input
stringlengths
33
5k
output
stringlengths
32
5k
from typing import Optional, TYPE_CHECKING import numpy as np from docarray.document.mixins.helper import _uri_to_blob, _to_datauri, _is_datauri if TYPE_CHECKING: from docarray.typing import T class ConvertMixin: """Provide helper functions for :class:`Document` to support conversion between :attr:`.tensor`, :attr:`.text` and :attr:`.blob`.""" def convert_blob_to_tensor( self: 'T', dtype: Optional[str] = None, count: int = -1, offset: int = 0 ) -> 'T': """Assuming the :attr:`blob` is a _valid_ buffer of Numpy ndarray, set :attr:`tensor` accordingly. :param dtype: Data-type of the returned array; default: float. :param count: Number of items to read. ``-1`` means all data in the buffer. :param offset: Start reading the buffer from this offset (in bytes); default: 0. :return: itself after processed """ self.tensor = np.frombuffer(self.blob, dtype=dtype, count=count, offset=offset) return self def convert_tensor_to_blob(self: 'T') -> 'T': """Convert :attr:`.tensor` to :attr:`.blob` inplace. :return: itself after processed """ self.blob = self.tensor.tobytes() return self def convert_uri_to_datauri( self: 'T', charset: str = 'utf-8', base64: bool = False ) -> 'T': """Convert :attr:`.uri` to dataURI and store it in :attr:`.uri` inplace. :param charset: charset may be any character set registered with IANA :param base64: used to encode arbitrary octet sequences into a form that satisfies the rules of 7bit. Designed to be efficient for non-text 8 bit and binary data. Sometimes used for text data that frequently uses non-US-ASCII characters. :return: itself after processed """ if not _is_datauri(self.uri): blob = _uri_to_blob(self.uri) self.uri = _to_datauri(self.mime_type, blob, charset, base64, binary=True) return self
from typing import Optional, TYPE_CHECKING import numpy as np from .helper import _uri_to_blob, _to_datauri, _is_datauri if TYPE_CHECKING: from ...typing import T class ConvertMixin: """Provide helper functions for :class:`Document` to support conversion between :attr:`.tensor`, :attr:`.text` and :attr:`.blob`.""" def convert_blob_to_tensor( self: 'T', dtype: Optional[str] = None, count: int = -1, offset: int = 0 ) -> 'T': """Assuming the :attr:`blob` is a _valid_ buffer of Numpy ndarray, set :attr:`tensor` accordingly. :param dtype: Data-type of the returned array; default: float. :param count: Number of items to read. ``-1`` means all data in the buffer. :param offset: Start reading the buffer from this offset (in bytes); default: 0. :return: itself after processed """ self.tensor = np.frombuffer(self.blob, dtype=dtype, count=count, offset=offset) return self def convert_tensor_to_blob(self: 'T') -> 'T': """Convert :attr:`.tensor` to :attr:`.blob` inplace. :return: itself after processed """ self.blob = self.tensor.tobytes() return self def convert_uri_to_datauri( self: 'T', charset: str = 'utf-8', base64: bool = False ) -> 'T': """Convert :attr:`.uri` to dataURI and store it in :attr:`.uri` inplace. :param charset: charset may be any character set registered with IANA :param base64: used to encode arbitrary octet sequences into a form that satisfies the rules of 7bit. Designed to be efficient for non-text 8 bit and binary data. Sometimes used for text data that frequently uses non-US-ASCII characters. :return: itself after processed """ if not _is_datauri(self.uri): blob = _uri_to_blob(self.uri) self.uri = _to_datauri(self.mime_type, blob, charset, base64, binary=True) return self
from torch import * # noqa: F403 # Several names are not included in the above import * import torch for n in dir(torch): if (n.startswith('_') or n.endswith('_') or 'cuda' in n or 'cpu' in n or 'backward' in n): continue exec(f"{n} = torch.{n}") del n # These imports may overwrite names from the import * above. from ._aliases import * # noqa: F403 # See the comment in the numpy __init__.py __import__(__package__ + '.linalg') __import__(__package__ + '.fft') __array_api_version__ = '2024.12'
from torch import * # noqa: F403 # Several names are not included in the above import * import torch for n in dir(torch): if (n.startswith('_') or n.endswith('_') or 'cuda' in n or 'cpu' in n or 'backward' in n): continue exec(n + ' = torch.' + n) # These imports may overwrite names from the import * above. from ._aliases import * # noqa: F403 # See the comment in the numpy __init__.py __import__(__package__ + '.linalg') __import__(__package__ + '.fft') from ..common._helpers import * # noqa: F403 __array_api_version__ = '2024.12'
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Optional, List, Union, Dict import numpy as np from annoy import AnnoyIndex from jina import Executor, requests, DocumentArray, Document from jina_commons import get_logger from jina_commons.indexers.dump import import_vectors class AnnoySearcher(Executor): """Annoy powered vector indexer For more information about the Annoy supported parameters, please consult: - https://github.com/spotify/annoy .. note:: Annoy package dependency is only required at the query time. """ def __init__( self, default_top_k: int = 10, metric: str = 'euclidean', num_trees: int = 10, dump_path: Optional[str] = None, default_traversal_paths: List[str] = ['r'], is_distance: bool = False, **kwargs, ): """ Initialize an AnnoyIndexer :param default_top_k: get tok k vectors :param metric: Metric can be "angular", "euclidean", "manhattan", "hamming", or "dot" :param num_trees: builds a forest of n_trees trees. More trees gives higher precision when querying. :param dump_path: the path to load ids and vecs :param traverse_path: traverse path on docs, e.g. ['r'], ['c'] :param is_distance: Boolean flag that describes if distance metric need to be reinterpreted as similarities. :param args: :param kwargs: """ super().__init__(**kwargs) self.default_top_k = default_top_k self.metric = metric self.num_trees = num_trees self.default_traversal_paths = default_traversal_paths self.is_distance = is_distance self.logger = get_logger(self) dump_path = dump_path or kwargs.get('runtime_args', {}).get('dump_path', None) if dump_path is not None: self.logger.info('Start building "AnnoyIndexer" from dump data') ids, vecs = import_vectors(dump_path, str(self.runtime_args.pea_id)) self._ids = np.array(list(ids)) self._vecs = np.array(list(vecs)) num_dim = self._vecs.shape[1] self._indexer = AnnoyIndex(num_dim, self.metric) self._doc_id_to_offset = {} self._load_index(self._ids, self._vecs) self.logger.info('Done building Annoy index') else: self.logger.warning( 'No data loaded in "AnnoyIndexer". Use .rolling_update() to re-initialize it...' ) def _load_index(self, ids, vecs): for idx, v in enumerate(vecs): self._indexer.add_item(idx, v.astype(np.float32)) self._doc_id_to_offset[ids[idx]] = idx self._indexer.build(self.num_trees) @requests(on='/search') def search(self, docs: DocumentArray, parameters: Dict, **kwargs): if not hasattr(self, '_indexer'): self.logger.warning('Querying against an empty index') return traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) for doc in docs.traverse_flat(traversal_paths): indices, dists = self._indexer.get_nns_by_vector( doc.embedding, self.default_top_k, include_distances=True ) for idx, dist in zip(indices, dists): match = Document(id=self._ids[idx], embedding=self._vecs[idx]) if self.is_distance: if self.metric == 'dot': match.scores[self.metric] = 1 - dist else: match.scores[self.metric] = dist else: if self.metric == 'dot': match.scores[self.metric] = dist elif self.metric == 'angular' or self.metric == 'hamming': match.scores[self.metric] = 1 - dist else: match.scores[self.metric] = 1 / (1 + dist) doc.matches.append(match) @requests(on='/fill_embedding') def fill_embedding(self, query_da: DocumentArray, **kwargs): for doc in query_da: doc.embedding = np.array( self._indexer.get_item_vector(int(self._doc_id_to_offset[str(doc.id)])) )
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Optional, List, Union, Dict import numpy as np from annoy import AnnoyIndex from jina import Executor, requests, DocumentArray, Document from jina_commons import get_logger from jina_commons.indexers.dump import import_vectors class AnnoySearcher(Executor): """Annoy powered vector indexer For more information about the Annoy supported parameters, please consult: - https://github.com/spotify/annoy .. note:: Annoy package dependency is only required at the query time. """ def __init__( self, default_top_k: int = 10, metric: str = 'euclidean', num_trees: int = 10, dump_path: Optional[str] = None, default_traversal_paths: List[str] = ['r'], is_distance: bool = False, **kwargs, ): """ Initialize an AnnoyIndexer :param default_top_k: get tok k vectors :param metric: Metric can be "angular", "euclidean", "manhattan", "hamming", or "dot" :param num_trees: builds a forest of n_trees trees. More trees gives higher precision when querying. :param dump_path: the path to load ids and vecs :param traverse_path: traverse path on docs, e.g. ['r'], ['c'] :param is_distance: Boolean flag that describes if distance metric need to be reinterpreted as similarities. :param args: :param kwargs: """ super().__init__(**kwargs) self.default_top_k = default_top_k self.metric = metric self.num_trees = num_trees self.default_traversal_paths = default_traversal_paths self.is_distance = is_distance self.logger = get_logger(self) dump_path = dump_path or kwargs.get('runtime_args', {}).get('dump_path', None) if dump_path is not None: self.logger.info('Start building "AnnoyIndexer" from dump data') ids, vecs = import_vectors(dump_path, str(self.metas.pea_id)) self._ids = np.array(list(ids)) self._vecs = np.array(list(vecs)) num_dim = self._vecs.shape[1] self._indexer = AnnoyIndex(num_dim, self.metric) self._doc_id_to_offset = {} self._load_index(self._ids, self._vecs) else: self.logger.warning( 'No data loaded in "AnnoyIndexer". Use .rolling_update() to re-initialize it...' ) def _load_index(self, ids, vecs): for idx, v in enumerate(vecs): self._indexer.add_item(idx, v.astype(np.float32)) self._doc_id_to_offset[ids[idx]] = idx self._indexer.build(self.num_trees) @requests(on='/search') def search(self, docs: DocumentArray, parameters: Dict, **kwargs): if not hasattr(self, '_indexer'): self.logger.warning('Querying against an empty index') return traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) for doc in docs.traverse_flat(traversal_paths): indices, dists = self._indexer.get_nns_by_vector( doc.embedding, self.default_top_k, include_distances=True ) for idx, dist in zip(indices, dists): match = Document(id=self._ids[idx], embedding=self._vecs[idx]) if self.is_distance: if self.metric == 'dot': match.scores[self.metric] = 1 - dist else: match.scores[self.metric] = dist else: if self.metric == 'dot': match.scores[self.metric] = dist elif self.metric == 'angular' or self.metric == 'hamming': match.scores[self.metric] = 1 - dist else: match.scores[self.metric] = 1 / (1 + dist) doc.matches.append(match) @requests(on='/fill_embedding') def fill_embedding(self, query_da: DocumentArray, **kwargs): for doc in query_da: doc.embedding = np.array( self._indexer.get_item_vector(int(self._doc_id_to_offset[str(doc.id)])) )
import torch from torchaudio_unittest.common_utils import PytorchTestCase from .functional_test_impl import Functional64OnlyTestImpl, FunctionalCPUOnlyTestImpl, FunctionalTestImpl class FunctionalFloat32CPUTest(FunctionalTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class FunctionalFloat64CPUTest(FunctionalTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu") class FunctionalFloat64OnlyCPUTest(Functional64OnlyTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu") class FunctionalCPUOnlyFloat32Test(FunctionalCPUOnlyTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class FunctionalCPUOnlyFloat64Test(FunctionalCPUOnlyTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu")
