input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. from .evaluator import * # noqa: F401,F403 from .functional import * # noqa: F401,F403 from .metrics import * # noqa: F401,F403
# Copyright (c) OpenMMLab. All rights reserved. from .functional import * # noqa: F401,F403 from .metrics import * # noqa: F401,F403
import logging from functools import wraps from typing import Any, Callable from packaging import version MIN_ADS_VERSION = "2.12.9" logger = logging.getLogger(__name__) class UnsupportedOracleAdsVersionError(Exception): """ Custom exception for unsupported `oracle-ads` versions. Attributes: current_version (str): The installed version of `oracle-ads`. required_version (str): The minimum required version of `oracle-ads`. """ def __init__(self, current_version: str, required_version: str): """ Initialize the UnsupportedOracleAdsVersionError. Args: current_version (str): The currently installed version of `oracle-ads`. required_version (str): The minimum required version of `oracle-ads`. """ super().__init__( f"The `oracle-ads` version {current_version} currently installed is incompatible with " "the `llama-index-llms-oci-data-science` version in use. To resolve this issue, " f"please upgrade to `oracle-ads:{required_version}` or later using the " "command: `pip install oracle-ads -U`" ) def _validate_dependency(func: Callable[..., Any]) -> Callable[..., Any]: """ Decorator to validate the presence and version of the `oracle-ads` package. This decorator checks whether `oracle-ads` is installed and ensures its version meets the minimum requirement. If not, it raises an appropriate error. Args: func (Callable[..., Any]): The function to wrap with the dependency validation. Returns: Callable[..., Any]: The wrapped function. Raises: ImportError: If `oracle-ads` is not installed. UnsupportedOracleAdsVersionError: If the installed version is below the required version. """ @wraps(func) def wrapper(*args, **kwargs) -> Any: try: from ads import __version__ as ads_version if version.parse(ads_version) < version.parse(MIN_ADS_VERSION): raise UnsupportedOracleAdsVersionError(ads_version, MIN_ADS_VERSION) except ImportError as ex: raise ImportError( "Could not import `oracle-ads` Python package. " "Please install it with `pip install oracle-ads`." ) from ex return func(*args, **kwargs) return wrapper
import logging from functools import wraps from typing import Any, Callable from packaging import version MIN_ADS_VERSION = "2.12.9" logger = logging.getLogger(__name__) class UnsupportedOracleAdsVersionError(Exception): """Custom exception for unsupported `oracle-ads` versions. Attributes: current_version (str): The installed version of `oracle-ads`. required_version (str): The minimum required version of `oracle-ads`. """ def __init__(self, current_version: str, required_version: str): """Initialize the UnsupportedOracleAdsVersionError. Args: current_version (str): The currently installed version of `oracle-ads`. required_version (str): The minimum required version of `oracle-ads`. """ super().__init__( f"The `oracle-ads` version {current_version} currently installed is incompatible with " "the `llama-index-llms-oci-data-science` version in use. To resolve this issue, " f"please upgrade to `oracle-ads:{required_version}` or later using the " "command: `pip install oracle-ads -U`" ) def _validate_dependency(func: Callable[..., Any]) -> Callable[..., Any]: """Decorator to validate the presence and version of the `oracle-ads` package. This decorator checks whether `oracle-ads` is installed and ensures its version meets the minimum requirement. If not, it raises an appropriate error. Args: func (Callable[..., Any]): The function to wrap with the dependency validation. Returns: Callable[..., Any]: The wrapped function. Raises: ImportError: If `oracle-ads` is not installed. UnsupportedOracleAdsVersionError: If the installed version is below the required version. """ @wraps(func) def wrapper(*args, **kwargs) -> Any: try: from ads import __version__ as ads_version if version.parse(ads_version) < version.parse(MIN_ADS_VERSION): raise UnsupportedOracleAdsVersionError(ads_version, MIN_ADS_VERSION) except ImportError as ex: raise ImportError( "Could not import `oracle-ads` Python package. " "Please install it with `pip install oracle-ads`." ) from ex return func(*args, **kwargs) return wrapper
import warnings from typing import Any, List, Union import PIL.Image import torch from torchvision.prototype import datapoints from torchvision.transforms import functional as _F from ._utils import is_simple_tensor @torch.jit.unused def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image: call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = "convert_color_space(..., color_space=datapoints.ColorSpace.GRAY)" if num_output_channels == 3: replacement = f"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB)" warnings.warn( f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.to_grayscale(inpt, num_output_channels=num_output_channels) def rgb_to_grayscale( inpt: Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT], num_output_channels: int = 1 ) -> Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT]: if torch.jit.is_scripting() or is_simple_tensor(inpt): old_color_space = datapoints._image._from_tensor_shape(inpt.shape) # type: ignore[arg-type] else: old_color_space = None if isinstance(inpt, (datapoints.Image, datapoints.Video)): inpt = inpt.as_subclass(torch.Tensor) call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = ( f"convert_color_space(..., color_space=datapoints.ColorSpace.GRAY" f"{f', old_color_space=datapoints.ColorSpace.{old_color_space}' if old_color_space is not None else ''})" ) if num_output_channels == 3: replacement = ( f"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB" f"{f', old_color_space=datapoints.ColorSpace.GRAY' if old_color_space is not None else ''})" ) warnings.warn( f"The function `rgb_to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.rgb_to_grayscale(inpt, num_output_channels=num_output_channels) @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
import warnings from typing import Any, List, Union import PIL.Image import torch from torchvision.prototype import datapoints from torchvision.transforms import functional as _F @torch.jit.unused def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image: call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = "convert_color_space(..., color_space=datapoints.ColorSpace.GRAY)" if num_output_channels == 3: replacement = f"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB)" warnings.warn( f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.to_grayscale(inpt, num_output_channels=num_output_channels) def rgb_to_grayscale( inpt: Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT], num_output_channels: int = 1 ) -> Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT]: if not torch.jit.is_scripting() and isinstance(inpt, (datapoints.Image, datapoints.Video)): inpt = inpt.as_subclass(torch.Tensor) old_color_space = None elif isinstance(inpt, torch.Tensor): old_color_space = datapoints._image._from_tensor_shape(inpt.shape) # type: ignore[arg-type] else: old_color_space = None call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = ( f"convert_color_space(..., color_space=datapoints.ColorSpace.GRAY" f"{f', old_color_space=datapoints.ColorSpace.{old_color_space}' if old_color_space is not None else ''})" ) if num_output_channels == 3: replacement = ( f"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB" f"{f', old_color_space=datapoints.ColorSpace.GRAY' if old_color_space is not None else ''})" ) warnings.warn( f"The function `rgb_to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.rgb_to_grayscale(inpt, num_output_channels=num_output_channels) @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
import numpy as np import orjson import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import NdArray from docarray.typing.tensor import NdArrayEmbedding def test_proto_tensor(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) tensor._to_node_protobuf() def test_from_list(): tensor = parse_obj_as(NdArray, [[0.0, 0.0], [0.0, 0.0]]) assert (tensor == np.zeros((2, 2))).all() def test_json_schema(): schema_json_of(NdArray) def test_dump_json(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) orjson_dumps(tensor) def test_load_json(): tensor = parse_obj_as(NdArray, np.zeros((2, 2))) json = orjson_dumps(tensor) print(json) print(type(json)) new_tensor = orjson.loads(json) assert (new_tensor == tensor).all() def test_unwrap(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) ndarray = tensor.unwrap() assert not isinstance(ndarray, NdArray) assert isinstance(ndarray, np.ndarray) assert isinstance(tensor, NdArray) assert (ndarray == np.zeros((3, 224, 224))).all() def test_parametrized(): # correct shape, single axis tensor = parse_obj_as(NdArray[128], np.zeros(128)) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (128,) # correct shape, multiple axis tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) # wrong but reshapable shape tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) # wrong and not reshapable shape with pytest.raises(ValueError): parse_obj_as(NdArray[3, 224, 224], np.zeros((224, 224))) # test independent variable dimensions tensor = parse_obj_as(NdArray[3, 'x', 'y'], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) tensor = parse_obj_as(NdArray[3, 'x', 'y'], np.zeros((3, 60, 128))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 60, 128) with pytest.raises(ValueError): parse_obj_as(NdArray[3, 'x', 'y'], np.zeros((4, 224, 224))) with pytest.raises(ValueError): parse_obj_as(NdArray[3, 'x', 'y'], np.zeros((100, 1))) # test dependent variable dimensions tensor = parse_obj_as(NdArray[3, 'x', 'x'], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) with pytest.raises(ValueError): tensor = parse_obj_as(NdArray[3, 'x', 'x'], np.zeros((3, 60, 128))) with pytest.raises(ValueError): tensor = parse_obj_as(NdArray[3, 'x', 'x'], np.zeros((3, 60))) def test_np_embedding(): # correct shape tensor = parse_obj_as(NdArrayEmbedding[128], np.zeros((128,))) assert isinstance(tensor, NdArrayEmbedding) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (128,) # wrong shape at data setting time with pytest.raises(ValueError): parse_obj_as(NdArrayEmbedding[128], np.zeros((256,))) # illegal shape at class creation time with pytest.raises(ValueError): parse_obj_as(NdArrayEmbedding[128, 128], np.zeros((128, 128))) def test_parametrized_subclass(): c1 = NdArray[128] c2 = NdArray[128] assert issubclass(c1, c2) assert issubclass(c1, NdArray) assert issubclass(c1, np.ndarray) assert not issubclass(c1, NdArray[256]) def test_parametrized_instance(): t = parse_obj_as(NdArray[128], np.zeros(128)) assert isinstance(t, NdArray[128]) assert isinstance(t, NdArray) assert isinstance(t, np.ndarray) assert not isinstance(t, NdArray[256]) def test_parametrized_equality(): t1 = parse_obj_as(NdArray[128], np.zeros(128)) t2 = parse_obj_as(NdArray[128], np.zeros(128)) t3 = parse_obj_as(NdArray[256], np.zeros(256)) assert (t1 == t2).all() assert not t1 == t3 def test_parametrized_operations(): t1 = parse_obj_as(NdArray[128], np.zeros(128)) t2 = parse_obj_as(NdArray[128], np.zeros(128)) t_result = t1 + t2 assert isinstance(t_result, np.ndarray) assert isinstance(t_result, NdArray) assert isinstance(t_result, NdArray[128])
import numpy as np import orjson import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import NdArray from docarray.typing.tensor import NdArrayEmbedding def test_proto_tensor(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) tensor._to_node_protobuf() def test_from_list(): tensor = parse_obj_as(NdArray, [[0.0, 0.0], [0.0, 0.0]]) assert (tensor == np.zeros((2, 2))).all() def test_json_schema(): schema_json_of(NdArray) def test_dump_json(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) orjson_dumps(tensor) def test_load_json(): tensor = parse_obj_as(NdArray, np.zeros((2, 2))) json = orjson_dumps(tensor) print(json) print(type(json)) new_tensor = orjson.loads(json) assert (new_tensor == tensor).all() def test_unwrap(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) ndarray = tensor.unwrap() assert not isinstance(ndarray, NdArray) assert isinstance(ndarray, np.ndarray) assert isinstance(tensor, NdArray) assert (ndarray == np.zeros((3, 224, 224))).all() def test_parametrized(): # correct shape, single axis tensor = parse_obj_as(NdArray[128], np.zeros(128)) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (128,) # correct shape, multiple axis tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) # wrong but reshapable shape tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) # wrong and not reshapable shape with pytest.raises(ValueError): parse_obj_as(NdArray[3, 224, 224], np.zeros((224, 224))) def test_np_embedding(): # correct shape tensor = parse_obj_as(NdArrayEmbedding[128], np.zeros((128,))) assert isinstance(tensor, NdArrayEmbedding) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (128,) # wrong shape at data setting time with pytest.raises(ValueError): parse_obj_as(NdArrayEmbedding[128], np.zeros((256,))) # illegal shape at class creation time with pytest.raises(ValueError): parse_obj_as(NdArrayEmbedding[128, 128], np.zeros((128, 128))) def test_parametrized_subclass(): c1 = NdArray[128] c2 = NdArray[128] assert issubclass(c1, c2) assert issubclass(c1, NdArray) assert issubclass(c1, np.ndarray) assert not issubclass(c1, NdArray[256]) def test_parametrized_instance(): t = parse_obj_as(NdArray[128], np.zeros(128)) assert isinstance(t, NdArray[128]) assert isinstance(t, NdArray) assert isinstance(t, np.ndarray) assert not isinstance(t, NdArray[256]) def test_parametrized_equality(): t1 = parse_obj_as(NdArray[128], np.zeros(128)) t2 = parse_obj_as(NdArray[128], np.zeros(128)) t3 = parse_obj_as(NdArray[256], np.zeros(256)) assert (t1 == t2).all() assert not t1 == t3 def test_parametrized_operations(): t1 = parse_obj_as(NdArray[128], np.zeros(128)) t2 = parse_obj_as(NdArray[128], np.zeros(128)) t_result = t1 + t2 assert isinstance(t_result, np.ndarray) assert isinstance(t_result, NdArray) assert isinstance(t_result, NdArray[128])
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode @_register_proto(proto_type_name='audio_torch_tensor') class AudioTorchTensor(AbstractAudioTensor, TorchTensor, metaclass=metaTorchAndNode): """ Subclass of TorchTensor, to represent an audio tensor. Adds audio-specific features to the tensor. --- ```python from typing import Optional import torch from docarray import BaseDoc from docarray.typing import AudioTorchTensor, AudioUrl class MyAudioDoc(BaseDoc): title: str audio_tensor: Optional[AudioTorchTensor] url: Optional[AudioUrl] bytes_: Optional[bytes] doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=torch.zeros(1000, 2), ) doc_1.audio_tensor.save(file_path='/tmp/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor, _ = doc_2.url.load() doc_2.audio_tensor.save(file_path='/tmp/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() ``` --- """ ...
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode @_register_proto(proto_type_name='audio_torch_tensor') class AudioTorchTensor(AbstractAudioTensor, TorchTensor, metaclass=metaTorchAndNode): """ Subclass of TorchTensor, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import torch from docarray import BaseDoc from docarray.typing import AudioTorchTensor, AudioUrl class MyAudioDoc(BaseDoc): title: str audio_tensor: Optional[AudioTorchTensor] url: Optional[AudioUrl] bytes_: Optional[bytes] doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=torch.randn(size=(1000, 2)), ) doc_1.audio_tensor.save(file_path='path/to/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = doc_2.url.load() doc_2.audio_tensor.save(file_path='path/to/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() """ ...
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .formatting import (ImageToTensor, PackDetInputs, PackReIDInputs, PackTrackInputs, ToTensor, Transpose) from .frame_sampling import BaseFrameSample, UniformRefFrameSample from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, InferencerLoader, LoadAnnotations, LoadEmptyAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals, LoadTrackAnnotations) from .transforms import (Albu, CachedMixUp, CachedMosaic, CopyPaste, CutOut, Expand, FixScaleResize, FixShapeResize, MinIoURandomCrop, MixUp, Mosaic, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomErasing, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) from .wrappers import MultiBranch, ProposalBroadcaster, RandomOrder __all__ = [ 'PackDetInputs', 'ToTensor', 'ImageToTensor', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'Resize', 'RandomFlip', 'RandomCrop', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert', 'MultiBranch', 'RandomErasing', 'LoadEmptyAnnotations', 'RandomOrder', 'CachedMosaic', 'CachedMixUp', 'FixShapeResize', 'ProposalBroadcaster', 'InferencerLoader', 'LoadTrackAnnotations', 'BaseFrameSample', 'UniformRefFrameSample', 'PackTrackInputs', 'PackReIDInputs', 'FixScaleResize' ]
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .formatting import (ImageToTensor, PackDetInputs, PackReIDInputs, PackTrackInputs, ToTensor, Transpose) from .frame_sampling import BaseFrameSample, UniformRefFrameSample from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, InferencerLoader, LoadAnnotations, LoadEmptyAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals, LoadTrackAnnotations) from .transforms import (Albu, CachedMixUp, CachedMosaic, CopyPaste, CutOut, Expand, FixShapeResize, MinIoURandomCrop, MixUp, Mosaic, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomErasing, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) from .wrappers import MultiBranch, ProposalBroadcaster, RandomOrder __all__ = [ 'PackDetInputs', 'ToTensor', 'ImageToTensor', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'Resize', 'RandomFlip', 'RandomCrop', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert', 'MultiBranch', 'RandomErasing', 'LoadEmptyAnnotations', 'RandomOrder', 'CachedMosaic', 'CachedMixUp', 'FixShapeResize', 'ProposalBroadcaster', 'InferencerLoader', 'LoadTrackAnnotations', 'BaseFrameSample', 'UniformRefFrameSample', 'PackTrackInputs', 'PackReIDInputs' ]
"""**Tools** are classes that an Agent uses to interact with the world. Each tool has a **description**. Agent uses the description to choose the right tool for the job. **Class hierarchy:** .. code-block:: RunnableSerializable --> BaseTool --> <name>Tool # Examples: AIPluginTool, BaseGraphQLTool <name> # Examples: BraveSearch, HumanInputRun **Main helpers:** .. code-block:: CallbackManagerForToolRun, AsyncCallbackManagerForToolRun """ # noqa: E501 from __future__ import annotations from langchain_core.tools.base import ( FILTERED_ARGS, ArgsSchema, BaseTool, BaseToolkit, InjectedToolArg, InjectedToolCallId, SchemaAnnotationError, ToolException, _get_runnable_config_param, create_schema_from_function, ) from langchain_core.tools.convert import ( convert_runnable_to_tool, tool, ) from langchain_core.tools.render import ( ToolsRenderer, render_text_description, render_text_description_and_args, ) from langchain_core.tools.retriever import ( RetrieverInput, create_retriever_tool, ) from langchain_core.tools.simple import Tool from langchain_core.tools.structured import StructuredTool __all__ = [ "ArgsSchema", "BaseTool", "BaseToolkit", "FILTERED_ARGS", "SchemaAnnotationError", "ToolException", "InjectedToolArg", "InjectedToolCallId", "_get_runnable_config_param", "create_schema_from_function", "convert_runnable_to_tool", "tool", "ToolsRenderer", "render_text_description", "render_text_description_and_args", "RetrieverInput", "create_retriever_tool", "Tool", "StructuredTool", ]
"""**Tools** are classes that an Agent uses to interact with the world. Each tool has a **description**. Agent uses the description to choose the right tool for the job. **Class hierarchy:** .. code-block:: RunnableSerializable --> BaseTool --> <name>Tool # Examples: AIPluginTool, BaseGraphQLTool <name> # Examples: BraveSearch, HumanInputRun **Main helpers:** .. code-block:: CallbackManagerForToolRun, AsyncCallbackManagerForToolRun """ # noqa: E501 from __future__ import annotations from langchain_core.tools.base import ( FILTERED_ARGS as FILTERED_ARGS, ) from langchain_core.tools.base import ( ArgsSchema as ArgsSchema, ) from langchain_core.tools.base import ( BaseTool as BaseTool, ) from langchain_core.tools.base import ( BaseToolkit as BaseToolkit, ) from langchain_core.tools.base import ( InjectedToolArg as InjectedToolArg, ) from langchain_core.tools.base import InjectedToolCallId as InjectedToolCallId from langchain_core.tools.base import SchemaAnnotationError as SchemaAnnotationError from langchain_core.tools.base import ( ToolException as ToolException, ) from langchain_core.tools.base import ( _get_runnable_config_param as _get_runnable_config_param, ) from langchain_core.tools.base import ( create_schema_from_function as create_schema_from_function, ) from langchain_core.tools.convert import ( convert_runnable_to_tool as convert_runnable_to_tool, ) from langchain_core.tools.convert import tool as tool from langchain_core.tools.render import ToolsRenderer as ToolsRenderer from langchain_core.tools.render import ( render_text_description as render_text_description, ) from langchain_core.tools.render import ( render_text_description_and_args as render_text_description_and_args, ) from langchain_core.tools.retriever import RetrieverInput as RetrieverInput from langchain_core.tools.retriever import ( create_retriever_tool as create_retriever_tool, ) from langchain_core.tools.simple import Tool as Tool from langchain_core.tools.structured import StructuredTool as StructuredTool
from keras.src import activations from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.Activation") class Activation(Layer): """Applies an activation function to an output. Args: activation: Activation function. It could be a callable, or the name of an activation from the `keras.activations` namespace. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. Example: >>> layer = keras.layers.Activation('relu') >>> layer(np.array([-3.0, -1.0, 0.0, 2.0])) [0.0, 0.0, 0.0, 2.0] >>> layer = keras.layers.Activation(keras.activations.relu) >>> layer(np.array([-3.0, -1.0, 0.0, 2.0])) [0.0, 0.0, 0.0, 2.0] """ def __init__(self, activation, **kwargs): super().__init__(**kwargs) self.supports_masking = True self.activation = activations.get(activation) self.built = True def call(self, inputs): return self.activation(inputs) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = {"activation": activations.serialize(self.activation)} base_config = super().get_config() return {**base_config, **config}
from keras.src import activations from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.Activation") class Activation(Layer): """Applies an activation function to an output. Args: activation: Activation function. It could be a callable, or the name of an activation from the `keras.activations` namespace. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. Example: >>> layer = keras.layers.Activation('relu') >>> layer([-3.0, -1.0, 0.0, 2.0]) [0.0, 0.0, 0.0, 2.0] >>> layer = keras.layers.Activation(keras.activations.relu) >>> layer([-3.0, -1.0, 0.0, 2.0]) [0.0, 0.0, 0.0, 2.0] """ def __init__(self, activation, **kwargs): super().__init__(**kwargs) self.supports_masking = True self.activation = activations.get(activation) self.built = True def call(self, inputs): return self.activation(inputs) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = {"activation": activations.serialize(self.activation)} base_config = super().get_config() return {**base_config, **config}
from pathlib import Path from typing import Dict, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import ( extract_archive, ) _URL = "https://datashare.ed.ac.uk/bitstream/handle/10283/3038/DR-VCTK.zip" _CHECKSUM = "781f12f4406ed36ed27ae3bce55da47ba176e2d8bae67319e389e07b2c9bd769" _SUPPORTED_SUBSETS = {"train", "test"} class DR_VCTK(Dataset): """Create a dataset for *Device Recorded VCTK (Small subset version)* [:footcite:`Sarfjoo2018DeviceRV`]. Args: root (str or Path): Root directory where the dataset's top level directory is found. subset (str): The subset to use. Can be one of ``"train"`` and ``"test"``. (default: ``"train"``). download (bool): Whether to download the dataset if it is not found at root path. (default: ``False``). url (str): The URL to download the dataset from. (default: ``"https://datashare.ed.ac.uk/bitstream/handle/10283/3038/DR-VCTK.zip"``) """ def __init__( self, root: Union[str, Path], subset: str = "train", *, download: bool = False, url: str = _URL, ) -> None: if subset not in _SUPPORTED_SUBSETS: raise RuntimeError( f"The subset '{subset}' does not match any of the supported subsets: {_SUPPORTED_SUBSETS}" ) root = Path(root).expanduser() archive = root / "DR-VCTK.zip" self._subset = subset self._path = root / "DR-VCTK" / "DR-VCTK" self._clean_audio_dir = self._path / f"clean_{self._subset}set_wav_16k" self._noisy_audio_dir = self._path / f"device-recorded_{self._subset}set_wav_16k" self._config_filepath = self._path / "configurations" / f"{self._subset}_ch_log.txt" if not self._path.is_dir(): if not archive.is_file(): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download it.") download_url_to_file(url, archive, hash_prefix=_CHECKSUM) extract_archive(archive, root) self._config = self._load_config(self._config_filepath) self._filename_list = sorted(self._config) def _load_config(self, filepath: str) -> Dict[str, Tuple[str, int]]: # Skip header skip_rows = 2 if self._subset == "train" else 1 config = {} with open(filepath) as f: for i, line in enumerate(f): if i < skip_rows or not line: continue filename, source, channel_id = line.strip().split("\t") config[filename] = (source, int(channel_id)) return config def _load_dr_vctk_item(self, filename: str) -> Tuple[Tensor, int, Tensor, int, str, str, str, int]: speaker_id, utterance_id = filename.split(".")[0].split("_") source, channel_id = self._config[filename] file_clean_audio = self._clean_audio_dir / filename file_noisy_audio = self._noisy_audio_dir / filename waveform_clean, sample_rate_clean = torchaudio.load(file_clean_audio) waveform_noisy, sample_rate_noisy = torchaudio.load(file_noisy_audio) return ( waveform_clean, sample_rate_clean, waveform_noisy, sample_rate_noisy, speaker_id, utterance_id, source, channel_id, ) def __getitem__(self, n: int) -> Tuple[Tensor, int, Tensor, int, str, str, str, int]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, Tensor, int, str, str, str, int): ``(waveform_clean, sample_rate_clean, waveform_noisy, sample_rate_noisy, speaker_id,\ utterance_id, source, channel_id)`` """ filename = self._filename_list[n] return self._load_dr_vctk_item(filename) def __len__(self) -> int: return len(self._filename_list)
from pathlib import Path from typing import Dict, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import ( extract_archive, ) _URL = "https://datashare.ed.ac.uk/bitstream/handle/10283/3038/DR-VCTK.zip" _CHECKSUM = "781f12f4406ed36ed27ae3bce55da47ba176e2d8bae67319e389e07b2c9bd769" _SUPPORTED_SUBSETS = {"train", "test"} class DR_VCTK(Dataset): """Create a dataset for Device Recorded VCTK (Small subset version). Args: root (str or Path): Root directory where the dataset's top level directory is found. subset (str): The subset to use. Can be one of ``"train"`` and ``"test"``. (default: ``"train"``). download (bool): Whether to download the dataset if it is not found at root path. (default: ``False``). url (str): The URL to download the dataset from. (default: ``"https://datashare.ed.ac.uk/bitstream/handle/10283/3038/DR-VCTK.zip"``) """ def __init__( self, root: Union[str, Path], subset: str = "train", *, download: bool = False, url: str = _URL, ) -> None: if subset not in _SUPPORTED_SUBSETS: raise RuntimeError( f"The subset '{subset}' does not match any of the supported subsets: {_SUPPORTED_SUBSETS}" ) root = Path(root).expanduser() archive = root / "DR-VCTK.zip" self._subset = subset self._path = root / "DR-VCTK" / "DR-VCTK" self._clean_audio_dir = self._path / f"clean_{self._subset}set_wav_16k" self._noisy_audio_dir = self._path / f"device-recorded_{self._subset}set_wav_16k" self._config_filepath = self._path / "configurations" / f"{self._subset}_ch_log.txt" if not self._path.is_dir(): if not archive.is_file(): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download it.") download_url_to_file(url, archive, hash_prefix=_CHECKSUM) extract_archive(archive, root) self._config = self._load_config(self._config_filepath) self._filename_list = sorted(self._config) def _load_config(self, filepath: str) -> Dict[str, Tuple[str, int]]: # Skip header skip_rows = 2 if self._subset == "train" else 1 config = {} with open(filepath) as f: for i, line in enumerate(f): if i < skip_rows or not line: continue filename, source, channel_id = line.strip().split("\t") config[filename] = (source, int(channel_id)) return config def _load_dr_vctk_item(self, filename: str) -> Tuple[Tensor, int, Tensor, int, str, str, str, int]: speaker_id, utterance_id = filename.split(".")[0].split("_") source, channel_id = self._config[filename] file_clean_audio = self._clean_audio_dir / filename file_noisy_audio = self._noisy_audio_dir / filename waveform_clean, sample_rate_clean = torchaudio.load(file_clean_audio) waveform_noisy, sample_rate_noisy = torchaudio.load(file_noisy_audio) return ( waveform_clean, sample_rate_clean, waveform_noisy, sample_rate_noisy, speaker_id, utterance_id, source, channel_id, ) def __getitem__(self, n: int) -> Tuple[Tensor, int, Tensor, int, str, str, str, int]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, Tensor, int, str, str, str, int): ``(waveform_clean, sample_rate_clean, waveform_noisy, sample_rate_noisy, speaker_id,\ utterance_id, source, channel_id)`` """ filename = self._filename_list[n] return self._load_dr_vctk_item(filename) def __len__(self) -> int: return len(self._filename_list)
# Copyright (c) OpenMMLab. All rights reserved. from .inference import (async_inference_detector, inference_detector, init_detector, show_result_pyplot) from .test import multi_gpu_test, single_gpu_test from .train import get_root_logger, set_random_seed, train_detector __all__ = [ 'get_root_logger', 'set_random_seed', 'train_detector', 'init_detector', 'async_inference_detector', 'inference_detector', 'show_result_pyplot', 'multi_gpu_test', 'single_gpu_test' ]
from .inference import (async_inference_detector, inference_detector, init_detector, show_result_pyplot) from .test import multi_gpu_test, single_gpu_test from .train import get_root_logger, set_random_seed, train_detector __all__ = [ 'get_root_logger', 'set_random_seed', 'train_detector', 'init_detector', 'async_inference_detector', 'inference_detector', 'show_result_pyplot', 'multi_gpu_test', 'single_gpu_test' ]
