test_config(self):
optimizer = Lion(
learning_rate=0.5,
beta_1=0.5,
beta_2=0.67,
)
self.run_class_serialization_test(optimizer)
def test_single_step(self):
optimizer = Lion(learning_rate=0.5)
grads = ops.array([1.0, 6.0, 7.0, 2.0])
vars = backend.Variable([1.0, 2.0, 3.0, 4.0])
optimizer.apply_gradients(zip([grads], [vars]))
self.assertAllClose(vars, [0.5, 1.5, 2.5, 3.5], rtol=1e-4, atol=1e-4)
def test_weight_decay(self):
grads, var1, var2, var3 = (
ops.zeros(()),
backend.Variable(2.0),
backend.Variable(2.0, name="exclude"),
backend.Variable(2.0),
)
optimizer_1 = Lion(learning_rate=1.0, weight_decay=0.004)
optimizer_1.apply_gradients(zip([grads], [var1]))
optimizer_2 = Lion(learning_rate=1.0, weight_decay=0.004)
optimizer_2.exclude_from_weight_decay(var_names=["exclude"])
optimizer_2.apply_gradients(zip([grads, grads], [var1, var2]))
optimizer_3 = Lion(learning_rate=1.0, weight_decay=0.004)
optimizer_3.exclude_from_weight_decay(var_list=[var3])
optimizer_3.apply_gradients(zip([grads, grads], [var1, var3]))
self.assertAlmostEqual(var1.numpy(), 1.9760959, decimal=6)
self.assertAlmostEqual(var2.numpy(), 2.0, decimal=6)
self.assertAlmostEqual(var3.numpy(), 2.0, decimal=6)
def test_correctness_with_golden(self):
optimizer = Lion()
x = backend.Variable(np.ones([10]))
grads = ops.arange(0.1, 1.1, 0.1)
first_grads = ops.full((10,), 0.01)
golden = np.tile(
[[0.999], [0.998], [0.997], [0.996], [0.995]],
(1, 10),
)
optimizer.apply_gradients(zip([first_grads], [x]))
for i in range(5):
self.assertAllClose(x, golden[i], rtol=5e-4, atol=5e-4)
optimizer.apply_gradients(zip([grads], [x]))
def test_clip_norm(self):
optimizer = Lion(clipnorm=1)
grad = [np.array([100.0, 100.0])]
clipped_grad = optimizer._clip_gradients(grad)
self.assertAllClose(clipped_grad[0], [2**0.5 / 2, 2**0.5 / 2])
def test_clip_value(self):
optimizer = Lion(clipvalue=1)
grad = [np.array([100.0, 100.0])]
clipped_grad = optimizer._clip_gradients(grad)
self.assertAllClose(clipped_grad[0], [1.0, 1.0])
@pytest.mark.requires_trainable_backend
def test_ema(self):
# TODO: test correctness
model = keras.Sequential([keras.layers.Dense(10)])
model.compile(optimizer=Lion(use_ema=True), loss="mse")
x = keras.ops.zeros((1, 5))
y = keras.ops.zeros((1, 10))
model.fit(x, y)
|
import numpy as np
import pytest
import keras
from keras.src import backend
from keras.src import ops
from keras.src import testing
from keras.src.optimizers.lion import Lion
class LionTest(testing.TestCase):
def test_config(self):
optimizer = Lion(
learning_rate=0.5,
beta_1=0.5,
beta_2=0.67,
)
self.run_class_serialization_test(optimizer)
def test_single_step(self):
optimizer = Lion(learning_rate=0.5)
grads = ops.array([1.0, 6.0, 7.0, 2.0])
vars = backend.Variable([1.0, 2.0, 3.0, 4.0])
optimizer.apply_gradients(zip([grads], [vars]))
self.assertAllClose(vars, [0.5, 1.5, 2.5, 3.5], rtol=1e-4, atol=1e-4)
def test_weight_decay(self):
grads, var1, var2, var3 = (
ops.zeros(()),
backend.Variable(2.0),
backend.Variable(2.0, name="exclude"),
backend.Variable(2.0),
)
optimizer_1 = Lion(learning_rate=1.0, weight_decay=0.004)
optimizer_1.apply_gradients(zip([grads], [var1]))
optimizer_2 = Lion(learning_rate=1.0, weight_decay=0.004)
optimizer_2.exclude_from_weight_decay(var_names=["exclude"])
optimizer_2.apply_gradients(zip([grads, grads], [var1, var2]))
optimizer_3 = Lion(learning_rate=1.0, weight_decay=0.004)
optimizer_3.exclude_from_weight_decay(var_list=[var3])
optimizer_3.apply_gradients(zip([grads, grads], [var1, var3]))
self.assertAlmostEqual(var1.numpy(), 1.9760959, decimal=6)
self.assertAlmostEqual(var2.numpy(), 2.0, decimal=6)
self.assertAlmostEqual(var3.numpy(), 2.0, decimal=6)
def test_correctness_with_golden(self):
optimizer = Lion()
x = backend.Variable(np.ones([10]))
grads = ops.arange(0.1, 1.1, 0.1)
first_grads = ops.full((10,), 0.01)
golden = np.tile(
[[0.999], [0.998], [0.997], [0.996], [0.995]],
(1, 10),
)
optimizer.apply_gradients(zip([first_grads], [x]))
for i in range(5):
self.assertAllClose(x, golden[i], rtol=5e-4, atol=5e-4)
optimizer.apply_gradients(zip([grads], [x]))
def test_clip_norm(self):
optimizer = Lion(clipnorm=1)
grad = [np.array([100.0, 100.0])]
clipped_grad = optimizer._clip_gradients(grad)
self.assertAllClose(clipped_grad[0], [2**0.5 / 2, 2**0.5 / 2])
def test_clip_value(self):
optimizer = Lion(clipvalue=1)
grad = [np.array([100.0, 100.0])]
clipped_grad = optimizer._clip_gradients(grad)
self.assertAllClose(clipped_grad[0], [1.0, 1.0])
@pytest.mark.requires_trainable_backend
def test_ema(self):
# TODO: test correctness
model = keras.Sequential([keras.layers.Dense(10)])
model.compile(optimizer=Lion(use_ema=True), loss="mse")
x = keras.ops.zeros((1, 5))
y = keras.ops.zeros((1, 10))
model.fit(x, y)
|
from keras.src.api_export import keras_export
from keras.src.layers.pooling.base_pooling import BasePooling
@keras_export(["keras.layers.AveragePooling1D", "keras.layers.AvgPool1D"])
class AveragePooling1D(BasePooling):
"""Average pooling for temporal data.
Downsamples the input representation by taking the average value over the
window defined by `pool_size`. The window is shifted by `strides`. The
resulting output when using "valid" padding option has a shape of:
`output_shape = (input_shape - pool_size + 1) / strides)`
The resulting output shape when using the "same" padding option is:
`output_shape = input_shape / strides`
Args:
pool_size: int, size of the max pooling window.
strides: int or None. Specifies how much the pooling window moves
for each pooling step. If None, it will default to `pool_size`.
padding: string, either `"valid"` or `"same"` (case-insensitive).
`"valid"` means no padding. `"same"` results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input.
data_format: string, either `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs. `"channels_last"`
corresponds to inputs with shape `(batch, steps, features)`
while `"channels_first"` corresponds to inputs with shape
`(batch, features, steps)`. It defaults to the `image_data_format`
value found in your Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be `"channels_last"`.
Input shape:
- If `data_format="channels_last"`:
3D tensor with shape `(batch_size, steps, features)`.
- If `data_format="channels_first"`:
3D tensor with shape `(batch_size, features, steps)`.
Output shape:
- If `data_format="channels_last"`:
3D tensor with shape `(batch_size, downsampled_steps, features)`.
- If `data_format="channels_first"`:
3D tensor with shape `(batch_size, features, downsampled_steps)`.
Examples:
`strides=1` and `padding="valid"`:
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> avg_pool_1d = keras.layers.AveragePooling1D(pool_size=2,
... strides=1, padding="valid")
>>> avg_pool_1d(x)
`strides=2` and `padding="valid"`:
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> avg_pool_1d = keras.layers.AveragePooling1D(pool_size=2,
... strides=2, padding="valid")
>>> avg_pool_1d(x)
`strides=1` and `padding="same"`:
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> avg_pool_1d = keras.layers.AveragePooling1D(pool_size=2,
... strides=1, padding="same")
>>> avg_pool_1d(x)
"""
def __init__(
self,
pool_size,
strides=None,
padding="valid",
data_format=None,
name=None,
**kwargs
):
super().__init__(
pool_size,
strides,
pool_dimensions=1,
pool_mode="average",
padding=padding,
data_format=data_format,
name=name,
**kwargs,
)
|
from keras.src.api_export import keras_export
from keras.src.layers.pooling.base_pooling import BasePooling
@keras_export(["keras.layers.AveragePooling1D", "keras.layers.AvgPool1D"])
class AveragePooling1D(BasePooling):
"""Average pooling for temporal data.
Downsamples the input representation by taking the average value over the
window defined by `pool_size`. The window is shifted by `strides`. The
resulting output when using "valid" padding option has a shape of:
`output_shape = (input_shape - pool_size + 1) / strides)`
The resulting output shape when using the "same" padding option is:
`output_shape = input_shape / strides`
Args:
pool_size: int, size of the max pooling window.
strides: int or None. Specifies how much the pooling window moves
for each pooling step. If None, it will default to `pool_size`.
padding: string, either `"valid"` or `"same"` (case-insensitive).
`"valid"` means no padding. `"same"` results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input.
data_format: string, either `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs. `"channels_last"`
corresponds to inputs with shape `(batch, steps, features)`
while `"channels_first"` corresponds to inputs with shape
`(batch, features, steps)`. It defaults to the `image_data_format`
value found in your Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be `"channels_last"`.
Input shape:
- If `data_format="channels_last"`:
3D tensor with shape `(batch_size, steps, features)`.
- If `data_format="channels_first"`:
3D tensor with shape `(batch_size, features, steps)`.
Output shape:
- If `data_format="channels_last"`:
3D tensor with shape `(batch_size, downsampled_steps, features)`.
- If `data_format="channels_first"`:
3D tensor with shape `(batch_size, features, downsampled_steps)`.
Examples:
`strides=1` and `padding="valid"`:
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> avg_pool_1d = keras.layers.AveragePooling1D(pool_size=2,
... strides=1, padding="valid")
>>> avg_pool_1d(x)
`strides=2` and `padding="valid"`:
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> avg_pool_1d = keras.layers.AveragePooling1D(pool_size=2,
... strides=2, padding="valid")
>>> avg_pool_1d(x)
`strides=1` and `padding="same"`:
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> avg_pool_1d = keras.layers.AveragePooling1D(pool_size=2,
... strides=1, padding="same")
>>> avg_pool_1d(x)
"""
def __init__(
self,
pool_size,
strides=None,
padding="valid",
data_format=None,
name=None,
**kwargs
):
super().__init__(
pool_size,
strides,
pool_dimensions=1,
pool_mode="average",
padding=padding,
data_format=data_format,
name=name,
**kwargs,
)
|
"""Utilities for working with interactive environments."""
def is_interactive_env() -> bool:
"""Determine if running within IPython or Jupyter."""
import sys
return hasattr(sys, "ps2")
|
def is_interactive_env() -> bool:
"""Determine if running within IPython or Jupyter."""
import sys
return hasattr(sys, "ps2")
|
from keras.src import backend
from keras.src.api_export import keras_export
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
BaseImagePreprocessingLayer,
)
from keras.src.ops.core import _saturate_cast
@keras_export("keras.layers.AutoContrast")
class AutoContrast(BaseImagePreprocessingLayer):
"""Performs the auto-contrast operation on an image.
Auto contrast stretches the values of an image across the entire available
`value_range`. This makes differences between pixels more obvious. An
example of this is if an image only has values `[0, 1]` out of the range
`[0, 255]`, auto contrast will change the `1` values to be `255`.
This layer is active at both training and inference time.
Args:
value_range: Range of values the incoming images will have.
Represented as a two number tuple written `(low, high)`.
This is typically either `(0, 1)` or `(0, 255)` depending
on how your preprocessing pipeline is set up.
Defaults to `(0, 255)`.
"""
_USE_BASE_FACTOR = False
_VALUE_RANGE_VALIDATION_ERROR = (
"The `value_range` argument should be a list of two numbers. "
)
def __init__(
self,
value_range=(0, 255),
**kwargs,
):
super().__init__(**kwargs)
self._set_value_range(value_range)
def _set_value_range(self, value_range):
if not isinstance(value_range, (tuple, list)):
raise ValueError(
self._VALUE_RANGE_VALIDATION_ERROR
+ f"Received: value_range={value_range}"
)
if len(value_range) != 2:
raise ValueError(
self._VALUE_RANGE_VALIDATION_ERROR
+ f"Received: value_range={value_range}"
)
self.value_range = sorted(value_range)
def transform_images(self, images, transformation=None, training=True):
original_images = images
images = self._transform_value_range(
images,
original_range=self.value_range,
target_range=(0, 255),
dtype=self.compute_dtype,
)
images = self.backend.cast(images, self.compute_dtype)
low = self.backend.numpy.min(images, axis=(1, 2), keepdims=True)
high = self.backend.numpy.max(images, axis=(1, 2), keepdims=True)
scale = 255.0 / (high - low)
offset = -low * scale
images = images * scale + offset
results = self.backend.numpy.clip(images, 0.0, 255.0)
results = self._transform_value_range(
results,
original_range=(0, 255),
target_range=self.value_range,
dtype=self.compute_dtype,
)
# don't process NaN channels
results = self.backend.numpy.where(
self.backend.numpy.isnan(results), original_images, results
)
if results.dtype == images.dtype:
return results
if backend.is_int_dtype(images.dtype):
results = self.backend.numpy.round(results)
return _saturate_cast(results, images.dtype, self.backend)
def transform_labels(self, labels, transformation, training=True):
return labels
def transform_bounding_boxes(
self,
bounding_boxes,
transformation,
training=True,
):
return bounding_boxes
def transform_segmentation_masks(
self, segmentation_masks, transformation, training=True
):
return segmentation_masks
def get_config(self):
config = super().get_config()
config.update({"value_range": self.value_range})
return config
def compute_output_shape(self, input_shape):
return input_shape
|
from keras.src import backend
from keras.src.api_export import keras_export
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
BaseImagePreprocessingLayer,
)
from keras.src.ops.core import _saturate_cast
@keras_export("keras.layers.AutoContrast")
class AutoContrast(BaseImagePreprocessingLayer):
"""Performs the auto-contrast operation on an image.
Auto contrast stretches the values of an image across the entire available
`value_range`. This makes differences between pixels more obvious. An
example of this is if an image only has values `[0, 1]` out of the range
`[0, 255]`, auto contrast will change the `1` values to be `255`.
This layer is active at both training and inference time.
Args:
value_range: Range of values the incoming images will have.
Represented as a two number tuple written `(low, high)`.
This is typically either `(0, 1)` or `(0, 255)` depending
on how your preprocessing pipeline is set up.
Defaults to `(0, 255)`.
"""
_USE_BASE_FACTOR = False
_VALUE_RANGE_VALIDATION_ERROR = (
"The `value_range` argument should be a list of two numbers. "
)
def __init__(
self,
value_range=(0, 255),
**kwargs,
):
super().__init__(**kwargs)
self._set_value_range(value_range)
def _set_value_range(self, value_range):
if not isinstance(value_range, (tuple, list)):
raise ValueError(
self._VALUE_RANGE_VALIDATION_ERROR
+ f"Received: value_range={value_range}"
)
if len(value_range) != 2:
raise ValueError(
self._VALUE_RANGE_VALIDATION_ERROR
+ f"Received: value_range={value_range}"
)
self.value_range = sorted(value_range)
def transform_images(self, images, transformation=None, training=True):
original_images = images
images = self._transform_value_range(
images,
original_range=self.value_range,
target_range=(0, 255),
dtype=self.compute_dtype,
)
images = self.backend.cast(images, self.compute_dtype)
low = self.backend.numpy.min(images, axis=(1, 2), keepdims=True)
high = self.backend.numpy.max(images, axis=(1, 2), keepdims=True)
scale = 255.0 / (high - low)
offset = -low * scale
images = images * scale + offset
results = self.backend.numpy.clip(images, 0.0, 255.0)
results = self._transform_value_range(
results,
original_range=(0, 255),
target_range=self.value_range,
dtype=self.compute_dtype,
)
# don't process NaN channels
results = self.backend.numpy.where(
self.backend.numpy.isnan(results), original_images, results
)
if results.dtype == images.dtype:
return results
if backend.is_int_dtype(images.dtype):
results = self.backend.numpy.round(results)
return _saturate_cast(results, images.dtype, self.backend)
def transform_labels(self, labels, transformation, training=True):
return labels
def transform_bounding_boxes(
self, bounding_boxes, transformation, training=True
):
return bounding_boxes
def transform_segmentation_masks(
self, segmentation_masks, transformation, training=True
):
return segmentation_masks
def get_config(self):
config = super().get_config()
config.update({"value_range": self.value_range})
return config
def compute_output_shape(self, input_shape):
return input_shape
|
"""JSON Reader."""
import re
import xml.etree.ElementTree as ET
from pathlib import Path
from typing import Dict, List, Optional
from llama_index.core.readers.base import BaseReader
from llama_index.core.schema import Document
def _get_leaf_nodes_up_to_level(root: ET.Element, level: int) -> List[ET.Element]:
"""
Get collection of nodes up to certain level including leaf nodes.
Args:
root (ET.Element): XML Root Element
level (int): Levels to traverse in the tree
Returns:
List[ET.Element]: List of target nodes
"""
def traverse(current_node, current_level):
if len(current_node) == 0 or level == current_level:
# Keep leaf nodes and target level nodes
nodes.append(current_node)
elif current_level < level:
# Move to the next level
for child in current_node:
traverse(child, current_level + 1)
nodes = []
traverse(root, 0)
return nodes
class XMLReader(BaseReader):
"""
XML reader.
Reads XML documents with options to help suss out relationships between nodes.
Args:
tree_level_split (int): From which level in the xml tree we split documents,
the default level is the root which is level 0
"""
def __init__(self, tree_level_split: Optional[int] = 0) -> None:
"""Initialize with arguments."""
super().__init__()
self.tree_level_split = tree_level_split
def _parse_xmlelt_to_document(
self, root: ET.Element, extra_info: Optional[Dict] = None
) -> List[Document]:
"""
Parse the xml object into a list of Documents.
Args:
root: The XML Element to be converted.
extra_info (Optional[Dict]): Additional information. Default is None.
Returns:
Document: The documents.
"""
nodes = _get_leaf_nodes_up_to_level(root, self.tree_level_split)
documents = []
for node in nodes:
content = ET.tostring(node, encoding="utf8").decode("utf-8")
content = re.sub(r"^<\?xml.*", "", content)
content = content.strip()
documents.append(Document(text=content, extra_info=extra_info or {}))
return documents
def load_data(
self,
file: Path,
extra_info: Optional[Dict] = None,
) -> List[Document]:
"""
Load data from the input file.
Args:
file (Path): Path to the input file.
extra_info (Optional[Dict]): Additional information. Default is None.
Returns:
List[Document]: List of documents.
"""
if not isinstance(file, Path):
file = Path(file)
tree = ET.parse(file)
return self._parse_xmlelt_to_document(tree.getroot(), extra_info)
|
"""JSON Reader."""
import re
import xml.etree.ElementTree as ET
from pathlib import Path
from typing import Dict, List, Optional
from llama_index.core.readers.base import BaseReader
from llama_index.core.schema import Document
def _get_leaf_nodes_up_to_level(root: ET.Element, level: int) -> List[ET.Element]:
"""Get collection of nodes up to certain level including leaf nodes.
Args:
root (ET.Element): XML Root Element
level (int): Levels to traverse in the tree
Returns:
List[ET.Element]: List of target nodes
"""
def traverse(current_node, current_level):
if len(current_node) == 0 or level == current_level:
# Keep leaf nodes and target level nodes
nodes.append(current_node)
elif current_level < level:
# Move to the next level
for child in current_node:
traverse(child, current_level + 1)
nodes = []
traverse(root, 0)
return nodes
class XMLReader(BaseReader):
"""XML reader.
Reads XML documents with options to help suss out relationships between nodes.
Args:
tree_level_split (int): From which level in the xml tree we split documents,
the default level is the root which is level 0
"""
def __init__(self, tree_level_split: Optional[int] = 0) -> None:
"""Initialize with arguments."""
super().__init__()
self.tree_level_split = tree_level_split
def _parse_xmlelt_to_document(
self, root: ET.Element, extra_info: Optional[Dict] = None
) -> List[Document]:
"""Parse the xml object into a list of Documents.
Args:
root: The XML Element to be converted.
extra_info (Optional[Dict]): Additional information. Default is None.
Returns:
Document: The documents.
"""
nodes = _get_leaf_nodes_up_to_level(root, self.tree_level_split)
documents = []
for node in nodes:
content = ET.tostring(node, encoding="utf8").decode("utf-8")
content = re.sub(r"^<\?xml.*", "", content)
content = content.strip()
documents.append(Document(text=content, extra_info=extra_info or {}))
return documents
def load_data(
self,
file: Path,
extra_info: Optional[Dict] = None,
) -> List[Document]:
"""Load data from the input file.
Args:
file (Path): Path to the input file.
extra_info (Optional[Dict]): Additional information. Default is None.
Returns:
List[Document]: List of documents.
"""
if not isinstance(file, Path):
file = Path(file)
tree = ET.parse(file)
return self._parse_xmlelt_to_document(tree.getroot(), extra_info)
|
import os
import sys
import cognee
import pytest
from llama_index.core import Document
from llama_index.graph_rag.cognee import CogneeGraphRAG
@pytest.mark.skipif(
sys.version_info < (3, 10), reason="mock strategy requires python3.10 or higher"
)
@pytest.mark.skipif(
os.getenv("OPENAI_API_KEY") is None,
reason="OPENAI_API_KEY not available to test Cognee integration",
)
@pytest.mark.asyncio
async def test_graph_rag_cognee():
documents = [
Document(
text="Jessica Miller, Experienced Sales Manager with a strong track record in driving sales growth and building high-performing teams."
),
Document(
text="David Thompson, Creative Graphic Designer with over 8 years of experience in visual design and branding."
),
]
# Instantiate cognee GraphRAG
cogneeRAG = CogneeGraphRAG(
llm_api_key=os.environ["OPENAI_API_KEY"],
llm_provider="openai",
llm_model="gpt-4o-mini",
graph_db_provider="networkx",
vector_db_provider="lancedb",
relational_db_provider="sqlite",
relational_db_name="cognee_db",
)
# Add data to cognee
await cogneeRAG.add(documents, "test")
# Process data into a knowledge graph
await cogneeRAG.process_data("test")
# Answer prompt based on knowledge graph
search_results = await cogneeRAG.search("Tell me who are the people mentioned?")
assert len(search_results) > 0, "No search results found"
print("\n\nAnswer based on knowledge graph:\n")
for result in search_results:
print(f"{result}\n")
# Answer prompt based on RAG
search_results = await cogneeRAG.rag_search("Tell me who are the people mentioned?")
assert len(search_results) > 0, "No search results found"
print("\n\nAnswer based on RAG:\n")
for result in search_results:
print(f"{result}\n")
# Search for related nodes
search_results = await cogneeRAG.get_related_nodes("person")
print("\n\nRelated nodes are:\n")
for result in search_results:
print(f"{result}\n")
assert len(search_results) > 0, "No search results found"
# Clean all data from previous runs
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
|
import os
import sys
import cognee
import pytest
from llama_index.core import Document
from llama_index.graph_rag.cognee import CogneeGraphRAG
@pytest.mark.skipif(
sys.version_info < (3, 10), reason="mock strategy requires python3.10 or higher"
)
@pytest.mark.skipif(
os.getenv("OPENAI_API_KEY") is None,
reason="OPENAI_API_KEY not available to test Cognee integration",
)
@pytest.mark.asyncio()
async def test_graph_rag_cognee():
documents = [
Document(
text="Jessica Miller, Experienced Sales Manager with a strong track record in driving sales growth and building high-performing teams."
),
Document(
text="David Thompson, Creative Graphic Designer with over 8 years of experience in visual design and branding."