import torch from torchaudio_unittest.common_utils import PytorchTestCase from .functional_test_impl import Functional64OnlyTestImpl, FunctionalTestImpl class FunctionalFloat32CPUTest(FunctionalTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class FunctionalFloat64CPUTest(FunctionalTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu") class FunctionalFloat64OnlyCPUTest(Functional64OnlyTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu")
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import tanh_shrink
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy
from langchain_xai import ChatXAI MODEL_NAME = "grok-4" def test_chat_xai_secrets() -> None: o = ChatXAI(model=MODEL_NAME, xai_api_key="foo") # type: ignore[call-arg] s = str(o) assert "foo" not in s
from langchain_xai import ChatXAI def test_chat_xai_secrets() -> None: o = ChatXAI(model="grok-beta", xai_api_key="foo") # type: ignore[call-arg] s = str(o) assert "foo" not in s
from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.Lion"]) class Lion(optimizer.Optimizer): """Optimizer that implements the Lion algorithm. The Lion optimizer is a stochastic-gradient-descent method that uses the sign operator to control the magnitude of the update, unlike other adaptive optimizers such as Adam that rely on second-order moments. This makes Lion more memory-efficient as it only keeps track of the momentum. According to the authors (see reference), its performance gain over Adam grows with the batch size. Because the update of Lion is produced through the sign operation, resulting in a larger norm, a suitable learning rate for Lion is typically 3-10x smaller than that for AdamW. The weight decay for Lion should in turn be 3-10x larger than that for AdamW to maintain a similar strength (lr * wd). Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The rate to combine the current gradient and the 1st moment estimate. Defaults to `0.9`. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimate. Defaults to `0.99`. {{base_optimizer_keyword_args}} References: - [Chen et al., 2023](http://arxiv.org/abs/2302.06675) - [Authors' implementation]( http://github.com/google/automl/tree/master/lion) """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.99, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="lion", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) self.beta_1 = beta_1 self.beta_2 = beta_2 if beta_1 <= 0 or beta_1 > 1: raise ValueError( "Argument `beta_1` must be in the [0, 1] range. Otherwise, the " f"optimizer degenerates to SignSGD. Received: beta_1={beta_1}." ) def build(self, var_list): """Initialize optimizer variables. Lion optimizer has one variable `momentums`. Args: var_list: list of model variables to build Lion variables on. """ if self.built: return super().build(var_list) self._momentums = [] for var in var_list: self._momentums.append( self.add_variable_from_reference( reference_variable=var, name="momentum" ) ) def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" lr = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) beta_1 = ops.cast(self.beta_1, variable.dtype) beta_2 = ops.cast(self.beta_2, variable.dtype) m = self._momentums[self._get_variable_index(variable)] self.assign_sub( variable, ops.multiply( lr, ops.sign( ops.add( ops.multiply(m, beta_1), ops.multiply(gradient, (1.0 - beta_1)), ) ), ), ) self.assign( m, ops.add( ops.multiply(m, beta_2), ops.multiply(gradient, (1.0 - beta_2)) ), ) def get_config(self): config = super().get_config() config.update( { "beta_1": self.beta_1, "beta_2": self.beta_2, } ) return config Lion.__doc__ = Lion.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.Lion"]) class Lion(optimizer.Optimizer): """Optimizer that implements the Lion algorithm. The Lion optimizer is a stochastic-gradient-descent method that uses the sign operator to control the magnitude of the update, unlike other adaptive optimizers such as Adam that rely on second-order moments. This make Lion more memory-efficient as it only keeps track of the momentum. According to the authors (see reference), its performance gain over Adam grows with the batch size. Because the update of Lion is produced through the sign operation, resulting in a larger norm, a suitable learning rate for Lion is typically 3-10x smaller than that for AdamW. The weight decay for Lion should be in turn 3-10x larger than that for AdamW to maintain a similar strength (lr * wd). Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The rate to combine the current gradient and the 1st moment estimate. Defaults to `0.9`. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimate. Defaults to `0.99`. {{base_optimizer_keyword_args}} References: - [Chen et al., 2023](http://arxiv.org/abs/2302.06675) - [Authors' implementation]( http://github.com/google/automl/tree/master/lion) """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.99, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="lion", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) self.beta_1 = beta_1 self.beta_2 = beta_2 if beta_1 <= 0 or beta_1 > 1: raise ValueError( "Argument `beta_1` must be in the [0, 1] range. Otherwise, the " f"optimizer degenerates to SignSGD. Received: beta_1={beta_1}." ) def build(self, var_list): """Initialize optimizer variables. Lion optimizer has one variable `momentums`. Args: var_list: list of model variables to build Lion variables on. """ if self.built: return super().build(var_list) self._momentums = [] for var in var_list: self._momentums.append( self.add_variable_from_reference( reference_variable=var, name="momentum" ) ) def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" lr = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) beta_1 = ops.cast(self.beta_1, variable.dtype) beta_2 = ops.cast(self.beta_2, variable.dtype) m = self._momentums[self._get_variable_index(variable)] self.assign_sub( variable, ops.multiply( lr, ops.sign( ops.add( ops.multiply(m, beta_1), ops.multiply(gradient, (1.0 - beta_1)), ) ), ), ) self.assign( m, ops.add( ops.multiply(m, beta_2), ops.multiply(gradient, (1.0 - beta_2)) ), ) def get_config(self): config = super().get_config() config.update( { "beta_1": self.beta_1, "beta_2": self.beta_2, } ) return config Lion.__doc__ = Lion.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
# dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1000, 600), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type='ConcatDataset', datasets=[ dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2007/'), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline), dict( type=dataset_type, data_root=data_root, ann_file='VOC2012/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2012/'), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline) ]))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/test.txt', data_prefix=dict(sub_data_root='VOC2007/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # Pascal VOC2007 uses `11points` as default evaluate mode, while PASCAL # VOC2012 defaults to use 'area'. val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points') test_evaluator = val_evaluator
# dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1000, 600), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, ann_file=[ data_root + 'VOC2007/ImageSets/Main/trainval.txt', data_root + 'VOC2012/ImageSets/Main/trainval.txt' ], img_prefix=[data_root + 'VOC2007/', data_root + 'VOC2012/'], pipeline=train_pipeline)), val=dict( type=dataset_type, ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt', img_prefix=data_root + 'VOC2007/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt', img_prefix=data_root + 'VOC2007/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='mAP')
from typing import TYPE_CHECKING from .backend import BackendMixin, QdrantConfig from .find import FindMixin from .getsetdel import GetSetDelMixin from .helper import DISTANCES from .seqlike import SequenceLikeMixin __all__ = ['StorageMixins', 'QdrantConfig'] if TYPE_CHECKING: from qdrant_client import QdrantClient from qdrant_client.http.models.models import Distance class StorageMixins(FindMixin, BackendMixin, GetSetDelMixin, SequenceLikeMixin): @property def serialize_config(self) -> dict: return self._config.serialize_config @property def distance(self) -> 'Distance': return DISTANCES[self._config.distance] @property def serialization_config(self) -> dict: return self._serialize_config @property def n_dim(self) -> int: return self._n_dim @property def collection_name(self) -> str: return self._config.collection_name @property def collection_name_meta(self) -> str: return f'{self.collection_name}_meta' @property def config(self): return self._config @property def client(self) -> 'QdrantClient': return self._client @property def scroll_batch_size(self) -> int: return self._config.scroll_batch_size
from typing import TYPE_CHECKING from .backend import BackendMixin, QdrantConfig from .find import FindMixin from .getsetdel import GetSetDelMixin from .helper import DISTANCES from .seqlike import SequenceLikeMixin __all__ = ['StorageMixins', 'QdrantConfig'] if TYPE_CHECKING: from qdrant_client import QdrantClient from qdrant_openapi_client.models.models import Distance class StorageMixins(FindMixin, BackendMixin, GetSetDelMixin, SequenceLikeMixin): @property def serialize_config(self) -> dict: return self._config.serialize_config @property def distance(self) -> 'Distance': return DISTANCES[self._config.distance] @property def serialization_config(self) -> dict: return self._serialize_config @property def n_dim(self) -> int: return self._n_dim @property def collection_name(self) -> str: return self._config.collection_name @property def collection_name_meta(self) -> str: return f'{self.collection_name}_meta' @property def config(self): return self._config @property def client(self) -> 'QdrantClient': return self._client @property def scroll_batch_size(self) -> int: return self._config.scroll_batch_size
from backend.blocks.hubspot._auth import ( HubSpotCredentials, HubSpotCredentialsField, HubSpotCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import Requests class HubSpotContactBlock(Block): class Input(BlockSchema): credentials: HubSpotCredentialsInput = HubSpotCredentialsField() operation: str = SchemaField( description="Operation to perform (create, update, get)", default="get" ) contact_data: dict = SchemaField( description="Contact data for create/update operations", default_factory=dict, ) email: str = SchemaField( description="Email address for get/update operations", default="" ) class Output(BlockSchema): contact: dict = SchemaField(description="Contact information") status: str = SchemaField(description="Operation status") def __init__(self): super().__init__( id="5267326e-c4c1-4016-9f54-4e72ad02f813", description="Manages HubSpot contacts - create, update, and retrieve contact information", categories={BlockCategory.CRM}, input_schema=HubSpotContactBlock.Input, output_schema=HubSpotContactBlock.Output, ) async def run( self, input_data: Input, *, credentials: HubSpotCredentials, **kwargs ) -> BlockOutput: base_url = "https://api.hubapi.com/crm/v3/objects/contacts" headers = { "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", "Content-Type": "application/json", } if input_data.operation == "create": response = await Requests().post( base_url, headers=headers, json={"properties": input_data.contact_data} ) result = response.json() yield "contact", result yield "status", "created" elif input_data.operation == "get": search_url = f"{base_url}/search" search_data = { "filterGroups": [ { "filters": [ { "propertyName": "email", "operator": "EQ", "value": input_data.email, } ] } ] } response = await Requests().post( search_url, headers=headers, json=search_data ) result = response.json() yield "contact", result.get("results", [{}])[0] yield "status", "retrieved" elif input_data.operation == "update": search_response = await Requests().post( f"{base_url}/search", headers=headers, json={ "filterGroups": [ { "filters": [ { "propertyName": "email", "operator": "EQ", "value": input_data.email, } ] } ] }, ) search_result = search_response.json() contact_id = search_result.get("results", [{}])[0].get("id") if contact_id: response = await Requests().patch( f"{base_url}/{contact_id}", headers=headers, json={"properties": input_data.contact_data}, ) result = response.json() yield "contact", result yield "status", "updated" else: yield "contact", {} yield "status", "contact_not_found"