__version__ = '0.36.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
__version__ = '0.36.0' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmengine.testing import assert_allclose from mmdet.structures.bbox import BaseBoxes, HorizontalBoxes from mmdet.structures.mask import BitmapMasks, PolygonMasks def create_random_bboxes(num_bboxes, img_w, img_h): bboxes_left_top = np.random.uniform(0, 0.5, size=(num_bboxes, 2)) bboxes_right_bottom = np.random.uniform(0.5, 1, size=(num_bboxes, 2)) bboxes = np.concatenate((bboxes_left_top, bboxes_right_bottom), 1) bboxes = (bboxes * np.array([img_w, img_h, img_w, img_h])).astype( np.float32) return bboxes def create_full_masks(gt_bboxes, img_w, img_h): xmin, ymin = gt_bboxes[:, 0:1], gt_bboxes[:, 1:2] xmax, ymax = gt_bboxes[:, 2:3], gt_bboxes[:, 3:4] gt_masks = np.zeros((len(gt_bboxes), img_h, img_w), dtype=np.uint8) for i in range(len(gt_bboxes)): gt_masks[i, int(ymin[i]):int(ymax[i]), int(xmin[i]):int(xmax[i])] = 1 gt_masks = BitmapMasks(gt_masks, img_h, img_w) return gt_masks def construct_toy_data(poly2mask, use_box_type=False): img = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) results = dict() results['img'] = img results['img_shape'] = img.shape[:2] if use_box_type: results['gt_bboxes'] = HorizontalBoxes( np.array([[1, 0, 2, 2]], dtype=np.float32)) else: results['gt_bboxes'] = np.array([[1, 0, 2, 2]], dtype=np.float32) results['gt_bboxes_labels'] = np.array([13], dtype=np.int64) if poly2mask: gt_masks = np.array([[0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8)[None, :, :] results['gt_masks'] = BitmapMasks(gt_masks, 3, 4) else: raw_masks = [[np.array([1, 2, 1, 0, 2, 1], dtype=np.float32)]] results['gt_masks'] = PolygonMasks(raw_masks, 3, 4) results['gt_ignore_flags'] = np.array(np.array([1], dtype=bool)) results['gt_seg_map'] = np.array( [[255, 13, 255, 255], [255, 13, 13, 255], [255, 13, 255, 255]], dtype=np.uint8) return results def check_result_same(results, pipeline_results, check_keys): """Check whether the ``pipeline_results`` is the same with the predefined ``results``. Args: results (dict): Predefined results which should be the standard output of the transform pipeline. pipeline_results (dict): Results processed by the transform pipeline. check_keys (tuple): Keys that need to be checked between results and pipeline_results. """ for key in check_keys: if results.get(key, None) is None: continue if isinstance(results[key], (BitmapMasks, PolygonMasks)): assert_allclose(pipeline_results[key].to_ndarray(), results[key].to_ndarray()) elif isinstance(results[key], BaseBoxes): assert_allclose(pipeline_results[key].tensor, results[key].tensor) else: assert_allclose(pipeline_results[key], results[key])
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmengine.testing import assert_allclose from mmdet.structures.bbox import BaseBoxes, HorizontalBoxes from mmdet.structures.mask import BitmapMasks, PolygonMasks def create_random_bboxes(num_bboxes, img_w, img_h): bboxes_left_top = np.random.uniform(0, 0.5, size=(num_bboxes, 2)) bboxes_right_bottom = np.random.uniform(0.5, 1, size=(num_bboxes, 2)) bboxes = np.concatenate((bboxes_left_top, bboxes_right_bottom), 1) bboxes = (bboxes * np.array([img_w, img_h, img_w, img_h])).astype( np.float32) return bboxes def create_full_masks(gt_bboxes, img_w, img_h): xmin, ymin = gt_bboxes[:, 0:1], gt_bboxes[:, 1:2] xmax, ymax = gt_bboxes[:, 2:3], gt_bboxes[:, 3:4] gt_masks = np.zeros((len(gt_bboxes), img_h, img_w), dtype=np.uint8) for i in range(len(gt_bboxes)): gt_masks[i, int(ymin[i]):int(ymax[i]), int(xmin[i]):int(xmax[i])] = 1 gt_masks = BitmapMasks(gt_masks, img_h, img_w) return gt_masks def construct_toy_data(poly2mask, with_boxlist=False): img = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) results = dict() results['img'] = img results['img_shape'] = img.shape[:2] if with_boxlist: results['gt_bboxes'] = HorizontalBoxes( np.array([[1, 0, 2, 2]], dtype=np.float32)) else: results['gt_bboxes'] = np.array([[1, 0, 2, 2]], dtype=np.float32) results['gt_bboxes_labels'] = np.array([13], dtype=np.int64) if poly2mask: gt_masks = np.array([[0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8)[None, :, :] results['gt_masks'] = BitmapMasks(gt_masks, 3, 4) else: raw_masks = [[np.array([1, 2, 1, 0, 2, 1], dtype=np.float32)]] results['gt_masks'] = PolygonMasks(raw_masks, 3, 4) results['gt_ignore_flags'] = np.array(np.array([1], dtype=bool)) results['gt_seg_map'] = np.array( [[255, 13, 255, 255], [255, 13, 13, 255], [255, 13, 255, 255]], dtype=np.uint8) return results def check_result_same(results, pipeline_results, check_keys): """Check whether the ``pipeline_results`` is the same with the predefined ``results``. Args: results (dict): Predefined results which should be the standard output of the transform pipeline. pipeline_results (dict): Results processed by the transform pipeline. check_keys (tuple): Keys that need to be checked between results and pipeline_results. """ for key in check_keys: if results.get(key, None) is None: continue if isinstance(results[key], (BitmapMasks, PolygonMasks)): assert_allclose(pipeline_results[key].to_ndarray(), results[key].to_ndarray()) elif isinstance(results[key], BaseBoxes): assert_allclose(pipeline_results[key].tensor, results[key].tensor) else: assert_allclose(pipeline_results[key], results[key])
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import numpy as np import pytest from jina import Document, DocumentArray from ...transformer_tf_text_encode import TransformerTFTextEncoder target_dim = 768 @pytest.fixture() def docs_generator(): return DocumentArray((Document(text='random text') for _ in range(30))) def test_tf_batch(docs_generator): encoder = TransformerTFTextEncoder() docs = docs_generator encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert len(docs.get_attributes('embedding')) == 30 assert docs[0].embedding.shape == (target_dim,) def test_encodes_semantic_meaning(): sentences = dict() sentences['A'] = 'Hello, my name is Michael.' sentences['B'] = 'Today we are going to Disney World.' sentences['C'] = 'There are animals on the road' sentences['D'] = 'A dog is running down the road' encoder = TransformerTFTextEncoder() embeddings = {} for id_, sentence in sentences.items(): docs = DocumentArray([Document(text=sentence)]) encoder.encode(docs, parameters={}) embeddings[id_] = docs[0].embedding def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('C', 'D') assert small_distance < dist('C', 'B') assert small_distance < dist('C', 'A') assert small_distance < dist('B', 'A') @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_path'], [ (pytest.lazy_fixture('docs_with_text'), [[['r'], 10], [['c'], 0], [['cc'], 0]], ['r']), ( pytest.lazy_fixture("docs_with_chunk_text"), [[['r'], 0], [['c'], 10], [['cc'], 0]], ['c'], ), ( pytest.lazy_fixture("docs_with_chunk_chunk_text"), [[['r'], 0], [['c'], 0], [['cc'], 10]], ['cc'], ), ], ) def test_traversal_path(docs: DocumentArray, docs_per_path, traversal_path): encoder = TransformerTFTextEncoder() encoder.encode(docs, parameters={'traversal_paths': traversal_path}) for path, count in docs_per_path: assert len(docs.traverse_flat(path).get_attributes("embedding")) == count
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import numpy as np import pytest from jina import Document, DocumentArray from jinahub.encoder.transformer_tf_text_encode import TransformerTFTextEncoder target_dim = 768 @pytest.fixture() def docs_generator(): return DocumentArray((Document(text='random text') for _ in range(30))) def test_tf_batch(docs_generator): encoder = TransformerTFTextEncoder() docs = docs_generator encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert len(docs.get_attributes('embedding')) == 30 assert docs[0].embedding.shape == (target_dim,) def test_encodes_semantic_meaning(): sentences = dict() sentences['A'] = 'Hello, my name is Michael.' sentences['B'] = 'Today we are going to Disney World.' sentences['C'] = 'There are animals on the road' sentences['D'] = 'A dog is running down the road' encoder = TransformerTFTextEncoder() embeddings = {} for id_, sentence in sentences.items(): docs = DocumentArray([Document(text=sentence)]) encoder.encode(docs, parameters={}) embeddings[id_] = docs[0].embedding def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('C', 'D') assert small_distance < dist('C', 'B') assert small_distance < dist('C', 'A') assert small_distance < dist('B', 'A') @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_path'], [ (pytest.lazy_fixture('docs_with_text'), [[['r'], 10], [['c'], 0], [['cc'], 0]], ['r']), ( pytest.lazy_fixture("docs_with_chunk_text"), [[['r'], 0], [['c'], 10], [['cc'], 0]], ['c'], ), ( pytest.lazy_fixture("docs_with_chunk_chunk_text"), [[['r'], 0], [['c'], 0], [['cc'], 10]], ['cc'], ), ], ) def test_traversal_path(docs: DocumentArray, docs_per_path, traversal_path): encoder = TransformerTFTextEncoder() encoder.encode(docs, parameters={'traversal_paths': traversal_path}) for path, count in docs_per_path: assert len(docs.traverse_flat(path).get_attributes("embedding")) == count
from typing import Union from docarray.typing.tensor.ndarray import NdArray try: import torch # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 is_torch_available = True except ImportError: is_torch_available = False try: import tensorflow as tf # type: ignore # noqa: F401 from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 is_tf_available = True except (ImportError, TypeError): is_tf_available = False if is_torch_available and is_tf_available: AnyTensor = Union[NdArray, TorchTensor, TensorFlowTensor] elif is_torch_available: AnyTensor = Union[NdArray, TorchTensor] # type: ignore elif is_tf_available: AnyTensor = Union[NdArray, TensorFlowTensor] # type: ignore else: AnyTensor = Union[NdArray] # type: ignore
from typing import Union from docarray.typing.tensor.ndarray import NdArray try: import torch # noqa: F401 except ImportError: AnyTensor = Union[NdArray] # type: ignore else: from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 AnyTensor = Union[NdArray, TorchTensor] # type: ignore
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseEmbeddingSimilarityEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") model.similarity_fn_name = "cosine" # even though the model is trained with dot, we need to set it to cosine for evaluation as the score in the dataset is cosine similarity # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) """ EmbeddingSimilarityEvaluator: Evaluating the model on the sts_dev dataset: Cosine-Similarity: Pearson: 0.8430 Spearman: 0.8368 Model Sparsity: Active Dimensions: 81.1, Sparsity Ratio: 0.9973 """ # Print the results print(f"Primary metric: {dev_evaluator.primary_metric}") # => Primary metric: sts_dev_spearman_cosine print(f"Primary metric value: {results[dev_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8368
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseEmbeddingSimilarityEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") model.similarity_fn_name = "cosine" # even though the model is trained with dot, we need to set it to cosine for evaluation as the score in the dataset is cosine similarity # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) """ EmbeddingSimilarityEvaluator: Evaluating the model on the sts_dev dataset: Cosine-Similarity : Pearson: 0.8430 Spearman: 0.8368 Model Sparsity Stats: Row Non-Zero Mean: 81.0629997253418, Row Sparsity Mean: 0.997344046831131 """ # Print the results print(f"Primary metric: {dev_evaluator.primary_metric}") # => Primary metric: sts_dev_spearman_cosine print(f"Primary metric value: {results[dev_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8368
# Copyright (c) OpenMMLab. All rights reserved. import copy from typing import Dict, List, Optional import numpy as np from mmcv.transforms import BaseTransform, Compose from mmcv.transforms.utils import cache_randomness from mmdet.registry import TRANSFORMS @TRANSFORMS.register_module() class MultiBranch(BaseTransform): r"""Multiple branch pipeline wrapper. Generate multiple data-augmented versions of the same image. Args: branch_pipelines (dict): Dict of different pipeline configs to be composed. """ def __init__(self, **branch_pipelines: dict) -> None: self.branch_pipelines = { branch: Compose(pipeline) for branch, pipeline in branch_pipelines.items() } def transform(self, results: dict) -> Optional[List[dict]]: """Transform function to apply transforms sequentially. Args: results (dict): Result dict from loading pipeline. Returns: list[dict]: Results from different pipeline. """ multi_results = {} for branch, pipeline in self.branch_pipelines.items(): branch_results = pipeline(copy.deepcopy(results)) # If one branch pipeline returns None, # it will sample another data from dataset. if branch_results is None: return None multi_results[branch] = branch_results return multi_results def __repr__(self) -> str: repr_str = self.__class__.__name__ repr_str += f'(branch_pipelines={list(self.branch_pipelines.keys())})' return repr_str @TRANSFORMS.register_module() class RandomOrder(Compose): """Shuffle the transform Sequence.""" @cache_randomness def _random_permutation(self): return np.random.permutation(len(self.transforms)) def transform(self, results: Dict) -> Optional[Dict]: """Transform function to apply transforms in random order. Args: results (dict): A result dict contains the results to transform. Returns: dict or None: Transformed results. """ inds = self._random_permutation() for idx in inds: t = self.transforms[idx] results = t(results) if results is None: return None return results def __repr__(self): """Compute the string representation.""" format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += f'{t.__class__.__name__}, ' format_string += ')' return format_string
# Copyright (c) OpenMMLab. All rights reserved. import copy from typing import List, Optional from mmcv.transforms import BaseTransform, Compose from mmdet.registry import TRANSFORMS @TRANSFORMS.register_module() class MultiBranch(BaseTransform): r"""Multiple branch pipeline wrapper. Generate multiple data-augmented versions of the same image. Args: branch_pipelines (dict): Dict of different pipeline configs to be composed. """ def __init__(self, **branch_pipelines: dict) -> None: self.branch_pipelines = { branch: Compose(pipeline) for branch, pipeline in branch_pipelines.items() } def transform(self, results: dict) -> Optional[List[dict]]: """Transform function to apply transforms sequentially. Args: results (dict): Result dict from loading pipeline. Returns: list[dict]: Results from different pipeline. """ multi_results = {} for branch, pipeline in self.branch_pipelines.items(): branch_results = pipeline(copy.deepcopy(results)) # If one branch pipeline returns None, # it will sample another data from dataset. if branch_results is None: return None multi_results[branch] = branch_results return multi_results def __repr__(self) -> str: repr_str = self.__class__.__name__ repr_str += f'(branch_pipelines={list(self.branch_pipelines.keys())})' return repr_str
import unittest import torch from mmengine.config import Config from mmengine.structures import InstanceData from mmengine.testing import assert_allclose from mmdet.evaluation import INSTANCE_OFFSET from mmdet.models.seg_heads.panoptic_fusion_heads import HeuristicFusionHead class TestHeuristicFusionHead(unittest.TestCase): def test_loss(self): head = HeuristicFusionHead(num_things_classes=2, num_stuff_classes=2) result = head.loss() self.assertTrue(not head.with_loss) self.assertDictEqual(result, dict()) def test_predict(self): test_cfg = Config(dict(mask_overlap=0.5, stuff_area_limit=1)) head = HeuristicFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) mask_results = InstanceData() mask_results.bboxes = torch.tensor([[0, 0, 1, 1], [1, 1, 2, 2]]) mask_results.labels = torch.tensor([0, 1]) mask_results.scores = torch.tensor([0.8, 0.7]) mask_results.masks = torch.tensor([[[1, 0], [0, 0]], [[0, 0], [0, 1]]]).bool() seg_preds_list = [ torch.tensor([[[0.2, 0.7], [0.3, 0.1]], [[0.2, 0.2], [0.6, 0.1]], [[0.6, 0.1], [0.1, 0.8]]]) ] target_list = [ torch.tensor([[0 + 1 * INSTANCE_OFFSET, 2], [3, 1 + 2 * INSTANCE_OFFSET]]) ] results_list = head.predict([mask_results], seg_preds_list) for target, result in zip(target_list, results_list): assert_allclose(result.sem_seg[0], target) # test with no thing head = HeuristicFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) mask_results = InstanceData() mask_results.bboxes = torch.zeros((0, 4)) mask_results.labels = torch.zeros((0, )).long() mask_results.scores = torch.zeros((0, )) mask_results.masks = torch.zeros((0, 2, 2), dtype=torch.bool) seg_preds_list = [ torch.tensor([[[0.2, 0.7], [0.3, 0.1]], [[0.2, 0.2], [0.6, 0.1]], [[0.6, 0.1], [0.1, 0.8]]]) ] target_list = [torch.tensor([[4, 2], [3, 4]])] results_list = head.predict([mask_results], seg_preds_list) for target, result in zip(target_list, results_list): assert_allclose(result.sem_seg[0], target)
import unittest import torch from mmengine.config import Config from mmengine.data import InstanceData from mmengine.testing import assert_allclose from mmdet.evaluation import INSTANCE_OFFSET from mmdet.models.seg_heads.panoptic_fusion_heads import HeuristicFusionHead class TestHeuristicFusionHead(unittest.TestCase): def test_loss(self): head = HeuristicFusionHead(num_things_classes=2, num_stuff_classes=2) result = head.loss() self.assertTrue(not head.with_loss) self.assertDictEqual(result, dict()) def test_predict(self): test_cfg = Config(dict(mask_overlap=0.5, stuff_area_limit=1)) head = HeuristicFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) mask_results = InstanceData() mask_results.bboxes = torch.tensor([[0, 0, 1, 1], [1, 1, 2, 2]]) mask_results.labels = torch.tensor([0, 1]) mask_results.scores = torch.tensor([0.8, 0.7]) mask_results.masks = torch.tensor([[[1, 0], [0, 0]], [[0, 0], [0, 1]]]).bool() seg_preds_list = [ torch.tensor([[[0.2, 0.7], [0.3, 0.1]], [[0.2, 0.2], [0.6, 0.1]], [[0.6, 0.1], [0.1, 0.8]]]) ] target_list = [ torch.tensor([[0 + 1 * INSTANCE_OFFSET, 2], [3, 1 + 2 * INSTANCE_OFFSET]]) ] results_list = head.predict([mask_results], seg_preds_list) for target, result in zip(target_list, results_list): assert_allclose(result.sem_seg[0], target) # test with no thing head = HeuristicFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) mask_results = InstanceData() mask_results.bboxes = torch.zeros((0, 4)) mask_results.labels = torch.zeros((0, )).long() mask_results.scores = torch.zeros((0, )) mask_results.masks = torch.zeros((0, 2, 2), dtype=torch.bool) seg_preds_list = [ torch.tensor([[[0.2, 0.7], [0.3, 0.1]], [[0.2, 0.2], [0.6, 0.1]], [[0.6, 0.1], [0.1, 0.8]]]) ] target_list = [torch.tensor([[4, 2], [3, 4]])] results_list = head.predict([mask_results], seg_preds_list) for target, result in zip(target_list, results_list): assert_allclose(result.sem_seg[0], target)
"""Integration test for DallE API Wrapper.""" from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper def test_call() -> None: """Test that call returns a URL in the output.""" search = DallEAPIWrapper() output = search.run("volcano island") assert "https://oaidalleapi" in output
"""Integration test for DallE API Wrapper.""" from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper def test_call() -> None: """Test that call returns a URL in the output.""" search = DallEAPIWrapper() # type: ignore[call-arg] output = search.run("volcano island") assert "https://oaidalleapi" in output
"""Test cohere embeddings.""" from langchain_community.embeddings.cohere import CohereEmbeddings def test_cohere_embedding_documents() -> None: """Test cohere embeddings.""" documents = ["foo bar"] embedding = CohereEmbeddings() output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 2048 def test_cohere_embedding_query() -> None: """Test cohere embeddings.""" document = "foo bar" embedding = CohereEmbeddings() output = embedding.embed_query(document) assert len(output) == 2048
"""Test cohere embeddings.""" from langchain_community.embeddings.cohere import CohereEmbeddings def test_cohere_embedding_documents() -> None: """Test cohere embeddings.""" documents = ["foo bar"] embedding = CohereEmbeddings() # type: ignore[call-arg] output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 2048 def test_cohere_embedding_query() -> None: """Test cohere embeddings.""" document = "foo bar" embedding = CohereEmbeddings() # type: ignore[call-arg] output = embedding.embed_query(document) assert len(output) == 2048
from typing import TYPE_CHECKING, Any, Dict, Type, TypeVar from docarray.base_document.abstract_document import AbstractDocument from docarray.base_document.base_node import BaseNode from docarray.typing.proto_register import _PROTO_TYPE_NAME_TO_CLASS if TYPE_CHECKING: from docarray.proto import DocumentProto, NodeProto try: import torch # noqa: F401 except ImportError: torch_imported = False else: torch_imported = True T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type_dict = _PROTO_TYPE_NAME_TO_CLASS content_key = value.WhichOneof('content') content_type = ( value.type if value.WhichOneof('docarray_type') is not None else None ) if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_key) ) elif content_key == 'document': fields[field] = cls._get_field_type(field).from_protobuf( value.document ) # we get to the parent class elif content_key == 'document_array': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.document_array ) # we get to the parent class elif content_key is None: fields[field] = None elif content_type is None: if content_key == 'text': fields[field] = value.text elif content_key == 'blob': fields[field] = value.blob else: raise ValueError( f'type {content_type}, with key {content_key} is not supported for' f' deserialization' ) return cls.construct(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ from docarray.proto import DocumentProto, NodeProto data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif isinstance(value, str): nested_item = NodeProto(text=value) elif isinstance(value, bytes): nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> 'NodeProto': from docarray.proto import NodeProto """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(document=self.to_protobuf())
from typing import TYPE_CHECKING, Any, Dict, Type, TypeVar from docarray.base_document.abstract_document import AbstractDocument from docarray.base_document.base_node import BaseNode from docarray.typing.proto_register import _PROTO_TYPE_NAME_TO_CLASS if TYPE_CHECKING: from docarray.proto import DocumentProto, NodeProto try: import torch # noqa: F401 except ImportError: torch_imported = False else: torch_imported = True T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type_dict = _PROTO_TYPE_NAME_TO_CLASS content_key = value.WhichOneof('content') content_type = ( value.type if value.WhichOneof('docarray_type') is not None else None ) if torch_imported: from docarray.typing import TorchEmbedding from docarray.typing.tensor.torch_tensor import TorchTensor content_type_dict['torch'] = TorchTensor content_type_dict['torch_embedding'] = TorchEmbedding if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_key) ) elif content_key == 'document': fields[field] = cls._get_field_type(field).from_protobuf( value.document ) # we get to the parent class elif content_key == 'document_array': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.document_array ) # we get to the parent class elif content_key is None: fields[field] = None elif content_type is None: if content_key == 'text': fields[field] = value.text elif content_key == 'blob': fields[field] = value.blob else: raise ValueError( f'type {content_type}, with key {content_key} is not supported for' f' deserialization' ) return cls.construct(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ from docarray.proto import DocumentProto, NodeProto data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> 'NodeProto': from docarray.proto import NodeProto """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(document=self.to_protobuf())
_base_ = [ '../_base_/models/rpn_r50-caffe-c4.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] val_evaluator = dict(metric='proposal_fast') test_evaluator = val_evaluator
_base_ = [ '../_base_/models/rpn_r50_caffe_c4.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] val_evaluator = dict(metric='proposal_fast') test_evaluator = val_evaluator
import os from typing import Any, Optional from llama_index.llms.openai_like import OpenAILike from llama_index.llms.deepseek.utils import get_context_window, FUNCTION_CALLING_MODELS class DeepSeek(OpenAILike): """ DeepSeek LLM. Examples: `pip install llama-index-llms-deepseek` ```python from llama_index.llms.deepseek import DeepSeek # Set up the DeepSeek class with the required model and API key llm = DeepSeek(model="deepseek-chat", api_key="your_api_key") # Call the complete method with a query response = llm.complete("Explain the importance of low latency LLMs") print(response) ``` """ def __init__( self, model: str, api_key: Optional[str] = None, api_base: str = "https://api.deepseek.com", **openai_llm_kwargs: Any, ) -> None: api_key = api_key or os.environ.get("DEEPSEEK_API_KEY", None) context_window = openai_llm_kwargs.pop( "context_window", get_context_window(model) ) super().__init__( model=model, api_key=api_key, api_base=api_base, is_chat_model=openai_llm_kwargs.pop("is_chat_model", True), is_function_calling_model=openai_llm_kwargs.pop( "is_function_calling_model", model in FUNCTION_CALLING_MODELS ), **openai_llm_kwargs, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "DeepSeek"
import os from typing import Any, Optional from llama_index.llms.openai_like import OpenAILike from llama_index.llms.deepseek.utils import get_context_window class DeepSeek(OpenAILike): """ DeepSeek LLM. Examples: `pip install llama-index-llms-deepseek` ```python from llama_index.llms.deepseek import DeepSeek # Set up the DeepSeek class with the required model and API key llm = DeepSeek(model="deepseek-chat", api_key="your_api_key") # Call the complete method with a query response = llm.complete("Explain the importance of low latency LLMs") print(response) ``` """ def __init__( self, model: str, api_key: Optional[str] = None, api_base: str = "https://api.deepseek.com", **openai_llm_kwargs: Any, ) -> None: api_key = api_key or os.environ.get("DEEPSEEK_API_KEY", None) context_window = openai_llm_kwargs.pop( "context_window", get_context_window(model) ) super().__init__( model=model, api_key=api_key, api_base=api_base, is_chat_model=openai_llm_kwargs.pop("is_chat_model", True), is_function_calling_model=openai_llm_kwargs.pop( "is_function_calling_model", True ), **openai_llm_kwargs, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "DeepSeek"
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import pytest cur_dir = os.path.dirname(os.path.abspath(__file__)) epsilla_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) @pytest.fixture(scope='session', autouse=True) def start_storage(): os.system(f"docker compose -f {epsilla_yml} up -d --remove-orphans") time.sleep(2) yield os.system(f"docker compose -f {epsilla_yml} down --remove-orphans")
import os import time import pytest cur_dir = os.path.dirname(os.path.abspath(__file__)) epsilla_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) @pytest.fixture(scope='session', autouse=True) def start_storage(): os.system(f"docker compose -f {epsilla_yml} up -d --remove-orphans") time.sleep(2) yield os.system(f"docker compose -f {epsilla_yml} down --remove-orphans")
"""Utilities to init Vertex AI.""" from importlib import metadata from typing import Optional from google.api_core.gapic_v1.client_info import ClientInfo def get_user_agent(module: Optional[str] = None) -> str: r""" Returns a custom user agent header. Args: module (Optional[str]): Optional. The module for a custom user agent header. Returns: Tuple[str, str] """ try: llama_index_version = metadata.version("llama-index") except metadata.PackageNotFoundError: llama_index_version = "0.0.0" client_library_version = ( f"{llama_index_version}-{module}" if module else llama_index_version ) return (client_library_version, f"llama-index/{client_library_version}") def get_client_info(module: Optional[str] = None) -> "ClientInfo": r""" Returns a client info object with a custom user agent header. Args: module (Optional[str]): Optional. The module for a custom user agent header. Returns: google.api_core.gapic_v1.client_info.ClientInfo """ client_library_version, user_agent = get_user_agent(module) return ClientInfo( client_library_version=client_library_version, user_agent=user_agent, )
"""Utilities to init Vertex AI.""" from importlib import metadata from typing import Optional from google.api_core.gapic_v1.client_info import ClientInfo def get_user_agent(module: Optional[str] = None) -> str: r"""Returns a custom user agent header. Args: module (Optional[str]): Optional. The module for a custom user agent header. Returns: Tuple[str, str] """ try: llama_index_version = metadata.version("llama-index") except metadata.PackageNotFoundError: llama_index_version = "0.0.0" client_library_version = ( f"{llama_index_version}-{module}" if module else llama_index_version ) return (client_library_version, f"llama-index/{client_library_version}") def get_client_info(module: Optional[str] = None) -> "ClientInfo": r"""Returns a client info object with a custom user agent header. Args: module (Optional[str]): Optional. The module for a custom user agent header. Returns: google.api_core.gapic_v1.client_info.ClientInfo """ client_library_version, user_agent = get_user_agent(module) return ClientInfo( client_library_version=client_library_version, user_agent=user_agent, )
"""Internal utilities for the in memory implementation of VectorStore. These are part of a private API, and users should not use them directly as they can change without notice. """ from __future__ import annotations import logging from typing import TYPE_CHECKING, Union if TYPE_CHECKING: import numpy as np Matrix = Union[list[list[float]], list[np.ndarray], np.ndarray] logger = logging.getLogger(__name__) def _cosine_similarity(x: Matrix, y: Matrix) -> np.ndarray: """Row-wise cosine similarity between two equal-width matrices. Args: x: A matrix of shape (n, m). y: A matrix of shape (k, m). Returns: A matrix of shape (n, k) where each element (i, j) is the cosine similarity between the ith row of X and the jth row of Y. Raises: ValueError: If the number of columns in X and Y are not the same. ImportError: If numpy is not installed. """ try: import numpy as np except ImportError as e: msg = ( "cosine_similarity requires numpy to be installed. " "Please install numpy with `pip install numpy`." ) raise ImportError(msg) from e if len(x) == 0 or len(y) == 0: return np.array([[]]) x = np.array(x) y = np.array(y) if x.shape[1] != y.shape[1]: msg = ( f"Number of columns in X and Y must be the same. X has shape {x.shape} " f"and Y has shape {y.shape}." ) raise ValueError(msg) try: import simsimd as simd # type: ignore[import-not-found] except ImportError: logger.debug( "Unable to import simsimd, defaulting to NumPy implementation. If you want " "to use simsimd please install with `pip install simsimd`." ) x_norm = np.linalg.norm(x, axis=1) y_norm = np.linalg.norm(y, axis=1) # Ignore divide by zero errors run time warnings as those are handled below. with np.errstate(divide="ignore", invalid="ignore"): similarity = np.dot(x, y.T) / np.outer(x_norm, y_norm) if np.isnan(similarity).all(): msg = "NaN values found, please remove the NaN values and try again" raise ValueError(msg) from None similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 return similarity x = np.array(x, dtype=np.float32) y = np.array(y, dtype=np.float32) return 1 - np.array(simd.cdist(x, y, metric="cosine")) def maximal_marginal_relevance( query_embedding: np.ndarray, embedding_list: list, lambda_mult: float = 0.5, k: int = 4, ) -> list[int]: """Calculate maximal marginal relevance. Args: query_embedding: The query embedding. embedding_list: A list of embeddings. lambda_mult: The lambda parameter for MMR. Default is 0.5. k: The number of embeddings to return. Default is 4. Returns: A list of indices of the embeddings to return. Raises: ImportError: If numpy is not installed. """ try: import numpy as np except ImportError as e: msg = ( "maximal_marginal_relevance requires numpy to be installed. " "Please install numpy with `pip install numpy`." ) raise ImportError(msg) from e if min(k, len(embedding_list)) <= 0: return [] if query_embedding.ndim == 1: query_embedding = np.expand_dims(query_embedding, axis=0) similarity_to_query = _cosine_similarity(query_embedding, embedding_list)[0] most_similar = int(np.argmax(similarity_to_query)) idxs = [most_similar] selected = np.array([embedding_list[most_similar]]) while len(idxs) < min(k, len(embedding_list)): best_score = -np.inf idx_to_add = -1 similarity_to_selected = _cosine_similarity(embedding_list, selected) for i, query_score in enumerate(similarity_to_query): if i in idxs: continue redundant_score = max(similarity_to_selected[i]) equation_score = ( lambda_mult * query_score - (1 - lambda_mult) * redundant_score ) if equation_score > best_score: best_score = equation_score idx_to_add = i idxs.append(idx_to_add) selected = np.append(selected, [embedding_list[idx_to_add]], axis=0) return idxs
"""Internal utilities for the in memory implementation of VectorStore. These are part of a private API, and users should not use them directly as they can change without notice. """ from __future__ import annotations import logging from typing import TYPE_CHECKING, Union if TYPE_CHECKING: import numpy as np Matrix = Union[list[list[float]], list[np.ndarray], np.ndarray] logger = logging.getLogger(__name__) def _cosine_similarity(x: Matrix, y: Matrix) -> np.ndarray: """Row-wise cosine similarity between two equal-width matrices. Args: x: A matrix of shape (n, m). y: A matrix of shape (k, m). Returns: A matrix of shape (n, k) where each element (i, j) is the cosine similarity between the ith row of X and the jth row of Y. Raises: ValueError: If the number of columns in X and Y are not the same. ImportError: If numpy is not installed. """ try: import numpy as np except ImportError as e: msg = ( "cosine_similarity requires numpy to be installed. " "Please install numpy with `pip install numpy`." ) raise ImportError(msg) from e if len(x) == 0 or len(y) == 0: return np.array([[]]) x = np.array(x) y = np.array(y) if x.shape[1] != y.shape[1]: msg = ( f"Number of columns in X and Y must be the same. X has shape {x.shape} " f"and Y has shape {y.shape}." ) raise ValueError(msg) try: import simsimd as simd # type: ignore[import-not-found] except ImportError: logger.debug( "Unable to import simsimd, defaulting to NumPy implementation. If you want " "to use simsimd please install with `pip install simsimd`." ) x_norm = np.linalg.norm(x, axis=1) y_norm = np.linalg.norm(y, axis=1) # Ignore divide by zero errors run time warnings as those are handled below. with np.errstate(divide="ignore", invalid="ignore"): similarity = np.dot(x, y.T) / np.outer(x_norm, y_norm) similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 return similarity x = np.array(x, dtype=np.float32) y = np.array(y, dtype=np.float32) return 1 - np.array(simd.cdist(x, y, metric="cosine")) def maximal_marginal_relevance( query_embedding: np.ndarray, embedding_list: list, lambda_mult: float = 0.5, k: int = 4, ) -> list[int]: """Calculate maximal marginal relevance. Args: query_embedding: The query embedding. embedding_list: A list of embeddings. lambda_mult: The lambda parameter for MMR. Default is 0.5. k: The number of embeddings to return. Default is 4. Returns: A list of indices of the embeddings to return. Raises: ImportError: If numpy is not installed. """ try: import numpy as np except ImportError as e: msg = ( "maximal_marginal_relevance requires numpy to be installed. " "Please install numpy with `pip install numpy`." ) raise ImportError(msg) from e if min(k, len(embedding_list)) <= 0: return [] if query_embedding.ndim == 1: query_embedding = np.expand_dims(query_embedding, axis=0) similarity_to_query = _cosine_similarity(query_embedding, embedding_list)[0] most_similar = int(np.argmax(similarity_to_query)) idxs = [most_similar] selected = np.array([embedding_list[most_similar]]) while len(idxs) < min(k, len(embedding_list)): best_score = -np.inf idx_to_add = -1 similarity_to_selected = _cosine_similarity(embedding_list, selected) for i, query_score in enumerate(similarity_to_query): if i in idxs: continue redundant_score = max(similarity_to_selected[i]) equation_score = ( lambda_mult * query_score - (1 - lambda_mult) * redundant_score ) if equation_score > best_score: best_score = equation_score idx_to_add = i idxs.append(idx_to_add) selected = np.append(selected, [embedding_list[idx_to_add]], axis=0) return idxs