),
]
# Instantiate cognee GraphRAG
cogneeRAG = CogneeGraphRAG(
llm_api_key=os.environ["OPENAI_API_KEY"],
llm_provider="openai",
llm_model="gpt-4o-mini",
graph_db_provider="networkx",
vector_db_provider="lancedb",
relational_db_provider="sqlite",
relational_db_name="cognee_db",
)
# Add data to cognee
await cogneeRAG.add(documents, "test")
# Process data into a knowledge graph
await cogneeRAG.process_data("test")
# Answer prompt based on knowledge graph
search_results = await cogneeRAG.search("Tell me who are the people mentioned?")
assert len(search_results) > 0, "No search results found"
print("\n\nAnswer based on knowledge graph:\n")
for result in search_results:
print(f"{result}\n")
# Answer prompt based on RAG
search_results = await cogneeRAG.rag_search("Tell me who are the people mentioned?")
assert len(search_results) > 0, "No search results found"
print("\n\nAnswer based on RAG:\n")
for result in search_results:
print(f"{result}\n")
# Search for related nodes
search_results = await cogneeRAG.get_related_nodes("person")
print("\n\nRelated nodes are:\n")
for result in search_results:
print(f"{result}\n")
assert len(search_results) > 0, "No search results found"
# Clean all data from previous runs
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
|
import types
from keras.src.activations.activations import celu
from keras.src.activations.activations import elu
from keras.src.activations.activations import exponential
from keras.src.activations.activations import gelu
from keras.src.activations.activations import glu
from keras.src.activations.activations import hard_shrink
from keras.src.activations.activations import hard_sigmoid
from keras.src.activations.activations import hard_silu
from keras.src.activations.activations import hard_tanh
from keras.src.activations.activations import leaky_relu
from keras.src.activations.activations import linear
from keras.src.activations.activations import log_sigmoid
from keras.src.activations.activations import log_softmax
from keras.src.activations.activations import mish
from keras.src.activations.activations import relu
from keras.src.activations.activations import relu6
from keras.src.activations.activations import selu
from keras.src.activations.activations import sigmoid
from keras.src.activations.activations import silu
from keras.src.activations.activations import softmax
from keras.src.activations.activations import softplus
from keras.src.activations.activations import softsign
from keras.src.activations.activations import tanh
from keras.src.api_export import keras_export
from keras.src.saving import object_registration
from keras.src.saving import serialization_lib
ALL_OBJECTS = {
relu,
leaky_relu,
relu6,
softmax,
celu,
elu,
selu,
softplus,
softsign,
silu,
gelu,
glu,
tanh,
sigmoid,
exponential,
hard_sigmoid,
hard_silu,
hard_tanh,
hard_shrink,
linear,
mish,
log_softmax,
log_sigmoid,
}
ALL_OBJECTS_DICT = {fn.__name__: fn for fn in ALL_OBJECTS}
# Additional aliases
ALL_OBJECTS_DICT["swish"] = silu
ALL_OBJECTS_DICT["hard_swish"] = hard_silu
@keras_export("keras.activations.serialize")
def serialize(activation):
fn_config = serialization_lib.serialize_keras_object(activation)
if "config" not in fn_config:
raise ValueError(
f"Unknown activation function '{activation}' cannot be "
"serialized due to invalid function name. Make sure to use "
"an activation name that matches the references defined in "
"activations.py or use "
"`@keras.saving.register_keras_serializable()`"
"to register any custom activations. "
f"config={fn_config}"
)
if not isinstance(activation, types.FunctionType):
# Case for additional custom activations represented by objects
return fn_config
if (
isinstance(fn_config["config"], str)
and fn_config["config"] not in globals()
):
# Case for custom activation functions from external activations modules
fn_config["config"] = object_registration.get_registered_name(
activation
)
return fn_config
# Case for keras.activations builtins (simply return name)
return fn_config["config"]
@keras_export("keras.activations.deserialize")
def deserialize(config, custom_objects=None):
"""Return a Keras activation function via its config."""
return serialization_lib.deserialize_keras_object(
config,
module_objects=ALL_OBJECTS_DICT,
custom_objects=custom_objects,
)
@keras_export("keras.activations.get")
def get(identifier):
"""Retrieve a Keras activation function via an identifier."""
if identifier is None:
return linear
if isinstance(identifier, dict):
obj = deserialize(identifier)
elif isinstance(identifier, str):
obj = ALL_OBJECTS_DICT.get(identifier, None)
else:
obj = identifier
if callable(obj):
return obj
raise ValueError(
f"Could not interpret activation function identifier: {identifier}"
)
|
import types
from keras.src.activations.activations import celu
from keras.src.activations.activations import elu
from keras.src.activations.activations import exponential
from keras.src.activations.activations import gelu
from keras.src.activations.activations import glu
from keras.src.activations.activations import hard_sigmoid
from keras.src.activations.activations import hard_silu
from keras.src.activations.activations import hard_tanh
from keras.src.activations.activations import leaky_relu
from keras.src.activations.activations import linear
from keras.src.activations.activations import log_sigmoid
from keras.src.activations.activations import log_softmax
from keras.src.activations.activations import mish
from keras.src.activations.activations import relu
from keras.src.activations.activations import relu6
from keras.src.activations.activations import selu
from keras.src.activations.activations import sigmoid
from keras.src.activations.activations import silu
from keras.src.activations.activations import softmax
from keras.src.activations.activations import softplus
from keras.src.activations.activations import softsign
from keras.src.activations.activations import tanh
from keras.src.api_export import keras_export
from keras.src.saving import object_registration
from keras.src.saving import serialization_lib
ALL_OBJECTS = {
relu,
leaky_relu,
relu6,
softmax,
celu,
elu,
selu,
softplus,
softsign,
silu,
gelu,
glu,
tanh,
sigmoid,
exponential,
hard_sigmoid,
hard_silu,
hard_tanh,
linear,
mish,
log_softmax,
log_sigmoid,
}
ALL_OBJECTS_DICT = {fn.__name__: fn for fn in ALL_OBJECTS}
# Additional aliases
ALL_OBJECTS_DICT["swish"] = silu
ALL_OBJECTS_DICT["hard_swish"] = hard_silu
@keras_export("keras.activations.serialize")
def serialize(activation):
fn_config = serialization_lib.serialize_keras_object(activation)
if "config" not in fn_config:
raise ValueError(
f"Unknown activation function '{activation}' cannot be "
"serialized due to invalid function name. Make sure to use "
"an activation name that matches the references defined in "
"activations.py or use "
"`@keras.saving.register_keras_serializable()`"
"to register any custom activations. "
f"config={fn_config}"
)
if not isinstance(activation, types.FunctionType):
# Case for additional custom activations represented by objects
return fn_config
if (
isinstance(fn_config["config"], str)
and fn_config["config"] not in globals()
):
# Case for custom activation functions from external activations modules
fn_config["config"] = object_registration.get_registered_name(
activation
)
return fn_config
# Case for keras.activations builtins (simply return name)
return fn_config["config"]
@keras_export("keras.activations.deserialize")
def deserialize(config, custom_objects=None):
"""Return a Keras activation function via its config."""
return serialization_lib.deserialize_keras_object(
config,
module_objects=ALL_OBJECTS_DICT,
custom_objects=custom_objects,
)
@keras_export("keras.activations.get")
def get(identifier):
"""Retrieve a Keras activation function via an identifier."""
if identifier is None:
return linear
if isinstance(identifier, dict):
obj = deserialize(identifier)
elif isinstance(identifier, str):
obj = ALL_OBJECTS_DICT.get(identifier, None)
else:
obj = identifier
if callable(obj):
return obj
raise ValueError(
f"Could not interpret activation function identifier: {identifier}"
)
|
"""
This scripts demonstrates how to train a Sparse Encoder model for Information Retrieval.
As dataset, we use sentence-transformers/msmarco-bm25, where we have triplets versions of MSMARCO mined thanks to BM25.
As loss function, we use MultipleNegativesRankingLoss in the SpladeLoss.
"""
import logging
import traceback
from datasets import load_dataset
from sentence_transformers import (
SparseEncoder,
SparseEncoderModelCardData,
SparseEncoderTrainer,
SparseEncoderTrainingArguments,
)
from sentence_transformers.sparse_encoder import evaluation, losses
# Set the log level to INFO to get more information
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
def main():
model_name = "distilbert/distilbert-base-uncased"
train_batch_size = 12
num_epochs = 1
lambda_query = 5e-5
lambda_corpus = 3e-5
learning_rate = 2e-5
# 1. Define our SparseEncoder model
model = SparseEncoder(
model_name,
model_card_data=SparseEncoderModelCardData(
language="en",
license="apache-2.0",
model_name="splade-distilbert-base-uncased trained on Quora Duplicates Questions",
),
)
model.max_seq_length = 256 # Set the max sequence length to 256 for the training
logging.info("Model max length: %s", model.max_seq_length)
# 2. Load the MS MARCO dataset: https://huggingface.co/datasets/sentence-transformers/msmarco-bm25
logging.info("Read the MS MARCO training dataset")
full_dataset = load_dataset("sentence-transformers/quora-duplicates", "triplet", split="train").select(
range(100000)
)
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
train_dataset = dataset_dict["train"]
eval_dataset = dataset_dict["test"]
logging.info(train_dataset)
logging.info(eval_dataset)
# 3. Define our training loss
loss = losses.SpladeLoss(
model=model,
loss=losses.SparseMultipleNegativesRankingLoss(model=model),
lambda_query=lambda_query, # Weight for query loss
lambda_corpus=lambda_corpus, # Weight for document loss
)
# 4. Define the evaluator. We use the SparseNanoBEIREvaluator, which is a light-weight evaluator for English
evaluator = evaluation.SparseNanoBEIREvaluator(
dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=train_batch_size
)
# 5. Define the training arguments
short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
run_name = f"splade-{short_model_name}-msmarco-mrl"
args = SparseEncoderTrainingArguments(
# Required parameter:
output_dir=f"models/{run_name}",
# Optional training parameters:
num_train_epochs=num_epochs,
per_device_train_batch_size=train_batch_size,
per_device_eval_batch_size=train_batch_size,
learning_rate=learning_rate,
load_best_model_at_end=True,
metric_for_best_model="eval_NanoBEIR_mean_dot_ndcg@10",
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
bf16=True, # Set to True if you have a GPU that supports BF16
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=1650,
save_strategy="steps",
save_steps=1650,
save_total_limit=2,
logging_steps=200,
run_name=run_name, # Will be used in W&B if `wandb` is installed
seed=42,
)
# 6. Create the trainer & start training
trainer = SparseEncoderTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=loss,
evaluator=evaluator,
)
trainer.train()
# 7. Evaluate the final model, using the complete NanoBEIR dataset
test_evaluator = evaluation.SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=train_batch_size)
test_evaluator(model)
# 8. Save the final model
final_output_dir = f"models/{run_name}/final"
model.save_pretrained(final_output_dir)
# 9. (Optional) save the model to the Hugging Face Hub!
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
try:
model.push_to_hub(run_name)
except Exception:
logging.error(
f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
f"`huggingface-cli login`, followed by loading the model using `model = SparseEncoder({final_output_dir!r})` "
f"and saving it using `model.push_to_hub('{run_name}')`."
)
if __name__ == "__main__":
main()
|
"""
This scripts demonstrates how to train a Sparse Encoder model for Information Retrieval.
As dataset, we use sentence-transformers/msmarco-bm25, where we have triplets versions of MSMARCO mined thanks to BM25.
As loss function, we use MultipleNegativesRankingLoss in the SpladeLoss.
"""
import logging
import traceback
from datasets import load_dataset
from sentence_transformers import (
SparseEncoder,
SparseEncoderModelCardData,
SparseEncoderTrainer,
SparseEncoderTrainingArguments,
)
from sentence_transformers.sparse_encoder import evaluation, losses
# Set the log level to INFO to get more information
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
def main():
model_name = "distilbert/distilbert-base-uncased"
train_batch_size = 12
num_epochs = 1
lambda_query = 5e-5
lambda_corpus = 3e-5
learning_rate = 2e-5
# 1. Define our SparseEncoder model
model = SparseEncoder(
model_name,
model_card_data=SparseEncoderModelCardData(
language="en",
license="apache-2.0",
model_name="splade-distilbert-base-uncased trained on Quora Duplicates Questions",
),
)
model.max_seq_length = 256 # Set the max sequence length to 256 for the training
logging.info("Model max length:", model.max_seq_length)
# 2. Load the MS MARCO dataset: https://huggingface.co/datasets/sentence-transformers/msmarco-bm25
logging.info("Read the MS MARCO training dataset")
full_dataset = load_dataset("sentence-transformers/quora-duplicates", "triplet", split="train").select(
range(100000)
)
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
train_dataset = dataset_dict["train"]
eval_dataset = dataset_dict["test"]
logging.info(train_dataset)
logging.info(eval_dataset)
# 3. Define our training loss
loss = losses.SpladeLoss(
model=model,
loss=losses.SparseMultipleNegativesRankingLoss(model=model),
lambda_query=lambda_query, # Weight for query loss
lambda_corpus=lambda_corpus, # Weight for document loss
)
# 4. Define the evaluator. We use the SparseNanoBEIREvaluator, which is a light-weight evaluator for English
evaluator = evaluation.SparseNanoBEIREvaluator(
dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=train_batch_size
)
# 5. Define the training arguments
short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
run_name = f"splade-{short_model_name}-msmarco-mrl"
args = SparseEncoderTrainingArguments(
# Required parameter:
output_dir=f"models/{run_name}",
# Optional training parameters:
num_train_epochs=num_epochs,
per_device_train_batch_size=train_batch_size,
per_device_eval_batch_size=train_batch_size,
learning_rate=learning_rate,
load_best_model_at_end=True,
metric_for_best_model="eval_NanoBEIR_mean_dot_ndcg@10",
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
bf16=True, # Set to True if you have a GPU that supports BF16
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=1650,
save_strategy="steps",
save_steps=1650,
save_total_limit=2,
logging_steps=200,
run_name=run_name, # Will be used in W&B if `wandb` is installed
seed=42,
)
# 6. Create the trainer & start training
trainer = SparseEncoderTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=loss,
evaluator=evaluator,
)
trainer.train()
# 7. Evaluate the final model, using the complete NanoBEIR dataset
test_evaluator = evaluation.SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=train_batch_size)
test_evaluator(model)
# 8. Save the final model
final_output_dir = f"models/{run_name}/final"
model.save_pretrained(final_output_dir)
# 9. (Optional) save the model to the Hugging Face Hub!
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
try:
model.push_to_hub(run_name)
except Exception:
logging.error(
f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
f"`huggingface-cli login`, followed by loading the model using `model = SparseEncoder({final_output_dir!r})` "
f"and saving it using `model.push_to_hub('{run_name}')`."
)
if __name__ == "__main__":
main()
|
from typing import List, Union
from docarray.array.abstract_array import AbstractDocumentArray
from docarray.document import BaseDocument
class GetAttributeArrayMixin(AbstractDocumentArray):
"""Helpers that provide attributes getter in bulk"""
def _get_documents_attribute(
self, field: str
) -> Union[List, AbstractDocumentArray]:
"""Return all values of the fields from all docs this array contains
:param field: name of the fields to extract
:return: Returns a list of the field value for each document
in the array like container
"""
field_type = self.__class__.document_type._get_nested_document_class(field)
if issubclass(field_type, BaseDocument):
# calling __class_getitem__ ourselves is a hack otherwise mypy complain
# most likely a bug in mypy though
# bug reported here https://github.com/python/mypy/issues/14111
return self.__class__.__class_getitem__(field_type)(
(getattr(doc, field) for doc in self)
)
else:
return [getattr(doc, field) for doc in self]
|
from typing import List
from docarray.array.abstract_array import AbstractDocumentArray
class GetAttributeArrayMixin(AbstractDocumentArray):
"""Helpers that provide attributes getter in bulk"""
def _get_documents_attribute(self, field: str) -> List:
"""Return all values of the fields from all docs this array contains
:param field: name of the fields to extract
:return: Returns a list of the field value for each document
in the array like container
"""
return [getattr(doc, field) for doc in self]
|
import copy
import pytest
import torch
from mmengine.structures import InstanceData
from mmdet.models.utils import (empty_instances, filter_gt_instances,
rename_loss_dict, reweight_loss_dict,
unpack_gt_instances)
from mmdet.testing import demo_mm_inputs
def test_parse_gt_instance_info():
packed_inputs = demo_mm_inputs()['data_samples']
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \
= unpack_gt_instances(packed_inputs)
assert len(batch_gt_instances) == len(packed_inputs)
assert len(batch_gt_instances_ignore) == len(packed_inputs)
assert len(batch_img_metas) == len(packed_inputs)
def test_process_empty_roi():
batch_size = 2
batch_img_metas = [{'ori_shape': (10, 12)}] * batch_size
device = torch.device('cpu')
results_list = empty_instances(batch_img_metas, device, task_type='bbox')
assert len(results_list) == batch_size
for results in results_list:
assert isinstance(results, InstanceData)
assert len(results) == 0
assert torch.allclose(results.bboxes, torch.zeros(0, 4, device=device))
results_list = empty_instances(
batch_img_metas,
device,
task_type='mask',
instance_results=results_list,
mask_thr_binary=0.5)
assert len(results_list) == batch_size
for results in results_list:
assert isinstance(results, InstanceData)
assert len(results) == 0
assert results.masks.shape == (0, 10, 12)
# batch_img_metas and instance_results length must be the same
with pytest.raises(AssertionError):
empty_instances(
batch_img_metas,
device,
task_type='mask',
instance_results=[results_list[0]] * 3)
def test_filter_gt_instances():
packed_inputs = demo_mm_inputs()['data_samples']
score_thr = 0.7
with pytest.raises(AssertionError):
filter_gt_instances(packed_inputs, score_thr=score_thr)
# filter no instances by score
for inputs in packed_inputs:
inputs.gt_instances.scores = torch.ones_like(
inputs.gt_instances.labels).float()
filtered_packed_inputs = filter_gt_instances(
copy.deepcopy(packed_inputs), score_thr=score_thr)
for filtered_inputs, inputs in zip(filtered_packed_inputs, packed_inputs):
assert len(filtered_inputs.gt_instances) == len(inputs.gt_instances)
# filter all instances
for inputs in packed_inputs:
inputs.gt_instances.scores = torch.zeros_like(
inputs.gt_instances.labels).float()
filtered_packed_inputs = filter_gt_instances(
copy.deepcopy(packed_inputs), score_thr=score_thr)
for filtered_inputs in filtered_packed_inputs:
assert len(filtered_inputs.gt_instances) == 0
packed_inputs = demo_mm_inputs()['data_samples']
# filter no instances by size
wh_thr = (0, 0)
filtered_packed_inputs = filter_gt_instances(
copy.deepcopy(packed_inputs), wh_thr=wh_thr)
for filtered_inputs, inputs in zip(filtered_packed_inputs, packed_inputs):
assert len(filtered_inputs.gt_instances) == len(inputs.gt_instances)
# filter all instances by size
for inputs in packed_inputs:
img_shape = inputs.img_shape
wh_thr = (max(wh_thr[0], img_shape[0]), max(wh_thr[1], img_shape[1]))
filtered_packed_inputs = filter_gt_instances(
copy.deepcopy(packed_inputs), wh_thr=wh_thr)
for filtered_inputs in filtered_packed_inputs:
assert len(filtered_inputs.gt_instances) == 0
def test_rename_loss_dict():
prefix = 'sup_'
losses = {'cls_loss': torch.tensor(2.), 'reg_loss': torch.tensor(1.)}
sup_losses = rename_loss_dict(prefix, losses)
for name in losses.keys():
assert sup_losses[prefix + name] == losses[name]
def test_reweight_loss_dict():
weight = 4
losses = {'cls_loss': torch.tensor(2.), 'reg_loss': torch.tensor(1.)}
weighted_losses = reweight_loss_dict(copy.deepcopy(losses), weight)
for name in losses.keys():
assert weighted_losses[name] == losses[name] * weight
|
import pytest
import torch
from mmengine.structures import InstanceData
from mmdet.models.utils import empty_instances, unpack_gt_instances
from mmdet.testing import demo_mm_inputs
def test_parse_gt_instance_info():
packed_inputs = demo_mm_inputs()['data_samples']
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \
= unpack_gt_instances(packed_inputs)
assert len(batch_gt_instances) == len(packed_inputs)
assert len(batch_gt_instances_ignore) == len(packed_inputs)
assert len(batch_img_metas) == len(packed_inputs)
def test_process_empty_roi():
batch_size = 2
batch_img_metas = [{'ori_shape': (10, 12)}] * batch_size
device = torch.device('cpu')
results_list = empty_instances(batch_img_metas, device, task_type='bbox')
assert len(results_list) == batch_size
for results in results_list:
assert isinstance(results, InstanceData)
assert len(results) == 0
assert torch.allclose(results.bboxes, torch.zeros(0, 4, device=device))
results_list = empty_instances(
batch_img_metas,
device,
task_type='mask',
instance_results=results_list,
mask_thr_binary=0.5)
assert len(results_list) == batch_size
for results in results_list:
assert isinstance(results, InstanceData)
assert len(results) == 0
assert results.masks.shape == (0, 10, 12)
# batch_img_metas and instance_results length must be the same
with pytest.raises(AssertionError):
empty_instances(
batch_img_metas,
device,
task_type='mask',
instance_results=[results_list[0]] * 3)
|
"""Tests for dask shared by different test modules."""
import numpy as np
import pandas as pd
from dask import array as da
from dask import dataframe as dd
from distributed import Client
import xgboost as xgb
from xgboost.testing.updater import get_basescore
def check_init_estimation_clf(tree_method: str, client: Client) -> None:
"""Test init estimation for classsifier."""
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=4096 * 2, n_features=32, random_state=1994)
clf = xgb.XGBClassifier(n_estimators=1, max_depth=1, tree_method=tree_method)
clf.fit(X, y)
base_score = get_basescore(clf)
dx = da.from_array(X).rechunk(chunks=(32, None))
dy = da.from_array(y).rechunk(chunks=(32,))
dclf = xgb.dask.DaskXGBClassifier(
n_estimators=1, max_depth=1, tree_method=tree_method
)
dclf.client = client
dclf.fit(dx, dy)
dbase_score = get_basescore(dclf)
np.testing.assert_allclose(base_score, dbase_score)
def check_init_estimation_reg(tree_method: str, client: Client) -> None:
"""Test init estimation for regressor."""
from sklearn.datasets import make_regression
# pylint: disable=unbalanced-tuple-unpacking
X, y = make_regression(n_samples=4096 * 2, n_features=32, random_state=1994)
reg = xgb.XGBRegressor(n_estimators=1, max_depth=1, tree_method=tree_method)
reg.fit(X, y)
base_score = get_basescore(reg)
dx = da.from_array(X).rechunk(chunks=(32, None))
dy = da.from_array(y).rechunk(chunks=(32,))
dreg = xgb.dask.DaskXGBRegressor(
n_estimators=1, max_depth=1, tree_method=tree_method
)
dreg.client = client
dreg.fit(dx, dy)
dbase_score = get_basescore(dreg)
np.testing.assert_allclose(base_score, dbase_score)
def check_init_estimation(tree_method: str, client: Client) -> None:
"""Test init estimation."""
check_init_estimation_reg(tree_method, client)
check_init_estimation_clf(tree_method, client)
def check_uneven_nan(client: Client, tree_method: str, n_workers: int) -> None:
"""Issue #9271, not every worker has missing value."""
assert n_workers >= 2
with client.as_current():
clf = xgb.dask.DaskXGBClassifier(tree_method=tree_method)
X = pd.DataFrame({"a": range(10000), "b": range(10000, 0, -1)})
y = pd.Series([*[0] * 5000, *[1] * 5000])
X["a"][:3000:1000] = np.nan
client.wait_for_workers(n_workers=n_workers)
clf.fit(
dd.from_pandas(X, npartitions=n_workers),
dd.from_pandas(y, npartitions=n_workers),
)
|
"""Tests for dask shared by different test modules."""
import numpy as np
import pandas as pd
from dask import array as da
from dask import dataframe as dd
from distributed import Client
import xgboost as xgb
from xgboost.testing.updater import get_basescore
def check_init_estimation_clf(tree_method: str, client: Client) -> None:
"""Test init estimation for classsifier."""
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=4096 * 2, n_features=32, random_state=1994)
clf = xgb.XGBClassifier(n_estimators=1, max_depth=1, tree_method=tree_method)
clf.fit(X, y)
base_score = get_basescore(clf)
dx = da.from_array(X).rechunk(chunks=(32, None))
dy = da.from_array(y).rechunk(chunks=(32,))
dclf = xgb.dask.DaskXGBClassifier(
n_estimators=1, max_depth=1, tree_method=tree_method
)
dclf.client = client
dclf.fit(dx, dy)
dbase_score = get_basescore(dclf)
np.testing.assert_allclose(base_score, dbase_score)
def check_init_estimation_reg(tree_method: str, client: Client) -> None:
"""Test init estimation for regressor."""
from sklearn.datasets import make_regression
# pylint: disable=unbalanced-tuple-unpacking
X, y = make_regression(n_samples=4096 * 2, n_features=32, random_state=1994)
reg = xgb.XGBRegressor(n_estimators=1, max_depth=1, tree_method=tree_method)
reg.fit(X, y)
base_score = get_basescore(reg)
dx = da.from_array(X).rechunk(chunks=(32, None))
dy = da.from_array(y).rechunk(chunks=(32,))
dreg = xgb.dask.DaskXGBRegressor(
n_estimators=1, max_depth=1, tree_method=tree_method
)
dreg.client = client
dreg.fit(dx, dy)
dbase_score = get_basescore(dreg)
np.testing.assert_allclose(base_score, dbase_score)
def check_init_estimation(tree_method: str, client: Client) -> None:
"""Test init estimation."""
check_init_estimation_reg(tree_method, client)
check_init_estimation_clf(tree_method, client)
def check_uneven_nan(client: Client, tree_method: str, n_workers: int) -> None:
"""Issue #9271, not every worker has missing value."""
assert n_workers >= 2
with client.as_current():
clf = xgb.dask.DaskXGBClassifier(tree_method=tree_method)
X = pd.DataFrame({"a": range(10000), "b": range(10000, 0, -1)})
y = pd.Series([*[0] * 5000, *[1] * 5000])
X["a"][:3000:1000] = np.NaN
client.wait_for_workers(n_workers=n_workers)
clf.fit(
dd.from_pandas(X, npartitions=n_workers),
dd.from_pandas(y, npartitions=n_workers),
)
|
from collections.abc import Sequence
from typing import Any, Optional, Union
import PIL.Image
import torch
from torchvision import tv_tensors
from torchvision.prototype.tv_tensors import Label, OneHotLabel
from torchvision.transforms.v2 import functional as F, Transform
from torchvision.transforms.v2._utils import (
_FillType,
_get_fill,
_setup_fill_arg,
_setup_size,
get_bounding_boxes,
has_any,
is_pure_tensor,
query_size,
)
class FixedSizeCrop(Transform):
def __init__(
self,
size: Union[int, Sequence[int]],
fill: Union[_FillType, dict[Union[type, str], _FillType]] = 0,
padding_mode: str = "constant",
) -> None:
super().__init__()
size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."))
self.crop_height = size[0]
self.crop_width = size[1]
self.fill = fill
self._fill = _setup_fill_arg(fill)
self.padding_mode = padding_mode
def check_inputs(self, flat_inputs: list[Any]) -> None:
if not has_any(
flat_inputs,
PIL.Image.Image,
tv_tensors.Image,
is_pure_tensor,
tv_tensors.Video,
):
raise TypeError(
f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video."