from backend.blocks.hubspot._auth import ( HubSpotCredentials, HubSpotCredentialsField, HubSpotCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import Requests class HubSpotContactBlock(Block): class Input(BlockSchema): credentials: HubSpotCredentialsInput = HubSpotCredentialsField() operation: str = SchemaField( description="Operation to perform (create, update, get)", default="get" ) contact_data: dict = SchemaField( description="Contact data for create/update operations", default_factory=dict, ) email: str = SchemaField( description="Email address for get/update operations", default="" ) class Output(BlockSchema): contact: dict = SchemaField(description="Contact information") status: str = SchemaField(description="Operation status") def __init__(self): super().__init__( id="5267326e-c4c1-4016-9f54-4e72ad02f813", description="Manages HubSpot contacts - create, update, and retrieve contact information", categories={BlockCategory.CRM}, input_schema=HubSpotContactBlock.Input, output_schema=HubSpotContactBlock.Output, ) def run( self, input_data: Input, *, credentials: HubSpotCredentials, **kwargs ) -> BlockOutput: base_url = "https://api.hubapi.com/crm/v3/objects/contacts" headers = { "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", "Content-Type": "application/json", } if input_data.operation == "create": response = Requests().post( base_url, headers=headers, json={"properties": input_data.contact_data} ) result = response.json() yield "contact", result yield "status", "created" elif input_data.operation == "get": # Search for contact by email search_url = f"{base_url}/search" search_data = { "filterGroups": [ { "filters": [ { "propertyName": "email", "operator": "EQ", "value": input_data.email, } ] } ] } response = Requests().post(search_url, headers=headers, json=search_data) result = response.json() yield "contact", result.get("results", [{}])[0] yield "status", "retrieved" elif input_data.operation == "update": search_response = Requests().post( f"{base_url}/search", headers=headers, json={ "filterGroups": [ { "filters": [ { "propertyName": "email", "operator": "EQ", "value": input_data.email, } ] } ] }, ) contact_id = search_response.json().get("results", [{}])[0].get("id") if contact_id: response = Requests().patch( f"{base_url}/{contact_id}", headers=headers, json={"properties": input_data.contact_data}, ) result = response.json() yield "contact", result yield "status", "updated" else: yield "contact", {} yield "status", "contact_not_found"
# model settings preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( type='RetinaNet', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_input', num_outs=5), bbox_head=dict( type='RetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), # model training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100))
# model settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) model = dict( type='RetinaNet', img_norm_cfg=img_norm_cfg, backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_input', num_outs=5), bbox_head=dict( type='RetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), # model training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100))
import csv import gzip import logging import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, datasets, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Training parameters model_name = "bert-base-uncased" train_batch_size = 8 num_epochs = 1 max_seq_length = 75 # Save path to store our model model_save_path = "output/training_stsb_tsdae-{}-{}-{}".format( model_name, train_batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Check if dataset exists. If not, download and extract it sts_dataset_path = "data/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Defining our sentence transformer model word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), "cls") model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = "data/wiki1m_for_simcse.txt" if not os.path.exists(wikipedia_dataset_path): util.http_get( "https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt", wikipedia_dataset_path, ) # train_samples is a list of InputExample objects where we pass the same sentence twice to texts, i.e. texts=[sent, sent] train_sentences = [] with open(wikipedia_dataset_path, "r", encoding="utf8") as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) # Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( dev_samples, batch_size=train_batch_size, name="sts-dev" ) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( test_samples, batch_size=train_batch_size, name="sts-test" ) # We train our model using the MultipleNegativesRankingLoss train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences) train_dataloader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True, drop_last=True) train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True) evaluation_steps = 1000 logging.info("Training sentences: {}".format(len(train_sentences))) logging.info("Performance before training") dev_evaluator(model) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=evaluation_steps, output_path=model_save_path, weight_decay=0, warmup_steps=100, optimizer_params={"lr": 3e-5}, use_amp=True, # Set to True, if your GPU supports FP16 cores ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator(model, output_path=model_save_path)
from torch.utils.data import DataLoader from sentence_transformers import models, losses, datasets from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Training parameters model_name = "bert-base-uncased" train_batch_size = 8 num_epochs = 1 max_seq_length = 75 # Save path to store our model model_save_path = "output/training_stsb_tsdae-{}-{}-{}".format( model_name, train_batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Check if dataset exists. If not, download and extract it sts_dataset_path = "data/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Defining our sentence transformer model word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), "cls") model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = "data/wiki1m_for_simcse.txt" if not os.path.exists(wikipedia_dataset_path): util.http_get( "https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt", wikipedia_dataset_path, ) # train_samples is a list of InputExample objects where we pass the same sentence twice to texts, i.e. texts=[sent, sent] train_sentences = [] with open(wikipedia_dataset_path, "r", encoding="utf8") as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) # Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( dev_samples, batch_size=train_batch_size, name="sts-dev" ) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( test_samples, batch_size=train_batch_size, name="sts-test" ) # We train our model using the MultipleNegativesRankingLoss train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences) train_dataloader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True, drop_last=True) train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True) evaluation_steps = 1000 logging.info("Training sentences: {}".format(len(train_sentences))) logging.info("Performance before training") dev_evaluator(model) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=evaluation_steps, output_path=model_save_path, weight_decay=0, warmup_steps=100, optimizer_params={"lr": 3e-5}, use_amp=True, # Set to True, if your GPU supports FP16 cores ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator(model, output_path=model_save_path)
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class TextDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} self.builder = Text( cache_dir=cache_dir, data_files=path_or_paths, features=features, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class TextDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} self.builder = Text( cache_dir=cache_dir, data_files=path_or_paths, features=features, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None ignore_verifications = False base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.split, ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.25.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.25.1' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# dataset settings dataset_type = 'MOTChallengeDataset' data_root = 'data/MOT17/' img_scale = (1088, 1088) # data pipeline train_pipeline = [ dict( type='UniformRefFrameSample', num_ref_imgs=1, frame_range=10, filter_key_img=True), dict( type='TransformBroadcaster', share_random_params=True, transforms=[ dict(type='LoadImageFromFile'), dict(type='LoadTrackAnnotations'), dict( type='RandomResize', scale=img_scale, ratio_range=(0.8, 1.2), keep_ratio=True, clip_object_border=False), dict(type='PhotoMetricDistortion') ]), dict( type='TransformBroadcaster', # different cropped positions for different frames share_random_params=False, transforms=[ dict( type='RandomCrop', crop_size=img_scale, bbox_clip_border=False) ]), dict( type='TransformBroadcaster', share_random_params=True, transforms=[ dict(type='RandomFlip', prob=0.5), ]), dict(type='PackTrackInputs') ] test_pipeline = [ dict( type='TransformBroadcaster', transforms=[ dict(type='LoadImageFromFile'), dict(type='Resize', scale=img_scale, keep_ratio=True), dict(type='LoadTrackAnnotations') ]), dict(type='PackTrackInputs') ] # dataloader train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='TrackImgSampler'), # image-based sampling dataset=dict( type=dataset_type, data_root=data_root, visibility_thr=-1, ann_file='annotations/half-train_cocoformat.json', data_prefix=dict(img_path='train'), metainfo=dict(classes=('pedestrian', )), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, # Now we support two ways to test, image_based and video_based # if you want to use video_based sampling, you can use as follows # sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), sampler=dict(type='TrackImgSampler'), # image-based sampling dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/half-val_cocoformat.json', data_prefix=dict(img_path='train'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # evaluator val_evaluator = dict( type='MOTChallengeMetric', metric=['HOTA', 'CLEAR', 'Identity']) test_evaluator = val_evaluator