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseBinaryClassificationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with two text columns and a class label column (https://huggingface.co/datasets/sentence-transformers/quora-duplicates) eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) """ Accuracy with Cosine-Similarity: 74.90 (Threshold: 0.8668) F1 with Cosine-Similarity: 67.37 (Threshold: 0.5959) Precision with Cosine-Similarity: 54.15 Recall with Cosine-Similarity: 89.13 Average Precision with Cosine-Similarity: 67.81 Matthews Correlation with Cosine-Similarity: 49.89 Accuracy with Dot-Product: 76.50 (Threshold: 24.3460) F1 with Dot-Product: 66.93 (Threshold: 20.0762) Precision with Dot-Product: 57.62 Recall with Dot-Product: 79.81 Average Precision with Dot-Product: 65.94 Matthews Correlation with Dot-Product: 48.82 Accuracy with Euclidean-Distance: 67.70 (Threshold: -10.0062) F1 with Euclidean-Distance: 48.60 (Threshold: -0.2346) Precision with Euclidean-Distance: 32.13 Recall with Euclidean-Distance: 99.69 Average Precision with Euclidean-Distance: 20.52 Matthews Correlation with Euclidean-Distance: -4.59 Accuracy with Manhattan-Distance: 67.70 (Threshold: -103.1993) F1 with Manhattan-Distance: 48.60 (Threshold: -1.1565) Precision with Manhattan-Distance: 32.13 Recall with Manhattan-Distance: 99.69 Average Precision with Manhattan-Distance: 21.05 Matthews Correlation with Manhattan-Distance: -4.59 """ # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") # => Primary metric: quora_duplicates_dev_max_ap print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6781
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( SparseBinaryClassificationEvaluator, SparseEncoder, ) logging.basicConfig(format="%(message)s", level=logging.INFO) # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with two text columns and a class label column (https://huggingface.co/datasets/sentence-transformers/quora-duplicates) eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) """ Accuracy with Cosine-Similarity: 74.90 (Threshold: 0.8668) F1 with Cosine-Similarity: 67.37 (Threshold: 0.5959) Precision with Cosine-Similarity: 54.15 Recall with Cosine-Similarity: 89.13 Average Precision with Cosine-Similarity: 67.81 Matthews Correlation with Cosine-Similarity: 49.89 Accuracy with Dot-Product: 76.50 (Threshold: 24.3460) F1 with Dot-Product: 66.93 (Threshold: 20.0762) Precision with Dot-Product: 57.62 Recall with Dot-Product: 79.81 Average Precision with Dot-Product: 65.94 Matthews Correlation with Dot-Product: 48.82 Accuracy with Euclidean-Distance: 67.70 (Threshold: -10.0062) F1 with Euclidean-Distance: 48.60 (Threshold: -0.2346) Precision with Euclidean-Distance: 32.13 Recall with Euclidean-Distance: 99.69 Average Precision with Euclidean-Distance: 20.52 Matthews Correlation with Euclidean-Distance: -4.59 Accuracy with Manhattan-Distance: 67.70 (Threshold: -103.1993) F1 with Manhattan-Distance: 48.60 (Threshold: -1.1565) Precision with Manhattan-Distance: 32.13 Recall with Manhattan-Distance: 99.69 Average Precision with Manhattan-Distance: 21.05 Matthews Correlation with Manhattan-Distance: -4.59 """ # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") # => Primary metric: quora_duplicates_dev_max_ap print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6781
from langchain_community.utilities.openweathermap import OpenWeatherMapAPIWrapper def test_openweathermap_api_wrapper() -> None: """Test that OpenWeatherMapAPIWrapper returns correct data for London, GB.""" weather = OpenWeatherMapAPIWrapper() weather_data = weather.run("London,GB") assert weather_data is not None assert "London" in weather_data assert "GB" in weather_data assert "Detailed status:" in weather_data assert "Wind speed:" in weather_data assert "direction:" in weather_data assert "Humidity:" in weather_data assert "Temperature:" in weather_data assert "Current:" in weather_data assert "High:" in weather_data assert "Low:" in weather_data assert "Feels like:" in weather_data assert "Rain:" in weather_data assert "Heat index:" in weather_data assert "Cloud cover:" in weather_data
from langchain_community.utilities.openweathermap import OpenWeatherMapAPIWrapper def test_openweathermap_api_wrapper() -> None: """Test that OpenWeatherMapAPIWrapper returns correct data for London, GB.""" weather = OpenWeatherMapAPIWrapper() # type: ignore[call-arg] weather_data = weather.run("London,GB") assert weather_data is not None assert "London" in weather_data assert "GB" in weather_data assert "Detailed status:" in weather_data assert "Wind speed:" in weather_data assert "direction:" in weather_data assert "Humidity:" in weather_data assert "Temperature:" in weather_data assert "Current:" in weather_data assert "High:" in weather_data assert "Low:" in weather_data assert "Feels like:" in weather_data assert "Rain:" in weather_data assert "Heat index:" in weather_data assert "Cloud cover:" in weather_data
"""Question-answering with sources over a vector database.""" import warnings from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: list[Document]) -> list[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: dict[str, Any], *, run_manager: CallbackManagerForChainRun ) -> list[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun ) -> list[Document]: msg = "VectorDBQAWithSourcesChain does not support async" raise NotImplementedError(msg) @model_validator(mode="before") @classmethod def raise_deprecation(cls, values: dict) -> Any: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`" ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain"
"""Question-answering with sources over a vector database.""" import warnings from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: list[Document]) -> list[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: dict[str, Any], *, run_manager: CallbackManagerForChainRun ) -> list[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun ) -> list[Document]: raise NotImplementedError("VectorDBQAWithSourcesChain does not support async") @model_validator(mode="before") @classmethod def raise_deprecation(cls, values: dict) -> Any: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`" ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain"
from .base import OutlookEmailReader __all__ = ["OutlookEmailReader"]
from llama_index.readers.outlook_emails.base import OutlookEmailReader __all__ = ["OutlookEmailReader"]
import inspect import re from typing import Dict, List from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text from .webdataset import webdataset def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
import inspect import re from typing import Dict, List from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
_base_ = './cascade_mask_rcnn_convnext-t_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco.py' # noqa # please install mmcls>=1.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-small_3rdparty_32xb128-noema_in1k_20220301-303e75e3.pth' # noqa model = dict( backbone=dict( _delete_=True, type='mmcls.ConvNeXt', arch='small', out_indices=[0, 1, 2, 3], drop_path_rate=0.6, layer_scale_init_value=1.0, gap_before_final_norm=False, init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.'))) optim_wrapper = dict(paramwise_cfg={ 'decay_rate': 0.7, 'decay_type': 'layer_wise', 'num_layers': 12 })
_base_ = './cascade_mask_rcnn_convnext-t_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco.py' # noqa # please install mmcls>=0.22.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-small_3rdparty_32xb128-noema_in1k_20220301-303e75e3.pth' # noqa model = dict( backbone=dict( _delete_=True, type='mmcls.ConvNeXt', arch='small', out_indices=[0, 1, 2, 3], drop_path_rate=0.6, layer_scale_init_value=1.0, gap_before_final_norm=False, init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.'))) optim_wrapper = dict(paramwise_cfg={ 'decay_rate': 0.7, 'decay_type': 'layer_wise', 'num_layers': 12 })
"""Chat loaders.""" from abc import ABC, abstractmethod from collections.abc import Iterator from langchain_core.chat_sessions import ChatSession class BaseChatLoader(ABC): """Base class for chat loaders.""" @abstractmethod def lazy_load(self) -> Iterator[ChatSession]: """Lazy load the chat sessions. Returns: An iterator of chat sessions. """ def load(self) -> list[ChatSession]: """Eagerly load the chat sessions into memory. Returns: A list of chat sessions. """ return list(self.lazy_load())
from abc import ABC, abstractmethod from collections.abc import Iterator from langchain_core.chat_sessions import ChatSession class BaseChatLoader(ABC): """Base class for chat loaders.""" @abstractmethod def lazy_load(self) -> Iterator[ChatSession]: """Lazy load the chat sessions. Returns: An iterator of chat sessions. """ def load(self) -> list[ChatSession]: """Eagerly load the chat sessions into memory. Returns: A list of chat sessions. """ return list(self.lazy_load())
from typing import List from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.schema import QueryType, NodeWithScore class RetrievalStartEvent(BaseEvent): """ RetrievalStartEvent. Args: str_or_query_bundle (QueryType): Query bundle. """ str_or_query_bundle: QueryType @classmethod def class_name(cls) -> str: """Class name.""" return "RetrievalStartEvent" class RetrievalEndEvent(BaseEvent): """ RetrievalEndEvent. Args: str_or_query_bundle (QueryType): Query bundle. nodes (List[NodeWithScore]): List of nodes with scores. """ str_or_query_bundle: QueryType nodes: List[NodeWithScore] @classmethod def class_name(cls) -> str: """Class name.""" return "RetrievalEndEvent"
from typing import List from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.schema import QueryType, NodeWithScore class RetrievalStartEvent(BaseEvent): """RetrievalStartEvent. Args: str_or_query_bundle (QueryType): Query bundle. """ str_or_query_bundle: QueryType @classmethod def class_name(cls) -> str: """Class name.""" return "RetrievalStartEvent" class RetrievalEndEvent(BaseEvent): """RetrievalEndEvent. Args: str_or_query_bundle (QueryType): Query bundle. nodes (List[NodeWithScore]): List of nodes with scores. """ str_or_query_bundle: QueryType nodes: List[NodeWithScore] @classmethod def class_name(cls) -> str: """Class name.""" return "RetrievalEndEvent"
# mypy: allow-untyped-defs import torch._C._lazy def reset(): """Resets all metric counters.""" torch._C._lazy._reset_metrics() def counter_names(): """Retrieves all the currently active counter names.""" return torch._C._lazy._counter_names() def counter_value(name: str): """Return the value of the counter with the specified name""" return torch._C._lazy._counter_value(name) def metrics_report(): """Return the combined (lazy core and backend) metric report""" return torch._C._lazy._metrics_report()
# mypy: allow-untyped-defs import torch._C._lazy def reset(): """Resets all metric counters.""" torch._C._lazy._reset_metrics() def counter_names(): """Retrieves all the currently active counter names.""" return torch._C._lazy._counter_names() def counter_value(name: str): """Return the value of the counter with the speficied name""" return torch._C._lazy._counter_value(name) def metrics_report(): """Return the combined (lazy core and backend) metric report""" return torch._C._lazy._metrics_report()
import logging import os import zlib from contextlib import asynccontextmanager from urllib.parse import parse_qsl, urlencode, urlparse, urlunparse from uuid import uuid4 from dotenv import load_dotenv from prisma import Prisma from pydantic import BaseModel, Field, field_validator from backend.util.retry import conn_retry load_dotenv() PRISMA_SCHEMA = os.getenv("PRISMA_SCHEMA", "schema.prisma") os.environ["PRISMA_SCHEMA_PATH"] = PRISMA_SCHEMA def add_param(url: str, key: str, value: str) -> str: p = urlparse(url) qs = dict(parse_qsl(p.query)) qs[key] = value return urlunparse(p._replace(query=urlencode(qs))) DATABASE_URL = os.getenv("DATABASE_URL", "postgresql://localhost:5432") CONN_LIMIT = os.getenv("DB_CONNECTION_LIMIT") if CONN_LIMIT: DATABASE_URL = add_param(DATABASE_URL, "connection_limit", CONN_LIMIT) CONN_TIMEOUT = os.getenv("DB_CONNECT_TIMEOUT") if CONN_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "connect_timeout", CONN_TIMEOUT) POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT") if POOL_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT) HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None prisma = Prisma( auto_register=True, http={"timeout": HTTP_TIMEOUT}, datasource={"url": DATABASE_URL}, ) logger = logging.getLogger(__name__) @conn_retry("Prisma", "Acquiring connection") async def connect(): if prisma.is_connected(): return await prisma.connect() if not prisma.is_connected(): raise ConnectionError("Failed to connect to Prisma.") # Connection acquired from a pool like Supabase somehow still possibly allows # the db client obtains a connection but still reject query connection afterward. try: await prisma.execute_raw("SELECT 1") except Exception as e: raise ConnectionError("Failed to connect to Prisma.") from e @conn_retry("Prisma", "Releasing connection") async def disconnect(): if not prisma.is_connected(): return await prisma.disconnect() if prisma.is_connected(): raise ConnectionError("Failed to disconnect from Prisma.") @asynccontextmanager async def transaction(): async with prisma.tx() as tx: yield tx @asynccontextmanager async def locked_transaction(key: str): lock_key = zlib.crc32(key.encode("utf-8")) async with transaction() as tx: await tx.execute_raw("SELECT pg_advisory_xact_lock($1)", lock_key) yield tx class BaseDbModel(BaseModel): id: str = Field(default_factory=lambda: str(uuid4())) @field_validator("id", mode="before") def set_model_id(cls, id: str) -> str: # In case an empty ID is submitted return id or str(uuid4())
import logging import os import zlib from contextlib import asynccontextmanager from urllib.parse import parse_qsl, urlencode, urlparse, urlunparse from uuid import uuid4 from dotenv import load_dotenv from prisma import Prisma from pydantic import BaseModel, Field, field_validator from backend.util.retry import conn_retry load_dotenv() PRISMA_SCHEMA = os.getenv("PRISMA_SCHEMA", "schema.prisma") os.environ["PRISMA_SCHEMA_PATH"] = PRISMA_SCHEMA def add_param(url: str, key: str, value: str) -> str: p = urlparse(url) qs = dict(parse_qsl(p.query)) qs[key] = value return urlunparse(p._replace(query=urlencode(qs))) DATABASE_URL = os.getenv("DATABASE_URL", "postgresql://localhost:5432") CONN_LIMIT = os.getenv("DB_CONNECTION_LIMIT") if CONN_LIMIT: DATABASE_URL = add_param(DATABASE_URL, "connection_limit", CONN_LIMIT) CONN_TIMEOUT = os.getenv("DB_CONNECT_TIMEOUT") if CONN_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "connect_timeout", CONN_TIMEOUT) POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT") if POOL_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT) HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None prisma = Prisma( auto_register=True, http={"timeout": HTTP_TIMEOUT}, datasource={"url": DATABASE_URL}, ) logger = logging.getLogger(__name__) @conn_retry("Prisma", "Acquiring connection") async def connect(): if prisma.is_connected(): return await prisma.connect() if not prisma.is_connected(): raise ConnectionError("Failed to connect to Prisma.") # Connection acquired from a pool like Supabase somehow still possibly allows # the db client obtains a connection but still reject query connection afterward. try: await prisma.execute_raw("SELECT 1") except Exception as e: raise ConnectionError("Failed to connect to Prisma.") from e @conn_retry("Prisma", "Releasing connection") async def disconnect(): if not prisma.is_connected(): return await prisma.disconnect() if prisma.is_connected(): raise ConnectionError("Failed to disconnect from Prisma.") @asynccontextmanager async def transaction(): async with prisma.tx() as tx: yield tx @asynccontextmanager async def locked_transaction(key: str): lock_key = zlib.crc32(key.encode("utf-8")) async with transaction() as tx: await tx.execute_raw(f"SELECT pg_advisory_xact_lock({lock_key})") yield tx class BaseDbModel(BaseModel): id: str = Field(default_factory=lambda: str(uuid4())) @field_validator("id", mode="before") def set_model_id(cls, id: str) -> str: # In case an empty ID is submitted return id or str(uuid4())
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm": "kenlm", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.4.4,<0.5", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1,<2.7", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", "opentelemetry-api": "opentelemetry-api", "opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp", "opentelemetry-sdk": "opentelemetry-sdk", }
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm": "kenlm", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.4.4,<0.5", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1,<2.7", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", }
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_vision_available from .base import GenericTensor, Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image @add_end_docstrings( build_pipeline_init_args(has_image_processor=True), """ image_processor_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the image processor e.g. {"size": {"height": 100, "width": 100}} pool (`bool`, *optional*, defaults to `False`): Whether or not to return the pooled output. If `False`, the model will return the raw hidden states. """, ) class ImageFeatureExtractionPipeline(Pipeline): """ Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. Example: ```python >>> from transformers import pipeline >>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction") >>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True) >>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image. torch.Size([1, 197, 768]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: `"image-feature-extraction"`. All vision models may be used for this pipeline. See a list of all models, including community-contributed models on [huggingface.co/models](https://huggingface.co/models). """ def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs): preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs postprocess_params = {} if pool is not None: postprocess_params["pool"] = pool if return_tensors is not None: postprocess_params["return_tensors"] = return_tensors if "timeout" in kwargs: preprocess_params["timeout"] = kwargs["timeout"] return preprocess_params, {}, postprocess_params def preprocess(self, image, timeout=None, **image_processor_kwargs) -> Dict[str, GenericTensor]: image = load_image(image, timeout=timeout) model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, pool=None, return_tensors=False): pool = pool if pool is not None else False if pool: if "pooler_output" not in model_outputs: raise ValueError( "No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option." ) outputs = model_outputs["pooler_output"] else: # [0] is the first available tensor, logits or last_hidden_state. outputs = model_outputs[0] if return_tensors: return outputs if self.framework == "pt": return outputs.tolist() elif self.framework == "tf": return outputs.numpy().tolist() def __call__(self, *args: Union[str, "Image.Image", List["Image.Image"], List[str]], **kwargs: Any) -> List[Any]: """ Extract the features of the input(s). Args: images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images, which must then be passed as a string. Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL images. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and the call may block forever. Return: A nested list of `float`: The features computed by the model. """ return super().__call__(*args, **kwargs)
from typing import Dict from ..utils import add_end_docstrings, is_vision_available from .base import GenericTensor, Pipeline, build_pipeline_init_args if is_vision_available(): from ..image_utils import load_image @add_end_docstrings( build_pipeline_init_args(has_image_processor=True), """ image_processor_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the image processor e.g. {"size": {"height": 100, "width": 100}} pool (`bool`, *optional*, defaults to `False`): Whether or not to return the pooled output. If `False`, the model will return the raw hidden states. """, ) class ImageFeatureExtractionPipeline(Pipeline): """ Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. Example: ```python >>> from transformers import pipeline >>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction") >>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True) >>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image. torch.Size([1, 197, 768]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: `"image-feature-extraction"`. All vision models may be used for this pipeline. See a list of all models, including community-contributed models on [huggingface.co/models](https://huggingface.co/models). """ def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs): preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs postprocess_params = {} if pool is not None: postprocess_params["pool"] = pool if return_tensors is not None: postprocess_params["return_tensors"] = return_tensors if "timeout" in kwargs: preprocess_params["timeout"] = kwargs["timeout"] return preprocess_params, {}, postprocess_params def preprocess(self, image, timeout=None, **image_processor_kwargs) -> Dict[str, GenericTensor]: image = load_image(image, timeout=timeout) model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, pool=None, return_tensors=False): pool = pool if pool is not None else False if pool: if "pooler_output" not in model_outputs: raise ValueError( "No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option." ) outputs = model_outputs["pooler_output"] else: # [0] is the first available tensor, logits or last_hidden_state. outputs = model_outputs[0] if return_tensors: return outputs if self.framework == "pt": return outputs.tolist() elif self.framework == "tf": return outputs.numpy().tolist() def __call__(self, *args, **kwargs): """ Extract the features of the input(s). Args: images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images, which must then be passed as a string. Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL images. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and the call may block forever. Return: A nested list of `float`: The features computed by the model. """ return super().__call__(*args, **kwargs)
"""Gmail tools.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( GmailCreateDraft, GmailGetMessage, GmailGetThread, GmailSearch, GmailSendMessage, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GmailCreateDraft": "langchain_community.tools", "GmailSendMessage": "langchain_community.tools", "GmailSearch": "langchain_community.tools", "GmailGetMessage": "langchain_community.tools", "GmailGetThread": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GmailCreateDraft", "GmailGetMessage", "GmailGetThread", "GmailSearch", "GmailSendMessage", ]
"""Gmail tools.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( GmailCreateDraft, GmailGetMessage, GmailGetThread, GmailSearch, GmailSendMessage, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GmailCreateDraft": "langchain_community.tools", "GmailSendMessage": "langchain_community.tools", "GmailSearch": "langchain_community.tools", "GmailGetMessage": "langchain_community.tools", "GmailGetThread": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GmailCreateDraft", "GmailSendMessage", "GmailSearch", "GmailGetMessage", "GmailGetThread", ]
import importlib import pytest from dirty_equals import IsDict from fastapi.testclient import TestClient from ...utils import needs_py310 @pytest.fixture( name="client", params=[ "tutorial001", pytest.param("tutorial001_py310", marks=needs_py310), "tutorial001_an", pytest.param("tutorial001_an_py310", marks=needs_py310), ], ) def get_client(request: pytest.FixtureRequest): mod = importlib.import_module(f"docs_src.header_params.{request.param}") client = TestClient(mod.app) return client @pytest.mark.parametrize( "path,headers,expected_status,expected_response", [ ("/items", None, 200, {"User-Agent": "testclient"}), ("/items", {"X-Header": "notvalid"}, 200, {"User-Agent": "testclient"}), ("/items", {"User-Agent": "FastAPI test"}, 200, {"User-Agent": "FastAPI test"}), ], ) def test(path, headers, expected_status, expected_response, client: TestClient): response = client.get(path, headers=headers) assert response.status_code == expected_status assert response.json() == expected_response def test_openapi_schema(client: TestClient): response = client.get("/openapi.json") assert response.status_code == 200 assert response.json() == { "openapi": "3.1.0", "info": {"title": "FastAPI", "version": "0.1.0"}, "paths": { "/items/": { "get": { "responses": { "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, }, "422": { "description": "Validation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } }, }, }, "summary": "Read Items", "operationId": "read_items_items__get", "parameters": [ { "required": False, "schema": IsDict( { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "User-Agent", } ) | IsDict( # TODO: remove when deprecating Pydantic v1 {"title": "User-Agent", "type": "string"} ), "name": "user-agent", "in": "header", } ], } } }, "components": { "schemas": { "ValidationError": { "title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": { "loc": { "title": "Location", "type": "array", "items": { "anyOf": [{"type": "string"}, {"type": "integer"}] }, }, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}, }, }, "HTTPValidationError": { "title": "HTTPValidationError", "type": "object", "properties": { "detail": { "title": "Detail", "type": "array", "items": {"$ref": "#/components/schemas/ValidationError"}, } }, }, } }, }
import pytest from dirty_equals import IsDict from fastapi.testclient import TestClient from docs_src.header_params.tutorial001 import app client = TestClient(app) @pytest.mark.parametrize( "path,headers,expected_status,expected_response", [ ("/items", None, 200, {"User-Agent": "testclient"}), ("/items", {"X-Header": "notvalid"}, 200, {"User-Agent": "testclient"}), ("/items", {"User-Agent": "FastAPI test"}, 200, {"User-Agent": "FastAPI test"}), ], ) def test(path, headers, expected_status, expected_response): response = client.get(path, headers=headers) assert response.status_code == expected_status assert response.json() == expected_response def test_openapi_schema(): response = client.get("/openapi.json") assert response.status_code == 200 assert response.json() == { "openapi": "3.1.0", "info": {"title": "FastAPI", "version": "0.1.0"}, "paths": { "/items/": { "get": { "responses": { "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, }, "422": { "description": "Validation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } }, }, }, "summary": "Read Items", "operationId": "read_items_items__get", "parameters": [ { "required": False, "schema": IsDict( { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "User-Agent", } ) | IsDict( # TODO: remove when deprecating Pydantic v1 {"title": "User-Agent", "type": "string"} ), "name": "user-agent", "in": "header", } ], } } }, "components": { "schemas": { "ValidationError": { "title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": { "loc": { "title": "Location", "type": "array", "items": { "anyOf": [{"type": "string"}, {"type": "integer"}] }, }, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}, }, }, "HTTPValidationError": { "title": "HTTPValidationError", "type": "object", "properties": { "detail": { "title": "Detail", "type": "array", "items": {"$ref": "#/components/schemas/ValidationError"}, } }, }, } }, }
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.20.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.19.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
import os from pathlib import Path import pytest from jina import Flow from jina.excepts import RuntimeFailToStart from jina.orchestrate.deployments import Deployment from jina.parsers import set_deployment_parser from jina.serve.executors import BaseExecutor cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.mark.skip('jinahub not available') def test_simple_use_abs_import_shall_fail(): with pytest.raises(ModuleNotFoundError): from .dummyhub_abs import DummyHubExecutorAbs DummyHubExecutorAbs() with pytest.raises(RuntimeFailToStart): with Flow().add(uses='DummyHubExecutorAbs'): pass @pytest.mark.skip('jinahub not available') def test_simple_use_relative_import(): from .dummyhub import DummyHubExecutor DummyHubExecutor() with Flow().add(uses='DummyHubExecutor'): pass @pytest.mark.skip('jinahub not available') def test_use_from_local_dir_exe_level(): with BaseExecutor.load_config('dummyhub/config.yml'): pass @pytest.mark.skip('jinahub not available') def test_use_from_local_dir_deployment_level(): a = set_deployment_parser().parse_args(['--uses', 'dummyhub/config.yml']) with Deployment(a): pass @pytest.mark.skip('jinahub not available') def test_use_from_local_dir_flow_level(): with Flow().add(uses='dummyhub/config.yml'): pass @pytest.fixture def local_hub_executor(tmpdir): from hubble.executor import HubExecutor, helper, hubapi pkg_path = Path(__file__).parent / 'dummyhub' stream_data = helper.archive_package(pkg_path) with open(tmpdir / 'dummy_test.zip', 'wb') as temp_zip_file: temp_zip_file.write(stream_data.getvalue()) hubapi.install_local( Path(tmpdir) / 'dummy_test.zip', HubExecutor(uuid='hello', tag='v0') ) @pytest.mark.skip('jinahub not available') @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_deployment_level( mocker, monkeypatch, local_hub_executor, uses ): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, *args, **kwargs, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) a = set_deployment_parser().parse_args(['--uses', uses]) with Deployment(a): pass @pytest.mark.skip('jinahub not available') @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_flow_level(mocker, monkeypatch, local_hub_executor, uses): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, *args, **kwargs, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) with Flow().add(uses=uses, install_requirements=True): pass
import os from pathlib import Path import pytest from jina import Flow from jina.excepts import RuntimeFailToStart from jina.orchestrate.deployments import Deployment from jina.parsers import set_deployment_parser from jina.serve.executors import BaseExecutor cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_simple_use_abs_import_shall_fail(): with pytest.raises(ModuleNotFoundError): from .dummyhub_abs import DummyHubExecutorAbs DummyHubExecutorAbs() with pytest.raises(RuntimeFailToStart): with Flow().add(uses='DummyHubExecutorAbs'): pass def test_simple_use_relative_import(): from .dummyhub import DummyHubExecutor DummyHubExecutor() with Flow().add(uses='DummyHubExecutor'): pass def test_use_from_local_dir_exe_level(): with BaseExecutor.load_config('dummyhub/config.yml'): pass def test_use_from_local_dir_deployment_level(): a = set_deployment_parser().parse_args(['--uses', 'dummyhub/config.yml']) with Deployment(a): pass def test_use_from_local_dir_flow_level(): with Flow().add(uses='dummyhub/config.yml'): pass @pytest.fixture def local_hub_executor(tmpdir): from hubble.executor import HubExecutor, helper, hubapi pkg_path = Path(__file__).parent / 'dummyhub' stream_data = helper.archive_package(pkg_path) with open(tmpdir / 'dummy_test.zip', 'wb') as temp_zip_file: temp_zip_file.write(stream_data.getvalue()) hubapi.install_local( Path(tmpdir) / 'dummy_test.zip', HubExecutor(uuid='hello', tag='v0') ) @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_deployment_level( mocker, monkeypatch, local_hub_executor, uses ): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, *args, **kwargs, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) a = set_deployment_parser().parse_args(['--uses', uses]) with Deployment(a): pass @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_flow_level(mocker, monkeypatch, local_hub_executor, uses): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, *args, **kwargs, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) with Flow().add(uses=uses, install_requirements=True): pass