)
if has_any(flat_inputs, tv_tensors.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel):
raise TypeError(
f"If a BoundingBoxes is contained in the input sample, "
f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel."
)
def make_params(self, flat_inputs: list[Any]) -> dict[str, Any]:
height, width = query_size(flat_inputs)
new_height = min(height, self.crop_height)
new_width = min(width, self.crop_width)
needs_crop = new_height != height or new_width != width
offset_height = max(height - self.crop_height, 0)
offset_width = max(width - self.crop_width, 0)
r = torch.rand(1)
top = int(offset_height * r)
left = int(offset_width * r)
bounding_boxes: Optional[torch.Tensor]
try:
bounding_boxes = get_bounding_boxes(flat_inputs)
except ValueError:
bounding_boxes = None
if needs_crop and bounding_boxes is not None:
format = bounding_boxes.format
bounding_boxes, canvas_size = F.crop_bounding_boxes(
bounding_boxes.as_subclass(torch.Tensor),
format=format,
top=top,
left=left,
height=new_height,
width=new_width,
)
bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size)
height_and_width = F.convert_bounding_box_format(
bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYWH
)[..., 2:]
is_valid = torch.all(height_and_width > 0, dim=-1)
else:
is_valid = None
pad_bottom = max(self.crop_height - new_height, 0)
pad_right = max(self.crop_width - new_width, 0)
needs_pad = pad_bottom != 0 or pad_right != 0
return dict(
needs_crop=needs_crop,
top=top,
left=left,
height=new_height,
width=new_width,
is_valid=is_valid,
padding=[0, 0, pad_right, pad_bottom],
needs_pad=needs_pad,
)
def transform(self, inpt: Any, params: dict[str, Any]) -> Any:
if params["needs_crop"]:
inpt = self._call_kernel(
F.crop,
inpt,
top=params["top"],
left=params["left"],
height=params["height"],
width=params["width"],
)
if params["is_valid"] is not None:
if isinstance(inpt, (Label, OneHotLabel, tv_tensors.Mask)):
inpt = tv_tensors.wrap(inpt[params["is_valid"]], like=inpt)
elif isinstance(inpt, tv_tensors.BoundingBoxes):
inpt = tv_tensors.wrap(
F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size),
like=inpt,
)
if params["needs_pad"]:
fill = _get_fill(self._fill, type(inpt))
inpt = self._call_kernel(F.pad, inpt, params["padding"], fill=fill, padding_mode=self.padding_mode)
return inpt
|
from typing import Any, Dict, List, Optional, Sequence, Type, Union
import PIL.Image
import torch
from torchvision import tv_tensors
from torchvision.prototype.tv_tensors import Label, OneHotLabel
from torchvision.transforms.v2 import functional as F, Transform
from torchvision.transforms.v2._utils import (
_FillType,
_get_fill,
_setup_fill_arg,
_setup_size,
get_bounding_boxes,
has_any,
is_pure_tensor,
query_size,
)
class FixedSizeCrop(Transform):
def __init__(
self,
size: Union[int, Sequence[int]],
fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
padding_mode: str = "constant",
) -> None:
super().__init__()
size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."))
self.crop_height = size[0]
self.crop_width = size[1]
self.fill = fill
self._fill = _setup_fill_arg(fill)
self.padding_mode = padding_mode
def check_inputs(self, flat_inputs: List[Any]) -> None:
if not has_any(
flat_inputs,
PIL.Image.Image,
tv_tensors.Image,
is_pure_tensor,
tv_tensors.Video,
):
raise TypeError(
f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video."
)
if has_any(flat_inputs, tv_tensors.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel):
raise TypeError(
f"If a BoundingBoxes is contained in the input sample, "
f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel."
)
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
height, width = query_size(flat_inputs)
new_height = min(height, self.crop_height)
new_width = min(width, self.crop_width)
needs_crop = new_height != height or new_width != width
offset_height = max(height - self.crop_height, 0)
offset_width = max(width - self.crop_width, 0)
r = torch.rand(1)
top = int(offset_height * r)
left = int(offset_width * r)
bounding_boxes: Optional[torch.Tensor]
try:
bounding_boxes = get_bounding_boxes(flat_inputs)
except ValueError:
bounding_boxes = None
if needs_crop and bounding_boxes is not None:
format = bounding_boxes.format
bounding_boxes, canvas_size = F.crop_bounding_boxes(
bounding_boxes.as_subclass(torch.Tensor),
format=format,
top=top,
left=left,
height=new_height,
width=new_width,
)
bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size)
height_and_width = F.convert_bounding_box_format(
bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYWH
)[..., 2:]
is_valid = torch.all(height_and_width > 0, dim=-1)
else:
is_valid = None
pad_bottom = max(self.crop_height - new_height, 0)
pad_right = max(self.crop_width - new_width, 0)
needs_pad = pad_bottom != 0 or pad_right != 0
return dict(
needs_crop=needs_crop,
top=top,
left=left,
height=new_height,
width=new_width,
is_valid=is_valid,
padding=[0, 0, pad_right, pad_bottom],
needs_pad=needs_pad,
)
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
if params["needs_crop"]:
inpt = self._call_kernel(
F.crop,
inpt,
top=params["top"],
left=params["left"],
height=params["height"],
width=params["width"],
)
if params["is_valid"] is not None:
if isinstance(inpt, (Label, OneHotLabel, tv_tensors.Mask)):
inpt = tv_tensors.wrap(inpt[params["is_valid"]], like=inpt)
elif isinstance(inpt, tv_tensors.BoundingBoxes):
inpt = tv_tensors.wrap(
F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size),
like=inpt,
)
if params["needs_pad"]:
fill = _get_fill(self._fill, type(inpt))
inpt = self._call_kernel(F.pad, inpt, params["padding"], fill=fill, padding_mode=self.padding_mode)
return inpt
|
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
from mmengine.config import Config, DictAction
from mmengine.runner import Runner
from mmdet.engine.hooks.utils import trigger_visualization_hook
from mmdet.registry import RUNNERS
from mmdet.utils import add_dump_metric, register_all_modules
# TODO: support fuse_conv_bn and format_only
def parse_args():
parser = argparse.ArgumentParser(
description='MMDet test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics')
parser.add_argument(
'--out',
type=str,
help='dump predictions to a pickle file for offline evaluation')
parser.add_argument(
'--show', action='store_true', help='show prediction results')
parser.add_argument(
'--show-dir',
help='directory where painted images will be saved. '
'If specified, it will be automatically saved '
'to the work_dir/timestamp/show_dir')
parser.add_argument(
'--wait-time', type=float, default=2, help='the interval of show (s)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
# register all modules in mmdet into the registries
# do not init the default scope here because it will be init in the runner
register_all_modules(init_default_scope=False)
# load config
cfg = Config.fromfile(args.config)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
if args.show or args.show_dir:
cfg = trigger_visualization_hook(cfg, args)
# Dump predictions
if args.out is not None:
assert args.out.endswith(('.pkl', '.pickle')), \
'The dump file must be a pkl file.'
add_dump_metric(args, cfg)
# build the runner from config
if 'runner_type' not in cfg:
# build the default runner
runner = Runner.from_cfg(cfg)
else:
# build customized runner from the registry
# if 'runner_type' is set in the cfg
runner = RUNNERS.build(cfg)
# start testing
runner.test()
if __name__ == '__main__':
main()
|
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
from mmengine.config import Config, DictAction
from mmengine.runner import Runner
from mmdet.registry import RUNNERS
from mmdet.utils import register_all_modules
# TODO: support fuse_conv_bn and format_only
def parse_args():
parser = argparse.ArgumentParser(
description='MMDet test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics')
parser.add_argument(
'--show', action='store_true', help='show prediction results')
parser.add_argument(
'--show-dir',
help='directory where painted images will be saved. '
'If specified, it will be automatically saved '
'to the work_dir/timestamp/show_dir')
parser.add_argument(
'--wait-time', type=float, default=2, help='the interval of show (s)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def trigger_visualization_hook(cfg, args):
default_hooks = cfg.default_hooks
if 'visualization' in default_hooks:
visualization_hook = default_hooks['visualization']
# Turn on visualization
visualization_hook['draw'] = True
if args.show:
visualization_hook['show'] = True
visualization_hook['wait_time'] = args.wait_time
if args.show_dir:
visualization_hook['test_out_dir'] = args.show_dir
else:
raise RuntimeError(
'VisualizationHook must be included in default_hooks.'
'refer to usage '
'"visualization=dict(type=\'VisualizationHook\')"')
return cfg
def main():
args = parse_args()
# register all modules in mmdet into the registries
# do not init the default scope here because it will be init in the runner
register_all_modules(init_default_scope=False)
# load config
cfg = Config.fromfile(args.config)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
if args.show or args.show_dir:
cfg = trigger_visualization_hook(cfg, args)
# build the runner from config
if 'runner_type' not in cfg:
# build the default runner
runner = Runner.from_cfg(cfg)
else:
# build customized runner from the registry
# if 'runner_type' is set in the cfg
runner = RUNNERS.build(cfg)
# start testing
runner.test()
if __name__ == '__main__':
main()
|
# deprecated, please use the `filelock` package instead
from filelock import ( # noqa: F401 # imported for backward compatibility TODO: remove in 3.0.0
BaseFileLock,
SoftFileLock,
Timeout,
UnixFileLock,
WindowsFileLock,
)
from ._filelock import FileLock # noqa: F401 # imported for backward compatibility. TODO: remove in 3.0.0
|
# deprecated, please use the `filelock` package instead
from filelock import ( # noqa: F401 # imported for backward compatibility
BaseFileLock,
SoftFileLock,
Timeout,
UnixFileLock,
WindowsFileLock,
)
from ._filelock import FileLock # noqa: F401 # imported for backward compatibility
|
"""Init file of LlamaIndex."""
__version__ = "0.12.15"
import logging
from logging import NullHandler
from typing import Callable, Optional
try:
# Force pants to install eval_type_backport on 3.9
import eval_type_backport # noqa # type: ignore
except ImportError:
pass
# response
from llama_index.core.base.response.schema import Response
# import global eval handler
from llama_index.core.callbacks.global_handlers import set_global_handler
from llama_index.core.data_structs.struct_type import IndexStructType
from llama_index.core.embeddings.mock_embed_model import MockEmbedding
# indices
# loading
from llama_index.core.indices import (
ComposableGraph,
DocumentSummaryIndex,
GPTDocumentSummaryIndex,
GPTKeywordTableIndex,
GPTListIndex,
GPTRAKEKeywordTableIndex,
GPTSimpleKeywordTableIndex,
GPTTreeIndex,
GPTVectorStoreIndex,
KeywordTableIndex,
KnowledgeGraphIndex,
ListIndex,
PropertyGraphIndex,
RAKEKeywordTableIndex,
SimpleKeywordTableIndex,
SummaryIndex,
TreeIndex,
VectorStoreIndex,
load_graph_from_storage,
load_index_from_storage,
load_indices_from_storage,
)
# structured
from llama_index.core.indices.common.struct_store.base import (
SQLDocumentContextBuilder,
)
# prompt helper
from llama_index.core.indices.prompt_helper import PromptHelper
# prompts
from llama_index.core.prompts import (
BasePromptTemplate,
ChatPromptTemplate,
# backwards compatibility
Prompt,
PromptTemplate,
SelectorPromptTemplate,
)
from llama_index.core.readers import SimpleDirectoryReader, download_loader
# Response Synthesizer
from llama_index.core.response_synthesizers.factory import get_response_synthesizer
from llama_index.core.schema import Document, QueryBundle
from llama_index.core.service_context import (
ServiceContext,
set_global_service_context,
)
# global settings
from llama_index.core.settings import Settings
# storage
from llama_index.core.storage.storage_context import StorageContext
# sql wrapper
from llama_index.core.utilities.sql_wrapper import SQLDatabase
# global tokenizer
from llama_index.core.utils import get_tokenizer, set_global_tokenizer
# best practices for library logging:
# https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library
logging.getLogger(__name__).addHandler(NullHandler())
__all__ = [
"StorageContext",
"ServiceContext",
"ComposableGraph",
# indices
"SummaryIndex",
"VectorStoreIndex",
"SimpleKeywordTableIndex",
"KeywordTableIndex",
"RAKEKeywordTableIndex",
"TreeIndex",
"DocumentSummaryIndex",
"KnowledgeGraphIndex",
"PropertyGraphIndex",
# indices - legacy names
"GPTKeywordTableIndex",
"GPTKnowledgeGraphIndex",
"GPTSimpleKeywordTableIndex",
"GPTRAKEKeywordTableIndex",
"GPTListIndex",
"ListIndex",
"GPTTreeIndex",
"GPTVectorStoreIndex",
"GPTDocumentSummaryIndex",
"Prompt",
"PromptTemplate",
"BasePromptTemplate",
"ChatPromptTemplate",
"SelectorPromptTemplate",
"SummaryPrompt",
"TreeInsertPrompt",
"TreeSelectPrompt",
"TreeSelectMultiplePrompt",
"RefinePrompt",
"QuestionAnswerPrompt",
"KeywordExtractPrompt",
"QueryKeywordExtractPrompt",
"Response",
"Document",
"SimpleDirectoryReader",
"VellumPredictor",
"VellumPromptRegistry",
"MockEmbedding",
"SQLDatabase",
"SQLDocumentContextBuilder",
"SQLContextBuilder",
"PromptHelper",
"IndexStructType",
"download_loader",
"load_graph_from_storage",
"load_index_from_storage",
"load_indices_from_storage",
"QueryBundle",
"get_response_synthesizer",
"set_global_service_context",
"set_global_handler",
"set_global_tokenizer",
"get_tokenizer",
"Settings",
]
# eval global toggle
from llama_index.core.callbacks.base_handler import BaseCallbackHandler
global_handler: Optional[BaseCallbackHandler] = None
# NOTE: keep for backwards compatibility
SQLContextBuilder = SQLDocumentContextBuilder
# global tokenizer
global_tokenizer: Optional[Callable[[str], list]] = None
|
"""Init file of LlamaIndex."""
__version__ = "0.12.14"
import logging
from logging import NullHandler
from typing import Callable, Optional
try:
# Force pants to install eval_type_backport on 3.9
import eval_type_backport # noqa # type: ignore
except ImportError:
pass
# response
from llama_index.core.base.response.schema import Response
# import global eval handler
from llama_index.core.callbacks.global_handlers import set_global_handler
from llama_index.core.data_structs.struct_type import IndexStructType
from llama_index.core.embeddings.mock_embed_model import MockEmbedding
# indices
# loading
from llama_index.core.indices import (
ComposableGraph,
DocumentSummaryIndex,
GPTDocumentSummaryIndex,
GPTKeywordTableIndex,
GPTListIndex,
GPTRAKEKeywordTableIndex,
GPTSimpleKeywordTableIndex,
GPTTreeIndex,
GPTVectorStoreIndex,
KeywordTableIndex,
KnowledgeGraphIndex,
ListIndex,
PropertyGraphIndex,
RAKEKeywordTableIndex,
SimpleKeywordTableIndex,
SummaryIndex,
TreeIndex,
VectorStoreIndex,
load_graph_from_storage,
load_index_from_storage,
load_indices_from_storage,
)
# structured
from llama_index.core.indices.common.struct_store.base import (
SQLDocumentContextBuilder,
)
# prompt helper
from llama_index.core.indices.prompt_helper import PromptHelper
# prompts
from llama_index.core.prompts import (
BasePromptTemplate,
ChatPromptTemplate,
# backwards compatibility
Prompt,
PromptTemplate,
SelectorPromptTemplate,
)
from llama_index.core.readers import SimpleDirectoryReader, download_loader
# Response Synthesizer
from llama_index.core.response_synthesizers.factory import get_response_synthesizer
from llama_index.core.schema import Document, QueryBundle
from llama_index.core.service_context import (
ServiceContext,
set_global_service_context,
)
# global settings
from llama_index.core.settings import Settings
# storage
from llama_index.core.storage.storage_context import StorageContext
# sql wrapper
from llama_index.core.utilities.sql_wrapper import SQLDatabase
# global tokenizer
from llama_index.core.utils import get_tokenizer, set_global_tokenizer
# best practices for library logging:
# https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library
logging.getLogger(__name__).addHandler(NullHandler())
__all__ = [
"StorageContext",
"ServiceContext",
"ComposableGraph",
# indices
"SummaryIndex",
"VectorStoreIndex",
"SimpleKeywordTableIndex",
"KeywordTableIndex",
"RAKEKeywordTableIndex",
"TreeIndex",
"DocumentSummaryIndex",
"KnowledgeGraphIndex",
"PropertyGraphIndex",
# indices - legacy names
"GPTKeywordTableIndex",
"GPTKnowledgeGraphIndex",
"GPTSimpleKeywordTableIndex",
"GPTRAKEKeywordTableIndex",
"GPTListIndex",
"ListIndex",
"GPTTreeIndex",
"GPTVectorStoreIndex",
"GPTDocumentSummaryIndex",
"Prompt",
"PromptTemplate",
"BasePromptTemplate",
"ChatPromptTemplate",
"SelectorPromptTemplate",
"SummaryPrompt",
"TreeInsertPrompt",
"TreeSelectPrompt",
"TreeSelectMultiplePrompt",
"RefinePrompt",
"QuestionAnswerPrompt",
"KeywordExtractPrompt",
"QueryKeywordExtractPrompt",
"Response",
"Document",
"SimpleDirectoryReader",
"VellumPredictor",
"VellumPromptRegistry",
"MockEmbedding",
"SQLDatabase",
"SQLDocumentContextBuilder",
"SQLContextBuilder",
"PromptHelper",
"IndexStructType",
"download_loader",
"load_graph_from_storage",
"load_index_from_storage",
"load_indices_from_storage",
"QueryBundle",
"get_response_synthesizer",
"set_global_service_context",
"set_global_handler",
"set_global_tokenizer",
"get_tokenizer",
"Settings",
]
# eval global toggle
from llama_index.core.callbacks.base_handler import BaseCallbackHandler
global_handler: Optional[BaseCallbackHandler] = None
# NOTE: keep for backwards compatibility
SQLContextBuilder = SQLDocumentContextBuilder
# global tokenizer
global_tokenizer: Optional[Callable[[str], list]] = None
|
_base_ = '../grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py'
dataset_type = 'Flickr30kDataset'
data_root = 'data/flickr30k_entities/'
test_pipeline = [
dict(
type='LoadImageFromFile', backend_args=None,
imdecode_backend='pillow'),
dict(
type='FixScaleResize',
scale=(800, 1333),
keep_ratio=True,
backend='pillow'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'text', 'custom_entities',
'tokens_positive', 'phrase_ids', 'phrases'))
]
dataset_Flickr30k_val = dict(
type=dataset_type,
data_root=data_root,
ann_file='final_flickr_separateGT_val.json',
data_prefix=dict(img='flickr30k_images/'),
pipeline=test_pipeline,
)
dataset_Flickr30k_test = dict(
type=dataset_type,
data_root=data_root,
ann_file='final_flickr_separateGT_test.json',
data_prefix=dict(img='flickr30k_images/'),
pipeline=test_pipeline,
)
val_evaluator_Flickr30k = dict(type='Flickr30kMetric')
test_evaluator_Flickr30k = dict(type='Flickr30kMetric')
# ----------Config---------- #
dataset_prefixes = ['Flickr30kVal', 'Flickr30kTest']
datasets = [dataset_Flickr30k_val, dataset_Flickr30k_test]
metrics = [val_evaluator_Flickr30k, test_evaluator_Flickr30k]
val_dataloader = dict(
dataset=dict(_delete_=True, type='ConcatDataset', datasets=datasets))
test_dataloader = val_dataloader
val_evaluator = dict(
_delete_=True,
type='MultiDatasetsEvaluator',
metrics=metrics,
dataset_prefixes=dataset_prefixes)
test_evaluator = val_evaluator
|
_base_ = '../grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py'
dataset_type = 'Flickr30kDataset'
data_root = 'data/flickr30k/'
test_pipeline = [
dict(
type='LoadImageFromFile', backend_args=None,
imdecode_backend='pillow'),
dict(
type='FixScaleResize',
scale=(800, 1333),
keep_ratio=True,
backend='pillow'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'text', 'custom_entities',
'tokens_positive', 'phrase_ids', 'phrases'))
]
dataset_Flickr30k_val = dict(
type=dataset_type,
data_root=data_root,
ann_file='mdetr_annotations/final_flickr_separateGT_val.json',
data_prefix=dict(img='flickr30k_images/'),
pipeline=test_pipeline,
)
dataset_Flickr30k_test = dict(
type=dataset_type,
data_root=data_root,
ann_file='mdetr_annotations/final_flickr_separateGT_test.json',
data_prefix=dict(img='flickr30k_images/'),
pipeline=test_pipeline,
)
val_evaluator_Flickr30k = dict(type='Flickr30kMetric')
test_evaluator_Flickr30k = dict(type='Flickr30kMetric')
# ----------Config---------- #
dataset_prefixes = ['Flickr30kVal', 'Flickr30kTest']
datasets = [dataset_Flickr30k_val, dataset_Flickr30k_test]
metrics = [val_evaluator_Flickr30k, test_evaluator_Flickr30k]
val_dataloader = dict(
dataset=dict(_delete_=True, type='ConcatDataset', datasets=datasets))
test_dataloader = val_dataloader
val_evaluator = dict(
_delete_=True,
type='MultiDatasetsEvaluator',
metrics=metrics,
dataset_prefixes=dataset_prefixes)
test_evaluator = val_evaluator
|
# Copyright (c) OpenMMLab. All rights reserved.
from pathlib import Path
from typing import Any, Optional, Union
import torch
import torch.nn as nn
from mmengine.config import Config
from mmengine.runner import load_checkpoint
from torch import Tensor
from mmdet.core import ConfigType, OptConfigType, SampleList
from mmdet.registry import MODELS
from .single_stage import SingleStageDetector
@MODELS.register_module()
class KnowledgeDistillationSingleStageDetector(SingleStageDetector):
r"""Implementation of `Distilling the Knowledge in a Neural Network.
<https://arxiv.org/abs/1503.02531>`_.
Args:
teacher_config (:obj:`ConfigDict` | dict | str | Path): Config file
path or the config object of teacher model.
teacher_ckpt (str, optional): Checkpoint path of teacher model.
If left as None, the model will not load any weights.
"""
def __init__(
self,
backbone: ConfigType,
neck: ConfigType,
bbox_head: ConfigType,
teacher_config: Union[ConfigType, str, Path],
teacher_ckpt: Optional[str] = None,
eval_teacher: bool = True,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
preprocess_cfg: OptConfigType = None,
) -> None:
super().__init__(
backbone=backbone,
neck=neck,
bbox_head=bbox_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
preprocess_cfg=preprocess_cfg)
self.eval_teacher = eval_teacher
# Build teacher model
if isinstance(teacher_config, (str, Path)):
teacher_config = Config.fromfile(teacher_config)
self.teacher_model = MODELS.build(teacher_config['model'])
if teacher_ckpt is not None:
load_checkpoint(
self.teacher_model, teacher_ckpt, map_location='cpu')
def forward_train(self, batch_inputs: Tensor,
batch_data_samples: SampleList, **kwargs) -> dict:
"""
Args:
batch_inputs (Tensor): Input images of shape (N, C, H, W).
These should usually be mean centered and std scaled.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
x = self.extract_feat(batch_inputs)
with torch.no_grad():
teacher_x = self.teacher_model.extract_feat(batch_inputs)
out_teacher = self.teacher_model.bbox_head(teacher_x)
losses = self.bbox_head.forward_train(x, out_teacher,
batch_data_samples)
return losses
def cuda(self, device: Optional[str] = None) -> nn.Module:
"""Since teacher_model is registered as a plain object, it is necessary
to put the teacher model to cuda when calling ``cuda`` function."""
self.teacher_model.cuda(device=device)
return super().cuda(device=device)
def to(self, device: Optional[str] = None) -> nn.Module:
"""Since teacher_model is registered as a plain object, it is necessary
to put the teacher model to other device when calling ``to``
function."""
self.teacher_model.to(device=device)
return super().to(device=device)
def train(self, mode: bool = True) -> None:
"""Set the same train mode for teacher and student model."""
if self.eval_teacher:
self.teacher_model.train(False)
else:
self.teacher_model.train(mode)
super().train(mode)
def __setattr__(self, name: str, value: Any) -> None:
"""Set attribute, i.e. self.name = value
This reloading prevent the teacher model from being registered as a
nn.Module. The teacher module is registered as a plain object, so that
the teacher parameters will not show up when calling
``self.parameters``, ``self.modules``, ``self.children`` methods.
"""
if name == 'teacher_model':
object.__setattr__(self, name, value)
else:
super().__setattr__(name, value)
|
# Copyright (c) OpenMMLab. All rights reserved.
from pathlib import Path
import mmcv
import torch
from mmcv.runner import load_checkpoint
from mmdet.registry import MODELS
from .. import build_detector
from .single_stage import SingleStageDetector
@MODELS.register_module()
class KnowledgeDistillationSingleStageDetector(SingleStageDetector):
r"""Implementation of `Distilling the Knowledge in a Neural Network.
<https://arxiv.org/abs/1503.02531>`_.
Args:
teacher_config (str | dict): Config file path
or the config object of teacher model.
teacher_ckpt (str, optional): Checkpoint path of teacher model.
If left as None, the model will not load any weights.