# dataset settings dataset_type = 'MOTChallengeDataset' data_root = 'data/MOT17/' resized_shape = (1088, 1088) # data pipeline train_pipeline = [ dict( type='UniformRefFrameSample', num_ref_imgs=1, frame_range=10, filter_key_img=True), dict( type='TransformBroadcaster', share_random_params=True, transforms=[ dict(type='LoadImageFromFile'), dict(type='LoadTrackAnnotations'), dict( type='RandomResize', scale=resized_shape, ratio_range=(0.8, 1.2), keep_ratio=True, clip_object_border=False), dict(type='PhotoMetricDistortion') ]), dict( type='TransformBroadcaster', # different cropped positions for different frames share_random_params=False, transforms=[ dict( type='RandomCrop', crop_size=resized_shape, bbox_clip_border=False) ]), dict( type='TransformBroadcaster', share_random_params=True, transforms=[ dict(type='RandomFlip', prob=0.5), ]), dict(type='PackTrackInputs') ] test_pipeline = [ dict( type='TransformBroadcaster', transforms=[ dict(type='LoadImageFromFile'), dict(type='Resize', scale=resized_shape, keep_ratio=True), dict(type='LoadTrackAnnotations') ]), dict(type='PackTrackInputs') ] # dataloader train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, # MOTChallengeDataset is a video-based dataset, so we don't need # "AspectRatioBatchSampler" # batch_sampler=dict(type='AspectRatioBatchSampler'), sampler=dict(type='TrackImgSampler'), # image-based sampling dataset=dict( type=dataset_type, data_root=data_root, visibility_thr=-1, ann_file='annotations/half-train_cocoformat.json', data_prefix=dict(img_path='train'), metainfo=dict(classes=('pedestrian', )), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='TrackImgSampler'), # image-based sampling dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/half-val_cocoformat.json', data_prefix=dict(img_path='train'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # evaluator val_evaluator = dict( type='MOTChallengeMetric', metric=['HOTA', 'CLEAR', 'Identity']) test_evaluator = val_evaluator
from pathlib import Path from typing import Dict, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import _extract_zip _URL = "https://datashare.ed.ac.uk/bitstream/handle/10283/3038/DR-VCTK.zip" _CHECKSUM = "781f12f4406ed36ed27ae3bce55da47ba176e2d8bae67319e389e07b2c9bd769" _SUPPORTED_SUBSETS = {"train", "test"} class DR_VCTK(Dataset): """*Device Recorded VCTK (Small subset version)* :cite:`Sarfjoo2018DeviceRV` dataset. Args: root (str or Path): Root directory where the dataset's top level directory is found. subset (str): The subset to use. Can be one of ``"train"`` and ``"test"``. (default: ``"train"``). download (bool): Whether to download the dataset if it is not found at root path. (default: ``False``). url (str): The URL to download the dataset from. (default: ``"https://datashare.ed.ac.uk/bitstream/handle/10283/3038/DR-VCTK.zip"``) """ def __init__( self, root: Union[str, Path], subset: str = "train", *, download: bool = False, url: str = _URL, ) -> None: if subset not in _SUPPORTED_SUBSETS: raise RuntimeError( f"The subset '{subset}' does not match any of the supported subsets: {_SUPPORTED_SUBSETS}" ) root = Path(root).expanduser() archive = root / "DR-VCTK.zip" self._subset = subset self._path = root / "DR-VCTK" / "DR-VCTK" self._clean_audio_dir = self._path / f"clean_{self._subset}set_wav_16k" self._noisy_audio_dir = self._path / f"device-recorded_{self._subset}set_wav_16k" self._config_filepath = self._path / "configurations" / f"{self._subset}_ch_log.txt" if not self._path.is_dir(): if not archive.is_file(): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download it.") download_url_to_file(url, archive, hash_prefix=_CHECKSUM) _extract_zip(archive, root) self._config = self._load_config(self._config_filepath) self._filename_list = sorted(self._config) def _load_config(self, filepath: str) -> Dict[str, Tuple[str, int]]: # Skip header skip_rows = 2 if self._subset == "train" else 1 config = {} with open(filepath) as f: for i, line in enumerate(f): if i < skip_rows or not line: continue filename, source, channel_id = line.strip().split("\t") config[filename] = (source, int(channel_id)) return config def _load_dr_vctk_item(self, filename: str) -> Tuple[Tensor, int, Tensor, int, str, str, str, int]: speaker_id, utterance_id = filename.split(".")[0].split("_") source, channel_id = self._config[filename] file_clean_audio = self._clean_audio_dir / filename file_noisy_audio = self._noisy_audio_dir / filename waveform_clean, sample_rate_clean = torchaudio.load(file_clean_audio) waveform_noisy, sample_rate_noisy = torchaudio.load(file_noisy_audio) return ( waveform_clean, sample_rate_clean, waveform_noisy, sample_rate_noisy, speaker_id, utterance_id, source, channel_id, ) def __getitem__(self, n: int) -> Tuple[Tensor, int, Tensor, int, str, str, str, int]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Clean waveform int: Sample rate of the clean waveform Tensor: Noisy waveform int: Sample rate of the noisy waveform str: Speaker ID str: Utterance ID str: Source int: Channel ID """ filename = self._filename_list[n] return self._load_dr_vctk_item(filename) def __len__(self) -> int: return len(self._filename_list)
from pathlib import Path from typing import Dict, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _URL = "https://datashare.ed.ac.uk/bitstream/handle/10283/3038/DR-VCTK.zip" _CHECKSUM = "781f12f4406ed36ed27ae3bce55da47ba176e2d8bae67319e389e07b2c9bd769" _SUPPORTED_SUBSETS = {"train", "test"} class DR_VCTK(Dataset): """*Device Recorded VCTK (Small subset version)* :cite:`Sarfjoo2018DeviceRV` dataset. Args: root (str or Path): Root directory where the dataset's top level directory is found. subset (str): The subset to use. Can be one of ``"train"`` and ``"test"``. (default: ``"train"``). download (bool): Whether to download the dataset if it is not found at root path. (default: ``False``). url (str): The URL to download the dataset from. (default: ``"https://datashare.ed.ac.uk/bitstream/handle/10283/3038/DR-VCTK.zip"``) """ def __init__( self, root: Union[str, Path], subset: str = "train", *, download: bool = False, url: str = _URL, ) -> None: if subset not in _SUPPORTED_SUBSETS: raise RuntimeError( f"The subset '{subset}' does not match any of the supported subsets: {_SUPPORTED_SUBSETS}" ) root = Path(root).expanduser() archive = root / "DR-VCTK.zip" self._subset = subset self._path = root / "DR-VCTK" / "DR-VCTK" self._clean_audio_dir = self._path / f"clean_{self._subset}set_wav_16k" self._noisy_audio_dir = self._path / f"device-recorded_{self._subset}set_wav_16k" self._config_filepath = self._path / "configurations" / f"{self._subset}_ch_log.txt" if not self._path.is_dir(): if not archive.is_file(): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download it.") download_url_to_file(url, archive, hash_prefix=_CHECKSUM) extract_archive(archive, root) self._config = self._load_config(self._config_filepath) self._filename_list = sorted(self._config) def _load_config(self, filepath: str) -> Dict[str, Tuple[str, int]]: # Skip header skip_rows = 2 if self._subset == "train" else 1 config = {} with open(filepath) as f: for i, line in enumerate(f): if i < skip_rows or not line: continue filename, source, channel_id = line.strip().split("\t") config[filename] = (source, int(channel_id)) return config def _load_dr_vctk_item(self, filename: str) -> Tuple[Tensor, int, Tensor, int, str, str, str, int]: speaker_id, utterance_id = filename.split(".")[0].split("_") source, channel_id = self._config[filename] file_clean_audio = self._clean_audio_dir / filename file_noisy_audio = self._noisy_audio_dir / filename waveform_clean, sample_rate_clean = torchaudio.load(file_clean_audio) waveform_noisy, sample_rate_noisy = torchaudio.load(file_noisy_audio) return ( waveform_clean, sample_rate_clean, waveform_noisy, sample_rate_noisy, speaker_id, utterance_id, source, channel_id, ) def __getitem__(self, n: int) -> Tuple[Tensor, int, Tensor, int, str, str, str, int]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Clean waveform int: Sample rate of the clean waveform Tensor: Noisy waveform int: Sample rate of the noisy waveform str: Speaker ID str: Utterance ID str: Source int: Channel ID """ filename = self._filename_list[n] return self._load_dr_vctk_item(filename) def __len__(self) -> int: return len(self._filename_list)
import json import math from collections import namedtuple from typing import List, Tuple import sentencepiece as spm import torch import torchaudio from torchaudio.models import Hypothesis MODEL_TYPE_LIBRISPEECH = "librispeech" MODEL_TYPE_TEDLIUM3 = "tedlium3" MODEL_TYPE_MUSTC = "mustc" DECIBEL = 2 * 20 * math.log10(torch.iinfo(torch.int16).max) GAIN = pow(10, 0.05 * DECIBEL) spectrogram_transform = torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=400, n_mels=80, hop_length=160) Batch = namedtuple("Batch", ["features", "feature_lengths", "targets", "target_lengths"]) def piecewise_linear_log(x): x = x * GAIN x[x > math.e] = torch.log(x[x > math.e]) x[x <= math.e] = x[x <= math.e] / math.e return x def batch_by_token_count(idx_target_lengths, token_limit): batches = [] current_batch = [] current_token_count = 0 for idx, target_length in idx_target_lengths: if current_token_count + target_length > token_limit: batches.append(current_batch) current_batch = [idx] current_token_count = target_length else: current_batch.append(idx) current_token_count += target_length if current_batch: batches.append(current_batch) return batches def post_process_hypos( hypos: List[Hypothesis], sp_model: spm.SentencePieceProcessor ) -> List[Tuple[str, float, List[int], List[int]]]: tokens_idx = 0 score_idx = 3 post_process_remove_list = [ sp_model.unk_id(), sp_model.eos_id(), sp_model.pad_id(), ] filtered_hypo_tokens = [ [token_index for token_index in h[tokens_idx][1:] if token_index not in post_process_remove_list] for h in hypos ] hypos_str = [sp_model.decode(s) for s in filtered_hypo_tokens] hypos_ids = [h[tokens_idx][1:] for h in hypos] hypos_score = [[math.exp(h[score_idx])] for h in hypos] nbest_batch = list(zip(hypos_str, hypos_score, hypos_ids)) return nbest_batch class FunctionalModule(torch.nn.Module): def __init__(self, functional): super().__init__() self.functional = functional def forward(self, input): return self.functional(input) class GlobalStatsNormalization(torch.nn.Module): def __init__(self, global_stats_path): super().__init__() with open(global_stats_path) as f: blob = json.loads(f.read()) self.mean = torch.tensor(blob["mean"]) self.invstddev = torch.tensor(blob["invstddev"]) def forward(self, input): return (input - self.mean) * self.invstddev class WarmupLR(torch.optim.lr_scheduler._LRScheduler): def __init__(self, optimizer, warmup_updates, last_epoch=-1, verbose=False): self.warmup_updates = warmup_updates super().__init__(optimizer, last_epoch=last_epoch) def get_lr(self): return [(min(1.0, self._step_count / self.warmup_updates)) * base_lr for base_lr in self.base_lrs]