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh
from keras.src import backend from keras.src import ops class DropoutRNNCell: """Object that holds dropout-related functionality for RNN cells. This class is not a standalone RNN cell. It suppose to be used with a RNN cell by multiple inheritance. Any cell that mix with class should have following fields: - `dropout`: a float number in the range `[0, 1]`. Dropout rate for the input tensor. - `recurrent_dropout`: a float number in the range `[0, 1]`. Dropout rate for the recurrent connections. - `seed_generator`, an instance of `backend.random.SeedGenerator`. This object will create and cache dropout masks, and reuse them for all incoming steps, so that the same mask is used for every step. """ def _create_dropout_mask(self, step_input, dropout_rate): count = getattr(self, "dropout_mask_count", None) ones = ops.ones_like(step_input) if count is None: return backend.random.dropout( ones, rate=dropout_rate, seed=self.seed_generator ) else: return [ backend.random.dropout( ones, rate=dropout_rate, seed=self.seed_generator ) for _ in range(count) ] def get_dropout_mask(self, step_input): if not hasattr(self, "_dropout_mask"): self._dropout_mask = None if self._dropout_mask is None and self.dropout > 0: self._dropout_mask = self._create_dropout_mask( step_input, self.dropout ) return self._dropout_mask def get_recurrent_dropout_mask(self, step_input): if not hasattr(self, "_recurrent_dropout_mask"): self._recurrent_dropout_mask = None if self._recurrent_dropout_mask is None and self.recurrent_dropout > 0: self._recurrent_dropout_mask = self._create_dropout_mask( step_input, self.recurrent_dropout ) return self._recurrent_dropout_mask def reset_dropout_mask(self): """Reset the cached dropout mask if any. The RNN layer invokes this in the `call()` method so that the cached mask is cleared after calling `cell.call()`. The mask should be cached across all timestep within the same batch, but shouldn't be cached between batches. """ self._dropout_mask = None def reset_recurrent_dropout_mask(self): self._recurrent_dropout_mask = None
from keras.src import backend from keras.src import ops class DropoutRNNCell: """Object that holds dropout-related functionality for RNN cells. This class is not a standalone RNN cell. It suppose to be used with a RNN cell by multiple inheritance. Any cell that mix with class should have following fields: - `dropout`: a float number in the range `[0, 1]`. Dropout rate for the input tensor. - `recurrent_dropout`: a float number in the range `[0, 1]`. Dropout rate for the recurrent connections. - `seed_generator`, an instance of `backend.random.SeedGenerator`. This object will create and cache dropout masks, and reuse them for all incoming steps, so that the same mask is used for every step. """ def get_dropout_mask(self, step_input): if not hasattr(self, "_dropout_mask"): self._dropout_mask = None if self._dropout_mask is None and self.dropout > 0: ones = ops.ones_like(step_input) self._dropout_mask = backend.random.dropout( ones, rate=self.dropout, seed=self.seed_generator ) return self._dropout_mask def get_recurrent_dropout_mask(self, step_input): if not hasattr(self, "_recurrent_dropout_mask"): self._recurrent_dropout_mask = None if self._recurrent_dropout_mask is None and self.recurrent_dropout > 0: ones = ops.ones_like(step_input) self._recurrent_dropout_mask = backend.random.dropout( ones, rate=self.recurrent_dropout, seed=self.seed_generator ) return self._recurrent_dropout_mask def reset_dropout_mask(self): """Reset the cached dropout mask if any. The RNN layer invokes this in the `call()` method so that the cached mask is cleared after calling `cell.call()`. The mask should be cached across all timestep within the same batch, but shouldn't be cached between batches. """ self._dropout_mask = None def reset_recurrent_dropout_mask(self): self._recurrent_dropout_mask = None
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline))
from argparse import ArgumentParser from pathlib import Path import mir_eval import torch from lightning_train import _get_dataloader, _get_model, sisdri_metric def _eval(model, data_loader, device): results = torch.zeros(4) with torch.no_grad(): for _, batch in enumerate(data_loader): mix, src, mask = batch mix, src, mask = mix.to(device), src.to(device), mask.to(device) est = model(mix) sisdri = sisdri_metric(est, src, mix, mask) src = src.cpu().detach().numpy() est = est.cpu().detach().numpy() mix = mix.repeat(1, src.shape[1], 1).cpu().detach().numpy() sdr, sir, sar, _ = mir_eval.separation.bss_eval_sources(src[0], est[0]) sdr_mix, sir_mix, sar_mix, _ = mir_eval.separation.bss_eval_sources(src[0], mix[0]) results += torch.tensor( [sdr.mean() - sdr_mix.mean(), sisdri, sir.mean() - sir_mix.mean(), sar.mean() - sar_mix.mean()] ) results /= len(data_loader) print("SDR improvement: ", results[0].item()) print("Si-SDR improvement: ", results[1].item()) print("SIR improvement: ", results[2].item()) print("SAR improvement: ", results[3].item()) def cli_main(): parser = ArgumentParser() parser.add_argument("--dataset", default="librimix", type=str, choices=["wsj0-mix", "librimix"]) parser.add_argument( "--root-dir", type=Path, help="The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored.", ) parser.add_argument( "--librimix-tr-split", default="train-360", choices=["train-360", "train-100"], help="The training partition of librimix dataset. (default: ``train-360``)", ) parser.add_argument( "--librimix-task", default="sep_clean", type=str, choices=["sep_clean", "sep_noisy", "enh_single", "enh_both"], help="The task to perform (separation or enhancement, noisy or clean). (default: ``sep_clean``)", ) parser.add_argument( "--num-speakers", default=2, type=int, help="The number of speakers in the mixture. (default: 2)" ) parser.add_argument( "--sample-rate", default=8000, type=int, help="Sample rate of audio files in the given dataset. (default: 8000)", ) parser.add_argument( "--exp-dir", default=Path("./exp"), type=Path, help="The directory to save checkpoints and logs." ) parser.add_argument("--gpu-device", default=-1, type=int, help="The gpu device for model inference. (default: -1)") args = parser.parse_args() model = _get_model(num_sources=2) state_dict = torch.load(args.exp_dir / "best_model.pth") model.load_state_dict(state_dict) if args.gpu_device != -1: device = torch.device("cuda:" + str(args.gpu_device)) else: device = torch.device("cpu") model = model.to(device) _, _, eval_loader = _get_dataloader( args.dataset, args.data_dir, args.num_speakers, args.sample_rate, 1, # batch size is set to 1 to avoid masking 0, # set num_workers to 0 args.librimix_task, args.librimix_tr_split, ) _eval(model, eval_loader, device) if __name__ == "__main__": cli_main()
from argparse import ArgumentParser from pathlib import Path import mir_eval import torch from lightning_train import _get_model, _get_dataloader, sisdri_metric def _eval(model, data_loader, device): results = torch.zeros(4) with torch.no_grad(): for _, batch in enumerate(data_loader): mix, src, mask = batch mix, src, mask = mix.to(device), src.to(device), mask.to(device) est = model(mix) sisdri = sisdri_metric(est, src, mix, mask) src = src.cpu().detach().numpy() est = est.cpu().detach().numpy() mix = mix.repeat(1, src.shape[1], 1).cpu().detach().numpy() sdr, sir, sar, _ = mir_eval.separation.bss_eval_sources(src[0], est[0]) sdr_mix, sir_mix, sar_mix, _ = mir_eval.separation.bss_eval_sources(src[0], mix[0]) results += torch.tensor( [sdr.mean() - sdr_mix.mean(), sisdri, sir.mean() - sir_mix.mean(), sar.mean() - sar_mix.mean()] ) results /= len(data_loader) print("SDR improvement: ", results[0].item()) print("Si-SDR improvement: ", results[1].item()) print("SIR improvement: ", results[2].item()) print("SAR improvement: ", results[3].item()) def cli_main(): parser = ArgumentParser() parser.add_argument("--dataset", default="librimix", type=str, choices=["wsj0-mix", "librimix"]) parser.add_argument( "--root-dir", type=Path, help="The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored.", ) parser.add_argument( "--librimix-tr-split", default="train-360", choices=["train-360", "train-100"], help="The training partition of librimix dataset. (default: ``train-360``)", ) parser.add_argument( "--librimix-task", default="sep_clean", type=str, choices=["sep_clean", "sep_noisy", "enh_single", "enh_both"], help="The task to perform (separation or enhancement, noisy or clean). (default: ``sep_clean``)", ) parser.add_argument( "--num-speakers", default=2, type=int, help="The number of speakers in the mixture. (default: 2)" ) parser.add_argument( "--sample-rate", default=8000, type=int, help="Sample rate of audio files in the given dataset. (default: 8000)", ) parser.add_argument( "--exp-dir", default=Path("./exp"), type=Path, help="The directory to save checkpoints and logs." ) parser.add_argument("--gpu-device", default=-1, type=int, help="The gpu device for model inference. (default: -1)") args = parser.parse_args() model = _get_model(num_sources=2) state_dict = torch.load(args.exp_dir / "best_model.pth") model.load_state_dict(state_dict) if args.gpu_device != -1: device = torch.device("cuda:" + str(args.gpu_device)) else: device = torch.device("cpu") model = model.to(device) _, _, eval_loader = _get_dataloader( args.dataset, args.data_dir, args.num_speakers, args.sample_rate, 1, # batch size is set to 1 to avoid masking 0, # set num_workers to 0 args.librimix_task, args.librimix_tr_split, ) _eval(model, eval_loader, device) if __name__ == "__main__": cli_main()
from keras.src import activations from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.ReLU") class ReLU(Layer): """Rectified Linear Unit activation function layer. Formula: ``` python f(x) = max(x,0) f(x) = max_value if x >= max_value f(x) = x if threshold <= x < max_value f(x) = negative_slope * (x - threshold) otherwise ``` Example: ``` python relu_layer = keras.layers.activations.ReLU( max_value=10, negative_slope=0.5, threshold=0, ) input = np.array([-10, -5, 0.0, 5, 10]) result = relu_layer(input) # result = [-5. , -2.5, 0. , 5. , 10.] ``` Args: max_value: Float >= 0. Maximum activation value. None means unlimited. Defaults to `None`. negative_slope: Float >= 0. Negative slope coefficient. Defaults to `0.0`. threshold: Float >= 0. Threshold value for thresholded activation. Defaults to `0.0`. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. """ def __init__( self, max_value=None, negative_slope=0.0, threshold=0.0, **kwargs ): super().__init__(**kwargs) if max_value is not None and max_value < 0.0: raise ValueError( "max_value of a ReLU layer cannot be a negative " f"value. Received: max_value={max_value}" ) if negative_slope is None or negative_slope < 0.0: raise ValueError( "negative_slope of a ReLU layer cannot be a negative " f"value. Received: negative_slope={negative_slope}" ) if threshold is None or threshold < 0.0: raise ValueError( "threshold of a ReLU layer cannot be a negative " f"value. Received: threshold={threshold}" ) self.max_value = max_value self.negative_slope = negative_slope self.threshold = threshold self.supports_masking = True self.built = True def call(self, inputs): return activations.relu( inputs, negative_slope=self.negative_slope, max_value=self.max_value, threshold=self.threshold, ) def get_config(self): config = super().get_config() config.update( { "max_value": self.max_value, "negative_slope": self.negative_slope, "threshold": self.threshold, } ) return config def compute_output_shape(self, input_shape): return input_shape
from keras.src import activations from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.ReLU") class ReLU(Layer): """Rectified Linear Unit activation function layer. Formula: ``` python f(x) = max(x,0) f(x) = max_value if x >= max_value f(x) = x if threshold <= x < max_value f(x) = negative_slope * (x - threshold) otherwise ``` Example: ``` python relu_layer = keras.layers.activations.ReLU( max_value=10, negative_slope=0.5, threshold=0, ) input = np.array([-10, -5, 0.0, 5, 10]) result = relu_layer(input) # result = [-5. , -2.5, 0. , 5. , 10.] ``` Args: max_value: Float >= 0. Maximum activation value. None means unlimited. Defaults to `None`. negative_slope: Float >= 0. Negative slope coefficient. Defaults to `0.0`. threshold: Float >= 0. Threshold value for thresholded activation. Defaults to `0.0`. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. """ def __init__( self, max_value=None, negative_slope=0.0, threshold=0.0, **kwargs ): super().__init__(**kwargs) if max_value is not None and max_value < 0.0: raise ValueError( "max_value of a ReLU layer cannot be a negative " f"value. Received: max_value={max_value}" ) if negative_slope is None or negative_slope < 0.0: raise ValueError( "negative_slope of a ReLU layer cannot be a negative " f"value. Received: negative_slope={negative_slope}" ) if threshold is None or threshold < 0.0: raise ValueError( "threshold of a ReLU layer cannot be a negative " f"value. Received: threshold={threshold}" ) self.supports_masking = True self.max_value = max_value self.negative_slope = negative_slope self.threshold = threshold def call(self, inputs): return activations.relu( inputs, negative_slope=self.negative_slope, max_value=self.max_value, threshold=self.threshold, ) def get_config(self): config = super().get_config() config.update( { "max_value": self.max_value, "negative_slope": self.negative_slope, "threshold": self.threshold, } ) return config def compute_output_shape(self, input_shape): return input_shape
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .ema import ExpMomentumEMAHook, LinearMomentumEMAHook from .set_epoch_info_hook import SetEpochInfoHook from .sync_norm_hook import SyncNormHook from .sync_random_size_hook import SyncRandomSizeHook from .yolox_lrupdater_hook import YOLOXLrUpdaterHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'SyncRandomSizeHook', 'YOLOXModeSwitchHook', 'SyncNormHook', 'ExpMomentumEMAHook', 'LinearMomentumEMAHook', 'YOLOXLrUpdaterHook', 'CheckInvalidLossHook', 'SetEpochInfoHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .ema import ExpMomentumEMAHook, LinearMomentumEMAHook from .sync_norm_hook import SyncNormHook from .sync_random_size_hook import SyncRandomSizeHook from .yolox_lrupdater_hook import YOLOXLrUpdaterHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'SyncRandomSizeHook', 'YOLOXModeSwitchHook', 'SyncNormHook', 'ExpMomentumEMAHook', 'LinearMomentumEMAHook', 'YOLOXLrUpdaterHook', 'CheckInvalidLossHook' ]
__version__ = '0.13.27' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.13.26' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
_base_ = './retinanet_r50_fpn_ghm-1x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
_base_ = './retinanet_ghm_r50_fpn_1x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.image import affine_transform from keras.src.ops.image import crop_images from keras.src.ops.image import elastic_transform from keras.src.ops.image import extract_patches from keras.src.ops.image import gaussian_blur from keras.src.ops.image import hsv_to_rgb from keras.src.ops.image import map_coordinates from keras.src.ops.image import pad_images from keras.src.ops.image import perspective_transform from keras.src.ops.image import resize from keras.src.ops.image import rgb_to_grayscale from keras.src.ops.image import rgb_to_hsv
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.image import affine_transform from keras.src.ops.image import crop_images from keras.src.ops.image import extract_patches from keras.src.ops.image import gaussian_blur from keras.src.ops.image import hsv_to_rgb from keras.src.ops.image import map_coordinates from keras.src.ops.image import pad_images from keras.src.ops.image import perspective_transform from keras.src.ops.image import resize from keras.src.ops.image import rgb_to_grayscale from keras.src.ops.image import rgb_to_hsv
_base_ = './retinanet_r50_fpn_ghm-1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './retinanet_ghm_r50_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
from __future__ import annotations from typing import Any, Literal, Optional, Union from exa_py import Exa # type: ignore[untyped-import] from exa_py.api import ( HighlightsContentsOptions, # type: ignore[untyped-import] TextContentsOptions, # type: ignore[untyped-import] ) from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from pydantic import Field, SecretStr, model_validator from langchain_exa._utilities import initialize_client def _get_metadata(result: Any) -> dict[str, Any]: """Get the metadata from a result object.""" metadata = { "title": result.title, "url": result.url, "id": result.id, "score": result.score, "published_date": result.published_date, "author": result.author, } if getattr(result, "highlights"): metadata["highlights"] = result.highlights if getattr(result, "highlight_scores"): metadata["highlight_scores"] = result.highlight_scores if getattr(result, "summary"): metadata["summary"] = result.summary return metadata class ExaSearchRetriever(BaseRetriever): """Exa Search retriever.""" k: int = 10 # num_results """The number of search results to return (1 to 100).""" include_domains: Optional[list[str]] = None """A list of domains to include in the search.""" exclude_domains: Optional[list[str]] = None """A list of domains to exclude from the search.""" start_crawl_date: Optional[str] = None """The start date for the crawl (in YYYY-MM-DD format).""" end_crawl_date: Optional[str] = None """The end date for the crawl (in YYYY-MM-DD format).""" start_published_date: Optional[str] = None """The start date for when the document was published (in YYYY-MM-DD format).""" end_published_date: Optional[str] = None """The end date for when the document was published (in YYYY-MM-DD format).""" use_autoprompt: Optional[bool] = None """Whether to use autoprompt for the search.""" type: str = "neural" """The type of search, 'keyword', 'neural', or 'auto'. Default: neural""" highlights: Optional[Union[HighlightsContentsOptions, bool]] = None """Whether to set the page content to the highlights of the results.""" text_contents_options: Union[TextContentsOptions, dict[str, Any], Literal[True]] = ( True ) """How to set the page content of the results. Can be True or a dict with options like max_characters.""" livecrawl: Optional[Literal["always", "fallback", "never"]] = None """Option to crawl live webpages if content is not in the index. Options: "always", "fallback", "never".""" summary: Optional[Union[bool, dict[str, str]]] = None """Whether to include a summary of the content. Can be a boolean or a dict with a custom query.""" client: Exa = Field(default=None) exa_api_key: SecretStr = Field(default=None) exa_base_url: Optional[str] = None @model_validator(mode="before") @classmethod def validate_environment(cls, values: dict) -> Any: """Validate the environment.""" return initialize_client(values) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> list[Document]: response = self.client.search_and_contents( # type: ignore[call-overload] query, num_results=self.k, text=self.text_contents_options, highlights=self.highlights, include_domains=self.include_domains, exclude_domains=self.exclude_domains, start_crawl_date=self.start_crawl_date, end_crawl_date=self.end_crawl_date, start_published_date=self.start_published_date, end_published_date=self.end_published_date, use_autoprompt=self.use_autoprompt, livecrawl=self.livecrawl, summary=self.summary, type=self.type, ) # type: ignore[call-overload, misc] results = response.results return [ Document( page_content=(result.text), metadata=_get_metadata(result), ) for result in results ]
from typing import Any, Literal, Optional, Union from exa_py import Exa # type: ignore[untyped-import] from exa_py.api import ( HighlightsContentsOptions, # type: ignore[untyped-import] TextContentsOptions, # type: ignore[untyped-import] ) from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from pydantic import Field, SecretStr, model_validator from langchain_exa._utilities import initialize_client def _get_metadata(result: Any) -> dict[str, Any]: """Get the metadata from a result object.""" metadata = { "title": result.title, "url": result.url, "id": result.id, "score": result.score, "published_date": result.published_date, "author": result.author, } if getattr(result, "highlights"): metadata["highlights"] = result.highlights if getattr(result, "highlight_scores"): metadata["highlight_scores"] = result.highlight_scores if getattr(result, "summary"): metadata["summary"] = result.summary return metadata class ExaSearchRetriever(BaseRetriever): """Exa Search retriever.""" k: int = 10 # num_results """The number of search results to return (1 to 100).""" include_domains: Optional[list[str]] = None """A list of domains to include in the search.""" exclude_domains: Optional[list[str]] = None """A list of domains to exclude from the search.""" start_crawl_date: Optional[str] = None """The start date for the crawl (in YYYY-MM-DD format).""" end_crawl_date: Optional[str] = None """The end date for the crawl (in YYYY-MM-DD format).""" start_published_date: Optional[str] = None """The start date for when the document was published (in YYYY-MM-DD format).""" end_published_date: Optional[str] = None """The end date for when the document was published (in YYYY-MM-DD format).""" use_autoprompt: Optional[bool] = None """Whether to use autoprompt for the search.""" type: str = "neural" """The type of search, 'keyword', 'neural', or 'auto'. Default: neural""" highlights: Optional[Union[HighlightsContentsOptions, bool]] = None """Whether to set the page content to the highlights of the results.""" text_contents_options: Union[TextContentsOptions, dict[str, Any], Literal[True]] = ( True ) """How to set the page content of the results. Can be True or a dict with options like max_characters.""" livecrawl: Optional[Literal["always", "fallback", "never"]] = None """Option to crawl live webpages if content is not in the index. Options: "always", "fallback", "never".""" summary: Optional[Union[bool, dict[str, str]]] = None """Whether to include a summary of the content. Can be a boolean or a dict with a custom query.""" client: Exa = Field(default=None) exa_api_key: SecretStr = Field(default=None) exa_base_url: Optional[str] = None @model_validator(mode="before") @classmethod def validate_environment(cls, values: dict) -> Any: """Validate the environment.""" values = initialize_client(values) return values def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> list[Document]: response = self.client.search_and_contents( # type: ignore[misc] query, num_results=self.k, text=self.text_contents_options, highlights=self.highlights, # type: ignore include_domains=self.include_domains, exclude_domains=self.exclude_domains, start_crawl_date=self.start_crawl_date, end_crawl_date=self.end_crawl_date, start_published_date=self.start_published_date, end_published_date=self.end_published_date, use_autoprompt=self.use_autoprompt, livecrawl=self.livecrawl, summary=self.summary, type=self.type, ) results = response.results return [ Document( page_content=(result.text), metadata=_get_metadata(result), ) for result in results ]
from typing import Optional import os from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.agentql.const import ( DEFAULT_API_TIMEOUT_SECONDS, DEFAULT_IS_STEALTH_MODE_ENABLED, DEFAULT_WAIT_FOR_PAGE_LOAD_SECONDS, DEFAULT_IS_SCROLL_TO_BOTTOM_ENABLED, DEFAULT_RESPONSE_MODE, DEFAULT_IS_SCREENSHOT_ENABLED, ) from llama_index.tools.agentql.messages import UNSET_API_KEY_ERROR_MESSAGE from llama_index.tools.agentql.utils import _aload_data class AgentQLRestAPIToolSpec(BaseToolSpec): """ AgentQL Rest API Tool Spec. """ spec_functions = [ "extract_web_data_with_rest_api", ] def __init__( self, timeout: int = DEFAULT_API_TIMEOUT_SECONDS, is_stealth_mode_enabled: bool = DEFAULT_IS_STEALTH_MODE_ENABLED, wait_for: int = DEFAULT_WAIT_FOR_PAGE_LOAD_SECONDS, is_scroll_to_bottom_enabled: bool = DEFAULT_IS_SCROLL_TO_BOTTOM_ENABLED, mode: str = DEFAULT_RESPONSE_MODE, is_screenshot_enabled: bool = DEFAULT_IS_SCREENSHOT_ENABLED, ): """ Initialize AgentQL Rest API Tool Spec. Args: timeout: The number of seconds to wait for a request before timing out. Defaults to 900. is_stealth_mode_enabled: Whether to enable experimental anti-bot evasion strategies. This feature may not work for all websites at all times. Data extraction may take longer to complete with this mode enabled. Defaults to `False`. wait_for: The number of seconds to wait for the page to load before extracting data. Defaults to 0. is_scroll_to_bottom_enabled: Whether to scroll to bottom of the page before extracting data. Defaults to `False`. mode: 'standard' uses deep data analysis, while 'fast' trades some depth of analysis for speed and is adequate for most usecases. Learn more about the modes in this guide: https://docs.agentql.com/accuracy/standard-mode) Defaults to 'fast'. is_screenshot_enabled: Whether to take a screenshot before extracting data. Returned in 'metadata' as a Base64 string. Defaults to `False`. """ self._api_key = os.getenv("AGENTQL_API_KEY") if not self._api_key: raise ValueError(UNSET_API_KEY_ERROR_MESSAGE) self.timeout = timeout self.is_stealth_mode_enabled = is_stealth_mode_enabled self.wait_for = wait_for self.is_scroll_to_bottom_enabled = is_scroll_to_bottom_enabled self.mode = mode self.is_screenshot_enabled = is_screenshot_enabled async def extract_web_data_with_rest_api( self, url: str, query: Optional[str] = None, prompt: Optional[str] = None, ) -> dict: """ Extracts structured data as a JSON from the active web page in a running browser instance using either an AgentQL query or a Natural Language description of the data. Args: url: URL of the public webpage to extract data from. query: AgentQL query used to extract the data. The query must be enclosed with curly braces `{}`. Either this field or `prompt` field must be provided. prompt: Natural Language description of the data to extract from the page. If AgentQL query is not specified, always use the `prompt` field. Either this field or `query` field must be provided. Returns: dict: Extracted data. """ _params = { "wait_for": self.wait_for, "is_scroll_to_bottom_enabled": self.is_scroll_to_bottom_enabled, "mode": self.mode, "is_screenshot_enabled": self.is_screenshot_enabled, } _metadata = { "experimental_stealth_mode_enabled": self.is_stealth_mode_enabled, } return await _aload_data( url=url, query=query, prompt=prompt, params=_params, metadata=_metadata, api_key=self._api_key, timeout=self.timeout, )
from typing import Optional import os from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.agentql.const import ( DEFAULT_API_TIMEOUT_SECONDS, DEFAULT_IS_STEALTH_MODE_ENABLED, DEFAULT_WAIT_FOR_PAGE_LOAD_SECONDS, DEFAULT_IS_SCROLL_TO_BOTTOM_ENABLED, DEFAULT_RESPONSE_MODE, DEFAULT_IS_SCREENSHOT_ENABLED, ) from llama_index.tools.agentql.messages import UNSET_API_KEY_ERROR_MESSAGE from llama_index.tools.agentql.utils import _aload_data class AgentQLRestAPIToolSpec(BaseToolSpec): """ AgentQL Rest API Tool Spec. """ spec_functions = [ "extract_web_data_with_rest_api", ] def __init__( self, timeout: int = DEFAULT_API_TIMEOUT_SECONDS, is_stealth_mode_enabled: bool = DEFAULT_IS_STEALTH_MODE_ENABLED, wait_for: int = DEFAULT_WAIT_FOR_PAGE_LOAD_SECONDS, is_scroll_to_bottom_enabled: bool = DEFAULT_IS_SCROLL_TO_BOTTOM_ENABLED, mode: str = DEFAULT_RESPONSE_MODE, is_screenshot_enabled: bool = DEFAULT_IS_SCREENSHOT_ENABLED, ): """ Initialize AgentQL Rest API Tool Spec. Args: timeout: The number of seconds to wait for a request before timing out. Defaults to 900. is_stealth_mode_enabled: Whether to enable experimental anti-bot evasion strategies. This feature may not work for all websites at all times. Data extraction may take longer to complete with this mode enabled. Defaults to `False`. wait_for: The number of seconds to wait for the page to load before extracting data. Defaults to 0. is_scroll_to_bottom_enabled: Whether to scroll to bottom of the page before extracting data. Defaults to `False`. mode: 'standard' uses deep data analysis, while 'fast' trades some depth of analysis for speed and is adequate for most usecases. Learn more about the modes in this guide: https://docs.agentql.com/accuracy/standard-mode) Defaults to 'fast'. is_screenshot_enabled: Whether to take a screenshot before extracting data. Returned in 'metadata' as a Base64 string. Defaults to `False`. """ self._api_key = os.getenv("AGENTQL_API_KEY") if not self._api_key: raise ValueError(UNSET_API_KEY_ERROR_MESSAGE) self.timeout = timeout self.is_stealth_mode_enabled = is_stealth_mode_enabled self.wait_for = wait_for self.is_scroll_to_bottom_enabled = is_scroll_to_bottom_enabled self.mode = mode self.is_screenshot_enabled = is_screenshot_enabled async def extract_web_data_with_rest_api( self, url: str, query: Optional[str] = None, prompt: Optional[str] = None, ) -> dict: """ Extracts structured data as a JSON from the active web page in a running browser instance using either an AgentQL query or a Natural Language description of the data. Args: url: URL of the public webpage to extract data from. query: AgentQL query used to extract the data. The query must be enclosed with curly braces `{}`. Either this field or `prompt` field must be provided. prompt: Natural Language description of the data to extract from the page. If AgentQL query is not specified, always use the `prompt` field. Either this field or `query` field must be provided. Returns: dict: Extracted data. """ _params = { "wait_for": self.wait_for, "is_scroll_to_bottom_enabled": self.is_scroll_to_bottom_enabled, "mode": self.mode, "is_screenshot_enabled": self.is_screenshot_enabled, } _metadata = { "experimental_stealth_mode_enabled": self.is_stealth_mode_enabled, } return await _aload_data( url=url, query=query, prompt=prompt, params=_params, metadata=_metadata, api_key=self._api_key, timeout=self.timeout, )
from jina import DocumentArray, Executor, Flow, requests def test_gateway_metric_labels(monkeypatch_metric_exporter): collect_metrics, read_metrics = monkeypatch_metric_exporter class FirstExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) class SecondExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) with Flow( tracing=False, metrics=True, metrics_exporter_host='localhost', metrics_exporter_port=4317, port=12345, ).add(name='first_exec', uses=FirstExec).add( name="second_exec", uses=SecondExec ) as f: f.post('/') collect_metrics() metrics = read_metrics() gateway_metrics = metrics['gateway/rep-0'][0]['resource_metrics'][0][ 'scope_metrics' ][0]['metrics'] gateway_metric_data_point = { i['name']: i['data']['data_points'] for i in gateway_metrics } assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][1]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][1]['attributes'] ) assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_received_response_bytes'] } assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sent_request_bytes'] } assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sending_request_seconds'] } def test_merge_with_no_reduce(monkeypatch_metric_exporter): collect_metrics, read_metrics = monkeypatch_metric_exporter f = ( Flow( tracing=False, metrics=True, metrics_exporter_host='localhost', metrics_exporter_port=4317, port=12345, ) .add(name='name1') .add(name='name2', needs=['gateway']) .add(name='name3', needs=['name1', 'name2'], disable_reduce=True) ) with f: f.post('/') collect_metrics() metrics = read_metrics() gateway_metrics = metrics['gateway/rep-0'][0]['resource_metrics'][0][ 'scope_metrics' ][0]['metrics'] gateway_metric_data_point = { i['name']: i['data']['data_points'] for i in gateway_metrics } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_received_response_bytes'] } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sent_request_bytes'] } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sending_request_seconds'] }
from jina import Executor, Flow, requests, DocumentArray def test_gateway_metric_labels(monkeypatch_metric_exporter): collect_metrics, read_metrics = monkeypatch_metric_exporter class FirstExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) class SecondExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) with Flow( tracing=False, metrics=True, metrics_exporter_host='localhost', metrics_exporter_port=4317, port=12345, ).add(name='first_exec', uses=FirstExec).add( name="second_exec", uses=SecondExec ) as f: f.post('/') collect_metrics() metrics = read_metrics() gateway_metrics = metrics['gateway/rep-0'][0]['resource_metrics'][0][ 'scope_metrics' ][0]['metrics'] gateway_metric_data_point = { i['name']: i['data']['data_points'] for i in gateway_metrics } assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][0][ 'attributes' ] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][0][ 'attributes' ] ) assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][1][ 'attributes' ] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][1][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][0][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][0][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][1][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][1][ 'attributes' ] ) assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_received_response_bytes'] } assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sent_request_bytes'] } assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sending_request_seconds'] } def test_merge_with_no_reduce(monkeypatch_metric_exporter): collect_metrics, read_metrics = monkeypatch_metric_exporter f = ( Flow( tracing=False, metrics=True, metrics_exporter_host='localhost', metrics_exporter_port=4317, port=12345, ) .add(name='name1') .add(name='name2', needs=['gateway']) .add(name='name3', needs=['name1', 'name2'], disable_reduce=True) ) with f: f.post('/') collect_metrics() metrics = read_metrics() gateway_metrics = metrics['gateway/rep-0'][0]['resource_metrics'][0][ 'scope_metrics' ][0]['metrics'] gateway_metric_data_point = { i['name']: i['data']['data_points'] for i in gateway_metrics } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_received_response_bytes'] } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sent_request_bytes'] } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sending_request_seconds'] }