"""
def __init__(self,
backbone,
neck,
bbox_head,
teacher_config,
teacher_ckpt=None,
eval_teacher=True,
train_cfg=None,
test_cfg=None,
pretrained=None):
super().__init__(backbone, neck, bbox_head, train_cfg, test_cfg,
pretrained)
self.eval_teacher = eval_teacher
# Build teacher model
if isinstance(teacher_config, (str, Path)):
teacher_config = mmcv.Config.fromfile(teacher_config)
self.teacher_model = build_detector(teacher_config['model'])
if teacher_ckpt is not None:
load_checkpoint(
self.teacher_model, teacher_ckpt, map_location='cpu')
def forward_train(self,
img,
img_metas,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=None):
"""
Args:
img (Tensor): Input images of shape (N, C, H, W).
Typically these should be mean centered and std scaled.
img_metas (list[dict]): A List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
:class:`mmdet.datasets.pipelines.Collect`.
gt_bboxes (list[Tensor]): Each item are the truth boxes for each
image in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): Class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]): Specify which bounding
boxes can be ignored when computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
x = self.extract_feat(img)
with torch.no_grad():
teacher_x = self.teacher_model.extract_feat(img)
out_teacher = self.teacher_model.bbox_head(teacher_x)
losses = self.bbox_head.forward_train(x, out_teacher, img_metas,
gt_bboxes, gt_labels,
gt_bboxes_ignore)
return losses
def cuda(self, device=None):
"""Since teacher_model is registered as a plain object, it is necessary
to put the teacher model to cuda when calling cuda function."""
self.teacher_model.cuda(device=device)
return super().cuda(device=device)
def train(self, mode=True):
"""Set the same train mode for teacher and student model."""
if self.eval_teacher:
self.teacher_model.train(False)
else:
self.teacher_model.train(mode)
super().train(mode)
def __setattr__(self, name, value):
"""Set attribute, i.e. self.name = value
This reloading prevent the teacher model from being registered as a
nn.Module. The teacher module is registered as a plain object, so that
the teacher parameters will not show up when calling
``self.parameters``, ``self.modules``, ``self.children`` methods.
"""
if name == 'teacher_model':
object.__setattr__(self, name, value)
else:
super().__setattr__(name, value)
|
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torchvision_available, is_vision_available
from ...test_video_processing_common import VideoProcessingTestMixin, prepare_video_inputs
if is_vision_available():
if is_torchvision_available():
from transformers import LlavaOnevisionVideoProcessor
class LlavaOnevisionVideoProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_frames=8,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=OPENAI_CLIP_MEAN,
image_std=OPENAI_CLIP_STD,
do_convert_rgb=True,
):
size = size if size is not None else {"height": 20, "width": 20}
self.parent = parent
self.batch_size = batch_size
self.num_frames = num_frames
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_video_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def expected_output_video_shape(self, video):
return self.num_frames, self.num_channels, self.size["height"], self.size["width"]
def prepare_video_inputs(self, equal_resolution=False, return_tensors="pil"):
videos = prepare_video_inputs(
batch_size=self.batch_size,
num_frames=self.num_frames,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
return_tensors=return_tensors,
)
return videos
@require_torch
@require_vision
class LlavaOnevisionVideoProcessingTest(VideoProcessingTestMixin, unittest.TestCase):
fast_video_processing_class = LlavaOnevisionVideoProcessor if is_torchvision_available() else None
def setUp(self):
super().setUp()
self.video_processor_tester = LlavaOnevisionVideoProcessingTester(self)
@property
def video_processor_dict(self):
return self.video_processor_tester.prepare_video_processor_dict()
def test_video_processor_properties(self):
video_processing = self.fast_video_processing_class(**self.video_processor_dict)
self.assertTrue(hasattr(video_processing, "do_resize"))
self.assertTrue(hasattr(video_processing, "size"))
self.assertTrue(hasattr(video_processing, "do_normalize"))
self.assertTrue(hasattr(video_processing, "image_mean"))
self.assertTrue(hasattr(video_processing, "image_std"))
self.assertTrue(hasattr(video_processing, "do_convert_rgb"))
def test_video_processor_from_dict_with_kwargs(self):
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict)
self.assertEqual(video_processor.size, {"height": 20, "width": 20})
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict, size=42)
self.assertEqual(video_processor.size, {"shortest_edge": 42})
|
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
from ...test_video_processing_common import VideoProcessingTestMixin, prepare_video_inputs
if is_torch_available():
pass
if is_vision_available():
if is_torchvision_available():
from transformers import LlavaOnevisionVideoProcessor
class LlavaOnevisionVideoProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_frames=8,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=OPENAI_CLIP_MEAN,
image_std=OPENAI_CLIP_STD,
do_convert_rgb=True,
):
size = size if size is not None else {"height": 20, "width": 20}
self.parent = parent
self.batch_size = batch_size
self.num_frames = num_frames
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_video_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def expected_output_video_shape(self, video):
return self.num_frames, self.num_channels, self.size["height"], self.size["width"]
def prepare_video_inputs(self, equal_resolution=False, return_tensors="pil"):
videos = prepare_video_inputs(
batch_size=self.batch_size,
num_frames=self.num_frames,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
return_tensors=return_tensors,
)
return videos
@require_torch
@require_vision
class LlavaOnevisionVideoProcessingTest(VideoProcessingTestMixin, unittest.TestCase):
fast_video_processing_class = LlavaOnevisionVideoProcessor if is_torchvision_available() else None
def setUp(self):
super().setUp()
self.video_processor_tester = LlavaOnevisionVideoProcessingTester(self)
@property
def video_processor_dict(self):
return self.video_processor_tester.prepare_video_processor_dict()
def test_video_processor_properties(self):
video_processing = self.fast_video_processing_class(**self.video_processor_dict)
self.assertTrue(hasattr(video_processing, "do_resize"))
self.assertTrue(hasattr(video_processing, "size"))
self.assertTrue(hasattr(video_processing, "do_normalize"))
self.assertTrue(hasattr(video_processing, "image_mean"))
self.assertTrue(hasattr(video_processing, "image_std"))
self.assertTrue(hasattr(video_processing, "do_convert_rgb"))
def test_video_processor_from_dict_with_kwargs(self):
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict)
self.assertEqual(video_processor.size, {"height": 20, "width": 20})
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict, size=42)
self.assertEqual(video_processor.size, {"shortest_edge": 42})
|
from torchvision.transforms import InterpolationMode # usort: skip
from ._utils import is_pure_tensor, register_kernel # usort: skip
from ._meta import (
clamp_bounding_boxes,
convert_bounding_box_format,
get_dimensions_image,
get_dimensions_video,
get_dimensions,
get_num_frames_video,
get_num_frames,
get_image_num_channels,
get_num_channels_image,
get_num_channels_video,
get_num_channels,
get_size_bounding_boxes,
get_size_image,
get_size_mask,
get_size_video,
get_size,
) # usort: skip
from ._augment import erase, erase_image, erase_video, jpeg, jpeg_image, jpeg_video
from ._color import (
adjust_brightness,
adjust_brightness_image,
adjust_brightness_video,
adjust_contrast,
adjust_contrast_image,
adjust_contrast_video,
adjust_gamma,
adjust_gamma_image,
adjust_gamma_video,
adjust_hue,
adjust_hue_image,
adjust_hue_video,
adjust_saturation,
adjust_saturation_image,
adjust_saturation_video,
adjust_sharpness,
adjust_sharpness_image,
adjust_sharpness_video,
autocontrast,
autocontrast_image,
autocontrast_video,
equalize,
equalize_image,
equalize_video,
grayscale_to_rgb,
grayscale_to_rgb_image,
invert,
invert_image,
invert_video,
permute_channels,
permute_channels_image,
permute_channels_video,
posterize,
posterize_image,
posterize_video,
rgb_to_grayscale,
rgb_to_grayscale_image,
solarize,
solarize_image,
solarize_video,
to_grayscale,
)
from ._geometry import (
affine,
affine_bounding_boxes,
affine_image,
affine_mask,
affine_video,
center_crop,
center_crop_bounding_boxes,
center_crop_image,
center_crop_mask,
center_crop_video,
crop,
crop_bounding_boxes,
crop_image,
crop_mask,
crop_video,
elastic,
elastic_bounding_boxes,
elastic_image,
elastic_mask,
elastic_transform,
elastic_video,
five_crop,
five_crop_image,
five_crop_video,
hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file
horizontal_flip,
horizontal_flip_bounding_boxes,
horizontal_flip_image,
horizontal_flip_mask,
horizontal_flip_video,
pad,
pad_bounding_boxes,
pad_image,
pad_mask,
pad_video,
perspective,
perspective_bounding_boxes,
perspective_image,
perspective_mask,
perspective_video,
resize,
resize_bounding_boxes,
resize_image,
resize_mask,
resize_video,
resized_crop,
resized_crop_bounding_boxes,
resized_crop_image,
resized_crop_mask,
resized_crop_video,
rotate,
rotate_bounding_boxes,
rotate_image,
rotate_mask,
rotate_video,
ten_crop,
ten_crop_image,
ten_crop_video,
vertical_flip,
vertical_flip_bounding_boxes,
vertical_flip_image,
vertical_flip_mask,
vertical_flip_video,
vflip,
)
from ._misc import (
convert_image_dtype,
gaussian_blur,
gaussian_blur_image,
gaussian_blur_video,
gaussian_noise,
gaussian_noise_image,
gaussian_noise_video,
normalize,
normalize_image,
normalize_video,
sanitize_bounding_boxes,
to_dtype,
to_dtype_image,
to_dtype_video,
)
from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video
from ._type_conversion import pil_to_tensor, to_image, to_pil_image
from ._deprecated import get_image_size, to_tensor # usort: skip
|
from torchvision.transforms import InterpolationMode # usort: skip
from ._utils import is_pure_tensor, register_kernel # usort: skip
from ._meta import (
clamp_bounding_boxes,
convert_bounding_box_format,
get_dimensions_image,
get_dimensions_video,
get_dimensions,
get_num_frames_video,
get_num_frames,
get_image_num_channels,
get_num_channels_image,
get_num_channels_video,
get_num_channels,
get_size_bounding_boxes,
get_size_image,
get_size_mask,
get_size_video,
get_size,
) # usort: skip
from ._augment import erase, erase_image, erase_video, jpeg, jpeg_image, jpeg_video
from ._color import (
adjust_brightness,
adjust_brightness_image,
adjust_brightness_video,
adjust_contrast,
adjust_contrast_image,
adjust_contrast_video,
adjust_gamma,
adjust_gamma_image,
adjust_gamma_video,
adjust_hue,
adjust_hue_image,
adjust_hue_video,
adjust_saturation,
adjust_saturation_image,
adjust_saturation_video,
adjust_sharpness,
adjust_sharpness_image,
adjust_sharpness_video,
autocontrast,
autocontrast_image,
autocontrast_video,
equalize,
equalize_image,
equalize_video,
grayscale_to_rgb,
grayscale_to_rgb_image,
invert,
invert_image,
invert_video,
permute_channels,
permute_channels_image,
permute_channels_video,
posterize,
posterize_image,
posterize_video,
rgb_to_grayscale,
rgb_to_grayscale_image,
solarize,
solarize_image,
solarize_video,
to_grayscale,
)
from ._geometry import (
affine,
affine_bounding_boxes,
affine_image,
affine_mask,
affine_video,
center_crop,
center_crop_bounding_boxes,
center_crop_image,
center_crop_mask,
center_crop_video,
crop,
crop_bounding_boxes,
crop_image,
crop_mask,
crop_video,
elastic,
elastic_bounding_boxes,
elastic_image,
elastic_mask,
elastic_transform,
elastic_video,
five_crop,
five_crop_image,
five_crop_video,
hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file
horizontal_flip,
horizontal_flip_bounding_boxes,
horizontal_flip_image,
horizontal_flip_mask,
horizontal_flip_video,
pad,
pad_bounding_boxes,
pad_image,
pad_mask,
pad_video,
perspective,
perspective_bounding_boxes,
perspective_image,
perspective_mask,
perspective_video,
resize,
resize_bounding_boxes,
resize_image,
resize_mask,
resize_video,
resized_crop,
resized_crop_bounding_boxes,
resized_crop_image,
resized_crop_mask,
resized_crop_video,
rotate,
rotate_bounding_boxes,
rotate_image,
rotate_mask,
rotate_video,
ten_crop,
ten_crop_image,
ten_crop_video,
vertical_flip,
vertical_flip_bounding_boxes,
vertical_flip_image,
vertical_flip_mask,
vertical_flip_video,
vflip,
)
from ._misc import (
convert_image_dtype,
gaussian_blur,
gaussian_blur_image,
gaussian_blur_video,
normalize,
normalize_image,
normalize_video,
sanitize_bounding_boxes,
to_dtype,
to_dtype_image,
to_dtype_video,
)
from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video
from ._type_conversion import pil_to_tensor, to_image, to_pil_image
from ._deprecated import get_image_size, to_tensor # usort: skip
|
from langchain_core.retrievers import BaseRetriever, Document
class SequentialRetriever(BaseRetriever):
"""Test util that returns a sequence of documents"""
sequential_responses: list[list[Document]]
response_index: int = 0
def _get_relevant_documents( # type: ignore[override]
self,
query: str,
) -> list[Document]:
if self.response_index >= len(self.sequential_responses):
return []
else:
self.response_index += 1
return self.sequential_responses[self.response_index - 1]
async def _aget_relevant_documents( # type: ignore[override]
self,
query: str,
) -> list[Document]:
return self._get_relevant_documents(query)
|
from typing import List
from langchain_core.retrievers import BaseRetriever, Document
class SequentialRetriever(BaseRetriever):
"""Test util that returns a sequence of documents"""
sequential_responses: List[List[Document]]
response_index: int = 0
def _get_relevant_documents( # type: ignore[override]
self,
query: str,
) -> List[Document]:
if self.response_index >= len(self.sequential_responses):
return []
else:
self.response_index += 1
return self.sequential_responses[self.response_index - 1]
async def _aget_relevant_documents( # type: ignore[override]
self,
query: str,
) -> List[Document]:
return self._get_relevant_documents(query)
|
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
import subprocess
from typing import List
import numpy as np
import pytest
from jina import Document, DocumentArray, Flow
from ...image_tf_encoder import ImageTFEncoder
input_dim = 336
target_output_dim = 1280
@pytest.mark.parametrize(
'arr_in',
[
(np.ones((input_dim, input_dim, 3), dtype=np.float32)),
],
)
def test_tf_no_batch(arr_in: np.ndarray):
flow = Flow().add(uses=ImageTFEncoder)
with flow:
results = flow.post(
on='/test',
inputs=DocumentArray([Document(blob=arr_in)]),
return_results=True,
)
assert len(results[0].docs) == 1
assert results[0].docs[0].embedding.shape == (target_output_dim,)
def test_tf_batch():
flow = Flow().add(uses=ImageTFEncoder)
with flow:
results = flow.post(
on='/test',
inputs=(
Document(blob=np.ones((input_dim, input_dim, 3), dtype=np.float32))
for _ in range(25)
),
return_results=True,
)
assert len(results[0].docs.get_attributes('embedding')) == 25
assert results[0].docs.get_attributes('embedding')[0].shape == (
target_output_dim,
)
@pytest.mark.parametrize(
['docs', 'docs_per_path', 'traversal_paths'],
[
(
pytest.lazy_fixture('docs_with_blobs'),
[[['r'], 10], [['c'], 0], [['cc'], 0]],
['r'],
),
(
pytest.lazy_fixture('docs_with_chunk_blobs'),
[[['r'], 0], [['c'], 10], [['cc'], 0]],
['c'],
),
(
pytest.lazy_fixture('docs_with_chunk_chunk_blobs'),
[[['r'], 0], [['c'], 0], [['cc'], 10]],
['cc'],
),
],
)
def test_traversal_path(
docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: List[str]
):
flow = Flow().add(uses=ImageTFEncoder)
with flow:
results = flow.post(
on='/test',
inputs=docs,
parameters={'traversal_paths': traversal_paths},
return_results=True,
)
for path, count in docs_per_path:
embeddings = (
DocumentArray(results[0].docs)
.traverse_flat(path)
.get_attributes('embedding')
)
assert len([x for x in embeddings if x is not None]) == count
@pytest.mark.docker
def test_docker_runtime(build_docker_image: str):
with pytest.raises(subprocess.TimeoutExpired):
subprocess.run(
['jina', 'executor', f'--uses=docker://{build_docker_image}'],
timeout=30,
check=True,
)
@pytest.mark.gpu
@pytest.mark.docker
def test_docker_runtime_gpu(build_docker_image_gpu: str):
with pytest.raises(subprocess.TimeoutExpired):
subprocess.run(
[
'jina',
'pea',
f'--uses=docker://{build_docker_image_gpu}',
'--gpus',
'all',
'--uses-with',
'device:"/GPU:0"',
],
timeout=30,
check=True,
)
|
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
from typing import List
import numpy as np
import pytest
from jina import Flow, Document, DocumentArray
from ...image_tf_encoder import ImageTFEncoder
input_dim = 336
target_output_dim = 1280
@pytest.mark.parametrize('arr_in', [
(np.ones((input_dim, input_dim, 3), dtype=np.float32)),
])
def test_tf_no_batch(arr_in: np.ndarray):
flow = Flow().add(uses=ImageTFEncoder)
with flow:
results = flow.post(
on='/test',
inputs=DocumentArray([Document(blob=arr_in)]),
return_results=True
)
assert len(results[0].docs) == 1
assert results[0].docs[0].embedding.shape == (target_output_dim,)
def test_tf_batch():
flow = Flow().add(uses=ImageTFEncoder)
with flow:
results = flow.post(
on='/test',
inputs=(Document(blob=np.ones((input_dim, input_dim, 3), dtype=np.float32)) for _ in range(25)),
return_results=True
)
assert len(results[0].docs.get_attributes('embedding')) == 25
assert results[0].docs.get_attributes('embedding')[0].shape == (target_output_dim,)
@pytest.mark.parametrize(
['docs', 'docs_per_path', 'traversal_paths'],
[
(pytest.lazy_fixture('docs_with_blobs'), [[['r'], 10], [['c'], 0], [['cc'], 0]], ['r']),
(pytest.lazy_fixture('docs_with_chunk_blobs'), [[['r'], 0], [['c'], 10], [['cc'], 0]], ['c']),
(pytest.lazy_fixture('docs_with_chunk_chunk_blobs'), [[['r'], 0], [['c'], 0], [['cc'], 10]], ['cc'])
]
)
def test_traversal_path(docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: List[str]):
flow = Flow().add(uses=ImageTFEncoder)
with flow:
results = flow.post(
on='/test',
inputs=docs,
parameters={'traversal_paths': traversal_paths},
return_results=True
)
for path, count in docs_per_path:
assert len(DocumentArray(results[0].docs).traverse_flat(path).get_attributes('embedding')) == count
|
from typing import Dict, Iterable
import torch
from torch import Tensor, nn
class MSELoss(nn.Module):
def __init__(self, model):
"""
Computes the MSE loss between the computed sentence embedding and a target sentence embedding. This loss
is used when extending sentence embeddings to new languages as described in our publication
Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation.
For an example, see `the distillation documentation <../../examples/training/distillation/README.html>`_ on extending language models to new languages.
Args:
model: SentenceTransformerModel
References:
- Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation: https://arxiv.org/abs/2004.09813
- `Training > Model Distillation <../../examples/training/distillation/README.html>`_
- `Training > Multilingual Models <../../examples/training/multilingual/README.html>`_
Requirements:
1. Usually uses a finetuned teacher M in a knowledge distillation setup
Relations:
- :class:`MarginMSELoss` is equivalent to this loss, but with a margin through a negative pair.
Input:
+-----------------------------------------+-----------------------------+
| Texts | Labels |
+=========================================+=============================+
| sentence | model sentence embeddings |
+-----------------------------------------+-----------------------------+
| sentence_1, sentence_2, ..., sentence_N | model sentence embeddings |
+-----------------------------------------+-----------------------------+
Example:
::
from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses
from datasets import Dataset
student_model = SentenceTransformer("microsoft/mpnet-base")
teacher_model = SentenceTransformer("all-mpnet-base-v2")
train_dataset = Dataset.from_dict({
"english": ["The first sentence", "The second sentence", "The third sentence", "The fourth sentence"],
"french": ["La première phrase", "La deuxième phrase", "La troisième phrase", "La quatrième phrase"],
})
def compute_labels(batch):
return {
"label": teacher_model.encode(batch["english"])
}
train_dataset = train_dataset.map(compute_labels, batched=True)
loss = losses.MSELoss(student_model)
trainer = SentenceTransformerTrainer(
model=student_model,
train_dataset=train_dataset,
loss=loss,
)
trainer.train()
"""
super(MSELoss, self).__init__()
self.model = model
self.loss_fct = nn.MSELoss()
def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor):
# Concatenate multiple inputs on the batch dimension
if len(sentence_features) > 1:
embeddings = torch.cat([self.model(inputs)["sentence_embedding"] for inputs in sentence_features], dim=0)
# Repeat the labels for each input
return self.loss_fct(embeddings, labels.repeat(len(sentence_features), 1))
embeddings = self.model(sentence_features[0])["sentence_embedding"]
return self.loss_fct(embeddings, labels)
@property
def citation(self) -> str:
return """
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
"""
|
from torch import nn, Tensor
from typing import Iterable, Dict
class MSELoss(nn.Module):
def __init__(self, model):
"""
Computes the MSE loss between the computed sentence embedding and a target sentence embedding. This loss
is used when extending sentence embeddings to new languages as described in our publication
Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation.
For an example, see `the distillation documentation <../../examples/training/distillation/README.html>`_ on extending language models to new languages.
:param model: SentenceTransformerModel
References:
- Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation: https://arxiv.org/abs/2004.09813
- `Training > Model Distillation <../../examples/training/distillation/README.html>`_
- `Training > Multilingual Models <../../examples/training/multilingual/README.html>`_
Requirements:
1. Usually uses a finetuned teacher M in a knowledge distillation setup
Relations:
- :class:`MarginMSELoss` is equivalent to this loss, but with a margin through a negative pair.
Input:
+-------------------+-----------------------------+
| Texts | Labels |
+===================+=============================+
| single sentences | model sentence embeddings |
+-------------------+-----------------------------+
Example::
from sentence_transformers import SentenceTransformer, InputExample, losses
from torch.utils.data import DataLoader
model_en = SentenceTransformer('bert-base-cased')
model_fr = SentenceTransformer('flaubert/flaubert_base_cased')
examples_en = ['The first sentence', 'The second sentence', 'The third sentence', 'The fourth sentence']
examples_fr = ['La première phrase', 'La deuxième phrase', 'La troisième phrase', 'La quatrième phrase']
train_batch_size = 2
labels_en_en = model_en.encode(examples_en)
examples_en_fr = [InputExample(texts=[x], label=labels_en_en[i]) for i, x in enumerate(examples_en)]
loader_en_fr = DataLoader(examples_en_fr, batch_size=train_batch_size)
examples_fr_fr = [InputExample(texts=[x], label=labels_en_en[i]) for i, x in enumerate(examples_fr)]
loader_fr_fr = DataLoader(examples_fr_fr, batch_size=train_batch_size)
train_loss = losses.MSELoss(model=model_fr)
model_fr.fit(
[(loader_en_fr, train_loss), (loader_fr_fr, train_loss)],
epochs=10,
)
"""
super(MSELoss, self).__init__()
self.model = model
self.loss_fct = nn.MSELoss()
def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor):
rep = self.model(sentence_features[0])["sentence_embedding"]
return self.loss_fct(rep, labels)
|
import subprocess
import pytest
from jina import Document, DocumentArray, Flow
from ...dpr_text import DPRTextEncoder
_EMBEDDING_DIM = 768
@pytest.mark.parametrize('request_size', [1, 10, 50, 100])
def test_integration(request_size: int):
docs = DocumentArray(
[Document(text='just some random text here') for _ in range(50)]
)
with Flow(return_results=True).add(uses=DPRTextEncoder) as flow:
resp = flow.post(
on='/index',
inputs=docs,
request_size=request_size,
return_results=True,
)
assert sum(len(resp_batch.docs) for resp_batch in resp) == 50
for r in resp:
for doc in r.docs:
assert doc.embedding.shape == (_EMBEDDING_DIM,)
@pytest.mark.docker
def test_docker_runtime(build_docker_image: str):
with pytest.raises(subprocess.TimeoutExpired):
subprocess.run(
[
'jina',
'executor',
f'--uses=docker://{build_docker_image}',
'--volumes=.cache:/workspace/.cache',
],
timeout=30,
check=True,
)
|
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
import pytest
from jina import Document, DocumentArray, Flow
from ...dpr_text import DPRTextEncoder
@pytest.mark.parametrize('request_size', [1, 10, 50, 100])
def test_integration(request_size: int):
docs = DocumentArray(
[Document(text='just some random text here') for _ in range(50)]
)
with Flow(return_results=True).add(uses=DPRTextEncoder) as flow:
resp = flow.post(
on='/index',
inputs=docs,
request_size=request_size,
return_results=True,
)
assert sum(len(resp_batch.docs) for resp_batch in resp) == 50
for r in resp:
for doc in r.docs:
assert doc.embedding is not None
assert doc.embedding.shape == (768,)
|
_base_ = '../_base_/default_runtime.py'
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
# file_client_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection/',
# 'data/': 's3://openmmlab/datasets/detection/'
# }))
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='RandomResize', scale=[(1333, 640), (1333, 800)]),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
batch_sampler=dict(type='AspectRatioBatchSampler'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='RepeatDataset',
times=3,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_val2017.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=test_pipeline)))
test_dataloader = val_dataloader
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/instances_val2017.json',
metric='bbox')
test_evaluator = val_evaluator
# training schedule for 3x with `RepeatDataset`
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning rate
# Experiments show that using milestones=[9, 11] has higher performance
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
milestones=[9, 11],
gamma=0.1)
]
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
|
_base_ = '../_base_/default_runtime.py'
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
# file_client_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection/',
# 'data/': 's3://openmmlab/datasets/detection/'
# }))
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(
type='RandomResize', scale=[(1333, 640), (1333, 800)],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
batch_sampler=dict(type='AspectRatioBatchSampler'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_val2017.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/instances_val2017.json',
metric='bbox')
test_evaluator = val_evaluator
# TODO: use repeat dataset wrapper
# training schedule for 3x
train_cfg = dict(by_epoch=True, max_epochs=36)
val_cfg = dict(interval=3)
test_cfg = dict()
# learning rate
# Experiments show that using milestones=[27, 33] has higher performance
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=36,
by_epoch=True,
milestones=[27, 33],
gamma=0.1)
]
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
|
"""DO NOT EDIT.