import json import math from collections import namedtuple from typing import List, Tuple import sentencepiece as spm import torch import torchaudio from torchaudio.models import Hypothesis MODEL_TYPE_LIBRISPEECH = "librispeech" MODEL_TYPE_TEDLIUM3 = "tedlium3" MODEL_TYPE_MUSTC = "mustc" DECIBEL = 2 * 20 * math.log10(torch.iinfo(torch.int16).max) GAIN = pow(10, 0.05 * DECIBEL) spectrogram_transform = torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=400, n_mels=80, hop_length=160) Batch = namedtuple("Batch", ["features", "feature_lengths", "targets", "target_lengths"]) def piecewise_linear_log(x): x = x * GAIN x[x > math.e] = torch.log(x[x > math.e]) x[x <= math.e] = x[x <= math.e] / math.e return x def batch_by_token_count(idx_target_lengths, token_limit): batches = [] current_batch = [] current_token_count = 0 for idx, target_length in idx_target_lengths: if current_token_count + target_length > token_limit: batches.append(current_batch) current_batch = [idx] current_token_count = target_length else: current_batch.append(idx) current_token_count += target_length if current_batch: batches.append(current_batch) return batches def post_process_hypos( hypos: List[Hypothesis], sp_model: spm.SentencePieceProcessor ) -> List[Tuple[str, float, List[int], List[int]]]: tokens_idx = 0 score_idx = 3 post_process_remove_list = [ sp_model.unk_id(), sp_model.eos_id(), sp_model.pad_id(), ] filtered_hypo_tokens = [ [token_index for token_index in h[tokens_idx][1:] if token_index not in post_process_remove_list] for h in hypos ] hypos_str = [sp_model.decode(s) for s in filtered_hypo_tokens] hypos_ids = [h[tokens_idx][1:] for h in hypos] hypos_score = [[math.exp(h[score_idx])] for h in hypos] nbest_batch = list(zip(hypos_str, hypos_score, hypos_ids)) return nbest_batch class FunctionalModule(torch.nn.Module): def __init__(self, functional): super().__init__() self.functional = functional def forward(self, input): return self.functional(input) class GlobalStatsNormalization(torch.nn.Module): def __init__(self, global_stats_path): super().__init__() with open(global_stats_path) as f: blob = json.loads(f.read()) self.mean = torch.tensor(blob["mean"]) self.invstddev = torch.tensor(blob["invstddev"]) def forward(self, input): return (input - self.mean) * self.invstddev class WarmupLR(torch.optim.lr_scheduler._LRScheduler): def __init__(self, optimizer, warmup_updates, last_epoch=-1, verbose=False): self.warmup_updates = warmup_updates super().__init__(optimizer, last_epoch=last_epoch, verbose=verbose) def get_lr(self): return [(min(1.0, self._step_count / self.warmup_updates)) * base_lr for base_lr in self.base_lrs]
# training schedule for 1x train_cfg = dict(by_epoch=True, max_epochs=24) val_cfg = dict(interval=1) test_cfg = dict() # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ] # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
# optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
import os from pathlib import Path from torchaudio.datasets import librispeech from torchaudio_unittest.common_utils import ( get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase, ) # Used to generate a unique transcript for each dummy audio file _NUMBERS = ["ZERO", "ONE", "TWO", "THREE", "FOUR", "FIVE", "SIX", "SEVEN", "EIGHT", "NINE"] def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] dataset_dir = os.path.join(root_dir, librispeech.FOLDER_IN_ARCHIVE, librispeech.URL) os.makedirs(dataset_dir, exist_ok=True) sample_rate = 16000 # 16kHz seed = 0 for speaker_id in range(5): speaker_path = os.path.join(dataset_dir, str(speaker_id)) os.makedirs(speaker_path, exist_ok=True) for chapter_id in range(3): chapter_path = os.path.join(speaker_path, str(chapter_id)) os.makedirs(chapter_path, exist_ok=True) trans_content = [] for utterance_id in range(10): filename = f"{speaker_id}-{chapter_id}-{utterance_id:04d}.wav" path = os.path.join(chapter_path, filename) transcript = " ".join([_NUMBERS[x] for x in [speaker_id, chapter_id, utterance_id]]) trans_content.append(f"{speaker_id}-{chapter_id}-{utterance_id:04d} {transcript}") data = get_whitenoise(sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="float32", seed=seed) save_wav(path, data, sample_rate) sample = (normalize_wav(data), sample_rate, transcript, speaker_id, chapter_id, utterance_id) mocked_data.append(sample) seed += 1 trans_filename = f"{speaker_id}-{chapter_id}.trans.txt" trans_path = os.path.join(chapter_path, trans_filename) with open(trans_path, "w") as f: f.write("\n".join(trans_content)) return mocked_data class TestLibriSpeech(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) @classmethod def tearDownClass(cls): # In case of test failure librispeech.LIBRISPEECH._ext_audio = ".flac" def _test_librispeech(self, dataset): num_samples = 0 for i, (data, sample_rate, transcript, speaker_id, chapter_id, utterance_id) in enumerate(dataset): self.assertEqual(data, self.samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.samples[i][1] assert transcript == self.samples[i][2] assert speaker_id == self.samples[i][3] assert chapter_id == self.samples[i][4] assert utterance_id == self.samples[i][5] num_samples += 1 assert num_samples == len(self.samples) librispeech.LIBRISPEECH._ext_audio = ".flac" def test_librispeech_str(self): librispeech.LIBRISPEECH._ext_audio = ".wav" dataset = librispeech.LIBRISPEECH(self.root_dir) self._test_librispeech(dataset) def test_librispeech_path(self): librispeech.LIBRISPEECH._ext_audio = ".wav" dataset = librispeech.LIBRISPEECH(Path(self.root_dir)) self._test_librispeech(dataset)
import os from pathlib import Path from torchaudio.datasets import librispeech from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) # Used to generate a unique transcript for each dummy audio file _NUMBERS = ["ZERO", "ONE", "TWO", "THREE", "FOUR", "FIVE", "SIX", "SEVEN", "EIGHT", "NINE"] def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] dataset_dir = os.path.join(root_dir, librispeech.FOLDER_IN_ARCHIVE, librispeech.URL) os.makedirs(dataset_dir, exist_ok=True) sample_rate = 16000 # 16kHz seed = 0 for speaker_id in range(5): speaker_path = os.path.join(dataset_dir, str(speaker_id)) os.makedirs(speaker_path, exist_ok=True) for chapter_id in range(3): chapter_path = os.path.join(speaker_path, str(chapter_id)) os.makedirs(chapter_path, exist_ok=True) trans_content = [] for utterance_id in range(10): filename = f"{speaker_id}-{chapter_id}-{utterance_id:04d}.wav" path = os.path.join(chapter_path, filename) transcript = " ".join([_NUMBERS[x] for x in [speaker_id, chapter_id, utterance_id]]) trans_content.append(f"{speaker_id}-{chapter_id}-{utterance_id:04d} {transcript}") data = get_whitenoise(sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="float32", seed=seed) save_wav(path, data, sample_rate) sample = (normalize_wav(data), sample_rate, transcript, speaker_id, chapter_id, utterance_id) mocked_data.append(sample) seed += 1 trans_filename = f"{speaker_id}-{chapter_id}.trans.txt" trans_path = os.path.join(chapter_path, trans_filename) with open(trans_path, "w") as f: f.write("\n".join(trans_content)) return mocked_data class TestLibriSpeech(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) @classmethod def tearDownClass(cls): # In case of test failure librispeech.LIBRISPEECH._ext_audio = ".flac" def _test_librispeech(self, dataset): num_samples = 0 for i, (data, sample_rate, transcript, speaker_id, chapter_id, utterance_id) in enumerate(dataset): self.assertEqual(data, self.samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.samples[i][1] assert transcript == self.samples[i][2] assert speaker_id == self.samples[i][3] assert chapter_id == self.samples[i][4] assert utterance_id == self.samples[i][5] num_samples += 1 assert num_samples == len(self.samples) librispeech.LIBRISPEECH._ext_audio = ".flac" def test_librispeech_str(self): librispeech.LIBRISPEECH._ext_audio = ".wav" dataset = librispeech.LIBRISPEECH(self.root_dir) self._test_librispeech(dataset) def test_librispeech_path(self): librispeech.LIBRISPEECH._ext_audio = ".wav" dataset = librispeech.LIBRISPEECH(Path(self.root_dir)) self._test_librispeech(dataset)
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmdet.registry import MODELS eps = 1e-6 @MODELS.register_module() class DropBlock(nn.Module): """Randomly drop some regions of feature maps. Please refer to the method proposed in `DropBlock <https://arxiv.org/abs/1810.12890>`_ for details. Args: drop_prob (float): The probability of dropping each block. block_size (int): The size of dropped blocks. warmup_iters (int): The drop probability will linearly increase from `0` to `drop_prob` during the first `warmup_iters` iterations. Default: 2000. """ def __init__(self, drop_prob, block_size, warmup_iters=2000, **kwargs): super(DropBlock, self).__init__() assert block_size % 2 == 1 assert 0 < drop_prob <= 1 assert warmup_iters >= 0 self.drop_prob = drop_prob self.block_size = block_size self.warmup_iters = warmup_iters self.iter_cnt = 0 def forward(self, x): """ Args: x (Tensor): Input feature map on which some areas will be randomly dropped. Returns: Tensor: The tensor after DropBlock layer. """ if not self.training: return x self.iter_cnt += 1 N, C, H, W = list(x.shape) gamma = self._compute_gamma((H, W)) mask_shape = (N, C, H - self.block_size + 1, W - self.block_size + 1) mask = torch.bernoulli(torch.full(mask_shape, gamma, device=x.device)) mask = F.pad(mask, [self.block_size // 2] * 4, value=0) mask = F.max_pool2d( input=mask, stride=(1, 1), kernel_size=(self.block_size, self.block_size), padding=self.block_size // 2) mask = 1 - mask x = x * mask * mask.numel() / (eps + mask.sum()) return x def _compute_gamma(self, feat_size): """Compute the value of gamma according to paper. gamma is the parameter of bernoulli distribution, which controls the number of features to drop. gamma = (drop_prob * fm_area) / (drop_area * keep_area) Args: feat_size (tuple[int, int]): The height and width of feature map. Returns: float: The value of gamma. """ gamma = (self.drop_prob * feat_size[0] * feat_size[1]) gamma /= ((feat_size[0] - self.block_size + 1) * (feat_size[1] - self.block_size + 1)) gamma /= (self.block_size**2) factor = (1.0 if self.iter_cnt > self.warmup_iters else self.iter_cnt / self.warmup_iters) return gamma * factor def extra_repr(self): return (f'drop_prob={self.drop_prob}, block_size={self.block_size}, ' f'warmup_iters={self.warmup_iters}')
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import PLUGIN_LAYERS eps = 1e-6 @PLUGIN_LAYERS.register_module() class DropBlock(nn.Module): """Randomly drop some regions of feature maps. Please refer to the method proposed in `DropBlock <https://arxiv.org/abs/1810.12890>`_ for details. Args: drop_prob (float): The probability of dropping each block. block_size (int): The size of dropped blocks. warmup_iters (int): The drop probability will linearly increase from `0` to `drop_prob` during the first `warmup_iters` iterations. Default: 2000. """ def __init__(self, drop_prob, block_size, warmup_iters=2000, **kwargs): super(DropBlock, self).__init__() assert block_size % 2 == 1 assert 0 < drop_prob <= 1 assert warmup_iters >= 0 self.drop_prob = drop_prob self.block_size = block_size self.warmup_iters = warmup_iters self.iter_cnt = 0 def forward(self, x): """ Args: x (Tensor): Input feature map on which some areas will be randomly dropped. Returns: Tensor: The tensor after DropBlock layer. """ if not self.training: return x self.iter_cnt += 1 N, C, H, W = list(x.shape) gamma = self._compute_gamma((H, W)) mask_shape = (N, C, H - self.block_size + 1, W - self.block_size + 1) mask = torch.bernoulli(torch.full(mask_shape, gamma, device=x.device)) mask = F.pad(mask, [self.block_size // 2] * 4, value=0) mask = F.max_pool2d( input=mask, stride=(1, 1), kernel_size=(self.block_size, self.block_size), padding=self.block_size // 2) mask = 1 - mask x = x * mask * mask.numel() / (eps + mask.sum()) return x def _compute_gamma(self, feat_size): """Compute the value of gamma according to paper. gamma is the parameter of bernoulli distribution, which controls the number of features to drop. gamma = (drop_prob * fm_area) / (drop_area * keep_area) Args: feat_size (tuple[int, int]): The height and width of feature map. Returns: float: The value of gamma. """ gamma = (self.drop_prob * feat_size[0] * feat_size[1]) gamma /= ((feat_size[0] - self.block_size + 1) * (feat_size[1] - self.block_size + 1)) gamma /= (self.block_size**2) factor = (1.0 if self.iter_cnt > self.warmup_iters else self.iter_cnt / self.warmup_iters) return gamma * factor def extra_repr(self): return (f'drop_prob={self.drop_prob}, block_size={self.block_size}, ' f'warmup_iters={self.warmup_iters}')