_base_ = './mask_rcnn_hrnetv2p_w18_1x_coco.py' # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './mask_rcnn_hrnetv2p_w18_1x_coco.py' # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import import_vectors from .. import HnswlibSearcher # fix the seed here np.random.seed(500) docs = DocumentArray([Document(embedding=np.random.random(10)) for i in range(10)]) search_doc = DocumentArray([Document(embedding=np.random.random(10))]) DUMP_PATH = 'tests/dump1' TOP_K = 5 @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] yield metas del os.environ['TEST_WORKSPACE'] @pytest.mark.parametrize(['metric', 'is_distance'], [('l2', True), ('ip', True), ('cosine', True), ('l2', False), ('ip', False), ('cosine', False)]) def test_metric(tmpdir, metric, is_distance): metas = {'workspace': str(tmpdir), 'name': 'searcher'} runtime_args = {'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, metric=metric, is_distance=is_distance, runtime_args=runtime_args) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == TOP_K for i in range(len(docs[0].matches) - 1): if not is_distance: assert docs[0].matches[i].scores[metric].value >= docs[0].matches[i + 1].scores[metric].value else: assert docs[0].matches[i].scores[metric].value <= docs[0].matches[i + 1].scores[metric].value def test_query_vector(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher'} runtime_args = {'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, runtime_args=runtime_args) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) ids, vecs = import_vectors(DUMP_PATH, str(0)) ids = np.array(list(ids)) vecs = np.array(list(vecs)) assert len(docs) == 1 assert len(docs[0].matches) == TOP_K assert docs[0].matches[0].id in ids assert len(docs[0].matches[0].embedding) == 7 assert docs[0].matches[0].embedding in vecs da = DocumentArray([Document(id=0), Document(id=1), Document(id=2)]) indexer.fill_embedding(da) for i, doc in enumerate(da): assert list(doc.embedding) def test_none_doc(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher'} runtime_args = {'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, runtime_args=runtime_args) indexer.search(None, {}) indexer.fill_embedding(None) def test_query_vector_empty(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher'} runtime_args = {'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(default_top_k=TOP_K, metas=metas, runtime_args=runtime_args) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == 0 def test_flow(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher'} runtime_args = {'pea_id': 0, 'replica_id': 0} flow = Flow().add(uses=HnswlibSearcher, override_with={'dump_path': DUMP_PATH, 'default_top_k': TOP_K}, override_metas=metas, runtime_args=runtime_args) with flow: resp = flow.post( on='/search', inputs=DocumentArray([Document(embedding=np.random.random(7))]), return_results=True ) assert len(resp[0].data.docs[0].matches) == TOP_K doc_array = DocumentArray([Document(id=0), Document(id=1), Document(id=2)]) with flow: resp = flow.post( on='/fill_embedding', inputs=doc_array, return_results=True ) for i, doc in enumerate(resp[0].data.docs): assert doc.embedding assert doc.embedding.dense.shape == [7]
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import import_vectors from .. import HnswlibSearcher # fix the seed here np.random.seed(500) docs = DocumentArray([Document(embedding=np.random.random(10)) for i in range(10)]) search_doc = DocumentArray([Document(embedding=np.random.random(10))]) DUMP_PATH = 'tests/dump1' TOP_K = 5 @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] yield metas del os.environ['TEST_WORKSPACE'] @pytest.mark.parametrize(['metric', 'is_distance'], [('l2', True), ('ip', True), ('cosine', True), ('l2', False), ('ip', False), ('cosine', False)]) def test_metric(tmpdir, metric, is_distance): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, metric=metric, is_distance=is_distance) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == TOP_K for i in range(len(docs[0].matches) - 1): if not is_distance: assert docs[0].matches[i].scores[metric].value >= docs[0].matches[i + 1].scores[metric].value else: assert docs[0].matches[i].scores[metric].value <= docs[0].matches[i + 1].scores[metric].value def test_query_vector(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) ids, vecs = import_vectors(DUMP_PATH, str(0)) ids = np.array(list(ids)) vecs = np.array(list(vecs)) assert len(docs) == 1 assert len(docs[0].matches) == TOP_K assert docs[0].matches[0].id in ids assert len(docs[0].matches[0].embedding) == 7 assert docs[0].matches[0].embedding in vecs da = DocumentArray([Document(id=0), Document(id=1), Document(id=2)]) indexer.fill_embedding(da) for i, doc in enumerate(da): assert list(doc.embedding) def test_none_doc(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas) indexer.search(None, {}) indexer.fill_embedding(None) def test_query_vector_empty(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(default_top_k=TOP_K, metas=metas) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == 0 def test_flow(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} flow = Flow().add(uses=HnswlibSearcher, override_with={'dump_path': DUMP_PATH, 'default_top_k': TOP_K}, override_metas=metas) with flow: resp = flow.post( on='/search', inputs=DocumentArray([Document(embedding=np.random.random(7))]), return_results=True ) assert len(resp[0].data.docs[0].matches) == TOP_K doc_array = DocumentArray([Document(id=0), Document(id=1), Document(id=2)]) with flow: resp = flow.post( on='/fill_embedding', inputs=doc_array, return_results=True ) for i, doc in enumerate(resp[0].data.docs): assert doc.embedding assert doc.embedding.dense.shape == [7]
from __future__ import annotations from sentence_transformers.training_args import SentenceTransformerTrainingArguments class CrossEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" CrossEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter name regular expressions to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'IDF\.*': 1e-3}` for the IDF module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
from __future__ import annotations from sentence_transformers.training_args import SentenceTransformerTrainingArguments class CrossEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" CrossEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter names to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'IDF\.*': 1e-3}` for the IDF module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
#!/usr/bin/env python3 """Run smoke tests""" import argparse import logging def base_smoke_test(): import torchaudio # noqa: F401 import torchaudio.compliance.kaldi # noqa: F401 import torchaudio.datasets # noqa: F401 import torchaudio.functional # noqa: F401 import torchaudio.models # noqa: F401 import torchaudio.pipelines # noqa: F401 import torchaudio.sox_effects # noqa: F401 import torchaudio.transforms # noqa: F401 import torchaudio.utils # noqa: F401 def ffmpeg_test(): from torchaudio.io import StreamReader # noqa: F401 def _run_smoke_test(check_ffmpeg): base_smoke_test() if not check_ffmpeg: print("Skipping ffmpeg test.") else: ffmpeg_test() print("Smoke test passed.") def main(args=None) -> None: options = _parse_args(args) if options.debug: logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.DEBUG) _chdir() _run_smoke_test(options.ffmpeg) def _parse_args(args): parser = argparse.ArgumentParser() # Warning: Please note this option should not be widely used, only use it when absolutely necessary parser.add_argument("--no-ffmpeg", dest="ffmpeg", action="store_false") parser.add_argument("--debug", action="store_true", help="Enable debug logging.") return parser.parse_args(args) def _chdir(): # smoke test should not be performed on the root directory of checked out source code. import os from pathlib import Path os.chdir(Path(__file__).parent) assert "torchaudio" not in os.listdir(os.getcwd()) if __name__ == "__main__": main()
"""Run smoke tests""" import argparse import logging def base_smoke_test(): import torchaudio # noqa: F401 import torchaudio.compliance.kaldi # noqa: F401 import torchaudio.datasets # noqa: F401 import torchaudio.functional # noqa: F401 import torchaudio.models # noqa: F401 import torchaudio.pipelines # noqa: F401 import torchaudio.sox_effects # noqa: F401 import torchaudio.transforms # noqa: F401 import torchaudio.utils # noqa: F401 def ffmpeg_test(): from torchaudio.io import StreamReader # noqa: F401 def main() -> None: options = _parse_args() if options.debug: logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.DEBUG) base_smoke_test() if options.ffmpeg: ffmpeg_test() print("Smoke test passed.") def _parse_args(): parser = argparse.ArgumentParser() # Warning: Please note this option should not be widely used, only use it when absolutely necessary parser.add_argument("--no-ffmpeg", dest="ffmpeg", action="store_false") parser.add_argument("--debug", action="store_true", help="Enable debug logging.") return parser.parse_args() if __name__ == "__main__": main()
from __future__ import annotations __version__ = "4.2.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os import warnings from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.sampler import DefaultBatchSampler, MultiDatasetDefaultBatchSampler from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseEncoderModelCardData, SparseEncoderTrainer, SparseEncoderTrainingArguments, ) from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments from sentence_transformers.util import mine_hard_negatives # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" # Globally silence PyTorch sparse CSR tensor beta warning warnings.filterwarnings("ignore", message="Sparse CSR tensor support is in beta state") __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "SparseEncoder", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", "SparseEncoderModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", "DefaultBatchSampler", "MultiDatasetDefaultBatchSampler", "mine_hard_negatives", ]
from __future__ import annotations __version__ = "4.2.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os import warnings from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseEncoderModelCardData, SparseEncoderTrainer, SparseEncoderTrainingArguments, ) from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments from sentence_transformers.util import mine_hard_negatives # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" # Globally silence PyTorch sparse CSR tensor beta warning warnings.filterwarnings("ignore", message="Sparse CSR tensor support is in beta state") __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "SparseEncoder", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", "SparseEncoderModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", "mine_hard_negatives", ]
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers.losses.TripletLoss import TripletDistanceMetric, TripletLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseTripletLoss(TripletLoss): def __init__( self, model: SparseEncoder, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SparseEncoder distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseTripletLoss(model), lambda_corpus=3e-5, lambda_query=5e-5) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ super().__init__(model, distance_metric=distance_metric, triplet_margin=triplet_margin) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseTripletLoss shold not be used alone. Use it with SpladeLoss or CSRLoss.")
from __future__ import annotations from sentence_transformers.losses.TripletLoss import TripletDistanceMetric, TripletLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseTripletLoss(TripletLoss): def __init__( self, model: SparseEncoder, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SparseEncoder distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], } ) loss = losses.SparseTripletLoss(model) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ super().__init__(model, distance_metric=distance_metric, triplet_margin=triplet_margin)
_base_ = '../faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
_base_ = '../faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
_base_ = ['faster_rcnn_r50_fpn_32x2_1x_openimages.py'] model = dict( roi_head=dict(bbox_head=dict(num_classes=500)), test_cfg=dict(rcnn=dict(score_thr=0.01))) # dataset settings dataset_type = 'OpenImagesChallengeDataset' data_root = 'data/OpenImages/' data = dict( train=dict( type=dataset_type, ann_file=data_root + 'challenge2019/challenge-2019-train-detection-bbox.txt', img_prefix=data_root + 'OpenImages/', label_file=data_root + 'challenge2019/cls-label-description.csv', hierarchy_file=data_root + 'challenge2019/class_label_tree.np'), val=dict( type=dataset_type, ann_file=data_root + 'challenge2019/challenge-2019-validation-detection-bbox.txt', img_prefix=data_root + 'OpenImages/', label_file=data_root + 'challenge2019/cls-label-description.csv', hierarchy_file=data_root + 'challenge2019/class_label_tree.np', meta_file=data_root + 'challenge2019/challenge-2019-validation-metas.pkl', image_level_ann_file=data_root + 'challenge2019/challenge-2019-validation-detection-' 'human-imagelabels.csv'), test=dict( type=dataset_type, ann_file=data_root + 'challenge2019/challenge-2019-validation-detection-bbox.txt', img_prefix=data_root + 'OpenImages/', label_file=data_root + 'challenge2019/cls-label-description.csv', hierarchy_file=data_root + 'challenge2019/class_label_tree.np', meta_file=data_root + 'challenge2019/challenge-2019-validation-metas.pkl', image_level_ann_file=data_root + 'challenge2019/challenge-2019-validation-detection-' 'human-imagelabels.csv')) evaluation = dict(interval=1, metric='mAP') # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = ['faster_rcnn_r50_fpn_32x2_1x_openimages.py'] model = dict( roi_head=dict(bbox_head=dict(num_classes=500)), test_cfg=dict(rcnn=dict(score_thr=0.01))) # dataset settings dataset_type = 'OpenImagesChallengeDataset' data_root = 'data/OpenImages/' data = dict( train=dict( type=dataset_type, ann_file=data_root + 'challenge2019/challenge-2019-train-detection-bbox.txt', img_prefix=data_root + 'OpenImages/', label_file=data_root + 'challenge2019/cls-label-description.csv', hierarchy_file=data_root + 'challenge2019/class_label_tree.np'), val=dict( type=dataset_type, ann_file=data_root + 'challenge2019/challenge-2019-validation-detection-bbox.txt', img_prefix=data_root + 'OpenImages/', label_file=data_root + 'challenge2019/cls-label-description.csv', hierarchy_file=data_root + 'challenge2019/class_label_tree.np', meta_file=data_root + 'challenge2019/challenge-2019-validation-metas.pkl', image_level_ann_file=data_root + 'challenge2019/challenge-2019-validation-detection-' 'human-imagelabels.csv'), test=dict( type=dataset_type, ann_file=data_root + 'challenge2019/challenge-2019-validation-detection-bbox.txt', img_prefix=data_root + 'OpenImages/', label_file=data_root + 'challenge2019/cls-label-description.csv', hierarchy_file=data_root + 'challenge2019/class_label_tree.np', meta_file=data_root + 'challenge2019/challenge-2019-validation-metas.pkl', image_level_ann_file=data_root + 'challenge2019/challenge-2019-validation-detection-' 'human-imagelabels.csv')) evaluation = dict(interval=1, metric='mAP')
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg from mmdet.utils import register_all_modules class TestDynamicRoIHead(TestCase): def setUp(self): register_all_modules() self.roi_head_cfg = get_roi_head_cfg( 'dynamic_rcnn/dynamic-rcnn_r50_fpn_1x_coco.py') def test_init(self): roi_head = MODELS.build(self.roi_head_cfg) self.assertTrue(roi_head.with_bbox) @parameterized.expand(['cpu', 'cuda']) def test_dynamic_roi_head_loss(self, device): """Tests trident roi head predict.""" if not torch.cuda.is_available() and device == 'cuda': # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') roi_head = MODELS.build(self.roi_head_cfg) roi_head = roi_head.to(device=device) s = 256 feats = [] for i in range(len(roi_head.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device=device)) image_shapes = [(3, s, s)] batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[1], num_classes=4, with_mask=True, device=device)['data_samples'] proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100, device=device) out = roi_head.loss(feats, proposals_list, batch_data_samples) loss_cls = out['loss_cls'] loss_bbox = out['loss_bbox'] self.assertGreater(loss_cls.sum(), 0, 'cls loss should be non-zero') self.assertGreater(loss_bbox.sum(), 0, 'box loss should be non-zero') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[0], num_classes=4, with_mask=True, device=device)['data_samples'] proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100, device=device) out = roi_head.loss(feats, proposals_list, batch_data_samples) empty_cls_loss = out['loss_cls'] empty_bbox_loss = out['loss_bbox'] self.assertGreater(empty_cls_loss.sum(), 0, 'cls loss should be non-zero') self.assertEqual( empty_bbox_loss.sum(), 0, 'there should be no box loss when there are no true boxes')
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg from mmdet.utils import register_all_modules class TestDynamicRoIHead(TestCase): def setUp(self): register_all_modules() self.roi_head_cfg = get_roi_head_cfg( 'dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py') def test_init(self): roi_head = MODELS.build(self.roi_head_cfg) self.assertTrue(roi_head.with_bbox) @parameterized.expand(['cpu', 'cuda']) def test_dynamic_roi_head_loss(self, device): """Tests trident roi head predict.""" if not torch.cuda.is_available() and device == 'cuda': # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') roi_head = MODELS.build(self.roi_head_cfg) roi_head = roi_head.to(device=device) s = 256 feats = [] for i in range(len(roi_head.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device=device)) image_shapes = [(3, s, s)] batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[1], num_classes=4, with_mask=True, device=device)['data_samples'] proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100, device=device) out = roi_head.loss(feats, proposals_list, batch_data_samples) loss_cls = out['loss_cls'] loss_bbox = out['loss_bbox'] self.assertGreater(loss_cls.sum(), 0, 'cls loss should be non-zero') self.assertGreater(loss_bbox.sum(), 0, 'box loss should be non-zero') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[0], num_classes=4, with_mask=True, device=device)['data_samples'] proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100, device=device) out = roi_head.loss(feats, proposals_list, batch_data_samples) empty_cls_loss = out['loss_cls'] empty_bbox_loss = out['loss_bbox'] self.assertGreater(empty_cls_loss.sum(), 0, 'cls loss should be non-zero') self.assertEqual( empty_bbox_loss.sum(), 0, 'there should be no box loss when there are no true boxes')
"""Fake LLM wrapper for testing purposes.""" from collections.abc import Mapping from typing import Any, Optional, cast from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from pydantic import model_validator class FakeLLM(LLM): """Fake LLM wrapper for testing purposes.""" queries: Optional[Mapping] = None sequential_responses: Optional[bool] = False response_index: int = 0 @model_validator(mode="before") @classmethod def check_queries_required(cls, values: dict) -> dict: if values.get("sequential_response") and not values.get("queries"): msg = "queries is required when sequential_response is set to True" raise ValueError(msg) return values def get_num_tokens(self, text: str) -> int: """Return number of tokens.""" return len(text.split()) @property def _llm_type(self) -> str: """Return type of llm.""" return "fake" def _call( self, prompt: str, stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: if self.sequential_responses: return self._get_next_response_in_sequence if self.queries is not None: return self.queries[prompt] if stop is None: return "foo" return "bar" @property def _identifying_params(self) -> dict[str, Any]: return {} @property def _get_next_response_in_sequence(self) -> str: queries = cast(Mapping, self.queries) response = queries[list(queries.keys())[self.response_index]] self.response_index = self.response_index + 1 return response
"""Fake LLM wrapper for testing purposes.""" from collections.abc import Mapping from typing import Any, Optional, cast from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from pydantic import model_validator class FakeLLM(LLM): """Fake LLM wrapper for testing purposes.""" queries: Optional[Mapping] = None sequential_responses: Optional[bool] = False response_index: int = 0 @model_validator(mode="before") @classmethod def check_queries_required(cls, values: dict) -> dict: if values.get("sequential_response") and not values.get("queries"): msg = "queries is required when sequential_response is set to True" raise ValueError(msg) return values def get_num_tokens(self, text: str) -> int: """Return number of tokens.""" return len(text.split()) @property def _llm_type(self) -> str: """Return type of llm.""" return "fake" def _call( self, prompt: str, stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: if self.sequential_responses: return self._get_next_response_in_sequence if self.queries is not None: return self.queries[prompt] if stop is None: return "foo" else: return "bar" @property def _identifying_params(self) -> dict[str, Any]: return {} @property def _get_next_response_in_sequence(self) -> str: queries = cast(Mapping, self.queries) response = queries[list(queries.keys())[self.response_index]] self.response_index = self.response_index + 1 return response
# flake8: noqa """Tools for working with JSON specs.""" from __future__ import annotations import json import re from pathlib import Path from typing import Dict, List, Optional, Union from pydantic import BaseModel from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain_core.tools import BaseTool def _parse_input(text: str) -> List[Union[str, int]]: """Parse input of the form data["key1"][0]["key2"] into a list of keys.""" _res = re.findall(r"\[.*?]", text) # strip the brackets and quotes, convert to int if possible res = [i[1:-1].replace('"', "").replace("'", "") for i in _res] res = [int(i) if i.isdigit() else i for i in res] return res class JsonSpec(BaseModel): """Base class for JSON spec.""" dict_: Dict max_value_length: int = 200 @classmethod def from_file(cls, path: Path) -> JsonSpec: """Create a JsonSpec from a file.""" if not path.exists(): raise FileNotFoundError(f"File not found: {path}") dict_ = json.loads(path.read_text()) return cls(dict_=dict_) def keys(self, text: str) -> str: """Return the keys of the dict at the given path. Args: text: Python representation of the path to the dict (e.g. data["key1"][0]["key2"]). """ try: items = _parse_input(text) val = self.dict_ for i in items: if i: val = val[i] if not isinstance(val, dict): raise ValueError( f"Value at path `{text}` is not a dict, get the value directly." ) return str(list(val.keys())) except Exception as e: return repr(e) def value(self, text: str) -> str: """Return the value of the dict at the given path. Args: text: Python representation of the path to the dict (e.g. data["key1"][0]["key2"]). """ try: items = _parse_input(text) val = self.dict_ for i in items: val = val[i] if isinstance(val, dict) and len(str(val)) > self.max_value_length: return "Value is a large dictionary, should explore its keys directly" str_val = str(val) if len(str_val) > self.max_value_length: str_val = str_val[: self.max_value_length] + "..." return str_val except Exception as e: return repr(e) class JsonListKeysTool(BaseTool): """Tool for listing keys in a JSON spec.""" name: str = "json_spec_list_keys" description: str = """ Can be used to list all keys at a given path. Before calling this you should be SURE that the path to this exists. The input is a text representation of the path to the dict in Python syntax (e.g. data["key1"][0]["key2"]). """ spec: JsonSpec def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: return self.spec.keys(tool_input) async def _arun( self, tool_input: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return self._run(tool_input) class JsonGetValueTool(BaseTool): """Tool for getting a value in a JSON spec.""" name: str = "json_spec_get_value" description: str = """ Can be used to see value in string format at a given path. Before calling this you should be SURE that the path to this exists. The input is a text representation of the path to the dict in Python syntax (e.g. data["key1"][0]["key2"]). """ spec: JsonSpec def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: return self.spec.value(tool_input) async def _arun( self, tool_input: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return self._run(tool_input)
# flake8: noqa """Tools for working with JSON specs.""" from __future__ import annotations import json import re from pathlib import Path from typing import Dict, List, Optional, Union from pydantic import BaseModel from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain_core.tools import BaseTool def _parse_input(text: str) -> List[Union[str, int]]: """Parse input of the form data["key1"][0]["key2"] into a list of keys.""" _res = re.findall(r"\[.*?]", text) # strip the brackets and quotes, convert to int if possible res = [i[1:-1].replace('"', "").replace("'", "") for i in _res] res = [int(i) if i.isdigit() else i for i in res] return res class JsonSpec(BaseModel): """Base class for JSON spec.""" dict_: Dict max_value_length: int = 200 @classmethod def from_file(cls, path: Path) -> JsonSpec: """Create a JsonSpec from a file.""" if not path.exists(): raise FileNotFoundError(f"File not found: {path}") dict_ = json.loads(path.read_text()) return cls(dict_=dict_) def keys(self, text: str) -> str: """Return the keys of the dict at the given path. Args: text: Python representation of the path to the dict (e.g. data["key1"][0]["key2"]). """ try: items = _parse_input(text) val = self.dict_ for i in items: if i: val = val[i] if not isinstance(val, dict): raise ValueError( f"Value at path `{text}` is not a dict, get the value directly." ) return str(list(val.keys())) except Exception as e: return repr(e) def value(self, text: str) -> str: """Return the value of the dict at the given path. Args: text: Python representation of the path to the dict (e.g. data["key1"][0]["key2"]). """ try: items = _parse_input(text) val = self.dict_ for i in items: val = val[i] if isinstance(val, dict) and len(str(val)) > self.max_value_length: return "Value is a large dictionary, should explore its keys directly" str_val = str(val) if len(str_val) > self.max_value_length: str_val = str_val[: self.max_value_length] + "..." return str_val except Exception as e: return repr(e) class JsonListKeysTool(BaseTool): # type: ignore[override] """Tool for listing keys in a JSON spec.""" name: str = "json_spec_list_keys" description: str = """ Can be used to list all keys at a given path. Before calling this you should be SURE that the path to this exists. The input is a text representation of the path to the dict in Python syntax (e.g. data["key1"][0]["key2"]). """ spec: JsonSpec def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: return self.spec.keys(tool_input) async def _arun( self, tool_input: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return self._run(tool_input) class JsonGetValueTool(BaseTool): # type: ignore[override] """Tool for getting a value in a JSON spec.""" name: str = "json_spec_get_value" description: str = """ Can be used to see value in string format at a given path. Before calling this you should be SURE that the path to this exists. The input is a text representation of the path to the dict in Python syntax (e.g. data["key1"][0]["key2"]). """ spec: JsonSpec def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: return self.spec.value(tool_input) async def _arun( self, tool_input: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return self._run(tool_input)
"""Tools for interacting with vectorstores.""" import json from typing import Any, Dict, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import BaseTool from langchain_core.vectorstores import VectorStore from pydantic import BaseModel, ConfigDict, Field from langchain_community.llms.openai import OpenAI class BaseVectorStoreTool(BaseModel): """Base class for tools that use a VectorStore.""" vectorstore: VectorStore = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) model_config = ConfigDict( arbitrary_types_allowed=True, ) def _create_description_from_template(values: Dict[str, Any]) -> Dict[str, Any]: values["description"] = values["template"].format(name=values["name"]) return values class VectorStoreQATool(BaseVectorStoreTool, BaseTool): """Tool for the VectorDBQA chain. To be initialized with name and chain.""" @staticmethod def get_description(name: str, description: str) -> str: template: str = ( "Useful for when you need to answer questions about {name}. " "Whenever you need information about {description} " "you should ALWAYS use this. " "Input should be a fully formed question." ) return template.format(name=name, description=description) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" from langchain.chains.retrieval_qa.base import RetrievalQA chain = RetrievalQA.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return chain.invoke( {chain.input_key: query}, config={"callbacks": run_manager.get_child() if run_manager else None}, )[chain.output_key] async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" from langchain.chains.retrieval_qa.base import RetrievalQA chain = RetrievalQA.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return ( await chain.ainvoke( {chain.input_key: query}, config={"callbacks": run_manager.get_child() if run_manager else None}, ) )[chain.output_key] class VectorStoreQAWithSourcesTool(BaseVectorStoreTool, BaseTool): """Tool for the VectorDBQAWithSources chain.""" @staticmethod def get_description(name: str, description: str) -> str: template: str = ( "Useful for when you need to answer questions about {name} and the sources " "used to construct the answer. " "Whenever you need information about {description} " "you should ALWAYS use this. " " Input should be a fully formed question. " "Output is a json serialized dictionary with keys `answer` and `sources`. " "Only use this tool if the user explicitly asks for sources." ) return template.format(name=name, description=description) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" from langchain.chains.qa_with_sources.retrieval import ( RetrievalQAWithSourcesChain, ) chain = RetrievalQAWithSourcesChain.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return json.dumps( chain.invoke( {chain.question_key: query}, return_only_outputs=True, config={"callbacks": run_manager.get_child() if run_manager else None}, ) ) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" from langchain.chains.qa_with_sources.retrieval import ( RetrievalQAWithSourcesChain, ) chain = RetrievalQAWithSourcesChain.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return json.dumps( await chain.ainvoke( {chain.question_key: query}, return_only_outputs=True, config={"callbacks": run_manager.get_child() if run_manager else None}, ) )