This file was autogenerated. Do not edit it by hand,
since your modifications would be overwritten.
"""
from keras.src.quantizers import deserialize as deserialize
from keras.src.quantizers import get as get
from keras.src.quantizers import serialize as serialize
from keras.src.quantizers.quantizers import AbsMaxQuantizer as AbsMaxQuantizer
from keras.src.quantizers.quantizers import Quantizer as Quantizer
from keras.src.quantizers.quantizers import abs_max_quantize as abs_max_quantize
from keras.src.quantizers.quantizers import (
compute_float8_amax_history as compute_float8_amax_history,
)
from keras.src.quantizers.quantizers import (
compute_float8_scale as compute_float8_scale,
)
from keras.src.quantizers.quantizers import (
fake_quant_with_min_max_vars as fake_quant_with_min_max_vars,
)
from keras.src.quantizers.quantizers import (
quantize_and_dequantize as quantize_and_dequantize,
)
|
"""DO NOT EDIT.
This file was autogenerated. Do not edit it by hand,
since your modifications would be overwritten.
"""
from keras.src.quantizers import deserialize
from keras.src.quantizers import get
from keras.src.quantizers import serialize
from keras.src.quantizers.quantizers import AbsMaxQuantizer
from keras.src.quantizers.quantizers import Quantizer
from keras.src.quantizers.quantizers import abs_max_quantize
from keras.src.quantizers.quantizers import compute_float8_amax_history
from keras.src.quantizers.quantizers import compute_float8_scale
from keras.src.quantizers.quantizers import fake_quant_with_min_max_vars
from keras.src.quantizers.quantizers import quantize_and_dequantize
|
import os
from contextlib import ExitStack
from pathlib import Path
from langchain_community.document_loaders import (
UnstructuredAPIFileIOLoader,
UnstructuredAPIFileLoader,
UnstructuredFileLoader,
)
EXAMPLE_DOCS_DIRECTORY = str(Path(__file__).parent.parent / "examples/")
def test_unstructured_loader_with_post_processor() -> None:
def add_the_end(text: str) -> str:
return text + "THE END!"
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf")
loader = UnstructuredFileLoader(
file_path=file_path,
post_processors=[add_the_end],
strategy="fast",
mode="elements",
)
docs = loader.load()
assert len(docs) > 1
assert docs[0].page_content.endswith("THE END!")
def test_unstructured_file_loader_multiple_files() -> None:
"""Test unstructured loader."""
file_paths = [
os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf"),
os.path.join(EXAMPLE_DOCS_DIRECTORY, "whatsapp_chat.txt"),
]
loader = UnstructuredFileLoader(
file_path=file_paths,
strategy="fast",
mode="elements",
)
docs = loader.load()
assert len(docs) > 1
def test_unstructured_api_file_loader() -> None:
"""Test unstructured loader."""
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf")
loader = UnstructuredAPIFileLoader(
file_path=file_path,
api_key="FAKE_API_KEY",
strategy="fast",
mode="elements",
)
docs = loader.load()
assert len(docs) > 1
def test_unstructured_api_file_loader_multiple_files() -> None:
"""Test unstructured loader."""
file_paths = [
os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf"),
os.path.join(EXAMPLE_DOCS_DIRECTORY, "whatsapp_chat.txt"),
]
loader = UnstructuredAPIFileLoader(
file_path=file_paths,
api_key="FAKE_API_KEY",
strategy="fast",
mode="elements",
)
docs = loader.load()
assert len(docs) > 1
def test_unstructured_api_file_io_loader() -> None:
"""Test unstructured loader."""
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf")
with open(file_path, "rb") as f:
loader = UnstructuredAPIFileIOLoader(
file=f,
api_key="FAKE_API_KEY",
strategy="fast",
mode="elements",
file_filename=file_path,
)
docs = loader.load()
assert len(docs) > 1
def test_unstructured_api_file_loader_io_multiple_files() -> None:
"""Test unstructured loader."""
file_paths = [
os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf"),
os.path.join(EXAMPLE_DOCS_DIRECTORY, "whatsapp_chat.txt"),
]
with ExitStack() as stack:
files = [stack.enter_context(open(file_path, "rb")) for file_path in file_paths]
loader = UnstructuredAPIFileIOLoader(
file=files,
api_key="FAKE_API_KEY",
strategy="fast",
mode="elements",
file_filenames=file_paths,
)
docs = loader.load()
assert len(docs) > 1
|
import os
from contextlib import ExitStack
from pathlib import Path
from langchain_community.document_loaders import (
UnstructuredAPIFileIOLoader,
UnstructuredAPIFileLoader,
UnstructuredFileLoader,
)
EXAMPLE_DOCS_DIRECTORY = str(Path(__file__).parent.parent / "examples/")
def test_unstructured_loader_with_post_processor() -> None:
def add_the_end(text: str) -> str:
return text + "THE END!"
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf")
loader = UnstructuredFileLoader(
file_path=file_path,
post_processors=[add_the_end],
strategy="fast",
mode="elements",
)
docs = loader.load()
assert len(docs) > 1
assert docs[0].page_content.endswith("THE END!")
def test_unstructured_file_loader_multiple_files() -> None:
"""Test unstructured loader."""
file_paths = [
os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf"),
os.path.join(EXAMPLE_DOCS_DIRECTORY, "whatsapp_chat.txt"),
]
loader = UnstructuredFileLoader(
file_path=file_paths,
strategy="fast",
mode="elements",
)
docs = loader.load()
assert len(docs) > 1
def test_unstructured_api_file_loader() -> None:
"""Test unstructured loader."""
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf")
loader = UnstructuredAPIFileLoader(
file_path=file_path,
api_key="FAKE_API_KEY",
strategy="fast",
mode="elements",
)
docs = loader.load()
assert len(docs) > 1
def test_unstructured_api_file_loader_multiple_files() -> None:
"""Test unstructured loader."""
file_paths = [
os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf"),
os.path.join(EXAMPLE_DOCS_DIRECTORY, "whatsapp_chat.txt"),
]
loader = UnstructuredAPIFileLoader(
file_path=file_paths,
api_key="FAKE_API_KEY",
strategy="fast",
mode="elements",
)
docs = loader.load()
assert len(docs) > 1
def test_unstructured_api_file_io_loader() -> None:
"""Test unstructured loader."""
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf")
with open(file_path, "rb") as f:
loader = UnstructuredAPIFileIOLoader(
file=f,
api_key="FAKE_API_KEY",
strategy="fast",
mode="elements",
file_filename=file_path,
)
docs = loader.load()
assert len(docs) > 1
def test_unstructured_api_file_loader_io_multiple_files() -> None:
"""Test unstructured loader."""
file_paths = [
os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf"),
os.path.join(EXAMPLE_DOCS_DIRECTORY, "whatsapp_chat.txt"),
]
with ExitStack() as stack:
files = [stack.enter_context(open(file_path, "rb")) for file_path in file_paths]
loader = UnstructuredAPIFileIOLoader(
file=files, # type: ignore
api_key="FAKE_API_KEY",
strategy="fast",
mode="elements",
file_filenames=file_paths,
)
docs = loader.load()
assert len(docs) > 1
|
from llama_index.core.constants import DATA_KEY, TYPE_KEY
from llama_index.core.schema import (
BaseNode,
Document,
ImageDocument,
ImageNode,
IndexNode,
Node,
NodeRelationship,
RelatedNodeInfo,
TextNode,
)
def doc_to_json(doc: BaseNode) -> dict:
return {
DATA_KEY: doc.to_dict(),
TYPE_KEY: doc.get_type(),
}
def json_to_doc(doc_dict: dict) -> BaseNode:
doc_type = doc_dict[TYPE_KEY]
data_dict = doc_dict[DATA_KEY]
doc: BaseNode
if "extra_info" in data_dict:
return legacy_json_to_doc(doc_dict)
else:
if doc_type == Document.get_type():
if data_dict["class_name"] == ImageDocument.class_name():
doc = ImageDocument.from_dict(data_dict)
else:
doc = Document.from_dict(data_dict)
elif doc_type == TextNode.get_type():
doc = TextNode.from_dict(data_dict)
elif doc_type == ImageNode.get_type():
doc = ImageNode.from_dict(data_dict)
elif doc_type == IndexNode.get_type():
doc = IndexNode.from_dict(data_dict)
elif doc_type == Node.get_type():
doc = Node.from_dict(data_dict)
else:
raise ValueError(f"Unknown doc type: {doc_type}")
return doc
def legacy_json_to_doc(doc_dict: dict) -> BaseNode:
"""Todo: Deprecated legacy support for old node versions."""
doc_type = doc_dict[TYPE_KEY]
data_dict = doc_dict[DATA_KEY]
doc: BaseNode
text = data_dict.get("text", "")
metadata = data_dict.get("extra_info", {}) or {}
id_ = data_dict.get("doc_id", None)
relationships = data_dict.get("relationships", {})
relationships = {
NodeRelationship(k): RelatedNodeInfo(node_id=str(v))
for k, v in relationships.items()
}
if doc_type == Document.get_type():
doc = Document(
text=text, metadata=metadata, id=id_, relationships=relationships
)
elif doc_type == TextNode.get_type():
doc = TextNode(
text=text, metadata=metadata, id=id_, relationships=relationships
)
elif doc_type == ImageNode.get_type():
image = data_dict.get("image", None)
doc = ImageNode(
text=text,
metadata=metadata,
id=id_,
relationships=relationships,
image=image,
)
elif doc_type == IndexNode.get_type():
index_id = data_dict.get("index_id", None)
doc = IndexNode(
text=text,
metadata=metadata,
id=id_,
relationships=relationships,
index_id=index_id,
)
else:
raise ValueError(f"Unknown doc type: {doc_type}")
return doc
|
from llama_index.core.constants import DATA_KEY, TYPE_KEY
from llama_index.core.schema import (
BaseNode,
Document,
ImageDocument,
ImageNode,
IndexNode,
NodeRelationship,
RelatedNodeInfo,
TextNode,
)
def doc_to_json(doc: BaseNode) -> dict:
return {
DATA_KEY: doc.to_dict(),
TYPE_KEY: doc.get_type(),
}
def json_to_doc(doc_dict: dict) -> BaseNode:
doc_type = doc_dict[TYPE_KEY]
data_dict = doc_dict[DATA_KEY]
doc: BaseNode
if "extra_info" in data_dict:
return legacy_json_to_doc(doc_dict)
else:
if doc_type == Document.get_type():
if data_dict["class_name"] == ImageDocument.class_name():
doc = ImageDocument.from_dict(data_dict)
else:
doc = Document.from_dict(data_dict)
elif doc_type == TextNode.get_type():
doc = TextNode.from_dict(data_dict)
elif doc_type == ImageNode.get_type():
doc = ImageNode.from_dict(data_dict)
elif doc_type == IndexNode.get_type():
doc = IndexNode.from_dict(data_dict)
else:
raise ValueError(f"Unknown doc type: {doc_type}")
return doc
def legacy_json_to_doc(doc_dict: dict) -> BaseNode:
"""Todo: Deprecated legacy support for old node versions."""
doc_type = doc_dict[TYPE_KEY]
data_dict = doc_dict[DATA_KEY]
doc: BaseNode
text = data_dict.get("text", "")
metadata = data_dict.get("extra_info", {}) or {}
id_ = data_dict.get("doc_id", None)
relationships = data_dict.get("relationships", {})
relationships = {
NodeRelationship(k): RelatedNodeInfo(node_id=str(v))
for k, v in relationships.items()
}
if doc_type == Document.get_type():
doc = Document(
text=text, metadata=metadata, id=id_, relationships=relationships
)
elif doc_type == TextNode.get_type():
doc = TextNode(
text=text, metadata=metadata, id=id_, relationships=relationships
)
elif doc_type == ImageNode.get_type():
image = data_dict.get("image", None)
doc = ImageNode(
text=text,
metadata=metadata,
id=id_,
relationships=relationships,
image=image,
)
elif doc_type == IndexNode.get_type():
index_id = data_dict.get("index_id", None)
doc = IndexNode(
text=text,
metadata=metadata,
id=id_,
relationships=relationships,
index_id=index_id,
)
else:
raise ValueError(f"Unknown doc type: {doc_type}")
return doc
|
import time
from functools import partial
from typing import Callable, List, Optional, Tuple
import pandas as pd
from llama_index.core import SimpleDirectoryReader
from llama_index.core.base.embeddings.base import (
DEFAULT_EMBED_BATCH_SIZE,
BaseEmbedding,
)
from llama_index.embeddings import OpenAIEmbedding, resolve_embed_model
def generate_strings(num_strings: int = 100, string_length: int = 10) -> List[str]:
"""
Generate random strings sliced from the paul graham essay.
Has the following form:
offset 0: [0:string_length], [string_length:2*string_length], ...
offset 1: [1:1+string_length], [1+string_length:1+2*string_length],...
...
""" # noqa: D415
content = (
SimpleDirectoryReader("../../examples/paul_graham_essay/data")
.load_data()[0]
.get_content()
)
content_length = len(content)
strings_per_loop = content_length / string_length
num_loops_upper_bound = int(num_strings / strings_per_loop) + 1
strings = []
for offset in range(num_loops_upper_bound + 1):
ptr = offset % string_length
while ptr + string_length < content_length:
strings.append(content[ptr : ptr + string_length])
ptr += string_length
if len(strings) == num_strings:
break
return strings
def create_open_ai_embedding(batch_size: int) -> Tuple[BaseEmbedding, str, int]:
return (
OpenAIEmbedding(embed_batch_size=batch_size),
"OpenAIEmbedding",
4096,
)
def create_local_embedding(
model_name: str, batch_size: int
) -> Tuple[BaseEmbedding, str, int]:
model = resolve_embed_model(f"local:{model_name}")
return (
model,
"hf/" + model_name,
model._langchain_embedding.client.max_seq_length, # type: ignore
)
def bench_simple_vector_store(
embed_models: List[Callable[[int], Tuple[BaseEmbedding, str, int]]],
num_strings: List[int] = [100],
string_lengths: List[int] = [64, 256],
embed_batch_sizes: List[int] = [1, DEFAULT_EMBED_BATCH_SIZE],
torch_num_threads: Optional[int] = None,
) -> None:
"""Benchmark embeddings."""
print("Benchmarking Embeddings\n---------------------------")
results = []
if torch_num_threads is not None:
import torch # pants: no-infer-dep
torch.set_num_threads(torch_num_threads)
max_num_strings = max(num_strings)
for string_length in string_lengths:
generated_strings = generate_strings(
num_strings=max_num_strings, string_length=string_length
)
for string_count in num_strings:
strings = generated_strings[:string_count]
for batch_size in embed_batch_sizes:
models = []
for create_model in embed_models:
models.append(create_model(batch_size=batch_size)) # type: ignore
for model in models:
time1 = time.time()
_ = model[0].get_text_embedding_batch(strings, show_progress=True)
time2 = time.time()
print(
f"Embedding with model {model[1]} with "
f"batch size {batch_size} and max_seq_length {model[2]} for "
f"{string_count} strings of length {string_length} took "
f"{time2 - time1} seconds."
)
results.append((model[1], batch_size, string_length, time2 - time1))
# TODO: async version
# print final results
print("\n\nFinal Results\n---------------------------")
results_df = pd.DataFrame(
results, columns=["model", "batch_size", "string_length", "time"]
)
print(results_df)
if __name__ == "__main__":
bench_simple_vector_store(
embed_models=[
# create_open_ai_embedding,
partial(
create_local_embedding,
model_name="sentence-transformers/all-MiniLM-L6-v2",
),
partial(
create_local_embedding,
model_name="sentence-transformers/all-MiniLM-L12-v2",
),
partial(
create_local_embedding,
model_name="BAAI/bge-small-en",
),
partial(
create_local_embedding,
model_name="sentence-transformers/all-mpnet-base-v2",
),
],
torch_num_threads=None,
)
|
import time
from functools import partial
from typing import Callable, List, Optional, Tuple
import pandas as pd
from llama_index.core import SimpleDirectoryReader
from llama_index.core.base.embeddings.base import (
DEFAULT_EMBED_BATCH_SIZE,
BaseEmbedding,
)
from llama_index.embeddings import OpenAIEmbedding, resolve_embed_model
def generate_strings(num_strings: int = 100, string_length: int = 10) -> List[str]:
"""
Generate random strings sliced from the paul graham essay of the following form:
offset 0: [0:string_length], [string_length:2*string_length], ...
offset 1: [1:1+string_length], [1+string_length:1+2*string_length],...
...
""" # noqa: D415
content = (
SimpleDirectoryReader("../../examples/paul_graham_essay/data")
.load_data()[0]
.get_content()
)
content_length = len(content)
strings_per_loop = content_length / string_length
num_loops_upper_bound = int(num_strings / strings_per_loop) + 1
strings = []
for offset in range(num_loops_upper_bound + 1):
ptr = offset % string_length
while ptr + string_length < content_length:
strings.append(content[ptr : ptr + string_length])
ptr += string_length
if len(strings) == num_strings:
break
return strings
def create_open_ai_embedding(batch_size: int) -> Tuple[BaseEmbedding, str, int]:
return (
OpenAIEmbedding(embed_batch_size=batch_size),
"OpenAIEmbedding",
4096,
)
def create_local_embedding(
model_name: str, batch_size: int
) -> Tuple[BaseEmbedding, str, int]:
model = resolve_embed_model(f"local:{model_name}")
return (
model,
"hf/" + model_name,
model._langchain_embedding.client.max_seq_length, # type: ignore
)
def bench_simple_vector_store(
embed_models: List[Callable[[int], Tuple[BaseEmbedding, str, int]]],
num_strings: List[int] = [100],
string_lengths: List[int] = [64, 256],
embed_batch_sizes: List[int] = [1, DEFAULT_EMBED_BATCH_SIZE],
torch_num_threads: Optional[int] = None,
) -> None:
"""Benchmark embeddings."""
print("Benchmarking Embeddings\n---------------------------")
results = []
if torch_num_threads is not None:
import torch # pants: no-infer-dep
torch.set_num_threads(torch_num_threads)
max_num_strings = max(num_strings)
for string_length in string_lengths:
generated_strings = generate_strings(
num_strings=max_num_strings, string_length=string_length
)
for string_count in num_strings:
strings = generated_strings[:string_count]
for batch_size in embed_batch_sizes:
models = []
for create_model in embed_models:
models.append(create_model(batch_size=batch_size)) # type: ignore
for model in models:
time1 = time.time()
_ = model[0].get_text_embedding_batch(strings, show_progress=True)
time2 = time.time()
print(
f"Embedding with model {model[1]} with "
f"batch size {batch_size} and max_seq_length {model[2]} for "
f"{string_count} strings of length {string_length} took "
f"{time2 - time1} seconds."
)
results.append((model[1], batch_size, string_length, time2 - time1))
# TODO: async version
# print final results
print("\n\nFinal Results\n---------------------------")
results_df = pd.DataFrame(
results, columns=["model", "batch_size", "string_length", "time"]
)
print(results_df)
if __name__ == "__main__":
bench_simple_vector_store(
embed_models=[
# create_open_ai_embedding,
partial(
create_local_embedding,
model_name="sentence-transformers/all-MiniLM-L6-v2",
),
partial(
create_local_embedding,
model_name="sentence-transformers/all-MiniLM-L12-v2",
),
partial(
create_local_embedding,
model_name="BAAI/bge-small-en",
),
partial(
create_local_embedding,
model_name="sentence-transformers/all-mpnet-base-v2",
),
],
torch_num_threads=None,
)
|
from langchain_core.agents import AgentAction, AgentFinish
from langchain.agents.output_parsers.react_json_single_input import (
ReActJsonSingleInputOutputParser,
)
def test_action() -> None:
"""Test standard parsing of action/action input."""
parser = ReActJsonSingleInputOutputParser()
_input = """Thought: agent thought here
```
{
"action": "search",
"action_input": "what is the temperature in SF?"
}
```
"""
output = parser.invoke(_input)
expected_output = AgentAction(
tool="search",
tool_input="what is the temperature in SF?",
log=_input,
)
assert output == expected_output
def test_finish() -> None:
"""Test standard parsing of agent finish."""
parser = ReActJsonSingleInputOutputParser()
_input = """Thought: agent thought here
Final Answer: The temperature is 100"""
output = parser.invoke(_input)
expected_output = AgentFinish(
return_values={"output": "The temperature is 100"},
log=_input,
)
assert output == expected_output
|
from langchain_core.agents import AgentAction, AgentFinish
from langchain.agents.output_parsers.react_json_single_input import (
ReActJsonSingleInputOutputParser,
)
def test_action() -> None:
"""Test standard parsing of action/action input."""
parser = ReActJsonSingleInputOutputParser()
_input = """Thought: agent thought here
```
{
"action": "search",
"action_input": "what is the temperature in SF?"
}
```
"""
output = parser.invoke(_input)
expected_output = AgentAction(
tool="search", tool_input="what is the temperature in SF?", log=_input
)
assert output == expected_output
def test_finish() -> None:
"""Test standard parsing of agent finish."""
parser = ReActJsonSingleInputOutputParser()
_input = """Thought: agent thought here
Final Answer: The temperature is 100"""
output = parser.invoke(_input)
expected_output = AgentFinish(
return_values={"output": "The temperature is 100"}, log=_input
)
assert output == expected_output
|
"""Test Perplexity Chat API wrapper."""
from langchain_core.language_models import BaseChatModel
from langchain_tests.unit_tests import ChatModelUnitTests
from langchain_perplexity import ChatPerplexity
class TestPerplexityStandard(ChatModelUnitTests):
@property
def chat_model_class(self) -> type[BaseChatModel]:
return ChatPerplexity
@property
def init_from_env_params(self) -> tuple[dict, dict, dict]:
return ({"PPLX_API_KEY": "api_key"}, {}, {"pplx_api_key": "api_key"})
|
"""Test Perplexity Chat API wrapper."""
from typing import Tuple, Type
from langchain_core.language_models import BaseChatModel
from langchain_tests.unit_tests import ChatModelUnitTests
from langchain_perplexity import ChatPerplexity
class TestPerplexityStandard(ChatModelUnitTests):
@property
def chat_model_class(self) -> Type[BaseChatModel]:
return ChatPerplexity
@property
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
return ({"PPLX_API_KEY": "api_key"}, {}, {"pplx_api_key": "api_key"})
|
from datetime import timedelta
from typing import Optional
from torch._C._distributed_c10d import _DEFAULT_PG_TIMEOUT
__all__ = ["default_pg_timeout", "default_pg_nccl_timeout"]
# Default process group wide timeout, if applicable.
# This only applies to the non-nccl backends
# To make an attempt at backwards compatibility with THD, we use an
# extraordinarily high default timeout, given that THD did not have timeouts.
default_pg_timeout: timedelta = _DEFAULT_PG_TIMEOUT
# Separate timeout for PGNCCL mainly because it's always been that way in the C++ layer, but until recently
# there was one default that applied across all backends in the python layer.
# Later, we could consider merging them back together at the c++ layer if we can align on a same value.
# (only if TORCH_NCCL_BLOCKING_WAIT or TORCH_NCCL_ASYNC_ERROR_HANDLING is set to 1).
try:
from torch._C._distributed_c10d import _DEFAULT_PG_NCCL_TIMEOUT
default_pg_nccl_timeout: Optional[timedelta] = _DEFAULT_PG_NCCL_TIMEOUT
except ImportError:
# if C++ NCCL support is not compiled, we don't have access to the default nccl value.
# if anyone is actually trying to use nccl in this state, it should error.
default_pg_nccl_timeout = None
|
from datetime import timedelta
from typing import Optional
from torch._C._distributed_c10d import _DEFAULT_PG_TIMEOUT
__all__ = ["default_pg_timeout", "default_pg_nccl_timeout"]
# Default process group wide timeout, if applicable.
# This only applies to the non-nccl backends
# To make an attempt at backwards compatibility with THD, we use an
# extraordinarily high default timeout, given that THD did not have timeouts.
default_pg_timeout: timedelta = _DEFAULT_PG_TIMEOUT
# Separate timeout for PGNCCL mainly becuase it's always been that way in the C++ layer, but until recently
# there was one default that applied across all backends in the python layer.
# Later, we could consider merging them back together at the c++ layer if we can align on a same value.
# (only if TORCH_NCCL_BLOCKING_WAIT or TORCH_NCCL_ASYNC_ERROR_HANDLING is set to 1).
try:
from torch._C._distributed_c10d import _DEFAULT_PG_NCCL_TIMEOUT
default_pg_nccl_timeout: Optional[timedelta] = _DEFAULT_PG_NCCL_TIMEOUT
except ImportError:
# if C++ NCCL support is not compiled, we don't have access to the default nccl value.
# if anyone is actually trying to use nccl in this state, it should error.
default_pg_nccl_timeout = None
|
# coding: utf-8
"""Comparison of `binary` and `xentropy` objectives.
BLUF: The `xentropy` objective does logistic regression and generalizes
to the case where labels are probabilistic (i.e. numbers between 0 and 1).
Details: Both `binary` and `xentropy` minimize the log loss and use
`boost_from_average = TRUE` by default. Possibly the only difference
between them with default settings is that `binary` may achieve a slight
speed improvement by assuming that the labels are binary instead of
probabilistic.