from typing import Optional import pandas as pd import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDocument): count: Optional[int] text: str class MyDocNested(MyDoc): image: ImageDoc return MyDocNested def test_to_from_pandas_df(nested_doc_cls): da = DocumentArray[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=ImageDoc(url='aux.png'), ), nested_doc_cls(text='hello world', image=ImageDoc()), ] ) df = da.to_pandas() assert isinstance(df, pd.DataFrame) assert len(df) == 2 assert ( df.columns == [ 'id', 'count', 'text', 'image__id', 'image__url', 'image__tensor', 'image__embedding', 'image__bytes_', ] ).all() da_from_df = DocumentArray[nested_doc_cls].from_pandas(df) for doc1, doc2 in zip(da, da_from_df): assert doc1 == doc2 @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[ImageDoc] class Middle(BaseDocument): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[ImageDoc] middle: Optional[Middle] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())) ) return doc def test_from_pandas_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocumentArray.from_pandas(df=df) def test_from_pandas_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocumentArray[nested_doc.__class__].from_pandas(df=df)
from typing import Optional import pandas as pd import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDocument): count: Optional[int] text: str class MyDocNested(MyDoc): image: ImageDoc return MyDocNested def test_to_from_pandas_df(nested_doc_cls): da = DocumentArray[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=ImageDoc(url='aux.png'), ), nested_doc_cls(text='hello world', image=ImageDoc()), ] ) df = da.to_pandas() assert isinstance(df, pd.DataFrame) assert len(df) == 2 assert ( df.columns == [ 'id', 'count', 'text', 'image__id', 'image__url', 'image__tensor', 'image__embedding', 'image__bytes', ] ).all() da_from_df = DocumentArray[nested_doc_cls].from_pandas(df) for doc1, doc2 in zip(da, da_from_df): assert doc1 == doc2 @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[ImageDoc] class Middle(BaseDocument): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[ImageDoc] middle: Optional[Middle] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())) ) return doc def test_from_pandas_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocumentArray.from_pandas(df=df) def test_from_pandas_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocumentArray[nested_doc.__class__].from_pandas(df=df)
from llama_index.llms.azure_openai import AzureOpenAI from llama_index.multi_modal_llms.azure_openai import AzureOpenAIMultiModal def test_embedding_class(): names_of_base_classes = [b.__name__ for b in AzureOpenAIMultiModal.__mro__] assert AzureOpenAI.__name__ in names_of_base_classes def test_init(): m = AzureOpenAIMultiModal(max_tokens=400, engine="fake", api_key="fake") assert m.max_tokens == 400
from llama_index.core.multi_modal_llms.base import MultiModalLLM from llama_index.multi_modal_llms.azure_openai import AzureOpenAIMultiModal def test_embedding_class(): names_of_base_classes = [b.__name__ for b in AzureOpenAIMultiModal.__mro__] assert MultiModalLLM.__name__ in names_of_base_classes def test_init(): m = AzureOpenAIMultiModal(max_new_tokens=400, engine="fake", api_key="fake") assert m.max_new_tokens == 400
# Copyright (c) OpenMMLab. All rights reserved. import warnings import mmcv from mmdet.registry import TRANSFORMS from .compose import Compose @TRANSFORMS.register_module() class MultiScaleFlipAug: """Test-time augmentation with multiple scales and flipping. An example configuration is as followed: .. code-block:: img_scale=[(1333, 400), (1333, 800)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ] After MultiScaleFLipAug with above configuration, the results are wrapped into lists of the same length as followed: .. code-block:: dict( img=[...], img_shape=[...], scale=[(1333, 400), (1333, 400), (1333, 800), (1333, 800)] flip=[False, True, False, True] ... ) Args: transforms (list[dict]): Transforms to apply in each augmentation. img_scale (tuple | list[tuple] | None): Images scales for resizing. scale_factor (float | list[float] | None): Scale factors for resizing. flip (bool): Whether apply flip augmentation. Default: False. flip_direction (str | list[str]): Flip augmentation directions, options are "horizontal", "vertical" and "diagonal". If flip_direction is a list, multiple flip augmentations will be applied. It has no effect when flip == False. Default: "horizontal". """ def __init__(self, transforms, img_scale=None, scale_factor=None, flip=False, flip_direction='horizontal'): self.transforms = Compose(transforms) assert (img_scale is None) ^ (scale_factor is None), ( 'Must have but only one variable can be set') if img_scale is not None: self.img_scale = img_scale if isinstance(img_scale, list) else [img_scale] self.scale_key = 'scale' assert mmcv.is_list_of(self.img_scale, tuple) else: self.img_scale = scale_factor if isinstance( scale_factor, list) else [scale_factor] self.scale_key = 'scale_factor' self.flip = flip self.flip_direction = flip_direction if isinstance( flip_direction, list) else [flip_direction] assert mmcv.is_list_of(self.flip_direction, str) if not self.flip and self.flip_direction != ['horizontal']: warnings.warn( 'flip_direction has no effect when flip is set to False') if (self.flip and not any([t['type'] == 'RandomFlip' for t in transforms])): warnings.warn( 'flip has no effect when RandomFlip is not in transforms') def __call__(self, results): """Call function to apply test time augment transforms on results. Args: results (dict): Result dict contains the data to transform. Returns: dict[str: list]: The augmented data, where each value is wrapped into a list. """ aug_data = [] flip_args = [(False, None)] if self.flip: flip_args += [(True, direction) for direction in self.flip_direction] for scale in self.img_scale: for flip, direction in flip_args: _results = results.copy() _results[self.scale_key] = scale _results['flip'] = flip _results['flip_direction'] = direction data = self.transforms(_results) aug_data.append(data) # list of dict to dict of list aug_data_dict = {key: [] for key in aug_data[0]} for data in aug_data: for key, val in data.items(): aug_data_dict[key].append(val) return aug_data_dict def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(transforms={self.transforms}, ' repr_str += f'img_scale={self.img_scale}, flip={self.flip}, ' repr_str += f'flip_direction={self.flip_direction})' return repr_str
# Copyright (c) OpenMMLab. All rights reserved. import warnings import mmcv from ..builder import PIPELINES from .compose import Compose @PIPELINES.register_module() class MultiScaleFlipAug: """Test-time augmentation with multiple scales and flipping. An example configuration is as followed: .. code-block:: img_scale=[(1333, 400), (1333, 800)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ] After MultiScaleFLipAug with above configuration, the results are wrapped into lists of the same length as followed: .. code-block:: dict( img=[...], img_shape=[...], scale=[(1333, 400), (1333, 400), (1333, 800), (1333, 800)] flip=[False, True, False, True] ... ) Args: transforms (list[dict]): Transforms to apply in each augmentation. img_scale (tuple | list[tuple] | None): Images scales for resizing. scale_factor (float | list[float] | None): Scale factors for resizing. flip (bool): Whether apply flip augmentation. Default: False. flip_direction (str | list[str]): Flip augmentation directions, options are "horizontal", "vertical" and "diagonal". If flip_direction is a list, multiple flip augmentations will be applied. It has no effect when flip == False. Default: "horizontal". """ def __init__(self, transforms, img_scale=None, scale_factor=None, flip=False, flip_direction='horizontal'): self.transforms = Compose(transforms) assert (img_scale is None) ^ (scale_factor is None), ( 'Must have but only one variable can be set') if img_scale is not None: self.img_scale = img_scale if isinstance(img_scale, list) else [img_scale] self.scale_key = 'scale' assert mmcv.is_list_of(self.img_scale, tuple) else: self.img_scale = scale_factor if isinstance( scale_factor, list) else [scale_factor] self.scale_key = 'scale_factor' self.flip = flip self.flip_direction = flip_direction if isinstance( flip_direction, list) else [flip_direction] assert mmcv.is_list_of(self.flip_direction, str) if not self.flip and self.flip_direction != ['horizontal']: warnings.warn( 'flip_direction has no effect when flip is set to False') if (self.flip and not any([t['type'] == 'RandomFlip' for t in transforms])): warnings.warn( 'flip has no effect when RandomFlip is not in transforms') def __call__(self, results): """Call function to apply test time augment transforms on results. Args: results (dict): Result dict contains the data to transform. Returns: dict[str: list]: The augmented data, where each value is wrapped into a list. """ aug_data = [] flip_args = [(False, None)] if self.flip: flip_args += [(True, direction) for direction in self.flip_direction] for scale in self.img_scale: for flip, direction in flip_args: _results = results.copy() _results[self.scale_key] = scale _results['flip'] = flip _results['flip_direction'] = direction data = self.transforms(_results) aug_data.append(data) # list of dict to dict of list aug_data_dict = {key: [] for key in aug_data[0]} for data in aug_data: for key, val in data.items(): aug_data_dict[key].append(val) return aug_data_dict def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(transforms={self.transforms}, ' repr_str += f'img_scale={self.img_scale}, flip={self.flip}, ' repr_str += f'flip_direction={self.flip_direction})' return repr_str
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( type='NASFCOS', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False, eps=0), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=dict( type='NASFCOS_FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs=True, num_outs=5, norm_cfg=dict(type='BN'), conv_cfg=dict(type='DCNv2', deform_groups=2)), bbox_head=dict( type='FCOSHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], norm_cfg=dict(type='GN', num_groups=32), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # dataset settings train_dataloader = dict(batch_size=4, num_workers=2) # optimizer optim_wrapper = dict( optimizer=dict( lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)))
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( type='NASFCOS', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False, eps=0), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=dict( type='NASFCOS_FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs=True, num_outs=5, norm_cfg=dict(type='BN'), conv_cfg=dict(type='DCNv2', deform_groups=2)), bbox_head=dict( type='FCOSHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], norm_cfg=dict(type='GN', num_groups=32), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # dataset settings train_dataloader = dict(batch_size=4, num_workers=2) # optimizer optimizer = dict( lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.))