"""Tools for interacting with vectorstores.""" import json from typing import Any, Dict, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import BaseTool from langchain_core.vectorstores import VectorStore from pydantic import BaseModel, ConfigDict, Field from langchain_community.llms.openai import OpenAI class BaseVectorStoreTool(BaseModel): """Base class for tools that use a VectorStore.""" vectorstore: VectorStore = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) model_config = ConfigDict( arbitrary_types_allowed=True, ) def _create_description_from_template(values: Dict[str, Any]) -> Dict[str, Any]: values["description"] = values["template"].format(name=values["name"]) return values class VectorStoreQATool(BaseVectorStoreTool, BaseTool): # type: ignore[override] """Tool for the VectorDBQA chain. To be initialized with name and chain.""" @staticmethod def get_description(name: str, description: str) -> str: template: str = ( "Useful for when you need to answer questions about {name}. " "Whenever you need information about {description} " "you should ALWAYS use this. " "Input should be a fully formed question." ) return template.format(name=name, description=description) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" from langchain.chains.retrieval_qa.base import RetrievalQA chain = RetrievalQA.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return chain.invoke( {chain.input_key: query}, config={"callbacks": run_manager.get_child() if run_manager else None}, )[chain.output_key] async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" from langchain.chains.retrieval_qa.base import RetrievalQA chain = RetrievalQA.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return ( await chain.ainvoke( {chain.input_key: query}, config={"callbacks": run_manager.get_child() if run_manager else None}, ) )[chain.output_key] class VectorStoreQAWithSourcesTool(BaseVectorStoreTool, BaseTool): # type: ignore[override] """Tool for the VectorDBQAWithSources chain.""" @staticmethod def get_description(name: str, description: str) -> str: template: str = ( "Useful for when you need to answer questions about {name} and the sources " "used to construct the answer. " "Whenever you need information about {description} " "you should ALWAYS use this. " " Input should be a fully formed question. " "Output is a json serialized dictionary with keys `answer` and `sources`. " "Only use this tool if the user explicitly asks for sources." ) return template.format(name=name, description=description) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" from langchain.chains.qa_with_sources.retrieval import ( RetrievalQAWithSourcesChain, ) chain = RetrievalQAWithSourcesChain.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return json.dumps( chain.invoke( {chain.question_key: query}, return_only_outputs=True, config={"callbacks": run_manager.get_child() if run_manager else None}, ) ) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" from langchain.chains.qa_with_sources.retrieval import ( RetrievalQAWithSourcesChain, ) chain = RetrievalQAWithSourcesChain.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return json.dumps( await chain.ainvoke( {chain.question_key: query}, return_only_outputs=True, config={"callbacks": run_manager.get_child() if run_manager else None}, ) )
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: import torch tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain a VideoUrl (`VideoDoc.url`), an Audio Document (`VideoDoc.audio`), a VideoTensor (`VideoDoc.tensor`), an AnyTensor representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) and an AnyEmbedding (`VideoDoc.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.video_tensor = video.url.load().video model = MyEmbeddingModel() video.embedding = model(video.tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.video_tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() """ url: Optional[VideoUrl] audio: Optional[AudioDoc] = AudioDoc() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[bytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) or (tf_available and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: import torch tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain a VideoUrl (`VideoDoc.url`), an Audio Document (`VideoDoc.audio`), a VideoTensor (`VideoDoc.tensor`), an AnyTensor representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) and an AnyEmbedding (`VideoDoc.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.video_tensor = video.url.load().video model = MyEmbeddingModel() video.embedding = model(video.tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.video_tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() """ url: Optional[VideoUrl] audio: Optional[AudioDoc] = AudioDoc() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[bytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) or (tf_available and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from typing import Any, Union from torchvision import tv_tensors from torchvision.transforms.v2 import functional as F, Transform class ConvertBoundingBoxFormat(Transform): """Convert bounding box coordinates to the given ``format``, eg from "CXCYWH" to "XYXY". Args: format (str or tv_tensors.BoundingBoxFormat): output bounding box format. Possible values are defined by :class:`~torchvision.tv_tensors.BoundingBoxFormat` and string values match the enums, e.g. "XYXY" or "XYWH" etc. """ _transformed_types = (tv_tensors.BoundingBoxes,) def __init__(self, format: Union[str, tv_tensors.BoundingBoxFormat]) -> None: super().__init__() self.format = format def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: return F.convert_bounding_box_format(inpt, new_format=self.format) # type: ignore[return-value, arg-type] class ClampBoundingBoxes(Transform): """Clamp bounding boxes to their corresponding image dimensions. The clamping is done according to the bounding boxes' ``canvas_size`` meta-data. """ _transformed_types = (tv_tensors.BoundingBoxes,) def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: return F.clamp_bounding_boxes(inpt) # type: ignore[return-value] class ClampKeyPoints(Transform): """Clamp keypoints to their corresponding image dimensions. The clamping is done according to the keypoints' ``canvas_size`` meta-data. """ _transformed_types = (tv_tensors.KeyPoints,) def transform(self, inpt: tv_tensors.KeyPoints, params: dict[str, Any]) -> tv_tensors.KeyPoints: return F.clamp_keypoints(inpt) # type: ignore[return-value]
from typing import Any, Union from torchvision import tv_tensors from torchvision.transforms.v2 import functional as F, Transform class ConvertBoundingBoxFormat(Transform): """Convert bounding box coordinates to the given ``format``, eg from "CXCYWH" to "XYXY". Args: format (str or tv_tensors.BoundingBoxFormat): output bounding box format. Possible values are defined by :class:`~torchvision.tv_tensors.BoundingBoxFormat` and string values match the enums, e.g. "XYXY" or "XYWH" etc. """ _transformed_types = (tv_tensors.BoundingBoxes,) def __init__(self, format: Union[str, tv_tensors.BoundingBoxFormat]) -> None: super().__init__() self.format = format def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: return F.convert_bounding_box_format(inpt, new_format=self.format) # type: ignore[return-value, arg-type] class ClampBoundingBoxes(Transform): """Clamp bounding boxes to their corresponding image dimensions. The clamping is done according to the bounding boxes' ``canvas_size`` meta-data. """ _transformed_types = (tv_tensors.BoundingBoxes,) def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: return F.clamp_bounding_boxes(inpt) # type: ignore[return-value]
"""**Prompt** is the input to the model. Prompt is often constructed from multiple components and prompt values. Prompt classes and functions make constructing and working with prompts easy. **Class hierarchy:** .. code-block:: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.prompts.base import ( BasePromptTemplate, aformat_document, format_document, ) from langchain_core.prompts.chat import ( AIMessagePromptTemplate, BaseChatPromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain_core.prompts.few_shot import ( FewShotChatMessagePromptTemplate, FewShotPromptTemplate, ) from langchain_core.prompts.few_shot_with_templates import ( FewShotPromptWithTemplates, ) from langchain_core.prompts.loading import load_prompt from langchain_core.prompts.pipeline import PipelinePromptTemplate from langchain_core.prompts.prompt import PromptTemplate from langchain_core.prompts.string import ( StringPromptTemplate, check_valid_template, get_template_variables, jinja2_formatter, validate_jinja2, ) __all__ = [ "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "FewShotChatMessagePromptTemplate", "HumanMessagePromptTemplate", "MessagesPlaceholder", "PipelinePromptTemplate", "PromptTemplate", "StringPromptTemplate", "SystemMessagePromptTemplate", "load_prompt", "format_document", "aformat_document", "check_valid_template", "get_template_variables", "jinja2_formatter", "validate_jinja2", ] _dynamic_imports = { "BasePromptTemplate": "base", "format_document": "base", "aformat_document": "base", "AIMessagePromptTemplate": "chat", "BaseChatPromptTemplate": "chat", "ChatMessagePromptTemplate": "chat", "ChatPromptTemplate": "chat", "HumanMessagePromptTemplate": "chat", "MessagesPlaceholder": "chat", "SystemMessagePromptTemplate": "chat", "FewShotChatMessagePromptTemplate": "few_shot", "FewShotPromptTemplate": "few_shot", "FewShotPromptWithTemplates": "few_shot_with_templates", "load_prompt": "loading", "PipelinePromptTemplate": "pipeline", "PromptTemplate": "prompt", "StringPromptTemplate": "string", "check_valid_template": "string", "get_template_variables": "string", "jinja2_formatter": "string", "validate_jinja2": "string", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Prompt** is the input to the model. Prompt is often constructed from multiple components and prompt values. Prompt classes and functions make constructing and working with prompts easy. **Class hierarchy:** .. code-block:: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate """ # noqa: E501 from langchain_core.prompts.base import ( BasePromptTemplate, aformat_document, format_document, ) from langchain_core.prompts.chat import ( AIMessagePromptTemplate, BaseChatPromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain_core.prompts.few_shot import ( FewShotChatMessagePromptTemplate, FewShotPromptTemplate, ) from langchain_core.prompts.few_shot_with_templates import FewShotPromptWithTemplates from langchain_core.prompts.loading import load_prompt from langchain_core.prompts.pipeline import PipelinePromptTemplate from langchain_core.prompts.prompt import PromptTemplate from langchain_core.prompts.string import ( StringPromptTemplate, check_valid_template, get_template_variables, jinja2_formatter, validate_jinja2, ) __all__ = [ "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "FewShotChatMessagePromptTemplate", "HumanMessagePromptTemplate", "MessagesPlaceholder", "PipelinePromptTemplate", "PromptTemplate", "StringPromptTemplate", "SystemMessagePromptTemplate", "load_prompt", "format_document", "aformat_document", "check_valid_template", "get_template_variables", "jinja2_formatter", "validate_jinja2", ]
import copy import clip import numpy as np import pytest import torch from jina import Document, DocumentArray from ...clip_text import CLIPTextEncoder @pytest.fixture(scope="module") def encoder() -> CLIPTextEncoder: return CLIPTextEncoder() def test_no_documents(encoder: CLIPTextEncoder): docs = DocumentArray() encoder.encode(docs=DocumentArray(), parameters={}) assert len(docs) == 0 def test_none_docs(encoder: CLIPTextEncoder): encoder.encode(docs=None, parameters={}) def test_docs_no_texts(encoder: CLIPTextEncoder): docs = DocumentArray([Document()]) encoder.encode(docs=DocumentArray(), parameters={}) assert len(docs) == 1 assert docs[0].embedding is None def test_compute_tokens(encoder: CLIPTextEncoder): tokens = encoder._generate_input_tokens( ["hello this is a test", "and another test"] ) assert tokens["input_ids"].shape == (2, 7) assert tokens["attention_mask"].shape == (2, 7) def test_encoding_cpu(): encoder = CLIPTextEncoder(device="cpu") input_data = DocumentArray([Document(text="hello world")]) encoder.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (512,) @pytest.mark.parametrize("batch_size", [1, 2, 4, 8]) def test_batch_size(encoder: CLIPTextEncoder, batch_size: int): text = "Jina is Lit" docs = DocumentArray([Document(text=text) for _ in range(32)]) encoder.encode(docs, parameters={"batch_size": batch_size}) for doc in docs: assert doc.embedding.shape == (512,) def test_encodes_semantic_meaning(): """ Check if the distance between embeddings of similar sentences are smaller than dissimilar pair of sentences. """ docs = DocumentArray( [ Document(id="A", text="a furry animal that with a long tail"), Document(id="B", text="a domesticated mammal with four legs"), Document(id="C", text="a type of aircraft that uses rotating wings"), Document(id="D", text="flying vehicle that has fixed wings and engines"), ] ) clip_text_encoder = CLIPTextEncoder() clip_text_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ["B", "A", "D", "C"] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i] def test_openai_embed_match(): docs = [] sentences = [ "Jina AI is lit", "Jina AI is great", "Jina AI is a cloud-native neural search company", "Jina AI is a github repo", "Jina AI is an open source neural search project", ] for sentence in sentences: docs.append(Document(text=sentence)) clip_text_encoder = CLIPTextEncoder("openai/clip-vit-base-patch32") clip_text_encoder.encode(DocumentArray(docs), {}) txt_to_ndarray = {} for d in docs: txt_to_ndarray[d.text] = d.embedding # assert same results with OpenAI's implementation model, preprocess = clip.load("ViT-B/32", device="cpu") assert len(txt_to_ndarray) == 5 for text, actual_embedding in txt_to_ndarray.items(): with torch.no_grad(): tokens = clip.tokenize(text) expected_embedding = model.encode_text(tokens).detach().numpy().flatten() np.testing.assert_almost_equal(actual_embedding, expected_embedding, 5) def test_traversal_path(): text = "blah" docs = DocumentArray([Document(id="root1", text=text)]) docs[0].chunks = [ Document(id="chunk11", text=text), Document(id="chunk12", text=text), Document(id="chunk13", text=text), ] docs[0].chunks[0].chunks = [ Document(id="chunk111", text=text), Document(id="chunk112", text=text), ] encoder = CLIPTextEncoder(default_traversal_paths=["c"], model_name="ViT-B/32") original_docs = copy.deepcopy(docs) encoder.encode(docs=docs, parameters={}, return_results=True) for path, count in [["r", 0], ["c", 3], ["cc", 0]]: assert len(docs.traverse_flat([path]).get_attributes("embedding")) == count encoder.encode( docs=original_docs, parameters={"traversal_paths": ["cc"]}, return_results=True ) for path, count in [["r", 0], ["c", 0], ["cc", 2]]: assert ( len(original_docs.traverse_flat([path]).get_attributes("embedding")) == count )
import copy import clip import numpy as np import pytest import torch from jina import Document, DocumentArray from ...clip_text import CLIPTextEncoder @pytest.fixture(scope="module") def encoder() -> CLIPTextEncoder: return CLIPTextEncoder() def test_no_documents(encoder: CLIPTextEncoder): docs = DocumentArray() encoder.encode(docs=DocumentArray(), parameters={}) assert len(docs) == 0 def test_none_docs(encoder: CLIPTextEncoder): encoder.encode(docs=None, parameters={}) def test_docs_no_texts(encoder: CLIPTextEncoder): docs = DocumentArray([Document()]) encoder.encode(docs=DocumentArray(), parameters={}) assert len(docs) == 1 assert docs[0].embedding is None def test_compute_tokens(encoder: CLIPTextEncoder): tokens = encoder._generate_input_tokens( ["hello this is a test", "and another test"] ) assert tokens["input_ids"].shape == (2, 7) assert tokens["attention_mask"].shape == (2, 7) def test_encoding_cpu(): encoder = CLIPTextEncoder(device="cpu") input_data = DocumentArray([Document(text="hello world")]) encoder.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (512,) @pytest.mark.parametrize("batch_size", [1, 2, 4, 8]) def test_batch_size(encoder: CLIPTextEncoder, batch_size: int): text = "Jina is Lit" docs = DocumentArray([Document(text=text) for _ in range(32)]) encoder.encode(docs, parameters={"batch_size": batch_size}) for doc in docs: assert doc.embedding.shape == (512,) def test_encodes_semantic_meaning(): """ Check if the distance between embeddings of similar sentences are smaller than dissimilar pair of sentences. """ docs = DocumentArray( [ Document(id="A", text="a furry animal that with a long tail"), Document(id="B", text="a domesticated mammal with four legs"), Document(id="C", text="a type of aircraft that uses rotating wings"), Document(id="D", text="flying vehicle that has fixed wings and engines"), ] ) clip_text_encoder = CLIPTextEncoder() clip_text_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ["B", "A", "D", "C"] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i] def test_openai_embed_match(): docs = [] sentences = [ "Jina AI is lit", "Jina AI is great", "Jina AI is a cloud-native neural search company", "Jina AI is a github repo", "Jina AI is an open source neural search project", ] for sentence in sentences: docs.append(Document(text=sentence)) clip_text_encoder = CLIPTextEncoder("openai/clip-vit-base-patch32") clip_text_encoder.encode(DocumentArray(docs), {}) txt_to_ndarray = {} for d in docs: txt_to_ndarray[d.text] = d.embedding # assert same results with OpenAI's implementation model, preprocess = clip.load("ViT-B/32", device="cpu") assert len(txt_to_ndarray) == 5 for text, actual_embedding in txt_to_ndarray.items(): with torch.no_grad(): tokens = clip.tokenize(text) expected_embedding = model.encode_text(tokens).detach().numpy().flatten() np.testing.assert_almost_equal(actual_embedding, expected_embedding, 5) def test_traversal_path(): text = "blah" docs = DocumentArray([Document(id="root1", text=text)]) docs[0].chunks = [ Document(id="chunk11", text=text), Document(id="chunk12", text=text), Document(id="chunk13", text=text), ] docs[0].chunks[0].chunks = [ Document(id="chunk111", text=text), Document(id="chunk112", text=text), ] encoder = CLIPTextEncoder(default_traversal_paths=["c"], model_name="ViT-B/32") original_docs = copy.deepcopy(docs) encoder.encode(docs=docs, parameters={}, return_results=True) for path, count in [["r", 0], ["c", 3], ["cc", 0]]: assert len(docs.traverse_flat([path]).get_attributes("embedding")) == count encoder.encode( docs=original_docs, parameters={"traversal_paths": ["cc"]}, return_results=True ) for path, count in [["r", 0], ["c", 0], ["cc", 2]]: assert ( len(original_docs.traverse_flat([path]).get_attributes("embedding")) == count )
import os import numpy as np import pytest from jina import Document, DocumentArray from .. import NumpySearcher TOP_K = 5 cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_query_vector(tmpdir): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } dump_path = os.path.join(cur_dir, 'dump1') indexer = NumpySearcher(dump_path=dump_path, runtime_args=runtime) docs = DocumentArray([Document(embedding=np.random.random(7))]) TOP_K = 5 indexer.search(docs, {'top_k': TOP_K}) assert len(docs) == 1 assert len(docs[0].matches) == TOP_K assert len(docs[0].matches[0].embedding) == 7 @pytest.mark.parametrize(['metric', 'is_distance'], [('cosine', True), ('euclidean', True), ('cosine', False), ('euclidean', False)]) def test_metric(tmpdir, metric, is_distance): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } dump_path = os.path.join(cur_dir, 'dump1') indexer = NumpySearcher(dump_path=dump_path, default_top_k=TOP_K, runtime_args=runtime, metric=metric, is_distance=is_distance) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == TOP_K for i in range(len(docs[0].matches) - 1): if not is_distance: assert docs[0].matches[i].scores[metric].value >= docs[0].matches[i + 1].scores[metric].value else: assert docs[0].matches[i].scores[metric].value <= docs[0].matches[i + 1].scores[metric].value def test_empty_shard(tmpdir): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } indexer = NumpySearcher(dump_path='tests/dump_empty', runtime_args=runtime) docs = DocumentArray([Document(embedding=np.random.random(7))]) TOP_K = 5 indexer.search(docs, {'top_k': TOP_K}) assert len(docs) == 1 assert len(docs[0].matches) == 0 def test_empty_documents(tmpdir): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } indexer = NumpySearcher(dump_path='tests/dump1', runtime_args=runtime) docs = DocumentArray([Document(id=0)]) TOP_K = 5 indexer.search(docs, {'top_k': TOP_K}) assert len(docs) == 1 assert len(docs[0].matches) == 0 docs2 = DocumentArray() indexer.search(docs2, {'top_k': TOP_K}) assert len(docs2) == 0
import numpy as np from jina import Document, DocumentArray from .. import NumpySearcher def test_query_vector(tmpdir): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } indexer = NumpySearcher(dump_path='tests/dump1', runtime_args=runtime) docs = DocumentArray([Document(embedding=np.random.random(7))]) TOP_K = 5 indexer.search(docs, {'top_k': TOP_K}) assert len(docs) == 1 assert len(docs[0].matches) == TOP_K assert len(docs[0].matches[0].embedding) == 7 def test_empty_shard(tmpdir): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } indexer = NumpySearcher(dump_path='tests/dump_empty', runtime_args=runtime) docs = DocumentArray([Document(embedding=np.random.random(7))]) TOP_K = 5 indexer.search(docs, {'top_k': TOP_K}) assert len(docs) == 1 assert len(docs[0].matches) == 0
"""Test NLPCloud API wrapper.""" from pathlib import Path from typing import cast from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.loading import load_llm from langchain_community.llms.nlpcloud import NLPCloud from tests.integration_tests.llms.utils import assert_llm_equality def test_nlpcloud_call() -> None: """Test valid call to nlpcloud.""" llm = NLPCloud(max_length=10) output = llm.invoke("Say foo:") assert isinstance(output, str) def test_saving_loading_llm(tmp_path: Path) -> None: """Test saving/loading an NLPCloud LLM.""" llm = NLPCloud(max_length=10) llm.save(file_path=tmp_path / "nlpcloud.yaml") loaded_llm = load_llm(tmp_path / "nlpcloud.yaml") assert_llm_equality(llm, loaded_llm) def test_nlpcloud_api_key(monkeypatch: MonkeyPatch, capsys: CaptureFixture) -> None: """Test that nlpcloud api key is a secret key.""" # test initialization from init assert isinstance(NLPCloud(nlpcloud_api_key="1").nlpcloud_api_key, SecretStr) # type: ignore[arg-type] monkeypatch.setenv("NLPCLOUD_API_KEY", "secret-api-key") llm = NLPCloud() assert isinstance(llm.nlpcloud_api_key, SecretStr) assert cast(SecretStr, llm.nlpcloud_api_key).get_secret_value() == "secret-api-key" print(llm.nlpcloud_api_key, end="") # noqa: T201 captured = capsys.readouterr() assert captured.out == "**********"
"""Test NLPCloud API wrapper.""" from pathlib import Path from typing import cast from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.loading import load_llm from langchain_community.llms.nlpcloud import NLPCloud from tests.integration_tests.llms.utils import assert_llm_equality def test_nlpcloud_call() -> None: """Test valid call to nlpcloud.""" llm = NLPCloud(max_length=10) # type: ignore[call-arg] output = llm.invoke("Say foo:") assert isinstance(output, str) def test_saving_loading_llm(tmp_path: Path) -> None: """Test saving/loading an NLPCloud LLM.""" llm = NLPCloud(max_length=10) # type: ignore[call-arg] llm.save(file_path=tmp_path / "nlpcloud.yaml") loaded_llm = load_llm(tmp_path / "nlpcloud.yaml") assert_llm_equality(llm, loaded_llm) def test_nlpcloud_api_key(monkeypatch: MonkeyPatch, capsys: CaptureFixture) -> None: """Test that nlpcloud api key is a secret key.""" # test initialization from init assert isinstance(NLPCloud(nlpcloud_api_key="1").nlpcloud_api_key, SecretStr) # type: ignore[arg-type, call-arg] monkeypatch.setenv("NLPCLOUD_API_KEY", "secret-api-key") llm = NLPCloud() # type: ignore[call-arg] assert isinstance(llm.nlpcloud_api_key, SecretStr) assert cast(SecretStr, llm.nlpcloud_api_key).get_secret_value() == "secret-api-key" print(llm.nlpcloud_api_key, end="") # noqa: T201 captured = capsys.readouterr() assert captured.out == "**********"
"""monday.com reader.""" from typing import Dict, List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class MondayReader(BaseReader): """ monday.com reader. Reads board's data by a GraphQL query. Args: api_key (str): monday.com API key. """ def __init__(self, api_key: str) -> None: """Initialize monday.com reader.""" self.api_key = api_key self.api_url = "https://api.monday.com/v2" def _parse_item_values(self, cv) -> Dict[str, str]: data = {} data["title"] = cv["title"] data["value"] = cv["text"] return data def _parse_data(self, item) -> Dict[str, str]: data = {} data["id"] = item["id"] data["name"] = item["name"] data["values"] = list(map(self._parse_item_values, list(item["column_values"]))) return data def _perform_request(self, board_id) -> Dict[str, str]: headers = {"Authorization": self.api_key} query = """ query{ boards(ids: [%d]){ name, items{ id, name, column_values{ title, text } } } } """ % ( board_id ) data = {"query": query} response = requests.post(url=self.api_url, json=data, headers=headers) return response.json() def load_data(self, board_id: int) -> List[Document]: """ Load board data by board_id. Args: board_id (int): monday.com board id. Returns: List[Document]: List of items as documents. [{id, name, values: [{title, value}]}] """ json_response = self._perform_request(board_id) board_data = json_response["data"]["boards"][0] board_data["name"] items_array = list(board_data["items"]) parsed_items = list(map(self._parse_data, list(items_array))) result = [] for item in parsed_items: text = f"name: {item['name']}" for item_value in item["values"]: if item_value["value"]: text += f", {item_value['title']}: {item_value['value']}" result.append( Document( text=text, extra_info={"board_id": board_id, "item_id": item["id"]} ) ) return result if __name__ == "__main__": reader = MondayReader("api_key") print(reader.load_data(12345))
"""monday.com reader.""" from typing import Dict, List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class MondayReader(BaseReader): """monday.com reader. Reads board's data by a GraphQL query. Args: api_key (str): monday.com API key. """ def __init__(self, api_key: str) -> None: """Initialize monday.com reader.""" self.api_key = api_key self.api_url = "https://api.monday.com/v2" def _parse_item_values(self, cv) -> Dict[str, str]: data = {} data["title"] = cv["title"] data["value"] = cv["text"] return data def _parse_data(self, item) -> Dict[str, str]: data = {} data["id"] = item["id"] data["name"] = item["name"] data["values"] = list(map(self._parse_item_values, list(item["column_values"]))) return data def _perform_request(self, board_id) -> Dict[str, str]: headers = {"Authorization": self.api_key} query = """ query{ boards(ids: [%d]){ name, items{ id, name, column_values{ title, text } } } } """ % ( board_id ) data = {"query": query} response = requests.post(url=self.api_url, json=data, headers=headers) return response.json() def load_data(self, board_id: int) -> List[Document]: """Load board data by board_id. Args: board_id (int): monday.com board id. Returns: List[Document]: List of items as documents. [{id, name, values: [{title, value}]}] """ json_response = self._perform_request(board_id) board_data = json_response["data"]["boards"][0] board_data["name"] items_array = list(board_data["items"]) parsed_items = list(map(self._parse_data, list(items_array))) result = [] for item in parsed_items: text = f"name: {item['name']}" for item_value in item["values"]: if item_value["value"]: text += f", {item_value['title']}: {item_value['value']}" result.append( Document( text=text, extra_info={"board_id": board_id, "item_id": item["id"]} ) ) return result if __name__ == "__main__": reader = MondayReader("api_key") print(reader.load_data(12345))
_base_ = [ '../common/ms-poly_3x_coco-instance.py', '../_base_/models/mask-rcnn_r50_fpn.py' ] model = dict( backbone=dict( _delete_=True, type='RegNet', arch='regnetx_800mf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_800mf')), neck=dict( type='FPN', in_channels=[64, 128, 288, 672], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005), clip_grad=dict(max_norm=35, norm_type=2))
_base_ = [ '../common/mstrain-poly_3x_coco_instance.py', '../_base_/models/mask_rcnn_r50_fpn.py' ] model = dict( backbone=dict( _delete_=True, type='RegNet', arch='regnetx_800mf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_800mf')), neck=dict( type='FPN', in_channels=[64, 128, 288, 672], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005), clip_grad=dict(max_norm=35, norm_type=2))
import os import re from pathlib import Path from typing import Tuple, Union, Optional import torch import torchaudio from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive URL = "https://speech.fit.vutbr.cz/files/quesst14Database.tgz" _CHECKSUM = "4f869e06bc066bbe9c5dde31dbd3909a0870d70291110ebbb38878dcbc2fc5e4" _LANGUAGES = [ "albanian", "basque", "czech", "nnenglish", "romanian", "slovak", ] class QUESST14(Dataset): """Create *QUESST14* [:footcite:`Mir2015QUESST2014EQ`] Dataset Args: root (str or Path): Root directory where the dataset's top level directory is found language (str or None, optional): Language to get dataset for. Options: [None, ``albanian``, ``basque``, ``czech``, `nnenglish``, ``romanian``, ``slovak``]. (default: ``"nnenglish"``) subset (str): subset of the dataset to use. Options: ["docs", "dev", "eval"]. download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``) """ def __init__( self, root: Union[str, Path], language: Optional[str] = "nnenglish", subset: Optional[str] = None, download: bool = False, ) -> None: assert subset is None or subset in ["docs", "dev", "eval"], "`subset` must be one of ['docs', 'dev', 'eval']" assert language is None or language in _LANGUAGES, f"`language` must be None or one of {str(_LANGUAGES)}" # Get string representation of 'root' root = os.fspath(root) basename = os.path.basename(URL) archive = os.path.join(root, basename) basename = basename.rsplit(".", 2)[0] self._path = os.path.join(root, basename) if not os.path.isdir(self._path): if not os.path.isfile(archive): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") download_url_to_file(URL, archive, hash_prefix=_CHECKSUM) extract_archive(archive, root) if subset == "docs": self.data = filter_audio_paths(self._path, language, "language_key_utterances.lst") elif subset == "dev": self.data = filter_audio_paths(self._path, language, "language_key_dev.lst") elif subset == "eval": self.data = filter_audio_paths(self._path, language, "language_key_eval.lst") def _load_sample(self, n: int) -> Tuple[torch.Tensor, str]: audio_path = self.data[n] wav, _ = torchaudio.load(audio_path) return wav, audio_path.with_suffix("").name def __getitem__(self, n: int) -> Tuple[torch.Tensor, str]: return self._load_sample(n) def __len__(self) -> int: return len(self.data) def filter_audio_paths( path: str, language: str, lst_name: str, ): """Extract audio paths for the given language.""" audio_paths = [] path = Path(path) with open(path / "scoring" / lst_name) as f: for line in f: audio_path, lang = line.strip().split() if language is not None and lang != language: continue audio_path = re.sub(r"^.*?\/", "", audio_path) audio_paths.append(path / audio_path) return audio_paths
import os import re from pathlib import Path from typing import Tuple, Union, Optional import torch import torchaudio from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive URL = "https://speech.fit.vutbr.cz/files/quesst14Database.tgz" _CHECKSUM = "4f869e06bc066bbe9c5dde31dbd3909a0870d70291110ebbb38878dcbc2fc5e4" _LANGUAGES = [ "albanian", "basque", "czech", "nnenglish", "romanian", "slovak", ] class QUESST14(Dataset): """Create QUESST14 Dataset Args: root (str or Path): Root directory where the dataset's top level directory is found language (str or None, optional): Language to get dataset for. Options: [None, ``albanian``, ``basque``, ``czech``, `nnenglish``, ``romanian``, ``slovak``]. (default: ``"nnenglish"``) subset (str): subset of the dataset to use. Options: ["docs", "dev", "eval"]. download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``) """ def __init__( self, root: Union[str, Path], language: Optional[str] = "nnenglish", subset: Optional[str] = None, download: bool = False, ) -> None: assert subset is None or subset in ["docs", "dev", "eval"], "`subset` must be one of ['docs', 'dev', 'eval']" assert language is None or language in _LANGUAGES, f"`language` must be None or one of {str(_LANGUAGES)}" # Get string representation of 'root' root = os.fspath(root) basename = os.path.basename(URL) archive = os.path.join(root, basename) basename = basename.rsplit(".", 2)[0] self._path = os.path.join(root, basename) if not os.path.isdir(self._path): if not os.path.isfile(archive): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") download_url_to_file(URL, archive, hash_prefix=_CHECKSUM) extract_archive(archive, root) if subset == "docs": self.data = filter_audio_paths(self._path, language, "language_key_utterances.lst") elif subset == "dev": self.data = filter_audio_paths(self._path, language, "language_key_dev.lst") elif subset == "eval": self.data = filter_audio_paths(self._path, language, "language_key_eval.lst") def _load_sample(self, n: int) -> Tuple[torch.Tensor, str]: audio_path = self.data[n] wav, _ = torchaudio.load(audio_path) return wav, audio_path.with_suffix("").name def __getitem__(self, n: int) -> Tuple[torch.Tensor, str]: return self._load_sample(n) def __len__(self) -> int: return len(self.data) def filter_audio_paths( path: str, language: str, lst_name: str, ): """Extract audio paths for the given language.""" audio_paths = [] path = Path(path) with open(path / "scoring" / lst_name) as f: for line in f: audio_path, lang = line.strip().split() if language is not None and lang != language: continue audio_path = re.sub(r"^.*?\/", "", audio_path) audio_paths.append(path / audio_path) return audio_paths