"""
import time
import numpy as np
import pandas as pd
from scipy.special import expit
import lightgbm as lgb
#################
# Simulate some binary data with a single categorical and
# single continuous predictor
rng = np.random.default_rng(seed=0)
N = 1000
X = pd.DataFrame({"continuous": range(N), "categorical": np.repeat([0, 1, 2, 3, 4], N / 5)})
CATEGORICAL_EFFECTS = [-1, -1, -2, -2, 2]
LINEAR_TERM = np.array(
[-0.5 + 0.01 * X["continuous"][k] + CATEGORICAL_EFFECTS[X["categorical"][k]] for k in range(X.shape[0])]
) + rng.normal(loc=0, scale=1, size=X.shape[0])
TRUE_PROB = expit(LINEAR_TERM)
Y = rng.binomial(n=1, p=TRUE_PROB, size=N)
DATA = {
"X": X,
"probability_labels": TRUE_PROB,
"binary_labels": Y,
"lgb_with_binary_labels": lgb.Dataset(X, Y),
"lgb_with_probability_labels": lgb.Dataset(X, TRUE_PROB),
}
#################
# Set up a couple of utilities for our experiments
def log_loss(preds, labels):
"""Logarithmic loss with non-necessarily-binary labels."""
log_likelihood = np.sum(labels * np.log(preds)) / len(preds)
return -log_likelihood
def experiment(objective, label_type, data):
"""Measure performance of an objective.
Parameters
----------
objective : {'binary', 'xentropy'}
Objective function.
label_type : {'binary', 'probability'}
Type of the label.
data : dict
Data for training.
Returns
-------
result : dict
Experiment summary stats.
"""
nrounds = 5
lgb_data = data[f"lgb_with_{label_type}_labels"]
params = {"objective": objective, "feature_fraction": 1, "bagging_fraction": 1, "verbose": -1, "seed": 123}
time_zero = time.time()
gbm = lgb.train(params, lgb_data, num_boost_round=nrounds)
y_fitted = gbm.predict(data["X"])
y_true = data[f"{label_type}_labels"]
duration = time.time() - time_zero
return {"time": duration, "correlation": np.corrcoef(y_fitted, y_true)[0, 1], "logloss": log_loss(y_fitted, y_true)}
#################
# Observe the behavior of `binary` and `xentropy` objectives
print("Performance of `binary` objective with binary labels:")
print(experiment("binary", label_type="binary", data=DATA))
print("Performance of `xentropy` objective with binary labels:")
print(experiment("xentropy", label_type="binary", data=DATA))
print("Performance of `xentropy` objective with probability labels:")
print(experiment("xentropy", label_type="probability", data=DATA))
# Trying this throws an error on non-binary values of y:
# experiment('binary', label_type='probability', DATA)
# The speed of `binary` is not drastically different than
# `xentropy`. `xentropy` runs faster than `binary` in many cases, although
# there are reasons to suspect that `binary` should run faster when the
# label is an integer instead of a float
K = 10
A = [experiment("binary", label_type="binary", data=DATA)["time"] for k in range(K)]
B = [experiment("xentropy", label_type="binary", data=DATA)["time"] for k in range(K)]
print(f"Best `binary` time: {min(A)}")
print(f"Best `xentropy` time: {min(B)}")
|
# coding: utf-8
"""Comparison of `binary` and `xentropy` objectives.
BLUF: The `xentropy` objective does logistic regression and generalizes
to the case where labels are probabilistic (i.e. numbers between 0 and 1).
Details: Both `binary` and `xentropy` minimize the log loss and use
`boost_from_average = TRUE` by default. Possibly the only difference
between them with default settings is that `binary` may achieve a slight
speed improvement by assuming that the labels are binary instead of
probabilistic.
"""
import time
import numpy as np
import pandas as pd
from scipy.special import expit
import lightgbm as lgb
#################
# Simulate some binary data with a single categorical and
# single continuous predictor
np.random.seed(0)
N = 1000
X = pd.DataFrame({"continuous": range(N), "categorical": np.repeat([0, 1, 2, 3, 4], N / 5)})
CATEGORICAL_EFFECTS = [-1, -1, -2, -2, 2]
LINEAR_TERM = np.array(
[-0.5 + 0.01 * X["continuous"][k] + CATEGORICAL_EFFECTS[X["categorical"][k]] for k in range(X.shape[0])]
) + np.random.normal(0, 1, X.shape[0])
TRUE_PROB = expit(LINEAR_TERM)
Y = np.random.binomial(1, TRUE_PROB, size=N)
DATA = {
"X": X,
"probability_labels": TRUE_PROB,
"binary_labels": Y,
"lgb_with_binary_labels": lgb.Dataset(X, Y),
"lgb_with_probability_labels": lgb.Dataset(X, TRUE_PROB),
}
#################
# Set up a couple of utilities for our experiments
def log_loss(preds, labels):
"""Logarithmic loss with non-necessarily-binary labels."""
log_likelihood = np.sum(labels * np.log(preds)) / len(preds)
return -log_likelihood
def experiment(objective, label_type, data):
"""Measure performance of an objective.
Parameters
----------
objective : {'binary', 'xentropy'}
Objective function.
label_type : {'binary', 'probability'}
Type of the label.
data : dict
Data for training.
Returns
-------
result : dict
Experiment summary stats.
"""
np.random.seed(0)
nrounds = 5
lgb_data = data[f"lgb_with_{label_type}_labels"]
params = {"objective": objective, "feature_fraction": 1, "bagging_fraction": 1, "verbose": -1}
time_zero = time.time()
gbm = lgb.train(params, lgb_data, num_boost_round=nrounds)
y_fitted = gbm.predict(data["X"])
y_true = data[f"{label_type}_labels"]
duration = time.time() - time_zero
return {"time": duration, "correlation": np.corrcoef(y_fitted, y_true)[0, 1], "logloss": log_loss(y_fitted, y_true)}
#################
# Observe the behavior of `binary` and `xentropy` objectives
print("Performance of `binary` objective with binary labels:")
print(experiment("binary", label_type="binary", data=DATA))
print("Performance of `xentropy` objective with binary labels:")
print(experiment("xentropy", label_type="binary", data=DATA))
print("Performance of `xentropy` objective with probability labels:")
print(experiment("xentropy", label_type="probability", data=DATA))
# Trying this throws an error on non-binary values of y:
# experiment('binary', label_type='probability', DATA)
# The speed of `binary` is not drastically different than
# `xentropy`. `xentropy` runs faster than `binary` in many cases, although
# there are reasons to suspect that `binary` should run faster when the
# label is an integer instead of a float
K = 10
A = [experiment("binary", label_type="binary", data=DATA)["time"] for k in range(K)]
B = [experiment("xentropy", label_type="binary", data=DATA)["time"] for k in range(K)]
print(f"Best `binary` time: {min(A)}")
print(f"Best `xentropy` time: {min(B)}")
|
import time
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.quantization import quantize_embeddings, semantic_search_usearch
# 1. Load the quora corpus with questions
dataset = load_dataset("quora", split="train").map(
lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]},
batched=True,
remove_columns=["questions", "is_duplicate"],
)
max_corpus_size = 100_000
corpus = dataset["text"][:max_corpus_size]
# 2. Come up with some queries
queries = [
"How do I become a good programmer?",
"How do I become a good data scientist?",
]
# 3. Load the model
model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
# 4. Choose a target precision for the corpus embeddings
corpus_precision = "binary"
# Valid options are: "float32", "uint8", "int8", "ubinary", and "binary"
# But usearch only supports "float32", "int8", and "binary"
# 5. Encode the corpus
full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True)
corpus_embeddings = quantize_embeddings(full_corpus_embeddings, precision=corpus_precision)
# NOTE: We can also pass "precision=..." to the encode method to quantize the embeddings directly,
# but we want to keep the full precision embeddings to act as a calibration dataset for quantizing
# the query embeddings. This is important only if you are using uint8 or int8 precision
# Initially, we don't have a usearch index yet, we can use semantic_search_usearch to create it
corpus_index = None
while True:
# 7. Encode the queries using the full precision
start_time = time.time()
query_embeddings = model.encode(queries, normalize_embeddings=True)
print(f"Encoding time: {time.time() - start_time:.6f} seconds")
# 8. Perform semantic search using usearch
results, search_time, corpus_index = semantic_search_usearch(
query_embeddings,
corpus_index=corpus_index,
corpus_embeddings=corpus_embeddings if corpus_index is None else None,
corpus_precision=corpus_precision,
top_k=10,
calibration_embeddings=full_corpus_embeddings,
rescore=corpus_precision != "float32",
rescore_multiplier=4,
exact=True,
output_index=True,
)
# This is a helper function to showcase how usearch can be used with quantized embeddings.
# You must either provide the `corpus_embeddings` or the `corpus_index` usearch index, but not both.
# In the first call we'll provide the `corpus_embeddings` and get the `corpus_index` back, which
# we'll use in the next call. In practice, the index is stored in RAM or saved to disk, and not
# recalculated for every query.
# This function will 1) quantize the query embeddings to the same precision as the corpus embeddings,
# 2) perform the semantic search using usearch, 3) rescore the results using the full precision embeddings,
# and 4) return the results and the search time (and perhaps the usearch index).
# `corpus_precision` must be the same as the precision used to quantize the corpus embeddings.
# It is used to convert the query embeddings to the same precision as the corpus embeddings.
# `top_k` determines how many results are returned for each query.
# `rescore_multiplier` is a parameter for the rescoring step. Rather than searching for the top_k results,
# we search for top_k * rescore_multiplier results and rescore the top_k results using the full precision embeddings.
# So, higher values of rescore_multiplier will give better results, but will be slower.
# `calibration_embeddings` is a set of embeddings used to calibrate the quantization of the query embeddings.
# This is important only if you are using uint8 or int8 precision. In practice, this is used to calculate
# the minimum and maximum values of each of the embedding dimensions, which are then used to determine the
# quantization thresholds.
# `rescore` determines whether to rescore the results using the full precision embeddings, if False & the
# corpus is quantized, the results will be very poor. `exact` determines whether to use the exact search
# or the approximate search method in usearch.
# 9. Output the results
print(f"Search time: {search_time:.6f} seconds")
for query, result in zip(queries, results):
print(f"Query: {query}")
for entry in result:
print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}")
print("")
# 10. Prompt for more queries
queries = [input("Please enter a question: ")]
|
import time
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.quantization import quantize_embeddings, semantic_search_usearch
# 1. Load the quora corpus with questions
dataset = load_dataset("quora", split="train").map(
lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]},
batched=True,
remove_columns=["questions", "is_duplicate"],
)
max_corpus_size = 100_000
corpus = dataset["text"][:max_corpus_size]
# 2. Come up with some queries
queries = [
"How do I become a good programmer?",
"How do I become a good data scientist?",
]
# 3. Load the model
model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
# 4. Choose a target precision for the corpus embeddings
corpus_precision = "binary"
# Valid options are: "float32", "uint8", "int8", "ubinary", and "binary"
# But usearch only supports "float32", "int8", and "binary"
# 5. Encode the corpus
full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True)
corpus_embeddings = quantize_embeddings(full_corpus_embeddings, precision=corpus_precision)
# NOTE: We can also pass "precision=..." to the encode method to quantize the embeddings directly,
# but we want to keep the full precision embeddings to act as a calibration dataset for quantizing
# the query embeddings. This is important only if you are using uint8 or int8 precision
# Initially, we don't have a usearch index yet, we can use semantic_search_usearch to create it
corpus_index = None
while True:
# 7. Encode the queries using the full precision
start_time = time.time()
query_embeddings = model.encode(queries, normalize_embeddings=True)
print(f"Encoding time: {time.time() - start_time:.6f} seconds")
# 8. Perform semantic search using usearch
results, search_time, corpus_index = semantic_search_usearch(
query_embeddings,
corpus_index=corpus_index,
corpus_embeddings=corpus_embeddings if corpus_index is None else None,
corpus_precision=corpus_precision,
top_k=10,
calibration_embeddings=full_corpus_embeddings,
rescore=corpus_precision != "float32",
rescore_multiplier=4,
exact=True,
output_index=True,
)
# This is a helper function to showcase how usearch can be used with quantized embeddings.
# You must either provide the `corpus_embeddings` or the `corpus_index` usearch index, but not both.
# In the first call we'll provide the `corpus_embeddings` and get the `corpus_index` back, which
# we'll use in the next call. In practice, the index is stored in RAM or saved to disk, and not
# recalculated for every query.
# This function will 1) quantize the query embeddings to the same precision as the corpus embeddings,
# 2) perform the semantic search using usearch, 3) rescore the results using the full precision embeddings,
# and 4) return the results and the search time (and perhaps the usearch index).
# `corpus_precision` must be the same as the precision used to quantize the corpus embeddings.
# It is used to convert the query embeddings to the same precision as the corpus embeddings.
# `top_k` determines how many results are returned for each query.
# `rescore_multiplier` is a parameter for the rescoring step. Rather than searching for the top_k results,
# we search for top_k * rescore_multiplier results and rescore the top_k results using the full precision embeddings.
# So, higher values of rescore_multiplier will give better results, but will be slower.
# `calibration_embeddings` is a set of embeddings used to calibrate the quantization of the query embeddings.
# This is important only if you are using uint8 or int8 precision. In practice, this is used to calculate
# the minimum and maximum values of each of the embedding dimensions, which are then used to determine the
# quantization thresholds.
# `rescore` determines whether to rescore the results using the full precision embeddings, if False & the
# corpus is quantized, the results will be very poor. `exact` determines whether to use the exact search
# or the approximate search method in usearch.
# 9. Output the results
print(f"Search time: {search_time:.6f} seconds")
for query, result in zip(queries, results):
print(f"Query: {query}")
for entry in result:
print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}")
print("")
# 10. Prompt for more queries
queries = [input("Please enter a question: ")]
|
"""Sentence Transformer Finetuning Engine."""
import os
from typing import Any, Optional
from llama_index.core.base.embeddings.base import BaseEmbedding
from llama_index.core.embeddings.utils import resolve_embed_model
from llama_index.finetuning.embeddings.common import EmbeddingQAFinetuneDataset
from llama_index.finetuning.types import BaseEmbeddingFinetuneEngine
class SentenceTransformersFinetuneEngine(BaseEmbeddingFinetuneEngine):
"""Sentence Transformers Finetune Engine."""
def __init__(
self,
dataset: EmbeddingQAFinetuneDataset,
model_id: str = "BAAI/bge-small-en",
model_output_path: str = "exp_finetune",
batch_size: int = 10,
val_dataset: Optional[EmbeddingQAFinetuneDataset] = None,
loss: Optional[Any] = None,
epochs: int = 2,
show_progress_bar: bool = True,
evaluation_steps: int = 50,
use_all_docs: bool = False,
trust_remote_code: bool = False,
device: Optional[Any] = None,
save_checkpoints: bool = False,
resume_from_checkpoint: bool = False,
checkpoint_save_steps: int = 500,
checkpoint_save_total_limit: int = 0,
) -> None:
"""Init params."""
from sentence_transformers import InputExample, SentenceTransformer, losses
from torch.utils.data import DataLoader
self.dataset = dataset
self.model_id = model_id
self.model_output_path = model_output_path
self.model = SentenceTransformer(
model_id, trust_remote_code=trust_remote_code, device=device
)
self.use_all_docs = use_all_docs
examples: Any = []
for query_id, query in dataset.queries.items():
if use_all_docs:
for node_id in dataset.relevant_docs[query_id]:
text = dataset.corpus[node_id]
example = InputExample(texts=[query, text])
examples.append(example)
else:
node_id = dataset.relevant_docs[query_id][0]
text = dataset.corpus[node_id]
example = InputExample(texts=[query, text])
examples.append(example)
self.examples = examples
self.loader: DataLoader = DataLoader(examples, batch_size=batch_size)
# define evaluator
from sentence_transformers.evaluation import InformationRetrievalEvaluator
evaluator: Optional[InformationRetrievalEvaluator] = None
if val_dataset is not None:
evaluator = InformationRetrievalEvaluator(
val_dataset.queries, val_dataset.corpus, val_dataset.relevant_docs
)
self.evaluator = evaluator
# define loss
self.loss = loss or losses.MultipleNegativesRankingLoss(self.model)
self.epochs = epochs
self.show_progress_bar = show_progress_bar
self.evaluation_steps = evaluation_steps
self.warmup_steps = int(len(self.loader) * epochs * 0.1)
self.checkpoint_path = (
os.path.join("checkpoints", model_output_path) if save_checkpoints else None
)
self.resume_from_checkpoint = resume_from_checkpoint
self.checkpoint_save_steps = checkpoint_save_steps
self.checkpoint_save_total_limit = checkpoint_save_total_limit
def finetune(self, **train_kwargs: Any) -> None:
"""Finetune model."""
self.model.fit(
train_objectives=[(self.loader, self.loss)],
epochs=self.epochs,
warmup_steps=self.warmup_steps,
output_path=self.model_output_path,
show_progress_bar=self.show_progress_bar,
evaluator=self.evaluator,
evaluation_steps=self.evaluation_steps,
checkpoint_path=self.checkpoint_path,
resume_from_checkpoint=self.resume_from_checkpoint,
checkpoint_save_steps=self.checkpoint_save_steps,
checkpoint_save_total_limit=self.checkpoint_save_total_limit,
)
def get_finetuned_model(self, **model_kwargs: Any) -> BaseEmbedding:
"""Gets finetuned model."""
embed_model_str = "local:" + self.model_output_path
return resolve_embed_model(embed_model_str)
|
"""Sentence Transformer Finetuning Engine."""
import os
from typing import Any, Optional
from llama_index.core.base.embeddings.base import BaseEmbedding
from llama_index.core.embeddings.utils import resolve_embed_model
from llama_index.finetuning.embeddings.common import EmbeddingQAFinetuneDataset
from llama_index.finetuning.types import BaseEmbeddingFinetuneEngine
class SentenceTransformersFinetuneEngine(BaseEmbeddingFinetuneEngine):
"""Sentence Transformers Finetune Engine."""
def __init__(
self,
dataset: EmbeddingQAFinetuneDataset,
model_id: str = "BAAI/bge-small-en",
model_output_path: str = "exp_finetune",
batch_size: int = 10,
val_dataset: Optional[EmbeddingQAFinetuneDataset] = None,
loss: Optional[Any] = None,
epochs: int = 2,
show_progress_bar: bool = True,
evaluation_steps: int = 50,
use_all_docs: bool = False,
trust_remote_code: bool = False,
device: Optional[Any] = None,
save_checkpoints: bool = False,
resume_from_checkpoint: bool = False,
checkpoint_save_steps: int = 500,
checkpoint_save_total_limit: int = 0,
) -> None:
"""Init params."""
from sentence_transformers import InputExample, SentenceTransformer, losses
from torch.utils.data import DataLoader
self.dataset = dataset
self.model_id = model_id
self.model_output_path = model_output_path
self.model = SentenceTransformer(
model_id, trust_remote_code=trust_remote_code, device=device
)
self.use_all_docs = use_all_docs
examples: Any = []
for query_id, query in dataset.queries.items():
if use_all_docs:
for node_id in dataset.relevant_docs[query_id]:
text = dataset.corpus[node_id]
example = InputExample(texts=[query, text])
examples.append(example)
else:
node_id = dataset.relevant_docs[query_id][0]
text = dataset.corpus[node_id]
example = InputExample(texts=[query, text])
examples.append(example)
self.examples = examples
self.loader: DataLoader = DataLoader(examples, batch_size=batch_size)
# define evaluator
from sentence_transformers.evaluation import InformationRetrievalEvaluator
evaluator: Optional[InformationRetrievalEvaluator] = None
if val_dataset is not None:
evaluator = InformationRetrievalEvaluator(
val_dataset.queries, val_dataset.corpus, val_dataset.relevant_docs
)
self.evaluator = evaluator
# define loss
self.loss = loss or losses.MultipleNegativesRankingLoss(self.model)
self.epochs = epochs
self.show_progress_bar = show_progress_bar
self.evaluation_steps = evaluation_steps
self.warmup_steps = int(len(self.loader) * epochs * 0.1)
self.checkpoint_path = (
os.path.join("checkpoints", model_output_path) if save_checkpoints else None
)
self.resume_from_checkpoint = resume_from_checkpoint
self.checkpoint_save_steps = checkpoint_save_steps
self.checkpoint_save_total_limit = checkpoint_save_total_limit
def finetune(self, **train_kwargs: Any) -> None:
"""Finetune model."""
self.model.fit(
train_objectives=[(self.loader, self.loss)],
epochs=self.epochs,
warmup_steps=self.warmup_steps,
output_path=self.model_output_path,
show_progress_bar=self.show_progress_bar,
evaluator=self.evaluator,
evaluation_steps=self.evaluation_steps,
checkpoint_path=self.checkpoint_path,
resume_from_checkpoint=self.resume_from_checkpoint,
checkpoint_save_steps=self.checkpoint_save_steps,
checkpoint_save_total_limit=self.checkpoint_save_total_limit,
)
def get_finetuned_model(self, **model_kwargs: Any) -> BaseEmbedding:
"""Gets finetuned model."""
embed_model_str = "local:" + self.model_output_path
return resolve_embed_model(embed_model_str)
|
"""DO NOT EDIT.
This file was autogenerated. Do not edit it by hand,
since your modifications would be overwritten.
"""
from keras.src.ops.nn import average_pool
from keras.src.ops.nn import batch_normalization
from keras.src.ops.nn import binary_crossentropy
from keras.src.ops.nn import categorical_crossentropy
from keras.src.ops.nn import celu
from keras.src.ops.nn import conv
from keras.src.ops.nn import conv_transpose
from keras.src.ops.nn import ctc_decode
from keras.src.ops.nn import ctc_loss
from keras.src.ops.nn import depthwise_conv
from keras.src.ops.nn import dot_product_attention
from keras.src.ops.nn import elu
from keras.src.ops.nn import gelu
from keras.src.ops.nn import glu
from keras.src.ops.nn import hard_shrink
from keras.src.ops.nn import hard_sigmoid
from keras.src.ops.nn import hard_silu
from keras.src.ops.nn import hard_silu as hard_swish
from keras.src.ops.nn import hard_tanh
from keras.src.ops.nn import leaky_relu
from keras.src.ops.nn import log_sigmoid
from keras.src.ops.nn import log_softmax
from keras.src.ops.nn import max_pool
from keras.src.ops.nn import moments
from keras.src.ops.nn import multi_hot
from keras.src.ops.nn import normalize
from keras.src.ops.nn import one_hot
from keras.src.ops.nn import polar
from keras.src.ops.nn import psnr
from keras.src.ops.nn import relu
from keras.src.ops.nn import relu6
from keras.src.ops.nn import rms_normalization
from keras.src.ops.nn import selu
from keras.src.ops.nn import separable_conv
from keras.src.ops.nn import sigmoid
from keras.src.ops.nn import silu
from keras.src.ops.nn import silu as swish
from keras.src.ops.nn import soft_shrink
from keras.src.ops.nn import softmax
from keras.src.ops.nn import softplus
from keras.src.ops.nn import softsign
from keras.src.ops.nn import sparse_categorical_crossentropy
from keras.src.ops.nn import sparse_plus
from keras.src.ops.nn import sparse_sigmoid
from keras.src.ops.nn import sparsemax
from keras.src.ops.nn import squareplus
from keras.src.ops.nn import tanh_shrink
from keras.src.ops.nn import threshold
|
"""DO NOT EDIT.
This file was autogenerated. Do not edit it by hand,
since your modifications would be overwritten.
"""
from keras.src.ops.nn import average_pool
from keras.src.ops.nn import batch_normalization
from keras.src.ops.nn import binary_crossentropy
from keras.src.ops.nn import categorical_crossentropy
from keras.src.ops.nn import celu
from keras.src.ops.nn import conv
from keras.src.ops.nn import conv_transpose
from keras.src.ops.nn import ctc_decode
from keras.src.ops.nn import ctc_loss
from keras.src.ops.nn import depthwise_conv
from keras.src.ops.nn import dot_product_attention
from keras.src.ops.nn import elu
from keras.src.ops.nn import gelu
from keras.src.ops.nn import glu
from keras.src.ops.nn import hard_shrink
from keras.src.ops.nn import hard_sigmoid
from keras.src.ops.nn import hard_silu
from keras.src.ops.nn import hard_silu as hard_swish
from keras.src.ops.nn import hard_tanh
from keras.src.ops.nn import leaky_relu
from keras.src.ops.nn import log_sigmoid
from keras.src.ops.nn import log_softmax
from keras.src.ops.nn import max_pool
from keras.src.ops.nn import moments
from keras.src.ops.nn import multi_hot
from keras.src.ops.nn import normalize
from keras.src.ops.nn import one_hot
from keras.src.ops.nn import polar
from keras.src.ops.nn import psnr
from keras.src.ops.nn import relu
from keras.src.ops.nn import relu6
from keras.src.ops.nn import rms_normalization
from keras.src.ops.nn import selu
from keras.src.ops.nn import separable_conv
from keras.src.ops.nn import sigmoid
from keras.src.ops.nn import silu
from keras.src.ops.nn import silu as swish
from keras.src.ops.nn import soft_shrink
from keras.src.ops.nn import softmax
from keras.src.ops.nn import softplus
from keras.src.ops.nn import softsign
from keras.src.ops.nn import sparse_categorical_crossentropy
from keras.src.ops.nn import sparse_plus
from keras.src.ops.nn import sparsemax
from keras.src.ops.nn import squareplus
from keras.src.ops.nn import tanh_shrink
from keras.src.ops.nn import threshold
|
"""Interface with the LangChain Hub."""
from __future__ import annotations
import json
from collections.abc import Sequence
from typing import Any, Optional
from langchain_core.load.dump import dumps
from langchain_core.load.load import loads
from langchain_core.prompts import BasePromptTemplate
def _get_client(
api_key: Optional[str] = None,
api_url: Optional[str] = None,
) -> Any:
try:
from langsmith import Client as LangSmithClient
ls_client = LangSmithClient(api_url, api_key=api_key)
if hasattr(ls_client, "push_prompt") and hasattr(ls_client, "pull_prompt"):
return ls_client
else:
from langchainhub import Client as LangChainHubClient
return LangChainHubClient(api_url, api_key=api_key)
except ImportError:
try:
from langchainhub import Client as LangChainHubClient
return LangChainHubClient(api_url, api_key=api_key)
except ImportError as e:
raise ImportError(
"Could not import langsmith or langchainhub (deprecated),"
"please install with `pip install langsmith`."