""" this test check the docstring of all of our public API. It does it by checking the `__all__` of each of our namespace. to add a new namespace you need to * import it * add it to the `SUB_MODULE_TO_CHECK` list """ import pytest from mktestdocs import check_docstring, get_codeblock_members import docarray.data import docarray.documents import docarray.index import docarray.store import docarray.typing from docarray.utils import filter, find, map SUB_MODULE_TO_CHECK = [ docarray, docarray.index, docarray.data, docarray.documents, docarray.store, docarray.typing, find, map, filter, ] def get_obj_to_check(lib): obj_to_check = [] all_test = getattr(lib, '__all__') try: all_test = getattr(lib, '__all_test__') except (AttributeError, ImportError): pass for obj in all_test: obj_to_check.append(getattr(lib, obj)) return obj_to_check obj_to_check = [] for lib in SUB_MODULE_TO_CHECK: obj_to_check.extend(get_obj_to_check(lib)) members = [] for obj in obj_to_check: members.extend(get_codeblock_members(obj)) @pytest.mark.parametrize("obj", members, ids=lambda d: d.__qualname__) def test_member(obj): check_docstring(obj)
""" this test check the docstring of all of our public API. It does it by checking the `__all__` of each of our namespace. to add a new namespace you need to * import it * add it to the `SUB_MODULE_TO_CHECK` list """ import pytest from mktestdocs import check_docstring, get_codeblock_members import docarray.data import docarray.documents import docarray.index import docarray.store import docarray.typing from docarray.utils import filter, find, map from docarray.utils._internal.pydantic import is_pydantic_v2 SUB_MODULE_TO_CHECK = [ docarray, docarray.index, docarray.data, docarray.documents, docarray.store, docarray.typing, find, map, filter, ] def get_obj_to_check(lib): obj_to_check = [] all_test = getattr(lib, '__all__') try: all_test = getattr(lib, '__all_test__') except (AttributeError, ImportError): pass for obj in all_test: obj_to_check.append(getattr(lib, obj)) return obj_to_check obj_to_check = [] for lib in SUB_MODULE_TO_CHECK: obj_to_check.extend(get_obj_to_check(lib)) members = [] for obj in obj_to_check: members.extend(get_codeblock_members(obj)) @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") @pytest.mark.parametrize("obj", members, ids=lambda d: d.__qualname__) def test_member(obj): check_docstring(obj)
# TODO: enable ruff qa on this file when we figure out why it thinks weaviate_client is # redefined at each test that fixture # ruff: noqa import numpy as np import pytest import torch from pydantic import Field from docarray import BaseDoc from docarray.index.backends.weaviate import WeaviateDocumentIndex from docarray.typing import TorchTensor from tests.index.weaviate.fixture_weaviate import ( # noqa: F401 start_storage, weaviate_client, ) pytestmark = [pytest.mark.slow, pytest.mark.index] def test_find_torch(weaviate_client): class TorchDoc(BaseDoc): tens: TorchTensor[10] = Field(dims=10, is_embedding=True) index = WeaviateDocumentIndex[TorchDoc]() index_docs = [ TorchDoc(tens=np.random.rand(10).astype(dtype=np.float32)) for _ in range(10) ] index.index(index_docs) query = index_docs[-1] docs, scores = index.find(query, limit=5) assert len(docs) == 5 assert len(scores) == 5 for doc in docs: assert isinstance(doc.tens, TorchTensor) assert docs[0].id == index_docs[-1].id assert torch.allclose(docs[0].tens, index_docs[-1].tens) @pytest.mark.tensorflow def test_find_tensorflow(): from docarray.typing import TensorFlowTensor class TfDoc(BaseDoc): tens: TensorFlowTensor[10] = Field(dims=10, is_embedding=True) index = WeaviateDocumentIndex[TfDoc]() index_docs = [ TfDoc(tens=np.random.rand(10).astype(dtype=np.float32)) for _ in range(10) ] index.index(index_docs) query = index_docs[-1] docs, scores = index.find(query, limit=5) assert len(docs) == 5 assert len(scores) == 5 for doc in docs: assert isinstance(doc.tens, TensorFlowTensor) assert docs[0].id == index_docs[-1].id assert np.allclose( docs[0].tens.unwrap().numpy(), index_docs[-1].tens.unwrap().numpy() )
# TODO: enable ruff qa on this file when we figure out why it thinks weaviate_client is # redefined at each test that fixture # ruff: noqa import numpy as np import pytest import torch from pydantic import Field from docarray import BaseDoc from docarray.index.backends.weaviate import WeaviateDocumentIndex from docarray.typing import TorchTensor from tests.index.weaviate.fixture_weaviate import ( # noqa: F401 start_storage, weaviate_client, ) pytestmark = [pytest.mark.slow, pytest.mark.index] def test_find_torch(weaviate_client): class TorchDoc(BaseDoc): tens: TorchTensor[10] = Field(dims=10, is_embedding=True) store = WeaviateDocumentIndex[TorchDoc]() index_docs = [ TorchDoc(tens=np.random.rand(10).astype(dtype=np.float32)) for _ in range(10) ] store.index(index_docs) query = index_docs[-1] docs, scores = store.find(query, limit=5) assert len(docs) == 5 assert len(scores) == 5 for doc in docs: assert isinstance(doc.tens, TorchTensor) assert docs[0].id == index_docs[-1].id assert torch.allclose(docs[0].tens, index_docs[-1].tens) @pytest.mark.tensorflow def test_find_tensorflow(): from docarray.typing import TensorFlowTensor class TfDoc(BaseDoc): tens: TensorFlowTensor[10] = Field(dims=10, is_embedding=True) store = WeaviateDocumentIndex[TfDoc]() index_docs = [ TfDoc(tens=np.random.rand(10).astype(dtype=np.float32)) for _ in range(10) ] store.index(index_docs) query = index_docs[-1] docs, scores = store.find(query, limit=5) assert len(docs) == 5 assert len(scores) == 5 for doc in docs: assert isinstance(doc.tens, TensorFlowTensor) assert docs[0].id == index_docs[-1].id assert np.allclose( docs[0].tens.unwrap().numpy(), index_docs[-1].tens.unwrap().numpy() )
import os import numpy as np import pytest import xgboost as xgb from xgboost import testing as tm from xgboost.core import DataSplitMode pytestmark = pytest.mark.skipif( tm.no_arrow()["condition"] or tm.no_pandas()["condition"], reason=tm.no_arrow()["reason"] + " or " + tm.no_pandas()["reason"], ) import pandas as pd import pyarrow as pa import pyarrow.csv as pc class TestArrowTable: def test_arrow_table(self): df = pd.DataFrame( [[0, 1, 2.0, 3.0], [1, 2, 3.0, 4.0]], columns=["a", "b", "c", "d"] ) table = pa.Table.from_pandas(df) dm = xgb.DMatrix(table) assert dm.num_row() == 2 assert dm.num_col() == 4 def test_arrow_table_with_label(self): df = pd.DataFrame([[1, 2.0, 3.0], [2, 3.0, 4.0]], columns=["a", "b", "c"]) table = pa.Table.from_pandas(df) label = np.array([0, 1]) dm = xgb.DMatrix(table) dm.set_label(label) assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([0, 1])) def test_arrow_table_from_np(self): coldata = np.array( [[1.0, 1.0, 0.0, 0.0], [2.0, 0.0, 1.0, 0.0], [3.0, 0.0, 0.0, 1.0]] ) cols = list(map(pa.array, coldata)) table = pa.Table.from_arrays(cols, ["a", "b", "c"]) dm = xgb.DMatrix(table) assert dm.num_row() == 4 assert dm.num_col() == 3 @pytest.mark.parametrize("DMatrixT", [xgb.DMatrix, xgb.QuantileDMatrix]) def test_arrow_train(self, DMatrixT): import pandas as pd rows = 100 X = pd.DataFrame( { "A": np.random.randint(0, 10, size=rows), "B": np.random.randn(rows), "C": np.random.permutation([1, 0] * (rows // 2)), } ) y = pd.Series(np.random.randn(rows)) table = pa.Table.from_pandas(X) dtrain1 = DMatrixT(table) dtrain1.set_label(pa.Table.from_pandas(pd.DataFrame(y))) bst1 = xgb.train({}, dtrain1, num_boost_round=10) preds1 = bst1.predict(DMatrixT(X)) dtrain2 = DMatrixT(X, y) bst2 = xgb.train({}, dtrain2, num_boost_round=10) preds2 = bst2.predict(DMatrixT(X)) np.testing.assert_allclose(preds1, preds2) preds3 = bst2.inplace_predict(table) np.testing.assert_allclose(preds1, preds3) assert bst2.feature_names == ["A", "B", "C"] assert bst2.feature_types == ["int", "float", "int"] def test_arrow_survival(self): data = os.path.join(tm.data_dir(__file__), "veterans_lung_cancer.csv") table = pc.read_csv(data) y_lower_bound = table["Survival_label_lower_bound"] y_upper_bound = table["Survival_label_upper_bound"] X = table.drop(["Survival_label_lower_bound", "Survival_label_upper_bound"]) dtrain = xgb.DMatrix( X, label_lower_bound=y_lower_bound, label_upper_bound=y_upper_bound ) y_np_up = dtrain.get_float_info("label_upper_bound") y_np_low = dtrain.get_float_info("label_lower_bound") np.testing.assert_equal(y_np_up, y_upper_bound.to_pandas().values) np.testing.assert_equal(y_np_low, y_lower_bound.to_pandas().values) @pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows") class TestArrowTableColumnSplit: def test_arrow_table(self): def verify_arrow_table(): df = pd.DataFrame( [[0, 1, 2.0, 3.0], [1, 2, 3.0, 4.0]], columns=["a", "b", "c", "d"] ) table = pa.Table.from_pandas(df) dm = xgb.DMatrix(table, data_split_mode=DataSplitMode.COL) assert dm.num_row() == 2 assert dm.num_col() == 4 * xgb.collective.get_world_size() tm.run_with_rabit(world_size=3, test_fn=verify_arrow_table)
import os import sys import numpy as np import pytest import xgboost as xgb from xgboost import testing as tm from xgboost.core import DataSplitMode pytestmark = pytest.mark.skipif( tm.no_arrow()["condition"] or tm.no_pandas()["condition"], reason=tm.no_arrow()["reason"] + " or " + tm.no_pandas()["reason"], ) import pandas as pd import pyarrow as pa import pyarrow.csv as pc class TestArrowTable: def test_arrow_table(self): df = pd.DataFrame( [[0, 1, 2.0, 3.0], [1, 2, 3.0, 4.0]], columns=["a", "b", "c", "d"] ) table = pa.Table.from_pandas(df) dm = xgb.DMatrix(table) assert dm.num_row() == 2 assert dm.num_col() == 4 def test_arrow_table_with_label(self): df = pd.DataFrame([[1, 2.0, 3.0], [2, 3.0, 4.0]], columns=["a", "b", "c"]) table = pa.Table.from_pandas(df) label = np.array([0, 1]) dm = xgb.DMatrix(table) dm.set_label(label) assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([0, 1])) def test_arrow_table_from_np(self): coldata = np.array( [[1.0, 1.0, 0.0, 0.0], [2.0, 0.0, 1.0, 0.0], [3.0, 0.0, 0.0, 1.0]] ) cols = list(map(pa.array, coldata)) table = pa.Table.from_arrays(cols, ["a", "b", "c"]) dm = xgb.DMatrix(table) assert dm.num_row() == 4 assert dm.num_col() == 3 @pytest.mark.parametrize("DMatrixT", [xgb.DMatrix, xgb.QuantileDMatrix]) def test_arrow_train(self, DMatrixT): import pandas as pd rows = 100 X = pd.DataFrame( { "A": np.random.randint(0, 10, size=rows), "B": np.random.randn(rows), "C": np.random.permutation([1, 0] * (rows // 2)), } ) y = pd.Series(np.random.randn(rows)) table = pa.Table.from_pandas(X) dtrain1 = DMatrixT(table) dtrain1.set_label(pa.Table.from_pandas(pd.DataFrame(y))) bst1 = xgb.train({}, dtrain1, num_boost_round=10) preds1 = bst1.predict(DMatrixT(X)) dtrain2 = DMatrixT(X, y) bst2 = xgb.train({}, dtrain2, num_boost_round=10) preds2 = bst2.predict(DMatrixT(X)) np.testing.assert_allclose(preds1, preds2) preds3 = bst2.inplace_predict(table) np.testing.assert_allclose(preds1, preds3) assert bst2.feature_names == ["A", "B", "C"] assert bst2.feature_types == ["int", "float", "int"] def test_arrow_survival(self): data = os.path.join(tm.data_dir(__file__), "veterans_lung_cancer.csv") table = pc.read_csv(data) y_lower_bound = table["Survival_label_lower_bound"] y_upper_bound = table["Survival_label_upper_bound"] X = table.drop(["Survival_label_lower_bound", "Survival_label_upper_bound"]) dtrain = xgb.DMatrix( X, label_lower_bound=y_lower_bound, label_upper_bound=y_upper_bound ) y_np_up = dtrain.get_float_info("label_upper_bound") y_np_low = dtrain.get_float_info("label_lower_bound") np.testing.assert_equal(y_np_up, y_upper_bound.to_pandas().values) np.testing.assert_equal(y_np_low, y_lower_bound.to_pandas().values) @pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows") class TestArrowTableColumnSplit: def test_arrow_table(self): def verify_arrow_table(): df = pd.DataFrame( [[0, 1, 2.0, 3.0], [1, 2, 3.0, 4.0]], columns=["a", "b", "c", "d"] ) table = pa.Table.from_pandas(df) dm = xgb.DMatrix(table, data_split_mode=DataSplitMode.COL) assert dm.num_row() == 2 assert dm.num_col() == 4 * xgb.collective.get_world_size() tm.run_with_rabit(world_size=3, test_fn=verify_arrow_table)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .two_stage import TwoStageDetector @MODELS.register_module() class FasterRCNN(TwoStageDetector): """Implementation of `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None, img_norm_cfg=None): super(FasterRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg, img_norm_cfg=img_norm_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class FasterRCNN(TwoStageDetector): """Implementation of `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None, img_norm_cfg=None): super(FasterRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg, img_norm_cfg=img_norm_cfg)