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if an incompletely received file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 use_auth_token: Optional[Union[str, bool]] = None ignore_url_params: bool = False download_desc: Optional[str] = None def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if incompletly recieved file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 use_auth_token: Optional[Union[str, bool]] = None ignore_url_params: bool = False download_desc: Optional[str] = None def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
"""Argparser module for WorkerRuntime""" from jina import __default_host__, helper from jina.enums import PollingType from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.runtimes.runtime import mixin_base_runtime_parser def mixin_worker_runtime_parser(parser): """Mixing in arguments required by :class:`WorkerRuntime` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='WorkerRuntime') from jina import __default_executor__ gp.add_argument( '--uses', type=str, default=__default_executor__, help=''' The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface ''', ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `with` configuration in `uses` ''', ) gp.add_argument( '--uses-metas', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `metas` configuration in `uses` ''', ) gp.add_argument( '--uses-requests', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `requests` configuration in `uses` ''', ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=''' The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/fundamentals/executor/executor-files/>`__ ''', ) gp.add_argument( '--output-array-type', type=str, default=None, help=''' The type of array `tensor` and `embedding` will be serialized to. Supports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found `here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`. Defaults to retaining whatever type is returned by the Executor. ''', ) gp.add_argument( '--exit-on-exceptions', type=str, default=[], nargs='*', help='List of exceptions that will cause the Executor to shut down.', ) mixin_base_runtime_parser(gp)
"""Argparser module for WorkerRuntime""" from jina import __default_host__, helper from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.runtimes.runtime import mixin_base_runtime_parser def mixin_worker_runtime_parser(parser): """Mixing in arguments required by :class:`WorkerRuntime` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='WorkerRuntime') from jina import __default_executor__ gp.add_argument( '--uses', type=str, default=__default_executor__, help=''' The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface ''', ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `with` configuration in `uses` ''', ) gp.add_argument( '--uses-metas', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `metas` configuration in `uses` ''', ) gp.add_argument( '--uses-requests', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `requests` configuration in `uses` ''', ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=''' The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/fundamentals/executor/executor-files/>`__ ''', ) mixin_base_runtime_parser(gp)
import os import shutil from pathlib import Path from typing import Tuple import numpy as np import pytest from big_transfer import BigTransferEncoder from jina import Document, DocumentArray, Executor from PIL import Image directory = os.path.dirname(os.path.realpath(__file__)) _INPUT_DIM = 512 _EMBEDDING_DIM = 2048 @pytest.fixture(scope='function') def encoder() -> BigTransferEncoder: yield BigTransferEncoder() shutil.rmtree('pretrained', ignore_errors=True) @pytest.fixture(scope="function") def nested_docs() -> DocumentArray: blob = np.ones((_INPUT_DIM, _INPUT_DIM, 3), dtype=np.uint8) docs = DocumentArray([Document(id="root1", blob=blob)]) docs[0].chunks = [ Document(id="chunk11", blob=blob), Document(id="chunk12", blob=blob), Document(id="chunk13", blob=blob), ] docs[0].chunks[0].chunks = [ Document(id="chunk111", blob=blob), Document(id="chunk112", blob=blob), ] return docs def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.model_path == 'pretrained' assert ex.model_name == 'Imagenet21k/R50x1' def test_no_documents(encoder: BigTransferEncoder): docs = DocumentArray() encoder.encode(docs=docs, parameters={}) assert len(docs) == 0 # SUCCESS def test_none_docs(encoder: BigTransferEncoder): encoder.encode(docs=None, parameters={}) def test_docs_no_blobs(encoder: BigTransferEncoder): docs = DocumentArray([Document()]) encoder.encode(docs=DocumentArray(), parameters={}) assert len(docs) == 1 assert docs[0].embedding is None def test_single_image(encoder: BigTransferEncoder): docs = DocumentArray( [Document(blob=np.ones((_INPUT_DIM, _INPUT_DIM, 3), dtype=np.uint8))] ) encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) assert docs[0].embedding.dtype == np.float32 def test_encoding_cpu(encoder: BigTransferEncoder): input_data = DocumentArray( [Document(blob=np.ones((_INPUT_DIM, _INPUT_DIM, 3), dtype=np.uint8))] ) encoder.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): encoder = BigTransferEncoder(device='/GPU:0') input_data = DocumentArray( [Document(blob=np.ones((_INPUT_DIM, _INPUT_DIM, 3), dtype=np.uint8))] ) encoder.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'img_shape', [224, 512], ) def test_encode_any_image_shape(img_shape: int, encoder: BigTransferEncoder): docs = DocumentArray( [Document(blob=np.ones((img_shape, img_shape, 3), dtype=np.uint8))] ) encoder.encode(docs=docs, parameters={}) assert len(docs.get_attributes('embedding')) == 1 @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(encoder: BigTransferEncoder, batch_size: int): blob = np.ones((_INPUT_DIM, _INPUT_DIM, 3), dtype=np.uint8) docs = DocumentArray([Document(blob=blob) for _ in range(32)]) encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( "traversal_paths, counts", [ [('c',), (('r', 0), ('c', 3), ('cc', 0))], [('cc',), (("r", 0), ('c', 0), ('cc', 2))], [('r',), (('r', 1), ('c', 0), ('cc', 0))], [('cc', 'r'), (('r', 1), ('c', 0), ('cc', 2))], ], ) def test_traversal_path( traversal_paths: Tuple[str], counts: Tuple[str, int], nested_docs: DocumentArray, encoder: BigTransferEncoder, ): encoder.encode(nested_docs, parameters={"traversal_paths": traversal_paths}) for path, count in counts: embeddings = nested_docs.traverse_flat([path]).get_attributes('embedding') assert len([em for em in embeddings if em is not None]) == count
import os import shutil from pathlib import Path import numpy as np import PIL.Image as Image import pytest from big_transfer import BigTransferEncoder from jina import Document, DocumentArray, Executor directory = os.path.dirname(os.path.realpath(__file__)) def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.model_path == 'pretrained' assert ex.model_name == 'Imagenet21k/R50x1' def test_initialization_and_model_download(): shutil.rmtree('pretrained', ignore_errors=True) # This call will download the model encoder = BigTransferEncoder() assert encoder.model_path == 'pretrained' assert encoder.model_name == 'Imagenet21k/R50x1' assert os.path.exists('pretrained') assert os.path.exists(os.path.join('pretrained', 'saved_model.pb')) # This call will use the downloaded model _ = BigTransferEncoder() shutil.rmtree('pretrained', ignore_errors=True) with pytest.raises(AttributeError): _ = BigTransferEncoder(model_name='model_not_exists') def test_encoding(): doc = Document(uri=os.path.join(directory, '../test_data/test_image.png')) doc.convert_image_uri_to_blob() encoder = BigTransferEncoder() encoder.encode(DocumentArray([doc]), {}) assert doc.embedding.shape == (2048,) def test_preprocessing(): doc = Document(uri=os.path.join(directory, '../test_data/test_image.png')) doc.convert_image_uri_to_blob() encoder = BigTransferEncoder(target_dim=(256, 256, 3)) encoder.encode(DocumentArray([doc]), {}) assert doc.embedding.shape == (2048,) def test_encoding_default_chunks(): doc = Document(text="testing") chunk = Document(uri=os.path.join(directory, '../test_data/test_image.png')) for i in range(3): doc.chunks.append(chunk) doc.chunks[i].convert_image_uri_to_blob() encoder = BigTransferEncoder(default_traversal_paths=['c']) encoder.encode(DocumentArray([doc]), {}) assert doc.embedding is None for i in range(3): assert doc.chunks[i].embedding.shape == (2048,) def test_encoding_override_chunks(): doc = Document(text="testing") chunk = Document(uri=os.path.join(directory, '../test_data/test_image.png')) for i in range(3): doc.chunks.append(chunk) doc.chunks[i].convert_image_uri_to_blob() encoder = BigTransferEncoder() assert encoder.default_traversal_paths == ('r',) encoder.encode(DocumentArray([doc]), parameters={'traversal_paths': ['c']}) assert doc.embedding is None for i in range(3): assert doc.chunks[i].embedding.shape == (2048,) @pytest.mark.gpu def test_encoding_gpu(): doc = Document(uri=os.path.join(directory, '../test_data/test_image.png')) doc.convert_image_uri_to_blob() assert doc.embedding is None encoder = BigTransferEncoder(device='/GPU:0') encoder.encode(DocumentArray([doc]), {}) assert doc.embedding.shape == (2048,)
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=20))) METAINFO = { 'CLASSES': ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'), # PALETTE is a list of color tuples, which is used for visualization. 'PALETTE': [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192), (197, 226, 255), (0, 60, 100), (0, 0, 142), (255, 77, 255), (153, 69, 1), (120, 166, 157), (0, 182, 199), (0, 226, 252), (182, 182, 255), (0, 0, 230), (220, 20, 60), (163, 255, 0), (0, 82, 0), (3, 95, 161), (0, 80, 100), (183, 130, 88)] } # dataset settings dataset_type = 'CocoDataset' data_root = 'data/VOCdevkit/' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1000, 600), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( dataset=dict( type='RepeatDataset', times=3, dataset=dict( _delete_=True, type=dataset_type, data_root=data_root, ann_file='annotations/voc0712_trainval.json', data_prefix=dict(img=''), metainfo=METAINFO, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( dataset=dict( type=dataset_type, ann_file='annotations/voc07_test.json', data_prefix=dict(img=''), metainfo=METAINFO, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/voc07_test.json', metric='bbox', format_only=False) test_evaluator = val_evaluator # training schedule, the dataset is repeated 3 times, so the # actual epoch = 4 * 3 = 12 max_epochs = 4 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[3], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=20))) CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') # dataset settings dataset_type = 'CocoDataset' data_root = 'data/VOCdevkit/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1000, 600), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, ann_file='data/voc0712_trainval.json', img_prefix='data/VOCdevkit', pipeline=train_pipeline, classes=CLASSES)), val=dict( type=dataset_type, ann_file='data/voc07_test.json', img_prefix='data/VOCdevkit', pipeline=test_pipeline, classes=CLASSES), test=dict( type=dataset_type, ann_file='data/voc07_test.json', img_prefix='data/VOCdevkit', pipeline=test_pipeline, classes=CLASSES)) evaluation = dict(interval=1, metric='bbox') # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy # actual epoch = 3 * 3 = 9 lr_config = dict(policy='step', step=[3]) # runtime settings runner = dict( type='EpochBasedRunner', max_epochs=4) # actual epoch = 4 * 3 = 12
import textwrap import pyarrow as pa import pytest from datasets import Features, Value from datasets.packaged_modules.json.json import Json @pytest.fixture def jsonl_file(tmp_path): filename = tmp_path / "file.jsonl" data = textwrap.dedent( """\ {"col_1": -1} {"col_1": 1, "col_2": 2} {"col_1": 10, "col_2": 20} """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def jsonl_file_utf16_encoded(tmp_path): filename = tmp_path / "file_utf16_encoded.jsonl" data = textwrap.dedent( """\ {"col_1": -1} {"col_1": 1, "col_2": 2} {"col_1": 10, "col_2": 20} """ ) with open(filename, "w", encoding="utf-16") as f: f.write(data) return str(filename) @pytest.fixture def json_file_with_list_of_dicts(tmp_path): filename = tmp_path / "file_with_list_of_dicts.json" data = textwrap.dedent( """\ [ {"col_1": -1}, {"col_1": 1, "col_2": 2}, {"col_1": 10, "col_2": 20} ] """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def json_file_with_list_of_strings(tmp_path): filename = tmp_path / "file_with_list_of_strings.json" data = textwrap.dedent( """\ [ "First text.", "Second text.", "Third text." ] """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def json_file_with_list_of_dicts_field(tmp_path): filename = tmp_path / "file_with_list_of_dicts_field.json" data = textwrap.dedent( """\ { "field1": 1, "field2": "aabb", "field3": [ {"col_1": -1}, {"col_1": 1, "col_2": 2}, {"col_1": 10, "col_2": 20} ] } """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.mark.parametrize( "file_fixture, config_kwargs", [ ("jsonl_file", {}), ("jsonl_file_utf16_encoded", {"encoding": "utf-16"}), ("json_file_with_list_of_dicts", {}), ("json_file_with_list_of_dicts_field", {"field": "field3"}), ("json_file_with_list_of_strings", {}), ], ) def test_json_generate_tables(file_fixture, config_kwargs, request): json = Json(**config_kwargs) generator = json._generate_tables([[request.getfixturevalue(file_fixture)]]) pa_table = pa.concat_tables([table for _, table in generator]) if file_fixture == "json_file_with_list_of_strings": expected = {"text": ["First text.", "Second text.", "Third text."]} else: expected = {"col_1": [-1, 1, 10], "col_2": [None, 2, 20]} assert pa_table.to_pydict() == expected @pytest.mark.parametrize( "file_fixture, config_kwargs", [ ( "jsonl_file", {"features": Features({"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")})}, ), ( "json_file_with_list_of_dicts", {"features": Features({"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")})}, ), ( "json_file_with_list_of_dicts_field", { "field": "field3", "features": Features( {"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")} ), }, ), ], ) def test_json_generate_tables_with_missing_features(file_fixture, config_kwargs, request): json = Json(**config_kwargs) generator = json._generate_tables([[request.getfixturevalue(file_fixture)]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.to_pydict() == {"col_1": [-1, 1, 10], "col_2": [None, 2, 20], "missing_col": [None, None, None]}
import textwrap import pyarrow as pa import pytest from datasets import Features, Value from datasets.packaged_modules.json.json import Json @pytest.fixture def jsonl_file(tmp_path): filename = tmp_path / "file.jsonl" data = textwrap.dedent( """\ {"col_1": -1} {"col_1": 1, "col_2": 2} {"col_1": 10, "col_2": 20} """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def jsonl_file_utf16_encoded(tmp_path): filename = tmp_path / "file_utf16_encoded.jsonl" data = textwrap.dedent( """\ {"col_1": -1} {"col_1": 1, "col_2": 2} {"col_1": 10, "col_2": 20} """ ) with open(filename, "w", encoding="utf-16") as f: f.write(data) return str(filename) @pytest.fixture def json_file_with_list_of_dicts(tmp_path): filename = tmp_path / "file_with_list_of_dicts.json" data = textwrap.dedent( """\ [ {"col_1": -1}, {"col_1": 1, "col_2": 2}, {"col_1": 10, "col_2": 20} ] """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def json_file_with_list_of_dicts_field(tmp_path): filename = tmp_path / "file_with_list_of_dicts_field.json" data = textwrap.dedent( """\ { "field1": 1, "field2": "aabb", "field3": [ {"col_1": -1}, {"col_1": 1, "col_2": 2}, {"col_1": 10, "col_2": 20} ] } """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.mark.parametrize( "file_fixture, config_kwargs", [ ("jsonl_file", {}), ("jsonl_file_utf16_encoded", {"encoding": "utf-16"}), ("json_file_with_list_of_dicts", {}), ("json_file_with_list_of_dicts_field", {"field": "field3"}), ], ) def test_json_generate_tables(file_fixture, config_kwargs, request): json = Json(**config_kwargs) generator = json._generate_tables([[request.getfixturevalue(file_fixture)]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.to_pydict() == {"col_1": [-1, 1, 10], "col_2": [None, 2, 20]} @pytest.mark.parametrize( "file_fixture, config_kwargs", [ ( "jsonl_file", {"features": Features({"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")})}, ), ( "json_file_with_list_of_dicts", {"features": Features({"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")})}, ), ( "json_file_with_list_of_dicts_field", { "field": "field3", "features": Features( {"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")} ), }, ), ], ) def test_json_generate_tables_with_missing_features(file_fixture, config_kwargs, request): json = Json(**config_kwargs) generator = json._generate_tables([[request.getfixturevalue(file_fixture)]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.to_pydict() == {"col_1": [-1, 1, 10], "col_2": [None, 2, 20], "missing_col": [None, None, None]}
""" This script contains an example how to perform semantic search with Seismic. For more information, please refer to the documentation: https://github.com/TusKANNy/seismic/blob/main/docs/Guidelines.md All you need is installing the `pyseismic-lsr` package: ``` pip install pyseismic-lsr ``` """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_seismic # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus print("Start encoding corpus...") start_time = time.time() corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using Seismic results, search_time, corpus_index = semantic_search_seismic( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
""" This script contains an example how to perform semantic search with Seismic. For more information, please refer to the documentation: https://github.com/TusKANNy/seismic/blob/main/docs/Guidelines.md All you need is installing the `pyseismic-lsr` package: ``` pip install pyseismic-lsr ``` """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_seismic # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus print("Start encoding corpus...") start_time = time.time() corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_seismic( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
import os import re from pathlib import Path from typing import Optional, Tuple, Union import torch import torchaudio from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive URL = "https://speech.fit.vutbr.cz/files/quesst14Database.tgz" _CHECKSUM = "4f869e06bc066bbe9c5dde31dbd3909a0870d70291110ebbb38878dcbc2fc5e4" _LANGUAGES = [ "albanian", "basque", "czech", "nnenglish", "romanian", "slovak", ] class QUESST14(Dataset): """Create *QUESST14* [:footcite:`Mir2015QUESST2014EQ`] Dataset Args: root (str or Path): Root directory where the dataset's top level directory is found subset (str): Subset of the dataset to use. Options: [``"docs"``, ``"dev"``, ``"eval"``]. language (str or None, optional): Language to get dataset for. Options: [``None``, ``albanian``, ``basque``, ``czech``, ``nnenglish``, ``romanian``, ``slovak``]. If ``None``, dataset consists of all languages. (default: ``"nnenglish"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``) """ def __init__( self, root: Union[str, Path], subset: str, language: Optional[str] = "nnenglish", download: bool = False, ) -> None: if subset not in ["docs", "dev", "eval"]: raise ValueError("`subset` must be one of ['docs', 'dev', 'eval']") if language is not None and language not in _LANGUAGES: raise ValueError(f"`language` must be None or one of {str(_LANGUAGES)}") # Get string representation of 'root' root = os.fspath(root) basename = os.path.basename(URL) archive = os.path.join(root, basename) basename = basename.rsplit(".", 2)[0] self._path = os.path.join(root, basename) if not os.path.isdir(self._path): if not os.path.isfile(archive): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") download_url_to_file(URL, archive, hash_prefix=_CHECKSUM) extract_archive(archive, root) if subset == "docs": self.data = filter_audio_paths(self._path, language, "language_key_utterances.lst") elif subset == "dev": self.data = filter_audio_paths(self._path, language, "language_key_dev.lst") elif subset == "eval": self.data = filter_audio_paths(self._path, language, "language_key_eval.lst") def _load_sample(self, n: int) -> Tuple[torch.Tensor, int, str]: audio_path = self.data[n] wav, sample_rate = torchaudio.load(audio_path) return wav, sample_rate, audio_path.with_suffix("").name def __getitem__(self, n: int) -> Tuple[torch.Tensor, int, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str): ``(waveform, sample_rate, file_name)`` """ return self._load_sample(n) def __len__(self) -> int: return len(self.data) def filter_audio_paths( path: str, language: str, lst_name: str, ): """Extract audio paths for the given language.""" audio_paths = [] path = Path(path) with open(path / "scoring" / lst_name) as f: for line in f: audio_path, lang = line.strip().split() if language is not None and lang != language: continue audio_path = re.sub(r"^.*?\/", "", audio_path) audio_paths.append(path / audio_path) return audio_paths
import os import re from pathlib import Path from typing import Optional, Tuple, Union import torch import torchaudio from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive URL = "https://speech.fit.vutbr.cz/files/quesst14Database.tgz" _CHECKSUM = "4f869e06bc066bbe9c5dde31dbd3909a0870d70291110ebbb38878dcbc2fc5e4" _LANGUAGES = [ "albanian", "basque", "czech", "nnenglish", "romanian", "slovak", ] class QUESST14(Dataset): """Create *QUESST14* [:footcite:`Mir2015QUESST2014EQ`] Dataset Args: root (str or Path): Root directory where the dataset's top level directory is found subset (str): Subset of the dataset to use. Options: [``"docs"``, ``"dev"``, ``"eval"``]. language (str or None, optional): Language to get dataset for. Options: [``None``, ``albanian``, ``basque``, ``czech``, ``nnenglish``, ``romanian``, ``slovak``]. If ``None``, dataset consists of all languages. (default: ``"nnenglish"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``) """ def __init__( self, root: Union[str, Path], subset: str, language: Optional[str] = "nnenglish", download: bool = False, ) -> None: assert subset in ["docs", "dev", "eval"], "`subset` must be one of ['docs', 'dev', 'eval']" assert language is None or language in _LANGUAGES, f"`language` must be None or one of {str(_LANGUAGES)}" # Get string representation of 'root' root = os.fspath(root) basename = os.path.basename(URL) archive = os.path.join(root, basename) basename = basename.rsplit(".", 2)[0] self._path = os.path.join(root, basename) if not os.path.isdir(self._path): if not os.path.isfile(archive): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") download_url_to_file(URL, archive, hash_prefix=_CHECKSUM) extract_archive(archive, root) if subset == "docs": self.data = filter_audio_paths(self._path, language, "language_key_utterances.lst") elif subset == "dev": self.data = filter_audio_paths(self._path, language, "language_key_dev.lst") elif subset == "eval": self.data = filter_audio_paths(self._path, language, "language_key_eval.lst") def _load_sample(self, n: int) -> Tuple[torch.Tensor, int, str]: audio_path = self.data[n] wav, sample_rate = torchaudio.load(audio_path) return wav, sample_rate, audio_path.with_suffix("").name def __getitem__(self, n: int) -> Tuple[torch.Tensor, int, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str): ``(waveform, sample_rate, file_name)`` """ return self._load_sample(n) def __len__(self) -> int: return len(self.data) def filter_audio_paths( path: str, language: str, lst_name: str, ): """Extract audio paths for the given language.""" audio_paths = [] path = Path(path) with open(path / "scoring" / lst_name) as f: for line in f: audio_path, lang = line.strip().split() if language is not None and lang != language: continue audio_path = re.sub(r"^.*?\/", "", audio_path) audio_paths.append(path / audio_path) return audio_paths
import random from collections import defaultdict from typing import Dict, Any, TYPE_CHECKING, Generator, List import numpy as np from docarray.helper import dunder_get if TYPE_CHECKING: from docarray import DocumentArray class GroupMixin: """These helpers yield groups of :class:`DocumentArray` from a source :class:`DocumentArray`.""" def split_by_tag(self, tag: str) -> Dict[Any, 'DocumentArray']: """Split the `DocumentArray` into multiple DocumentArray according to the tag value of each `Document`. :param tag: the tag name to split stored in tags. :return: a dict where Documents with the same value on `tag` are grouped together, their orders are preserved from the original :class:`DocumentArray`. .. note:: If the :attr:`tags` of :class:`Document` do not contains the specified :attr:`tag`, return an empty dict. """ from docarray import DocumentArray rv = defaultdict(DocumentArray) for doc in self: if '__' in tag: value = dunder_get(doc.tags, tag) elif tag in doc.tags: value = doc.tags[tag] else: continue rv[value].append(doc) return dict(rv) def batch( self, batch_size: int, shuffle: bool = False, show_progress: bool = False, ) -> Generator['DocumentArray', None, None]: """ Creates a `Generator` that yields `DocumentArray` of size `batch_size` until `docs` is fully traversed along the `traversal_path`. The None `docs` are filtered out and optionally the `docs` can be filtered by checking for the existence of a `Document` attribute. Note, that the last batch might be smaller than `batch_size`. :param batch_size: Size of each generated batch (except the last one, which might be smaller, default: 32) :param shuffle: If set, shuffle the Documents before dividing into minibatches. :param show_progress: if set, show a progress bar when batching documents. :yield: a Generator of `DocumentArray`, each in the length of `batch_size` """ from rich.progress import track if not (isinstance(batch_size, int) and batch_size > 0): raise ValueError('`batch_size` should be a positive integer') N = len(self) ix = list(range(N)) n_batches = int(np.ceil(N / batch_size)) if shuffle: random.shuffle(ix) for i in track( range(n_batches), description='Batching documents', disable=not show_progress, ): yield self[ix[i * batch_size : (i + 1) * batch_size]] def batch_ids( self, batch_size: int, shuffle: bool = False, ) -> Generator[List[str], None, None]: """ Creates a `Generator` that yields `lists of ids` of size `batch_size` until `self` is fully traversed. Note, that the last batch might be smaller than `batch_size`. :param batch_size: Size of each generated batch (except the last one, which might be smaller) :param shuffle: If set, shuffle the Documents before dividing into minibatches. :yield: a Generator of `list` of IDs, each in the length of `batch_size` """ if not (isinstance(batch_size, int) and batch_size > 0): raise ValueError('`batch_size` should be a positive integer') N = len(self) ix = self[:, 'id'] n_batches = int(np.ceil(N / batch_size)) if shuffle: random.shuffle(ix) for i in range(n_batches): yield ix[i * batch_size : (i + 1) * batch_size]
import random from collections import defaultdict from typing import Dict, Any, TYPE_CHECKING, Generator, List import numpy as np from docarray.helper import dunder_get if TYPE_CHECKING: from docarray import DocumentArray class GroupMixin: """These helpers yield groups of :class:`DocumentArray` from a source :class:`DocumentArray`.""" def split_by_tag(self, tag: str) -> Dict[Any, 'DocumentArray']: """Split the `DocumentArray` into multiple DocumentArray according to the tag value of each `Document`. :param tag: the tag name to split stored in tags. :return: a dict where Documents with the same value on `tag` are grouped together, their orders are preserved from the original :class:`DocumentArray`. .. note:: If the :attr:`tags` of :class:`Document` do not contains the specified :attr:`tag`, return an empty dict. """ from docarray import DocumentArray rv = defaultdict(DocumentArray) for doc in self: if '__' in tag: value = dunder_get(doc.tags, tag) elif tag in doc.tags: value = doc.tags[tag] else: continue rv[value].append(doc) return dict(rv) def batch( self, batch_size: int, shuffle: bool = False, ) -> Generator['DocumentArray', None, None]: """ Creates a `Generator` that yields `DocumentArray` of size `batch_size` until `docs` is fully traversed along the `traversal_path`. The None `docs` are filtered out and optionally the `docs` can be filtered by checking for the existence of a `Document` attribute. Note, that the last batch might be smaller than `batch_size`. :param batch_size: Size of each generated batch (except the last one, which might be smaller, default: 32) :param shuffle: If set, shuffle the Documents before dividing into minibatches. :yield: a Generator of `DocumentArray`, each in the length of `batch_size` """ if not (isinstance(batch_size, int) and batch_size > 0): raise ValueError('`batch_size` should be a positive integer') N = len(self) ix = list(range(N)) n_batches = int(np.ceil(N / batch_size)) if shuffle: random.shuffle(ix) for i in range(n_batches): yield self[ix[i * batch_size : (i + 1) * batch_size]] def batch_ids( self, batch_size: int, shuffle: bool = False, ) -> Generator[List[str], None, None]: """ Creates a `Generator` that yields `lists of ids` of size `batch_size` until `self` is fully traversed. Note, that the last batch might be smaller than `batch_size`. :param batch_size: Size of each generated batch (except the last one, which might be smaller) :param shuffle: If set, shuffle the Documents before dividing into minibatches. :yield: a Generator of `list` of IDs, each in the length of `batch_size` """ if not (isinstance(batch_size, int) and batch_size > 0): raise ValueError('`batch_size` should be a positive integer') N = len(self) ix = self[:, 'id'] n_batches = int(np.ceil(N / batch_size)) if shuffle: random.shuffle(ix) for i in range(n_batches): yield ix[i * batch_size : (i + 1) * batch_size]
# Copyright (c) OpenMMLab. All rights reserved. from .misc import (check_prerequisites, concat_list, deprecated_api_warning, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .path import (check_file_exist, fopen, is_filepath, mkdir_or_exist, scandir, symlink) __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method' ]
# Copyright (c) OpenMMLab. All rights reserved. from .fileio import (FileClient, dict_from_file, dump, list_from_file, load, register_handler) from .misc import (check_prerequisites, concat_list, deprecated_api_warning, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .path import (check_file_exist, fopen, is_filepath, mkdir_or_exist, scandir, symlink) __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'dict_from_file', 'list_from_file', 'register_handler', 'dump', 'load', 'FileClient' ]
# Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torchvision_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import MobileNetV1ImageProcessor if is_torchvision_available(): from transformers import MobileNetV1ImageProcessorFast class MobileNetV1ImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, ): size = size if size is not None else {"shortest_edge": 20} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class MobileNetV1ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = MobileNetV1ImageProcessor if is_vision_available() else None fast_image_processing_class = MobileNetV1ImageProcessorFast if is_torchvision_available() else None def setUp(self): super().setUp() self.image_processor_tester = MobileNetV1ImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): for image_processing_class in self.image_processor_list: image_processing = image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "center_crop")) def test_image_processor_from_dict_with_kwargs(self): for image_processing_class in self.image_processor_list: image_processor = image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
# Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import MobileNetV1ImageProcessor class MobileNetV1ImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, ): size = size if size is not None else {"shortest_edge": 20} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class MobileNetV1ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = MobileNetV1ImageProcessor if is_vision_available() else None def setUp(self): super().setUp() self.image_processor_tester = MobileNetV1ImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "center_crop")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
import copy from dataclasses import dataclass, field from pathlib import Path from typing import Any, Dict, Optional, Union from .. import config @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if an incompletely received file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. extract_on_the_fly (`bool`, defaults to `False`): If `True`, extract compressed files while they are being read. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. storage_options (`dict`, *optional*): Key/value pairs to be passed on to the dataset file-system backend, if any. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. disable_tqdm (`bool`, defaults to `False`): Whether to disable the individual files download progress bar """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False extract_on_the_fly: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 token: Optional[Union[str, bool]] = None storage_options: Dict[str, Any] = field(default_factory=dict) download_desc: Optional[str] = None disable_tqdm: bool = False def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()}) def __setattr__(self, name, value): if name == "token" and getattr(self, "storage_options", None) is not None: if "hf" not in self.storage_options: self.storage_options["hf"] = {"token": value, "endpoint": config.HF_ENDPOINT} elif getattr(self.storage_options["hf"], "token", None) is None: self.storage_options["hf"]["token"] = value super().__setattr__(name, value)