) from e
def push(
repo_full_name: str,
object: Any,
*,
api_url: Optional[str] = None,
api_key: Optional[str] = None,
parent_commit_hash: Optional[str] = None,
new_repo_is_public: bool = False,
new_repo_description: Optional[str] = None,
readme: Optional[str] = None,
tags: Optional[Sequence[str]] = None,
) -> str:
"""
Push an object to the hub and returns the URL it can be viewed at in a browser.
:param repo_full_name: The full name of the prompt to push to in the format of
`owner/prompt_name` or `prompt_name`.
:param object: The LangChain to serialize and push to the hub.
:param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service
if you have an api key set, or a localhost instance if not.
:param api_key: The API key to use to authenticate with the LangChain Hub API.
:param parent_commit_hash: The commit hash of the parent commit to push to. Defaults
to the latest commit automatically.
:param new_repo_is_public: Whether the prompt should be public. Defaults to
False (Private by default).
:param new_repo_description: The description of the prompt. Defaults to an empty
string.
"""
client = _get_client(api_key=api_key, api_url=api_url)
# Then it's langsmith
if hasattr(client, "push_prompt"):
return client.push_prompt(
repo_full_name,
object=object,
parent_commit_hash=parent_commit_hash,
is_public=new_repo_is_public,
description=new_repo_description,
readme=readme,
tags=tags,
)
# Then it's langchainhub
manifest_json = dumps(object)
message = client.push(
repo_full_name,
manifest_json,
parent_commit_hash=parent_commit_hash,
new_repo_is_public=new_repo_is_public,
new_repo_description=new_repo_description,
)
return message
def pull(
owner_repo_commit: str,
*,
include_model: Optional[bool] = None,
api_url: Optional[str] = None,
api_key: Optional[str] = None,
) -> Any:
"""
Pull an object from the hub and returns it as a LangChain object.
:param owner_repo_commit: The full name of the prompt to pull from in the format of
`owner/prompt_name:commit_hash` or `owner/prompt_name`
or just `prompt_name` if it's your own prompt.
:param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service
if you have an api key set, or a localhost instance if not.
:param api_key: The API key to use to authenticate with the LangChain Hub API.
"""
client = _get_client(api_key=api_key, api_url=api_url)
# Then it's langsmith
if hasattr(client, "pull_prompt"):
response = client.pull_prompt(owner_repo_commit, include_model=include_model)
return response
# Then it's langchainhub
if hasattr(client, "pull_repo"):
# >= 0.1.15
res_dict = client.pull_repo(owner_repo_commit)
obj = loads(json.dumps(res_dict["manifest"]))
if isinstance(obj, BasePromptTemplate):
if obj.metadata is None:
obj.metadata = {}
obj.metadata["lc_hub_owner"] = res_dict["owner"]
obj.metadata["lc_hub_repo"] = res_dict["repo"]
obj.metadata["lc_hub_commit_hash"] = res_dict["commit_hash"]
return obj
# Then it's < 0.1.15 langchainhub
resp: str = client.pull(owner_repo_commit)
return loads(resp)
|
"""Interface with the LangChain Hub."""
from __future__ import annotations
import json
from typing import Any, Optional, Sequence
from langchain_core.load.dump import dumps
from langchain_core.load.load import loads
from langchain_core.prompts import BasePromptTemplate
def _get_client(
api_key: Optional[str] = None,
api_url: Optional[str] = None,
) -> Any:
try:
from langsmith import Client as LangSmithClient
ls_client = LangSmithClient(api_url, api_key=api_key)
if hasattr(ls_client, "push_prompt") and hasattr(ls_client, "pull_prompt"):
return ls_client
else:
from langchainhub import Client as LangChainHubClient
return LangChainHubClient(api_url, api_key=api_key)
except ImportError:
try:
from langchainhub import Client as LangChainHubClient
return LangChainHubClient(api_url, api_key=api_key)
except ImportError as e:
raise ImportError(
"Could not import langsmith or langchainhub (deprecated),"
"please install with `pip install langsmith`."
) from e
def push(
repo_full_name: str,
object: Any,
*,
api_url: Optional[str] = None,
api_key: Optional[str] = None,
parent_commit_hash: Optional[str] = None,
new_repo_is_public: bool = False,
new_repo_description: Optional[str] = None,
readme: Optional[str] = None,
tags: Optional[Sequence[str]] = None,
) -> str:
"""
Push an object to the hub and returns the URL it can be viewed at in a browser.
:param repo_full_name: The full name of the prompt to push to in the format of
`owner/prompt_name` or `prompt_name`.
:param object: The LangChain to serialize and push to the hub.
:param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service
if you have an api key set, or a localhost instance if not.
:param api_key: The API key to use to authenticate with the LangChain Hub API.
:param parent_commit_hash: The commit hash of the parent commit to push to. Defaults
to the latest commit automatically.
:param new_repo_is_public: Whether the prompt should be public. Defaults to
False (Private by default).
:param new_repo_description: The description of the prompt. Defaults to an empty
string.
"""
client = _get_client(api_key=api_key, api_url=api_url)
# Then it's langsmith
if hasattr(client, "push_prompt"):
return client.push_prompt(
repo_full_name,
object=object,
parent_commit_hash=parent_commit_hash,
is_public=new_repo_is_public,
description=new_repo_description,
readme=readme,
tags=tags,
)
# Then it's langchainhub
manifest_json = dumps(object)
message = client.push(
repo_full_name,
manifest_json,
parent_commit_hash=parent_commit_hash,
new_repo_is_public=new_repo_is_public,
new_repo_description=new_repo_description,
)
return message
def pull(
owner_repo_commit: str,
*,
include_model: Optional[bool] = None,
api_url: Optional[str] = None,
api_key: Optional[str] = None,
) -> Any:
"""
Pull an object from the hub and returns it as a LangChain object.
:param owner_repo_commit: The full name of the prompt to pull from in the format of
`owner/prompt_name:commit_hash` or `owner/prompt_name`
or just `prompt_name` if it's your own prompt.
:param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service
if you have an api key set, or a localhost instance if not.
:param api_key: The API key to use to authenticate with the LangChain Hub API.
"""
client = _get_client(api_key=api_key, api_url=api_url)
# Then it's langsmith
if hasattr(client, "pull_prompt"):
response = client.pull_prompt(owner_repo_commit, include_model=include_model)
return response
# Then it's langchainhub
if hasattr(client, "pull_repo"):
# >= 0.1.15
res_dict = client.pull_repo(owner_repo_commit)
obj = loads(json.dumps(res_dict["manifest"]))
if isinstance(obj, BasePromptTemplate):
if obj.metadata is None:
obj.metadata = {}
obj.metadata["lc_hub_owner"] = res_dict["owner"]
obj.metadata["lc_hub_repo"] = res_dict["repo"]
obj.metadata["lc_hub_commit_hash"] = res_dict["commit_hash"]
return obj
# Then it's < 0.1.15 langchainhub
resp: str = client.pull(owner_repo_commit)
return loads(resp)
|
# Copyright (c) OpenMMLab. All rights reserved.
"""MMEngine provides 11 root registries to support using modules across
projects.
More datails can be found at
https://mmengine.readthedocs.io/en/latest/tutorials/registry.html.
"""
from .registry import Registry, build_runner_from_cfg
# manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner`
RUNNERS = Registry('runner', build_func=build_runner_from_cfg)
# manage runner constructors that define how to initialize runners
RUNNER_CONSTRUCTORS = Registry('runner constructor')
# manage all kinds of loops like `EpochBasedTrainLoop`
LOOPS = Registry('loop')
# manage all kinds of hooks like `CheckpointHook`
HOOKS = Registry('hook')
# manage data-related modules
DATASETS = Registry('dataset')
DATA_SAMPLERS = Registry('data sampler')
TRANSFORMS = Registry('transform')
# mangage all kinds of modules inheriting `nn.Module`
MODELS = Registry('model')
# mangage all kinds of model wrappers like 'MMDistributedDataParallel'
MODEL_WRAPPERS = Registry('model_wrapper')
# mangage all kinds of weight initialization modules like `Uniform`
WEIGHT_INITIALIZERS = Registry('weight initializer')
# mangage all kinds of optimizers like `SGD` and `Adam`
OPTIMIZERS = Registry('optimizer')
# manage constructors that customize the optimization hyperparameters.
OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor')
# mangage all kinds of parameter schedulers like `MultiStepLR`
PARAM_SCHEDULERS = Registry('parameter scheduler')
# manage all kinds of metrics
METRICS = Registry('metric')
# manage task-specific modules like anchor generators and box coders
TASK_UTILS = Registry('task util')
# manage visualizer
VISUALIZERS = Registry('visualizer')
# manage visualizer backend
VISBACKENDS = Registry('vis_backend')
# manage logprocessor
LOG_PROCESSORS = Registry('log_processor')
# manage optimizer wrapper
OPTIM_WRAPPERS = Registry('optim_wrapper')
|
# Copyright (c) OpenMMLab. All rights reserved.
"""MMEngine provides 11 root registries to support using modules across
projects.
More datails can be found at
https://mmengine.readthedocs.io/en/latest/tutorials/registry.html.
"""
from .registry import Registry
# manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner`
RUNNERS = Registry('runner')
# manage runner constructors that define how to initialize runners
RUNNER_CONSTRUCTORS = Registry('runner constructor')
# manage all kinds of loops like `EpochBasedTrainLoop`
LOOPS = Registry('loop')
# manage all kinds of hooks like `CheckpointHook`
HOOKS = Registry('hook')
# manage data-related modules
DATASETS = Registry('dataset')
DATA_SAMPLERS = Registry('data sampler')
TRANSFORMS = Registry('transform')
# mangage all kinds of modules inheriting `nn.Module`
MODELS = Registry('model')
# mangage all kinds of model wrappers like 'MMDistributedDataParallel'
MODEL_WRAPPERS = Registry('model_wrapper')
# mangage all kinds of weight initialization modules like `Uniform`
WEIGHT_INITIALIZERS = Registry('weight initializer')
# mangage all kinds of optimizers like `SGD` and `Adam`
OPTIMIZERS = Registry('optimizer')
# manage constructors that customize the optimization hyperparameters.
OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor')
# mangage all kinds of parameter schedulers like `MultiStepLR`
PARAM_SCHEDULERS = Registry('parameter scheduler')
# manage all kinds of metrics
METRICS = Registry('metric')
# manage task-specific modules like anchor generators and box coders
TASK_UTILS = Registry('task util')
# manage visualizer
VISUALIZERS = Registry('visualizer')
# manage visualizer backend
VISBACKENDS = Registry('vis_backend')
# manage logprocessor
LOG_PROCESSORS = Registry('log_processor')
# manage optimizer wrapper
OPTIM_WRAPPERS = Registry('optim_wrapper')
|
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import Optional, Sequence, Tuple
import cv2
import numpy as np
from mmengine.data import BaseDataElement
from mmengine.hooks import Hook
from mmengine.registry import HOOKS
from mmengine.utils.misc import tensor2imgs
# TODO: Due to interface changes, the current class
# functions incorrectly
@HOOKS.register_module()
class NaiveVisualizationHook(Hook):
"""Show or Write the predicted results during the process of testing.
Args:
interval (int): Visualization interval. Default: 1.
draw_gt (bool): Whether to draw the ground truth. Default to True.
draw_pred (bool): Whether to draw the predicted result.
Default to True.
"""
priority = 'NORMAL'
def __init__(self,
interval: int = 1,
draw_gt: bool = True,
draw_pred: bool = True):
self.draw_gt = draw_gt
self.draw_pred = draw_pred
self._interval = interval
def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int,
int]) -> np.ndarray:
unpad_width, unpad_height = unpad_shape
unpad_image = input[:unpad_height, :unpad_width]
return unpad_image
def after_test_iter(
self,
runner,
batch_idx: int,
data_batch: Optional[Sequence[dict]] = None,
outputs: Optional[Sequence[BaseDataElement]] = None) -> None:
"""Show or Write the predicted results.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the test loop.
data_batch (Sequence[dict], optional): Data
from dataloader. Defaults to None.
outputs (Sequence[BaseDataElement], optional): Outputs from model.
Defaults to None.
"""
if self.every_n_iters(runner, self._interval):
for data, output in zip(data_batch, outputs): # type: ignore
input = data['inputs']
data_sample = data['data_sample']
input = tensor2imgs(input,
**data_sample.get('img_norm_cfg',
dict()))[0]
# TODO We will implement a function to revert the augmentation
# in the future.
ori_shape = (data_sample.ori_width, data_sample.ori_height)
if 'pad_shape' in data_sample:
input = self._unpad(input,
data_sample.get('scale', ori_shape))
origin_image = cv2.resize(input, ori_shape)
name = osp.basename(data_sample.img_path)
runner.visualizer.add_datasample(name, origin_image,
data_sample, output,
self.draw_gt, self.draw_pred)
|
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import Any, Optional, Sequence, Tuple
import cv2
import numpy as np
from mmengine.data import BaseDataElement
from mmengine.hooks import Hook
from mmengine.registry import HOOKS
from mmengine.utils.misc import tensor2imgs
@HOOKS.register_module()
class NaiveVisualizationHook(Hook):
"""Show or Write the predicted results during the process of testing.
Args:
interval (int): Visualization interval. Default: 1.
draw_gt (bool): Whether to draw the ground truth. Default to True.
draw_pred (bool): Whether to draw the predicted result.
Default to True.
"""
priority = 'NORMAL'
def __init__(self,
interval: int = 1,
draw_gt: bool = True,
draw_pred: bool = True):
self.draw_gt = draw_gt
self.draw_pred = draw_pred
self._interval = interval
def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int,
int]) -> np.ndarray:
unpad_width, unpad_height = unpad_shape
unpad_image = input[:unpad_height, :unpad_width]
return unpad_image
def after_test_iter(
self,
runner,
batch_idx: int,
data_batch: Optional[Sequence[Tuple[Any, BaseDataElement]]] = None,
outputs: Optional[Sequence[BaseDataElement]] = None) -> None:
"""Show or Write the predicted results.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the test loop.
data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data
from dataloader. Defaults to None.
outputs (Sequence[BaseDataElement], optional): Outputs from model.
Defaults to None.
"""
if self.every_n_iters(runner, self._interval):
inputs, data_samples = data_batch # type: ignore
inputs = tensor2imgs(inputs,
**data_samples[0].get('img_norm_cfg', dict()))
for input, data_sample, output in zip(
inputs,
data_samples, # type: ignore
outputs): # type: ignore
# TODO We will implement a function to revert the augmentation
# in the future.
ori_shape = (data_sample.ori_width, data_sample.ori_height)
if 'pad_shape' in data_sample:
input = self._unpad(input,
data_sample.get('scale', ori_shape))
origin_image = cv2.resize(input, ori_shape)
name = osp.basename(data_sample.img_path)
runner.writer.add_image(name, origin_image, data_sample,
output, self.draw_gt, self.draw_pred)
|
_base_ = './reppoints-moment_r50_fpn-gn_head-gn_1x_coco.py'
max_epochs = 24
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
|
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
max_epochs = 24
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
|
_base_ = './mask-rcnn_r101_fpn_gn-ws-all_2x_coco.py'
# learning policy
max_epochs = 24
train_cfg = dict(max_epochs=max_epochs)
# learning rate
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[20, 23],
gamma=0.1)
]
|
_base_ = './mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py'
# learning policy
max_epochs = 24
train_cfg = dict(max_epochs=max_epochs)
# learning rate
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[20, 23],
gamma=0.1)
]
|
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import Optional, Sequence, Tuple, Union
import cv2
import numpy as np
from mmengine.hooks import Hook
from mmengine.registry import HOOKS
from mmengine.utils.dl_utils import tensor2imgs
DATA_BATCH = Optional[Union[dict, tuple, list]]
# TODO: Due to interface changes, the current class
# functions incorrectly
@HOOKS.register_module()
class NaiveVisualizationHook(Hook):
"""Show or Write the predicted results during the process of testing.
Args:
interval (int): Visualization interval. Defaults to 1.
draw_gt (bool): Whether to draw the ground truth. Default to True.
draw_pred (bool): Whether to draw the predicted result.
Default to True.
"""
priority = 'NORMAL'
def __init__(self,
interval: int = 1,
draw_gt: bool = True,
draw_pred: bool = True):
self.draw_gt = draw_gt
self.draw_pred = draw_pred
self._interval = interval
def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int,
int]) -> np.ndarray:
"""Unpad the input image.
Args:
input (np.ndarray): The image to unpad.
unpad_shape (tuple): The shape of image before padding.
Returns:
np.ndarray: The image before padding.
"""
unpad_width, unpad_height = unpad_shape
unpad_image = input[:unpad_height, :unpad_width]
return unpad_image
def before_train(self, runner) -> None:
"""Call add_graph method of visualizer.
Args:
runner (Runner): The runner of the training process.
"""
runner.visualizer.add_graph(runner.model, None)
def after_test_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs: Optional[Sequence] = None) -> None:
"""Show or Write the predicted results.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the test loop.
data_batch (dict or tuple or list, optional): Data from dataloader.
outputs (Sequence, optional): Outputs from model.
"""
if self.every_n_inner_iters(batch_idx, self._interval):
for data, output in zip(data_batch, outputs): # type: ignore
input = data['inputs']
data_sample = data['data_sample']
input = tensor2imgs(input,
**data_sample.get('img_norm_cfg',
dict()))[0]
# TODO We will implement a function to revert the augmentation
# in the future.
ori_shape = (data_sample.ori_width, data_sample.ori_height)
if 'pad_shape' in data_sample:
input = self._unpad(input,
data_sample.get('scale', ori_shape))
origin_image = cv2.resize(input, ori_shape)
name = osp.basename(data_sample.img_path)
runner.visualizer.add_datasample(name, origin_image,
data_sample, output,
self.draw_gt, self.draw_pred)
|
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import Optional, Sequence, Tuple, Union
import cv2
import numpy as np
from mmengine.hooks import Hook
from mmengine.registry import HOOKS
from mmengine.utils.dl_utils import tensor2imgs
DATA_BATCH = Optional[Union[dict, tuple, list]]
# TODO: Due to interface changes, the current class
# functions incorrectly
@HOOKS.register_module()
class NaiveVisualizationHook(Hook):
"""Show or Write the predicted results during the process of testing.
Args:
interval (int): Visualization interval. Defaults to 1.
draw_gt (bool): Whether to draw the ground truth. Default to True.
draw_pred (bool): Whether to draw the predicted result.
Default to True.
"""
priority = 'NORMAL'
def __init__(self,
interval: int = 1,
draw_gt: bool = True,
draw_pred: bool = True):
self.draw_gt = draw_gt
self.draw_pred = draw_pred
self._interval = interval
def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int,
int]) -> np.ndarray:
"""Unpad the input image.
Args:
input (np.ndarray): The image to unpad.
unpad_shape (tuple): The shape of image before padding.
Returns:
np.ndarray: The image before padding.
"""
unpad_width, unpad_height = unpad_shape
unpad_image = input[:unpad_height, :unpad_width]
return unpad_image
def after_test_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs: Optional[Sequence] = None) -> None:
"""Show or Write the predicted results.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the test loop.
data_batch (dict or tuple or list, optional): Data from dataloader.
outputs (Sequence, optional): Outputs from model.
"""
if self.every_n_inner_iters(batch_idx, self._interval):
for data, output in zip(data_batch, outputs): # type: ignore
input = data['inputs']
data_sample = data['data_sample']
input = tensor2imgs(input,
**data_sample.get('img_norm_cfg',
dict()))[0]
# TODO We will implement a function to revert the augmentation
# in the future.
ori_shape = (data_sample.ori_width, data_sample.ori_height)
if 'pad_shape' in data_sample:
input = self._unpad(input,
data_sample.get('scale', ori_shape))
origin_image = cv2.resize(input, ori_shape)
name = osp.basename(data_sample.img_path)
runner.visualizer.add_datasample(name, origin_image,
data_sample, output,
self.draw_gt, self.draw_pred)
|
from jina.serve.runtimes.gateway.gateway import BaseGateway
from jina.serve.runtimes.servers.grpc import GRPCServer
__all__ = ['GRPCGateway']
class GRPCGateway(GRPCServer, BaseGateway):
"""
:class:`GRPCGateway` is a GRPCServer that can be loaded from YAML as any other Gateway
"""
pass
|
from jina.serve.runtimes.gateway.gateway import BaseGateway
from jina.serve.runtimes.servers.grpc import GRPCServer
__all__ = ['GRPCGateway']
class GRPCGateway(GRPCServer, BaseGateway):
"""
:class:`GRPCGateway` is a GRPCServer that can be loaded from YAML as any other Gateway
"""
pass
|
import gc
import unittest
import torch
from diffusers import (
DDIMScheduler,
StableDiffusionXLImg2ImgPipeline,
)
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
backend_empty_cache,
enable_full_determinism,
numpy_cosine_similarity_distance,
require_torch_accelerator,
slow,
torch_device,
)
from .single_file_testing_utils import SDXLSingleFileTesterMixin
enable_full_determinism()
@slow
@require_torch_accelerator
class StableDiffusionXLImg2ImgPipelineSingleFileSlowTests(unittest.TestCase, SDXLSingleFileTesterMixin):
pipeline_class = StableDiffusionXLImg2ImgPipeline
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors"
repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
original_config = (
"https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml"
)
def setUp(self):
super().setUp()
gc.collect()
backend_empty_cache(torch_device)
def tearDown(self):
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/sketch-mountains-input.png"
)
inputs = {
"prompt": "a fantasy landscape, concept art, high resolution",
"image": init_image,
"generator": generator,
"num_inference_steps": 3,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "np",
}
return inputs
def test_single_file_format_inference_is_same_as_pretrained(self):
super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)
@slow
@require_torch_accelerator
class StableDiffusionXLImg2ImgRefinerPipelineSingleFileSlowTests(unittest.TestCase):
pipeline_class = StableDiffusionXLImg2ImgPipeline
ckpt_path = (
"https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/sd_xl_refiner_1.0.safetensors"
)
repo_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
original_config = (
"https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_refiner.yaml"
)
def test_single_file_format_inference_is_same_as_pretrained(self):
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/sketch-mountains-input.png"
)
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.float16)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_default_attn_processor()
pipe.enable_model_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
image = pipe(
prompt="mountains", image=init_image, num_inference_steps=5, generator=generator, output_type="np"
).images[0]
pipe_single_file = self.pipeline_class.from_single_file(self.ckpt_path, torch_dtype=torch.float16)
pipe_single_file.scheduler = DDIMScheduler.from_config(pipe_single_file.scheduler.config)
pipe_single_file.unet.set_default_attn_processor()
pipe_single_file.enable_model_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
image_single_file = pipe_single_file(
prompt="mountains", image=init_image, num_inference_steps=5, generator=generator, output_type="np"
).images[0]
max_diff = numpy_cosine_similarity_distance(image.flatten(), image_single_file.flatten())
assert max_diff < 5e-4
|
import gc
import unittest
import torch
from diffusers import (
DDIMScheduler,
StableDiffusionXLImg2ImgPipeline,
)
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
enable_full_determinism,
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
)
from .single_file_testing_utils import SDXLSingleFileTesterMixin
enable_full_determinism()
@slow
@require_torch_gpu
class StableDiffusionXLImg2ImgPipelineSingleFileSlowTests(unittest.TestCase, SDXLSingleFileTesterMixin):
pipeline_class = StableDiffusionXLImg2ImgPipeline
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors"
repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
original_config = (
"https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml"
)
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/sketch-mountains-input.png"
)
inputs = {
"prompt": "a fantasy landscape, concept art, high resolution",
"image": init_image,
"generator": generator,
"num_inference_steps": 3,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "np",
}
return inputs
def test_single_file_format_inference_is_same_as_pretrained(self):
super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)
@slow
@require_torch_gpu
class StableDiffusionXLImg2ImgRefinerPipelineSingleFileSlowTests(unittest.TestCase):
pipeline_class = StableDiffusionXLImg2ImgPipeline
ckpt_path = (
"https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/sd_xl_refiner_1.0.safetensors"
)
repo_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
original_config = (
"https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_refiner.yaml"
)
def test_single_file_format_inference_is_same_as_pretrained(self):
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/sketch-mountains-input.png"
)
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.float16)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_default_attn_processor()
pipe.enable_model_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
image = pipe(
prompt="mountains", image=init_image, num_inference_steps=5, generator=generator, output_type="np"
).images[0]
pipe_single_file = self.pipeline_class.from_single_file(self.ckpt_path, torch_dtype=torch.float16)
pipe_single_file.scheduler = DDIMScheduler.from_config(pipe_single_file.scheduler.config)
pipe_single_file.unet.set_default_attn_processor()
pipe_single_file.enable_model_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
image_single_file = pipe_single_file(
prompt="mountains", image=init_image, num_inference_steps=5, generator=generator, output_type="np"
).images[0]
max_diff = numpy_cosine_similarity_distance(image.flatten(), image_single_file.flatten())
assert max_diff < 5e-4
|
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Type, TypeVar, Union, cast
import numpy as np
from docarray.typing.abstract_type import AbstractType
if TYPE_CHECKING:
from pydantic.fields import ModelField
from pydantic import BaseConfig
from docarray.proto import NdArrayProto, NodeProto
T = TypeVar('T', bound='Tensor')
class Tensor(np.ndarray, AbstractType):
@classmethod
def __get_validators__(cls):
# one or more validators may be yielded which will be called in the
# order to validate the input, each validator will receive as an input
# the value returned from the previous validator
yield cls.validate
@classmethod
def validate(
cls: Type[T],
value: Union[T, np.ndarray, List[Any], Tuple[Any], Any],
field: 'ModelField',
config: 'BaseConfig',
) -> T:
if isinstance(value, np.ndarray):
return cls.from_ndarray(value)
elif isinstance(value, Tensor):
return cast(T, value)
elif isinstance(value, list) or isinstance(value, tuple):
try:
arr_from_list: np.ndarray = np.asarray(value)
return cls.from_ndarray(arr_from_list)
except Exception:
pass # handled below
else:
try:
arr: np.ndarray = np.ndarray(value)
return cls.from_ndarray(arr)
except Exception:
pass # handled below
raise ValueError(f'Expected a numpy.ndarray compatible type, got {type(value)}')
@classmethod
def from_ndarray(cls: Type[T], value: np.ndarray) -> T:
return value.view(cls)
@classmethod
def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None:
# this is needed to dump to json
field_schema.update(type='string', format='tensor')
def _to_json_compatible(self) -> np.ndarray:
"""
Convert tensor into a json compatible object
:return: a list representation of the tensor
"""
return self.unwrap()
def unwrap(self) -> np.ndarray:
"""
Return the original ndarray without any memory copy.