import copy from dataclasses import dataclass, field from pathlib import Path from typing import Any, Dict, Optional, Union from .. import config @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if an incompletely received file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. extract_on_the_fly (`bool`, defaults to `False`): If `True`, extract compressed files while they are being read. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. storage_options (`dict`, *optional*): Key/value pairs to be passed on to the dataset file-system backend, if any. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. disable_tqdm (`bool`, defaults to `False`): Whether to disable the individual files download progress bar """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False extract_on_the_fly: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 token: Optional[Union[str, bool]] = None ignore_url_params: bool = False storage_options: Dict[str, Any] = field(default_factory=dict) download_desc: Optional[str] = None disable_tqdm: bool = False def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()}) def __setattr__(self, name, value): if name == "token" and getattr(self, "storage_options", None) is not None: if "hf" not in self.storage_options: self.storage_options["hf"] = {"token": value, "endpoint": config.HF_ENDPOINT} elif getattr(self.storage_options["hf"], "token", None) is None: self.storage_options["hf"]["token"] = value super().__setattr__(name, value)
_base_ = './cascade-mask-rcnn_s50_fpn_syncbn-backbone+head_ms-1x_coco.py' model = dict( backbone=dict( stem_channels=128, depth=101, init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest101')))
_base_ = './cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py' model = dict( backbone=dict( stem_channels=128, depth=101, init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest101')))
"""Criteria or rubric based evaluators. These evaluators are useful for evaluating the output of a language model or chain against specified criteria or rubric. Classes ------- CriteriaEvalChain : Evaluates the output of a language model or chain against specified criteria. Examples -------- Using a predefined criterion: >>> from langchain_community.llms import OpenAI >>> from langchain.evaluation.criteria import CriteriaEvalChain >>> llm = OpenAI() >>> criteria = "conciseness" >>> chain = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria) >>> chain.evaluate_strings( prediction="The answer is 42.", reference="42", input="What is the answer to life, the universe, and everything?", ) Using a custom criterion: >>> from langchain_community.llms import OpenAI >>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain >>> llm = OpenAI() >>> criteria = { "hallucination": ( "Does this submission contain information" " not present in the input or reference?" ), } >>> chain = LabeledCriteriaEvalChain.from_llm( llm=llm, criteria=criteria, ) >>> chain.evaluate_strings( prediction="The answer to life is 42.", reference="It's commonly known that the answer to life is 42.", input="Please summarize the following: The answer to life, the universe, and everything is unknowable.", ) """ # noqa: E501 from langchain.evaluation.criteria.eval_chain import ( Criteria, CriteriaEvalChain, LabeledCriteriaEvalChain, ) __all__ = ["Criteria", "CriteriaEvalChain", "LabeledCriteriaEvalChain"]
"""Criteria or rubric based evaluators. These evaluators are useful for evaluating the output of a language model or chain against specified criteria or rubric. Classes ------- CriteriaEvalChain : Evaluates the output of a language model or chain against specified criteria. Examples -------- Using a predefined criterion: >>> from langchain_community.llms import OpenAI >>> from langchain.evaluation.criteria import CriteriaEvalChain >>> llm = OpenAI() >>> criteria = "conciseness" >>> chain = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria) >>> chain.evaluate_strings( prediction="The answer is 42.", reference="42", input="What is the answer to life, the universe, and everything?", ) Using a custom criterion: >>> from langchain_community.llms import OpenAI >>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain >>> llm = OpenAI() >>> criteria = { "hallucination": ( "Does this submission contain information" " not present in the input or reference?" ), } >>> chain = LabeledCriteriaEvalChain.from_llm( llm=llm, criteria=criteria, ) >>> chain.evaluate_strings( prediction="The answer to life is 42.", reference="It's commonly known that the answer to life is 42.", input="Please summarize the following: The answer to life, the universe, and everything is unknowable.", ) """ # noqa: E501 from langchain.evaluation.criteria.eval_chain import ( Criteria, CriteriaEvalChain, LabeledCriteriaEvalChain, ) __all__ = ["CriteriaEvalChain", "LabeledCriteriaEvalChain", "Criteria"]
from setuptools import find_packages, setup with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="3.1.0.dev0", author="Nils Reimers, Tom Aarsen", author_email="[email protected]", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), include_package_data=True, python_requires=">=3.8.0", install_requires=[ "transformers>=4.34.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", ], extras_require={ "train": [ "datasets", "accelerate>=0.20.3", ], "dev": [ "datasets", "accelerate>=0.20.3", "pre-commit", "pytest", "ruff>=0.3.0", ], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
from setuptools import find_packages, setup with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="3.0.0.dev0", author="Nils Reimers", author_email="[email protected]", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), include_package_data=True, python_requires=">=3.8.0", install_requires=[ "transformers>=4.34.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", ], extras_require={ "train": [ "datasets", "accelerate>=0.20.3", ], "dev": [ "datasets", "accelerate>=0.20.3", "pre-commit", "pytest", "ruff>=0.3.0", ], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
from langchain_core.prompts.loading import ( _load_examples, _load_few_shot_prompt, _load_output_parser, _load_prompt, _load_prompt_from_file, _load_template, load_prompt, load_prompt_from_config, ) from langchain_core.utils.loading import try_load_from_hub __all__ = [ "_load_examples", "_load_few_shot_prompt", "_load_output_parser", "_load_prompt", "_load_prompt_from_file", "_load_template", "load_prompt", "load_prompt_from_config", "try_load_from_hub", ]
from langchain_core.prompts.loading import ( _load_examples, _load_few_shot_prompt, _load_output_parser, _load_prompt, _load_prompt_from_file, _load_template, load_prompt, load_prompt_from_config, ) from langchain_core.utils.loading import try_load_from_hub __all__ = [ "load_prompt_from_config", "load_prompt", "try_load_from_hub", "_load_examples", "_load_few_shot_prompt", "_load_output_parser", "_load_prompt", "_load_prompt_from_file", "_load_template", ]
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Version utils.""" import dataclasses import re from dataclasses import dataclass from typing import Optional, Union _VERSION_TMPL = r"^(?P<major>{v})" r"\.(?P<minor>{v})" r"\.(?P<patch>{v})$" _VERSION_WILDCARD_REG = re.compile(_VERSION_TMPL.format(v=r"\d+|\*")) _VERSION_RESOLVED_REG = re.compile(_VERSION_TMPL.format(v=r"\d+")) @dataclass class Version: """Dataset version MAJOR.MINOR.PATCH. Args: version_str (:obj:`str`): Eg: "1.2.3". description (:obj:`str`): A description of what is new in this version. Attributes: version_str (:obj:`str`): Eg: "1.2.3". description (:obj:`str`): A description of what is new in this version. major (:obj:`str`): minor (:obj:`str`): patch (:obj:`str`): Example: ```py >>> VERSION = datasets.Version("1.0.0") ``` """ version_str: str description: Optional[str] = None major: Optional[Union[str, int]] = None minor: Optional[Union[str, int]] = None patch: Optional[Union[str, int]] = None def __post_init__(self): self.major, self.minor, self.patch = _str_to_version(self.version_str) def __repr__(self): return f"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def tuple(self): return self.major, self.minor, self.patch def _validate_operand(self, other): if isinstance(other, str): return Version(other) elif isinstance(other, Version): return other raise AssertionError(f"{other} (type {type(other)}) cannot be compared to version.") def __eq__(self, other): try: other = self._validate_operand(other) except (AssertionError, ValueError): return False else: return self.tuple == other.tuple def __ne__(self, other): return not self.__eq__(other) def __lt__(self, other): other = self._validate_operand(other) return self.tuple < other.tuple def __le__(self, other): other = self._validate_operand(other) return self.tuple <= other.tuple def __gt__(self, other): other = self._validate_operand(other) return self.tuple > other.tuple def __ge__(self, other): other = self._validate_operand(other) return self.tuple >= other.tuple def match(self, other_version): """Returns True if other_version matches. Args: other_version: string, of the form "x[.y[.x]]" where {x,y,z} can be a number or a wildcard. """ major, minor, patch = _str_to_version(other_version, allow_wildcard=True) return major in [self.major, "*"] and minor in [self.minor, "*"] and patch in [self.patch, "*"] @classmethod def from_dict(cls, dic): field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def _to_yaml_string(self) -> str: return self.version_str def _str_to_version(version_str, allow_wildcard=False): """Return the tuple (major, minor, patch) version extracted from the str.""" reg = _VERSION_WILDCARD_REG if allow_wildcard else _VERSION_RESOLVED_REG res = reg.match(version_str) if not res: msg = f"Invalid version '{version_str}'. Format should be x.y.z" if allow_wildcard: msg += " with {x,y,z} being digits or wildcard." else: msg += " with {x,y,z} being digits." raise ValueError(msg) return tuple(v if v == "*" else int(v) for v in [res.group("major"), res.group("minor"), res.group("patch")])
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Version utils.""" import dataclasses import re from dataclasses import dataclass from typing import Optional, Union _VERSION_TMPL = r"^(?P<major>{v})" r"\.(?P<minor>{v})" r"\.(?P<patch>{v})$" _VERSION_WILDCARD_REG = re.compile(_VERSION_TMPL.format(v=r"\d+|\*")) _VERSION_RESOLVED_REG = re.compile(_VERSION_TMPL.format(v=r"\d+")) @dataclass class Version: """Dataset version MAJOR.MINOR.PATCH. Args: version_str (:obj:`str`): Eg: "1.2.3". description (:obj:`str`): A description of what is new in this version. Attributes: version_str (:obj:`str`): Eg: "1.2.3". description (:obj:`str`): A description of what is new in this version. major (:obj:`str`): minor (:obj:`str`): patch (:obj:`str`): Example: ```py >>> VERSION = datasets.Version("1.0.0") ``` """ version_str: str description: Optional[str] = None major: Optional[Union[str, int]] = None minor: Optional[Union[str, int]] = None patch: Optional[Union[str, int]] = None def __post_init__(self): self.major, self.minor, self.patch = _str_to_version(self.version_str) def __repr__(self): return f"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def tuple(self): return self.major, self.minor, self.patch def _validate_operand(self, other): if isinstance(other, str): return Version(other) elif isinstance(other, Version): return other raise AssertionError(f"{other} (type {type(other)}) cannot be compared to version.") def __eq__(self, other): try: other = self._validate_operand(other) except (AssertionError, ValueError): return False else: return self.tuple == other.tuple def __ne__(self, other): return not self.__eq__(other) def __lt__(self, other): other = self._validate_operand(other) return self.tuple < other.tuple def __le__(self, other): other = self._validate_operand(other) return self.tuple <= other.tuple def __gt__(self, other): other = self._validate_operand(other) return self.tuple > other.tuple def __ge__(self, other): other = self._validate_operand(other) return self.tuple >= other.tuple def match(self, other_version): """Returns True if other_version matches. Args: other_version: string, of the form "x[.y[.x]]" where {x,y,z} can be a number or a wildcard. """ major, minor, patch = _str_to_version(other_version, allow_wildcard=True) return major in [self.major, "*"] and minor in [self.minor, "*"] and patch in [self.patch, "*"] @classmethod def from_dict(cls, dic): field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def _str_to_version(version_str, allow_wildcard=False): """Return the tuple (major, minor, patch) version extracted from the str.""" reg = _VERSION_WILDCARD_REG if allow_wildcard else _VERSION_RESOLVED_REG res = reg.match(version_str) if not res: msg = f"Invalid version '{version_str}'. Format should be x.y.z" if allow_wildcard: msg += " with {x,y,z} being digits or wildcard." else: msg += " with {x,y,z} being digits." raise ValueError(msg) return tuple(v if v == "*" else int(v) for v in [res.group("major"), res.group("minor"), res.group("patch")])
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] cudnn_benchmark = True norm_cfg = dict(type='BN', requires_grad=True) checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' # noqa model = dict( backbone=dict( _delete_=True, type='EfficientNet', arch='b3', drop_path_rate=0.2, out_indices=(3, 4, 5), frozen_stages=0, norm_cfg=dict( type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), norm_eval=False, init_cfg=dict( type='Pretrained', prefix='backbone', checkpoint=checkpoint)), neck=dict( in_channels=[48, 136, 384], start_level=0, out_channels=256, relu_before_extra_convs=True, no_norm_on_lateral=True, norm_cfg=norm_cfg), bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), # training and testing settings train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_size = (896, 896) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=img_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=img_size), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=img_size), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_size, flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=img_size), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer_config = dict(grad_clip=None) optimizer = dict( type='SGD', lr=0.04, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.1, step=[8, 11]) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=12) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (4 samples per GPU) auto_scale_lr = dict(base_batch_size=32)
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] cudnn_benchmark = True norm_cfg = dict(type='BN', requires_grad=True) checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' # noqa model = dict( backbone=dict( _delete_=True, type='EfficientNet', arch='b3', drop_path_rate=0.2, out_indices=(3, 4, 5), frozen_stages=0, norm_cfg=dict( type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), norm_eval=False, init_cfg=dict( type='Pretrained', prefix='backbone', checkpoint=checkpoint)), neck=dict( in_channels=[48, 136, 384], start_level=0, out_channels=256, relu_before_extra_convs=True, no_norm_on_lateral=True, norm_cfg=norm_cfg), bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), # training and testing settings train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_size = (896, 896) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=img_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=img_size), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=img_size), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_size, flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=img_size), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer_config = dict(grad_clip=None) optimizer = dict( type='SGD', lr=0.04, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.1, step=[8, 11]) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=12) # NOTE: This variable is for automatically scaling LR, # USER SHOULD NOT CHANGE THIS VALUE. default_batch_size = 32 # (8 GPUs) x (4 samples per GPU)
import json import os import pytest from jina import __version__ from jina.hubble import HubExecutor from jina.hubble.hubio import HubIO from jina.orchestrate.deployments.config.helper import ( get_base_executor_version, get_image_name, to_compatible_name, ) @pytest.mark.parametrize('is_master', (True, False)) def test_version(is_master, requests_mock): if is_master: count = 0 else: # current version is published already count = 3 requests_mock.get( 'https://registry.hub.docker.com/v2/repositories/jinaai/jina/tags', text=json.dumps( { 'count': count, 'next': 'abc', 'previous': 'def', 'results': [{'a': 'b', 'c': 'd'}], } ), ) v = get_base_executor_version() if is_master: assert v == 'master' else: assert v == __version__ def test_to_compatible_name(): assert to_compatible_name('executor/hey-ha_HO') == 'executor-hey-ha-ho' def test_get_image_name(mocker, monkeypatch): mock = mocker.Mock() def _mock_fetch( name, tag=None, secret=None, image_required=True, rebuild_image=True, force=False, ): mock(name=name, rebuild_image=rebuild_image) return ( HubExecutor( uuid='hello', name=name, tag='v0', image_name=f'jinahub/{name}', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) uses = 'jinahub://DummyExecutor' image_name = get_image_name(uses) assert image_name == 'jinahub/DummyExecutor' _, mock_kwargs = mock.call_args_list[0] assert mock_kwargs['rebuild_image'] is True # default value must be True os.environ['JINA_HUB_NO_IMAGE_REBUILD'] = '1' get_image_name(uses) del os.environ['JINA_HUB_NO_IMAGE_REBUILD'] _, mock_kwargs = mock.call_args_list[1] assert mock_kwargs['rebuild_image'] is False # env var is set, so it must be False
import os import pytest from jina import __version__ from jina.hubble import HubExecutor from jina.hubble.hubio import HubIO from jina.orchestrate.deployments.config.helper import ( get_base_executor_version, get_image_name, to_compatible_name, ) @pytest.mark.parametrize('is_master', (True, False)) def test_version(is_master, requests_mock): if is_master: version = 'v2' else: # current version is published already version = __version__ requests_mock.get( 'https://registry.hub.docker.com/v1/repositories/jinaai/jina/tags', text='[{"name": "v1"}, {"name": "' + version + '"}]', ) v = get_base_executor_version() if is_master: assert v == 'master' else: assert v == __version__ def test_to_compatible_name(): assert to_compatible_name('executor/hey-ha_HO') == 'executor-hey-ha-ho' def test_get_image_name(mocker, monkeypatch): mock = mocker.Mock() def _mock_fetch( name, tag=None, secret=None, image_required=True, rebuild_image=True, force=False, ): mock(name=name, rebuild_image=rebuild_image) return ( HubExecutor( uuid='hello', name=name, tag='v0', image_name=f'jinahub/{name}', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) uses = 'jinahub://DummyExecutor' image_name = get_image_name(uses) assert image_name == 'jinahub/DummyExecutor' _, mock_kwargs = mock.call_args_list[0] assert mock_kwargs['rebuild_image'] is True # default value must be True os.environ['JINA_HUB_NO_IMAGE_REBUILD'] = '1' get_image_name(uses) del os.environ['JINA_HUB_NO_IMAGE_REBUILD'] _, mock_kwargs = mock.call_args_list[1] assert mock_kwargs['rebuild_image'] is False # env var is set, so it must be False
"""Tools for interacting with an Apache Cassandra database.""" from typing import List from llama_index.core.bridge.pydantic import Field from llama_index.core.schema import Document from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.cassandra.cassandra_database_wrapper import ( CassandraDatabase, ) class CassandraDatabaseToolSpec(BaseToolSpec): """Base tool for interacting with an Apache Cassandra database.""" db: CassandraDatabase = Field(exclude=True) spec_functions = [ "cassandra_db_query", "cassandra_db_schema", "cassandra_db_select_table_data", ] def __init__(self, db: CassandraDatabase) -> None: """DB session in context.""" self.db = db def cassandra_db_query(self, query: str) -> List[Document]: """ Execute a CQL query and return the results as a list of Documents. Args: query (str): A CQL query to execute. Returns: List[Document]: A list of Document objects, each containing data from a row. """ documents = [] result = self.db.run_no_throw(query, fetch="Cursor") for row in result: doc_str = ", ".join([str(value) for value in row]) documents.append(Document(text=doc_str)) return documents def cassandra_db_schema(self, keyspace: str) -> List[Document]: """ Input to this tool is a keyspace name, output is a table description of Apache Cassandra tables. If the query is not correct, an error message will be returned. If an error is returned, report back to the user that the keyspace doesn't exist and stop. Args: keyspace (str): The name of the keyspace for which to return the schema. Returns: List[Document]: A list of Document objects, each containing a table description. """ return [Document(text=self.db.get_keyspace_tables_str(keyspace))] def cassandra_db_select_table_data( self, keyspace: str, table: str, predicate: str, limit: int ) -> List[Document]: """ Tool for getting data from a table in an Apache Cassandra database. Use the WHERE clause to specify the predicate for the query that uses the primary key. A blank predicate will return all rows. Avoid this if possible. Use the limit to specify the number of rows to return. A blank limit will return all rows. Args: keyspace (str): The name of the keyspace containing the table. table (str): The name of the table for which to return data. predicate (str): The predicate for the query that uses the primary key. limit (int): The maximum number of rows to return. Returns: List[Document]: A list of Document objects, each containing a row of data. """ return [ Document(text=self.db.get_table_data(keyspace, table, predicate, limit)) ]
"""Tools for interacting with an Apache Cassandra database.""" from typing import List from llama_index.core.bridge.pydantic import Field from llama_index.core.schema import Document from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.cassandra.cassandra_database_wrapper import ( CassandraDatabase, ) class CassandraDatabaseToolSpec(BaseToolSpec): """Base tool for interacting with an Apache Cassandra database.""" db: CassandraDatabase = Field(exclude=True) spec_functions = [ "cassandra_db_query", "cassandra_db_schema", "cassandra_db_select_table_data", ] def __init__(self, db: CassandraDatabase) -> None: """DB session in context.""" self.db = db def cassandra_db_query(self, query: str) -> List[Document]: """Execute a CQL query and return the results as a list of Documents. Args: query (str): A CQL query to execute. Returns: List[Document]: A list of Document objects, each containing data from a row. """ documents = [] result = self.db.run_no_throw(query, fetch="Cursor") for row in result: doc_str = ", ".join([str(value) for value in row]) documents.append(Document(text=doc_str)) return documents def cassandra_db_schema(self, keyspace: str) -> List[Document]: """Input to this tool is a keyspace name, output is a table description of Apache Cassandra tables. If the query is not correct, an error message will be returned. If an error is returned, report back to the user that the keyspace doesn't exist and stop. Args: keyspace (str): The name of the keyspace for which to return the schema. Returns: List[Document]: A list of Document objects, each containing a table description. """ return [Document(text=self.db.get_keyspace_tables_str(keyspace))] def cassandra_db_select_table_data( self, keyspace: str, table: str, predicate: str, limit: int ) -> List[Document]: """Tool for getting data from a table in an Apache Cassandra database. Use the WHERE clause to specify the predicate for the query that uses the primary key. A blank predicate will return all rows. Avoid this if possible. Use the limit to specify the number of rows to return. A blank limit will return all rows. Args: keyspace (str): The name of the keyspace containing the table. table (str): The name of the table for which to return data. predicate (str): The predicate for the query that uses the primary key. limit (int): The maximum number of rows to return. Returns: List[Document]: A list of Document objects, each containing a row of data. """ return [ Document(text=self.db.get_table_data(keyspace, table, predicate, limit)) ]
import torch from torchaudio._internal.module_utils import is_module_available if is_module_available("PIL"): from PIL import Image def save_image(path, data, mode=None): """Save image. The input image is expected to be CHW order """ if torch.is_tensor(data): data = data.numpy() if mode == "L" and data.ndim == 3: assert data.shape[0] == 1 data = data[0] if data.ndim == 3: data = data.transpose(1, 2, 0) Image.fromarray(data, mode=mode).save(path) def get_image(width, height, grayscale=False): """Generate image Tensor, returns CHW""" channels = 1 if grayscale else 3 numel = width * height * channels img = torch.arange(numel, dtype=torch.int64) % 256 img = img.reshape(channels, height, width).to(torch.uint8) return img def rgb_to_yuv_ccir(img): """rgb to yuv conversion ported from ffmpeg The input image is expected to be (..., channel, height, width). """ assert img.dtype == torch.uint8 img = img.to(torch.float32) r, g, b = torch.split(img, 1, dim=-3) # https://github.com/FFmpeg/FFmpeg/blob/870bfe16a12bf09dca3a4ae27ef6f81a2de80c40/libavutil/colorspace.h#L98 y = 263 * r + 516 * g + 100 * b + 512 + 16384 y /= 1024 # https://github.com/FFmpeg/FFmpeg/blob/870bfe16a12bf09dca3a4ae27ef6f81a2de80c40/libavutil/colorspace.h#L102 # shift == 0 u = -152 * r - 298 * g + 450 * b + 512 - 1 u /= 1024 u += 128 # https://github.com/FFmpeg/FFmpeg/blob/870bfe16a12bf09dca3a4ae27ef6f81a2de80c40/libavutil/colorspace.h#L106 # shift == 0 v = 450 * r - 377 * g - 73 * b + 512 - 1 v /= 1024 v += 128 return torch.cat([y, u, v], -3).to(torch.uint8) def rgb_to_gray(img): """rgb to gray conversion The input image is expected to be (..., channel, height, width). """ assert img.dtype == torch.uint8 img = img.to(torch.float32) r, g, b = torch.split(img, 1, dim=-3) gray = 0.299 * r + 0.587 * g + 0.114 * b return gray.to(torch.uint8)
import torch from torchaudio._internal.module_utils import is_module_available if is_module_available("PIL"): from PIL import Image def save_image(path, data, mode=None): """Save image. The input image is expected to be CHW order """ if torch.is_tensor(data): data = data.numpy() if mode == "L" and data.ndim == 3: assert data.shape[0] == 1 data = data[0] if data.ndim == 3: data = data.transpose(1, 2, 0) Image.fromarray(data, mode=mode).save(path) def get_image(width, height, grayscale=False): """Generate image Tensor, returns CHW""" channels = 1 if grayscale else 3 numel = width * height * channels img = torch.arange(numel, dtype=torch.int64) % 256 img = img.reshape(channels, height, width).to(torch.uint8) return img
import tempfile import os import time import pytest from elasticsearch import Elasticsearch cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.abspath( os.path.join(cur_dir, 'unit', 'array', 'docker-compose.yml') ) @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'docarray_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile @pytest.fixture(scope='session') def start_storage(): os.system( f"docker-compose -f {compose_yml} --project-directory . up --build -d " f"--remove-orphans" ) es = Elasticsearch(hosts='http://localhost:9200/') while not es.ping(): time.sleep(0.5) yield os.system( f"docker-compose -f {compose_yml} --project-directory . down " f"--remove-orphans" )
import tempfile import pytest @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'docarray_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') # In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)], # multiscale_mode='range' train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') # In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)], # multiscale_mode='range' train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict(type='RandomResize', img_scale=[(1333, 640), (1333, 800)]), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
_base_ = ['./yolov3_mobilenetv2_8xb24-ms-416-300e_coco.py'] # yapf:disable model = dict( bbox_head=dict( anchor_generator=dict( base_sizes=[[(220, 125), (128, 222), (264, 266)], [(35, 87), (102, 96), (60, 170)], [(10, 15), (24, 36), (72, 42)]]))) # yapf:enable input_size = (320, 320) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), # `mean` and `to_rgb` should be the same with the `preprocess_cfg` dict( type='Expand', mean=[123.675, 116.28, 103.53], to_rgb=True, ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = ['./yolov3_mobilenetv2_8xb24-ms-416-300e_coco.py'] # yapf:disable model = dict( bbox_head=dict( anchor_generator=dict( base_sizes=[[(220, 125), (128, 222), (264, 266)], [(35, 87), (102, 96), (60, 170)], [(10, 15), (24, 36), (72, 42)]]))) # yapf:enable # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') input_size = (320, 320) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), # `mean` and `to_rgb` should be the same with the `preprocess_cfg` dict( type='Expand', mean=[123.675, 116.28, 103.53], to_rgb=True, ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
from docarray.document.mixins.attribute import GetAttributesMixin from docarray.document.mixins.audio import AudioDataMixin from docarray.document.mixins.blob import BlobDataMixin from docarray.document.mixins.content import ContentPropertyMixin from docarray.document.mixins.convert import ConvertMixin from docarray.document.mixins.dump import UriFileMixin from docarray.document.mixins.featurehash import FeatureHashMixin from docarray.document.mixins.image import ImageDataMixin from docarray.document.mixins.mesh import MeshDataMixin from docarray.document.mixins.multimodal import MultiModalMixin from docarray.document.mixins.plot import PlotMixin from docarray.document.mixins.porting import PortingMixin from docarray.document.mixins.property import PropertyMixin from docarray.document.mixins.protobuf import ProtobufMixin from docarray.document.mixins.pydantic import PydanticMixin from docarray.document.mixins.strawberry import StrawberryMixin from docarray.document.mixins.sugar import SingletonSugarMixin from docarray.document.mixins.text import TextDataMixin from docarray.document.mixins.video import VideoDataMixin class AllMixins( ProtobufMixin, PydanticMixin, StrawberryMixin, PropertyMixin, ContentPropertyMixin, ConvertMixin, AudioDataMixin, ImageDataMixin, TextDataMixin, MeshDataMixin, VideoDataMixin, BlobDataMixin, PlotMixin, UriFileMixin, SingletonSugarMixin, PortingMixin, FeatureHashMixin, GetAttributesMixin, MultiModalMixin, ): """All plugins that can be used in :class:`Document`.""" ...
from .attribute import GetAttributesMixin from .audio import AudioDataMixin from .blob import BlobDataMixin from .content import ContentPropertyMixin from .convert import ConvertMixin from .dump import UriFileMixin from .featurehash import FeatureHashMixin from .image import ImageDataMixin from .mesh import MeshDataMixin from .multimodal import MultiModalMixin from .plot import PlotMixin from .porting import PortingMixin from .property import PropertyMixin from .protobuf import ProtobufMixin from .pydantic import PydanticMixin from .strawberry import StrawberryMixin from .sugar import SingletonSugarMixin from .text import TextDataMixin from .video import VideoDataMixin class AllMixins( ProtobufMixin, PydanticMixin, StrawberryMixin, PropertyMixin, ContentPropertyMixin, ConvertMixin, AudioDataMixin, ImageDataMixin, TextDataMixin, MeshDataMixin, VideoDataMixin, BlobDataMixin, PlotMixin, UriFileMixin, SingletonSugarMixin, PortingMixin, FeatureHashMixin, GetAttributesMixin, MultiModalMixin, ): """All plugins that can be used in :class:`Document`. """ ...
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.config import ConfigDict from mmdet.core.utils import OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .two_stage import TwoStageDetector @MODELS.register_module() class MaskRCNN(TwoStageDetector): """Implementation of `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_""" def __init__(self, backbone: ConfigDict, rpn_head: ConfigDict, roi_head: ConfigDict, train_cfg: ConfigDict, test_cfg: ConfigDict, neck: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, init_cfg=init_cfg, data_preprocessor=data_preprocessor)
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.config import ConfigDict from mmdet.core.utils import OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .two_stage import TwoStageDetector @MODELS.register_module() class MaskRCNN(TwoStageDetector): """Implementation of `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_""" def __init__(self, backbone: ConfigDict, rpn_head: ConfigDict, roi_head: ConfigDict, train_cfg: ConfigDict, test_cfg: ConfigDict, neck: OptConfigType = None, preprocess_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, init_cfg=init_cfg, preprocess_cfg=preprocess_cfg)