The original view rest intact and is still a Document Tensor
but the return object is a pure np.ndarray but both object share
the same memory layout.
EXAMPLE USAGE
.. code-block:: python
from docarray.typing import Tensor
import numpy as np
t1 = Tensor.validate(np.zeros((3, 224, 224)), None, None)
# here t is a docarray Tensor
t2 = t.unwrap()
# here t2 is a pure np.ndarray but t1 is still a Docarray Tensor
# But both share the same underlying memory
:return: a numpy ndarray
"""
return self.view(np.ndarray)
def _to_node_protobuf(self: T, field: str = 'tensor') -> NodeProto:
"""Convert itself into a NodeProto protobuf message. This function should
be called when the Document is nested into another Document that need to be
converted into a protobuf
:param field: field in which to store the content in the node proto
:return: the nested item protobuf message
"""
nd_proto = NdArrayProto()
self._flush_tensor_to_proto(nd_proto, value=self)
return NodeProto(**{field: nd_proto})
@classmethod
def from_protobuf(cls: Type[T], pb_msg: 'NdArrayProto') -> 'T':
"""
read ndarray from a proto msg
:param pb_msg:
:return: a numpy array
"""
source = pb_msg.dense
if source.buffer:
x = np.frombuffer(source.buffer, dtype=source.dtype)
return cls.from_ndarray(x.reshape(source.shape))
elif len(source.shape) > 0:
return cls.from_ndarray(np.zeros(source.shape))
else:
raise ValueError(f'proto message {pb_msg} cannot be cast to a Tensor')
@staticmethod
def _flush_tensor_to_proto(pb_msg: 'NdArrayProto', value: 'Tensor'):
pb_msg.dense.buffer = value.tobytes()
pb_msg.dense.ClearField('shape')
pb_msg.dense.shape.extend(list(value.shape))
pb_msg.dense.dtype = value.dtype.str
|
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Type, TypeVar, Union, cast
import numpy as np
if TYPE_CHECKING:
from pydantic.fields import ModelField
from pydantic import BaseConfig
from docarray.document.base_node import BaseNode
from docarray.proto import NdArrayProto, NodeProto
T = TypeVar('T', bound='Tensor')
class Tensor(np.ndarray, BaseNode):
@classmethod
def __get_validators__(cls):
# one or more validators may be yielded which will be called in the
# order to validate the input, each validator will receive as an input
# the value returned from the previous validator
yield cls.validate
@classmethod
def validate(
cls: Type[T],
value: Union[T, np.ndarray, List[Any], Tuple[Any], Any],
field: 'ModelField',
config: 'BaseConfig',
) -> T:
if isinstance(value, np.ndarray):
return cls.from_ndarray(value)
elif isinstance(value, Tensor):
return cast(T, value)
elif isinstance(value, list) or isinstance(value, tuple):
try:
arr_from_list: np.ndarray = np.asarray(value)
return cls.from_ndarray(arr_from_list)
except Exception:
pass # handled below
else:
try:
arr: np.ndarray = np.ndarray(value)
return cls.from_ndarray(arr)
except Exception:
pass # handled below
raise ValueError(f'Expected a numpy.ndarray compatible type, got {type(value)}')
@classmethod
def from_ndarray(cls: Type[T], value: np.ndarray) -> T:
return value.view(cls)
@classmethod
def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None:
# this is needed to dump to json
field_schema.update(type='string', format='tensor')
def _to_json_compatible(self) -> np.ndarray:
"""
Convert tensor into a json compatible object
:return: a list representation of the tensor
"""
return self.unwrap()
def unwrap(self) -> np.ndarray:
"""
Return the original ndarray without any memory copy.
The original view rest intact and is still a Document Tensor
but the return object is a pure np.ndarray but both object share
the same memory layout.
EXAMPLE USAGE
.. code-block:: python
from docarray.typing import Tensor
import numpy as np
t1 = Tensor.validate(np.zeros((3, 224, 224)), None, None)
# here t is a docarray Tensor
t2 = t.unwrap()
# here t2 is a pure np.ndarray but t1 is still a Docarray Tensor
# But both share the same underlying memory
:return: a numpy ndarray
"""
return self.view(np.ndarray)
def _to_node_protobuf(self: T, field: str = 'tensor') -> NodeProto:
"""Convert itself into a NodeProto protobuf message. This function should
be called when the Document is nested into another Document that need to be
converted into a protobuf
:param field: field in which to store the content in the node proto
:return: the nested item protobuf message
"""
nd_proto = NdArrayProto()
self._flush_tensor_to_proto(nd_proto, value=self)
return NodeProto(**{field: nd_proto})
@classmethod
def from_protobuf(cls: Type[T], pb_msg: 'NdArrayProto') -> 'T':
"""
read ndarray from a proto msg
:param pb_msg:
:return: a numpy array
"""
source = pb_msg.dense
if source.buffer:
x = np.frombuffer(source.buffer, dtype=source.dtype)
return cls.from_ndarray(x.reshape(source.shape))
elif len(source.shape) > 0:
return cls.from_ndarray(np.zeros(source.shape))
else:
raise ValueError(f'proto message {pb_msg} cannot be cast to a Tensor')
@staticmethod
def _flush_tensor_to_proto(pb_msg: 'NdArrayProto', value: 'Tensor'):
pb_msg.dense.buffer = value.tobytes()
pb_msg.dense.ClearField('shape')
pb_msg.dense.shape.extend(list(value.shape))
pb_msg.dense.dtype = value.dtype.str
|
from enum import Enum
import pytest
from langchain_core.exceptions import OutputParserException
from langchain.output_parsers.enum import EnumOutputParser
class Colors(Enum):
RED = "red"
GREEN = "green"
BLUE = "blue"
def test_enum_output_parser_parse() -> None:
parser = EnumOutputParser(enum=Colors)
# Test valid inputs
result = parser.parse("red")
assert result == Colors.RED
result = parser.parse("green")
assert result == Colors.GREEN
result = parser.parse("blue")
assert result == Colors.BLUE
# Test invalid input
with pytest.raises(OutputParserException):
parser.parse("INVALID")
def test_enum_output_parser_output_type() -> None:
"""Test the output type of the enum output parser is the expected enum."""
assert EnumOutputParser(enum=Colors).OutputType is Colors
|
from enum import Enum
from langchain_core.exceptions import OutputParserException
from langchain.output_parsers.enum import EnumOutputParser
class Colors(Enum):
RED = "red"
GREEN = "green"
BLUE = "blue"
def test_enum_output_parser_parse() -> None:
parser = EnumOutputParser(enum=Colors)
# Test valid inputs
result = parser.parse("red")
assert result == Colors.RED
result = parser.parse("green")
assert result == Colors.GREEN
result = parser.parse("blue")
assert result == Colors.BLUE
# Test invalid input
try:
parser.parse("INVALID")
assert False, "Should have raised OutputParserException"
except OutputParserException:
pass
def test_enum_output_parser_output_type() -> None:
"""Test the output type of the enum output parser is the expected enum."""
assert EnumOutputParser(enum=Colors).OutputType is Colors
|
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
from typing import Dict, Iterable, List, Union
import numpy as np
import tensorflow as tf
from jina import DocumentArray, Executor, requests
from jina.logging.logger import JinaLogger
from jina_commons.batching import get_docs_batch_generator
class ImageTFEncoder(Executor):
"""
:class:`ImageTFEncoder` encodes ``Document`` content from a ndarray,
potentially B x (Height x Width x Channel) into a ndarray of `B x D`.
Where `B` is the batch size and `D` is the Dimension.
The :class:`ImageTFEncoder` wraps the models from
`tensorflow.keras.applications`.
<https://www.tensorflow.org/api_docs/python/tf/keras/applications>`_
:param model_name: the name of the model. Supported models include
``DenseNet121``, ``DenseNet169``, ``DenseNet201``,
``InceptionResNetV2``, ``InceptionV3``, ``MobileNet``,
``MobileNetV2``, ``NASNetLarge``, ``NASNetMobile``,
``ResNet101``, ``ResNet152``, ``ResNet50``, ``ResNet101V2``,
``ResNet152V2``, ``ResNet50V2``, ``VGG16``, ``VGG19``,
``Xception`` and etc. A full list can be find at
<https://www.tensorflow.org/api_docs/python/tf/keras/applications#functions>`_
:param img_shape: The shape of the image to be encoded.
:param pool_strategy: the pooling strategy. Options are:
- `None`: Means that the output of the model will be the 4D tensor
output of the last convolutional block.
- `avg`: ;eans that global average pooling will be applied to the
output of the last convolutional block, and thus the output of
the model will be a 2D tensor.
- `max`: Means that global max pooling will be applied.
:param default_batch_size: size of each batch
:param default_traversal_paths: traversal path of the Documents, (e.g. 'r', 'c')
:param device: Device ('/CPU:0', '/GPU:0', '/GPU:X')
:param args: additional positional arguments.
:param kwargs: additional positional arguments.
"""
def __init__(
self,
model_name: str = 'MobileNetV2',
img_shape: int = 336,
pool_strategy: str = 'max',
default_batch_size: int = 32,
default_traversal_paths: Union[List[str], str] = None,
device: str = '/CPU:0',
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
if default_traversal_paths is None:
default_traversal_paths = ['r']
self.model_name = model_name
self.pool_strategy = pool_strategy
self.img_shape = img_shape
self.default_batch_size = default_batch_size
self.default_traversal_paths = default_traversal_paths
self.logger = JinaLogger(self.__class__.__name__)
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
if 'GPU' in device:
gpu_index = 0 if 'GPU:' not in device else int(device.split(':')[-1])
if len(gpus) < gpu_index + 1:
raise RuntimeError(f'Device {device} not found on your system!')
self.device = tf.device(device)
with self.device:
model = getattr(tf.keras.applications, self.model_name)(
input_shape=(self.img_shape, self.img_shape, 3),
include_top=False,
pooling=self.pool_strategy,
weights='imagenet',
)
model.trainable = False
self.model = model
@requests
def encode(self, docs: DocumentArray, parameters: Dict, **kwargs):
"""
Encode document content into a ndarray of `B x D`. `
B` is the batch size and `D` is the Dimension.
:param docs: DocumentArray containing blob as image data.
:param args: additional positional arguments.
:param kwargs: additional positional arguments.
:return: Encoded result as a `BatchSize x D` numpy ``ndarray``,
`D` is the output dimension
"""
if docs:
document_batches_generator = get_docs_batch_generator(
docs,
traversal_path=parameters.get(
'traversal_paths', self.default_traversal_paths
),
batch_size=parameters.get('batch_size', self.default_batch_size),
needs_attr='blob',
)
self._create_embeddings(document_batches_generator)
def _create_embeddings(self, document_batches_generator: Iterable):
for document_batch in document_batches_generator:
blob_batch = np.stack([d.blob for d in document_batch])
with self.device:
embedding_batch = self.model(blob_batch)
for document, embedding in zip(document_batch, embedding_batch):
document.embedding = np.array(embedding)
|
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
from typing import Iterable, List, Dict
import numpy as np
from jina import DocumentArray, Executor, requests
from jina.logging.logger import JinaLogger
from jina_commons.batching import get_docs_batch_generator
class ImageTFEncoder(Executor):
"""
:class:`ImageTFEncoder` encodes ``Document`` content from a ndarray,
potentially B x (Height x Width x Channel) into a ndarray of `B x D`.
Where `B` is the batch size and `D` is the Dimension.
The :class:`ImageTFEncoder` wraps the models from
`tensorflow.keras.applications`.
<https://www.tensorflow.org/api_docs/python/tf/keras/applications>`_
:param model_name: the name of the model. Supported models include
``DenseNet121``, ``DenseNet169``, ``DenseNet201``,
``InceptionResNetV2``, ``InceptionV3``, ``MobileNet``,
``MobileNetV2``, ``NASNetLarge``, ``NASNetMobile``,
``ResNet101``, ``ResNet152``, ``ResNet50``, ``ResNet101V2``,
``ResNet152V2``, ``ResNet50V2``, ``VGG16``, ``VGG19``,
``Xception`` and etc. A full list can be find at
<https://www.tensorflow.org/api_docs/python/tf/keras/applications#functions>`_
:param img_shape: The shape of the image to be encoded.
:param pool_strategy: the pooling strategy. Options are:
- `None`: Means that the output of the model will be the 4D tensor
output of the last convolutional block.
- `avg`: ;eans that global average pooling will be applied to the
output of the last convolutional block, and thus the output of
the model will be a 2D tensor.
- `max`: Means that global max pooling will be applied.
:param default_batch_size: size of each batch
:param default_traversal_paths: traversal path of the Documents, (e.g. 'r', 'c')
:param on_gpu: set to True if using GPU
:param args: additional positional arguments.
:param kwargs: additional positional arguments.
"""
def __init__(self,
model_name: str = 'MobileNetV2',
img_shape: int = 336,
pool_strategy: str = 'max',
default_batch_size: int = 32,
default_traversal_paths: List[str] = None,
on_gpu: bool = True,
*args,
**kwargs):
super().__init__(*args, **kwargs)
if default_traversal_paths is None:
default_traversal_paths = ['r']
self.model_name = model_name
self.pool_strategy = pool_strategy
self.img_shape = img_shape
self.default_batch_size = default_batch_size
self.default_traversal_paths = default_traversal_paths
self.on_gpu = on_gpu
self.logger = JinaLogger(self.__class__.__name__)
import tensorflow as tf
cpus = tf.config.experimental.list_physical_devices(device_type='CPU')
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
if self.on_gpu and len(gpus) > 0:
cpus.append(gpus[0])
if self.on_gpu and len(gpus) == 0:
self.logger.warning('You tried to use a GPU but no GPU was found on'
' your system. Defaulting to CPU!')
tf.config.experimental.set_visible_devices(devices=cpus)
model = getattr(tf.keras.applications, self.model_name)(
input_shape=(self.img_shape, self.img_shape, 3),
include_top=False,
pooling=self.pool_strategy,
weights='imagenet')
model.trainable = False
self.model = model
@requests
def encode(self, docs: DocumentArray, parameters: Dict, **kwargs):
"""
Encode document content into a ndarray of `B x D`. `
B` is the batch size and `D` is the Dimension.
:param docs: DocumentArray containing blob as image data.
:param args: additional positional arguments.
:param kwargs: additional positional arguments.
:return: Encoded result as a `BatchSize x D` numpy ``ndarray``,
`D` is the output dimension
"""
if docs:
document_batches_generator = get_docs_batch_generator(
docs,
traversal_path=parameters.get('traversal_paths', self.default_traversal_paths),
batch_size=parameters.get('batch_size', self.default_batch_size),
needs_attr='blob'
)
self._create_embeddings(document_batches_generator)
def _create_embeddings(self, document_batches_generator: Iterable):
for document_batch in document_batches_generator:
blob_batch = np.stack([d.blob for d in document_batch])
embedding_batch = self.model(blob_batch)
for document, embedding in zip(document_batch, embedding_batch):
document.embedding = np.array(embedding)
|
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule, ModuleList
class ConvUpsample(BaseModule):
"""ConvUpsample performs 2x upsampling after Conv.
There are several `ConvModule` layers. In the first few layers, upsampling
will be applied after each layer of convolution. The number of upsampling
must be no more than the number of ConvModule layers.
Args:
in_channels (int): Number of channels in the input feature map.
inner_channels (int): Number of channels produced by the convolution.
num_layers (int): Number of convolution layers.
num_upsample (int | optional): Number of upsampling layer. Must be no
more than num_layers. Upsampling will be applied after the first
``num_upsample`` layers of convolution. Default: ``num_layers``.
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer. Default: None.
init_cfg (dict): Config dict for initialization. Default: None.
kwargs (key word augments): Other augments used in ConvModule.
"""
def __init__(self,
in_channels,
inner_channels,
num_layers=1,
num_upsample=None,
conv_cfg=None,
norm_cfg=None,
init_cfg=None,
**kwargs):
super(ConvUpsample, self).__init__(init_cfg)
if num_upsample is None:
num_upsample = num_layers
assert num_upsample <= num_layers, \
f'num_upsample({num_upsample})must be no more than ' \
f'num_layers({num_layers})'
self.num_layers = num_layers
self.num_upsample = num_upsample
self.conv = ModuleList()
for i in range(num_layers):
self.conv.append(
ConvModule(
in_channels,
inner_channels,
3,
padding=1,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
in_channels = inner_channels
def forward(self, x):
num_upsample = self.num_upsample
for i in range(self.num_layers):
x = self.conv[i](x)
if num_upsample > 0:
num_upsample -= 1
x = F.interpolate(
x, scale_factor=2, mode='bilinear', align_corners=False)
return x
|
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule, ModuleList
class ConvUpsample(BaseModule):
"""ConvUpsample performs 2x upsampling after Conv.
There are several `ConvModule` layers. In the first few layers, upsampling
will be applied after each layer of convolution. The number of upsampling
must be no more than the number of ConvModule layers.
Args:
in_channels (int): Number of channels in the input feature map.
inner_channels (int): Number of channels produced by the convolution.
num_layers (int): Number of convolution layers.
num_upsample (int | optional): Number of upsampling layer. Must be no
more than num_layers. Upsampling will be applied after the first
``num_upsample`` layers of convolution. Default: ``num_layers``.
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer. Default: None.
init_cfg (dict): Config dict for initialization. Default: None.
kwargs (key word augments): Other augments used in ConvModule.
"""
def __init__(self,
in_channels,
inner_channels,
num_layers=1,
num_upsample=None,
conv_cfg=None,
norm_cfg=None,
init_cfg=None,
**kwargs):
super(ConvUpsample, self).__init__(init_cfg)
if num_upsample is None:
num_upsample = num_layers
assert num_upsample <= num_layers, \
f'num_upsample({num_upsample})must be no more than ' \
f'num_layers({num_layers})'
self.num_layers = num_layers
self.num_upsample = num_upsample
self.conv = ModuleList()
for i in range(num_layers):
self.conv.append(
ConvModule(
in_channels,
inner_channels,
3,
padding=1,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
in_channels = inner_channels
def forward(self, x):
num_upsample = self.num_upsample
for i in range(self.num_layers):
x = self.conv[i](x)
if num_upsample > 0:
num_upsample -= 1
x = F.interpolate(
x, scale_factor=2, mode='bilinear', align_corners=False)
return x
|
import warnings
from typing import Any, Dict, List, Union
import numpy as np
import PIL.Image
import torch
from torchvision.prototype import features
from torchvision.prototype.transforms import Transform
from torchvision.transforms import functional as _F
from typing_extensions import Literal
from ._transform import _RandomApplyTransform
from .utils import query_chw
class ToTensor(Transform):
_transformed_types = (PIL.Image.Image, np.ndarray)
def __init__(self) -> None:
warnings.warn(
"The transform `ToTensor()` is deprecated and will be removed in a future release. "
"Instead, please use `transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])`."
)
super().__init__()
def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor:
return _F.to_tensor(inpt)
class Grayscale(Transform):
_transformed_types = (features.Image, PIL.Image.Image, features.is_simple_tensor, features.Video)
def __init__(self, num_output_channels: Literal[1, 3] = 1) -> None:
deprecation_msg = (
f"The transform `Grayscale(num_output_channels={num_output_channels})` "
f"is deprecated and will be removed in a future release."
)
if num_output_channels == 1:
replacement_msg = (
"transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY)"
)
else:
replacement_msg = (
"transforms.Compose(\n"
" transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY),\n"
" transforms.ConvertImageColorSpace(old_color_space=ColorSpace.GRAY, color_space=ColorSpace.RGB),\n"
")"
)
warnings.warn(f"{deprecation_msg} Instead, please use\n\n{replacement_msg}")
super().__init__()
self.num_output_channels = num_output_channels
def _transform(
self, inpt: Union[features.ImageType, features.VideoType], params: Dict[str, Any]
) -> Union[features.ImageType, features.VideoType]:
output = _F.rgb_to_grayscale(inpt, num_output_channels=self.num_output_channels)
if isinstance(inpt, (features.Image, features.Video)):
output = inpt.wrap_like(inpt, output, color_space=features.ColorSpace.GRAY) # type: ignore[arg-type]
return output
class RandomGrayscale(_RandomApplyTransform):
_transformed_types = (features.Image, PIL.Image.Image, features.is_simple_tensor, features.Video)
def __init__(self, p: float = 0.1) -> None:
warnings.warn(
"The transform `RandomGrayscale(p=...)` is deprecated and will be removed in a future release. "
"Instead, please use\n\n"
"transforms.RandomApply(\n"
" transforms.Compose(\n"
" transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY),\n"
" transforms.ConvertImageColorSpace(old_color_space=ColorSpace.GRAY, color_space=ColorSpace.RGB),\n"
" )\n"
" p=...,\n"
")"
)
super().__init__(p=p)
def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
num_input_channels, *_ = query_chw(flat_inputs)
return dict(num_input_channels=num_input_channels)
def _transform(
self, inpt: Union[features.ImageType, features.VideoType], params: Dict[str, Any]
) -> Union[features.ImageType, features.VideoType]:
output = _F.rgb_to_grayscale(inpt, num_output_channels=params["num_input_channels"])
if isinstance(inpt, (features.Image, features.Video)):
output = inpt.wrap_like(inpt, output, color_space=features.ColorSpace.GRAY) # type: ignore[arg-type]
return output
|
import warnings
from typing import Any, Dict, List, Union
import numpy as np
import PIL.Image
import torch
from torchvision.prototype import features
from torchvision.prototype.transforms import Transform
from torchvision.transforms import functional as _F
from typing_extensions import Literal
from ._transform import _RandomApplyTransform
from ._utils import query_chw
class ToTensor(Transform):
_transformed_types = (PIL.Image.Image, np.ndarray)
def __init__(self) -> None:
warnings.warn(
"The transform `ToTensor()` is deprecated and will be removed in a future release. "
"Instead, please use `transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])`."
)
super().__init__()
def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor:
return _F.to_tensor(inpt)
class Grayscale(Transform):
_transformed_types = (features.Image, PIL.Image.Image, features.is_simple_tensor, features.Video)
def __init__(self, num_output_channels: Literal[1, 3] = 1) -> None:
deprecation_msg = (
f"The transform `Grayscale(num_output_channels={num_output_channels})` "
f"is deprecated and will be removed in a future release."
)
if num_output_channels == 1:
replacement_msg = (
"transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY)"
)
else:
replacement_msg = (
"transforms.Compose(\n"
" transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY),\n"
" transforms.ConvertImageColorSpace(old_color_space=ColorSpace.GRAY, color_space=ColorSpace.RGB),\n"
")"
)
warnings.warn(f"{deprecation_msg} Instead, please use\n\n{replacement_msg}")
super().__init__()
self.num_output_channels = num_output_channels
def _transform(
self, inpt: Union[features.ImageType, features.VideoType], params: Dict[str, Any]
) -> Union[features.ImageType, features.VideoType]:
output = _F.rgb_to_grayscale(inpt, num_output_channels=self.num_output_channels)
if isinstance(inpt, (features.Image, features.Video)):
output = inpt.wrap_like(inpt, output, color_space=features.ColorSpace.GRAY) # type: ignore[arg-type]
return output
class RandomGrayscale(_RandomApplyTransform):
_transformed_types = (features.Image, PIL.Image.Image, features.is_simple_tensor, features.Video)
def __init__(self, p: float = 0.1) -> None:
warnings.warn(
"The transform `RandomGrayscale(p=...)` is deprecated and will be removed in a future release. "
"Instead, please use\n\n"
"transforms.RandomApply(\n"
" transforms.Compose(\n"
" transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY),\n"
" transforms.ConvertImageColorSpace(old_color_space=ColorSpace.GRAY, color_space=ColorSpace.RGB),\n"
" )\n"
" p=...,\n"
")"
)
super().__init__(p=p)
def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
num_input_channels, *_ = query_chw(flat_inputs)
return dict(num_input_channels=num_input_channels)
def _transform(
self, inpt: Union[features.ImageType, features.VideoType], params: Dict[str, Any]
) -> Union[features.ImageType, features.VideoType]:
output = _F.rgb_to_grayscale(inpt, num_output_channels=params["num_input_channels"])
if isinstance(inpt, (features.Image, features.Video)):
output = inpt.wrap_like(inpt, output, color_space=features.ColorSpace.GRAY) # type: ignore[arg-type]
return output
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.