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. CT will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_ct_from_file.py path/to/sentences.txt """ import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer import logging from datetime import datetime import gzip import sys import tqdm #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 16 pos_neg_ratio = 8 # batch_size must be devisible by pos_neg_ratio num_epochs = 1 max_seq_length = 75 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_ct{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("Train sentences: {}".format(len(train_sentences))) # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader( train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio ) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. CT will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_ct_from_file.py path/to/sentences.txt """ import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer import logging from datetime import datetime import gzip import sys import tqdm #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 16 pos_neg_ratio = 8 # batch_size must be devisible by pos_neg_ratio num_epochs = 1 max_seq_length = 75 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_ct{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("Train sentences: {}".format(len(train_sentences))) # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader( train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio ) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )
import numpy as np from keras.src.api_export import keras_export @keras_export( [ "keras.utils.pad_sequences", "keras.preprocessing.sequence.pad_sequences", ] ) def pad_sequences( sequences, maxlen=None, dtype="int32", padding="pre", truncating="pre", value=0.0, ): """Pads sequences to the same length. This function transforms a list (of length `num_samples`) of sequences (lists of integers) into a 2D NumPy array of shape `(num_samples, num_timesteps)`. `num_timesteps` is either the `maxlen` argument if provided, or the length of the longest sequence in the list. Sequences that are shorter than `num_timesteps` are padded with `value` until they are `num_timesteps` long. Sequences longer than `num_timesteps` are truncated so that they fit the desired length. The position where padding or truncation happens is determined by the arguments `padding` and `truncating`, respectively. Pre-padding or removing values from the beginning of the sequence is the default. >>> sequence = [[1], [2, 3], [4, 5, 6]] >>> keras.utils.pad_sequences(sequence) array([[0, 0, 1], [0, 2, 3], [4, 5, 6]], dtype=int32) >>> keras.utils.pad_sequences(sequence, value=-1) array([[-1, -1, 1], [-1, 2, 3], [ 4, 5, 6]], dtype=int32) >>> keras.utils.pad_sequences(sequence, padding='post') array([[1, 0, 0], [2, 3, 0], [4, 5, 6]], dtype=int32) >>> keras.utils.pad_sequences(sequence, maxlen=2) array([[0, 1], [2, 3], [5, 6]], dtype=int32) Args: sequences: List of sequences (each sequence is a list of integers). maxlen: Optional Int, maximum length of all sequences. If not provided, sequences will be padded to the length of the longest individual sequence. dtype: (Optional, defaults to `"int32"`). Type of the output sequences. To pad sequences with variable length strings, you can use `object`. padding: String, "pre" or "post" (optional, defaults to `"pre"`): pad either before or after each sequence. truncating: String, "pre" or "post" (optional, defaults to `"pre"`): remove values from sequences larger than `maxlen`, either at the beginning or at the end of the sequences. value: Float or String, padding value. (Optional, defaults to `0.`) Returns: NumPy array with shape `(len(sequences), maxlen)` """ if not hasattr(sequences, "__len__"): raise ValueError("`sequences` must be iterable.") num_samples = len(sequences) lengths = [] sample_shape = () flag = True # take the sample shape from the first non empty sequence # checking for consistency in the main loop below. for x in sequences: try: lengths.append(len(x)) if flag and len(x): sample_shape = np.asarray(x).shape[1:] flag = False except TypeError as e: raise ValueError( "`sequences` must be a list of iterables. " f"Found non-iterable: {str(x)}" ) from e if maxlen is None: maxlen = np.max(lengths) is_dtype_str = np.issubdtype(dtype, np.str_) or np.issubdtype( dtype, np.unicode_ ) if isinstance(value, str) and dtype != object and not is_dtype_str: raise ValueError( f"`dtype` {dtype} is not compatible with `value`'s type: " f"{type(value)}\nYou should set `dtype=object` for variable length " "strings." ) x = np.full((num_samples, maxlen) + sample_shape, value, dtype=dtype) for idx, s in enumerate(sequences): if not len(s): continue # empty list/array was found if truncating == "pre": trunc = s[-maxlen:] elif truncating == "post": trunc = s[:maxlen] else: raise ValueError(f'Truncating type "{truncating}" not understood') # check `trunc` has expected shape trunc = np.asarray(trunc, dtype=dtype) if trunc.shape[1:] != sample_shape: raise ValueError( f"Shape of sample {trunc.shape[1:]} of sequence at " f"position {idx} is different from expected shape " f"{sample_shape}" ) if padding == "post": x[idx, : len(trunc)] = trunc elif padding == "pre": x[idx, -len(trunc) :] = trunc else: raise ValueError(f'Padding type "{padding}" not understood') return x
import numpy as np from keras.src.api_export import keras_export @keras_export( [ "keras.utils.pad_sequences", "keras.preprocessing.sequence.pad_sequences", ] ) def pad_sequences( sequences, maxlen=None, dtype="int32", padding="pre", truncating="pre", value=0.0, ): """Pads sequences to the same length. This function transforms a list (of length `num_samples`) of sequences (lists of integers) into a 2D NumPy array of shape `(num_samples, num_timesteps)`. `num_timesteps` is either the `maxlen` argument if provided, or the length of the longest sequence in the list. Sequences that are shorter than `num_timesteps` are padded with `value` until they are `num_timesteps` long. Sequences longer than `num_timesteps` are truncated so that they fit the desired length. The position where padding or truncation happens is determined by the arguments `padding` and `truncating`, respectively. Pre-padding or removing values from the beginning of the sequence is the default. >>> sequence = [[1], [2, 3], [4, 5, 6]] >>> keras.utils.pad_sequences(sequence) array([[0, 0, 1], [0, 2, 3], [4, 5, 6]], dtype=int32) >>> keras.utils.pad_sequences(sequence, value=-1) array([[-1, -1, 1], [-1, 2, 3], [ 4, 5, 6]], dtype=int32) >>> keras.utils.pad_sequences(sequence, padding='post') array([[1, 0, 0], [2, 3, 0], [4, 5, 6]], dtype=int32) >>> keras.utils.pad_sequences(sequence, maxlen=2) array([[0, 1], [2, 3], [5, 6]], dtype=int32) Args: sequences: List of sequences (each sequence is a list of integers). maxlen: Optional Int, maximum length of all sequences. If not provided, sequences will be padded to the length of the longest individual sequence. dtype: (Optional, defaults to `"int32"`). Type of the output sequences. To pad sequences with variable length strings, you can use `object`. padding: String, "pre" or "post" (optional, defaults to `"pre"`): pad either before or after each sequence. truncating: String, "pre" or "post" (optional, defaults to `"pre"`): remove values from sequences larger than `maxlen`, either at the beginning or at the end of the sequences. value: Float or String, padding value. (Optional, defaults to 0.) Returns: NumPy array with shape `(len(sequences), maxlen)` """ if not hasattr(sequences, "__len__"): raise ValueError("`sequences` must be iterable.") num_samples = len(sequences) lengths = [] sample_shape = () flag = True # take the sample shape from the first non empty sequence # checking for consistency in the main loop below. for x in sequences: try: lengths.append(len(x)) if flag and len(x): sample_shape = np.asarray(x).shape[1:] flag = False except TypeError as e: raise ValueError( "`sequences` must be a list of iterables. " f"Found non-iterable: {str(x)}" ) from e if maxlen is None: maxlen = np.max(lengths) is_dtype_str = np.issubdtype(dtype, np.str_) or np.issubdtype( dtype, np.unicode_ ) if isinstance(value, str) and dtype != object and not is_dtype_str: raise ValueError( f"`dtype` {dtype} is not compatible with `value`'s type: " f"{type(value)}\nYou should set `dtype=object` for variable length " "strings." ) x = np.full((num_samples, maxlen) + sample_shape, value, dtype=dtype) for idx, s in enumerate(sequences): if not len(s): continue # empty list/array was found if truncating == "pre": trunc = s[-maxlen:] elif truncating == "post": trunc = s[:maxlen] else: raise ValueError(f'Truncating type "{truncating}" not understood') # check `trunc` has expected shape trunc = np.asarray(trunc, dtype=dtype) if trunc.shape[1:] != sample_shape: raise ValueError( f"Shape of sample {trunc.shape[1:]} of sequence at " f"position {idx} is different from expected shape " f"{sample_shape}" ) if padding == "post": x[idx, : len(trunc)] = trunc elif padding == "pre": x[idx, -len(trunc) :] = trunc else: raise ValueError(f'Padding type "{padding}" not understood') return x
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from typing import Any, Optional, Tuple, Type from docarray.typing.tensor.abstract_tensor import AbstractTensor class EmbeddingMixin(AbstractTensor, ABC): alternative_type: Optional[Type] = None @classmethod def __docarray_validate_getitem__(cls, item: Any) -> Tuple[int]: shape = super().__docarray_validate_getitem__(item) if len(shape) > 1: error_msg = f'`{cls}` can only have a single dimension/axis.' if cls.alternative_type: error_msg += f' Consider using {cls.alternative_type} instead.' raise ValueError(error_msg) return shape
from abc import ABC from typing import Any, Optional, Tuple, Type from docarray.typing.tensor.abstract_tensor import AbstractTensor class EmbeddingMixin(AbstractTensor, ABC): alternative_type: Optional[Type] = None @classmethod def __docarray_validate_getitem__(cls, item: Any) -> Tuple[int]: shape = super().__docarray_validate_getitem__(item) if len(shape) > 1: error_msg = f'`{cls}` can only have a single dimension/axis.' if cls.alternative_type: error_msg += f' Consider using {cls.alternative_type} instead.' raise ValueError(error_msg) return shape
from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SparseCachedMultipleNegativesRankingLoss(model, mini_batch_size=64) trainer = SparseEncoderTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() # TODO: Investigate if it's working with a test
from datasets import Dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseCachedMultipleNegativesRankingLoss, SparseEncoder, SparseEncoderTrainer, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create a small toy dataset train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) # Initialize the sparse loss with caching loss = SparseCachedMultipleNegativesRankingLoss(model, mini_batch_size=64) # Create the trainer trainer = SparseEncoderTrainer( model=model, train_dataset=train_dataset, loss=loss, ) # Train the model trainer.train()
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.models import build_detector from mmdet.structures import DetDataSample from mmdet.testing import get_detector_cfg from mmdet.utils import register_all_modules class TestDINO(TestCase): def setUp(self): register_all_modules() def test_dino_head_loss(self): """Tests transformer head loss when truth is empty and non-empty.""" s = 256 metainfo = { 'img_shape': (s, s), 'scale_factor': (1, 1), 'pad_shape': (s, s), 'batch_input_shape': (s, s) } data_sample = DetDataSample() data_sample.set_metainfo(metainfo) configs = [get_detector_cfg('dino/dino-4scale_r50_8xb2-12e_coco.py')] for config in configs: model = build_detector(config) model.init_weights() random_image = torch.rand(1, 3, s, s) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) data_sample.gt_instances = gt_instances batch_data_samples_1 = [data_sample] empty_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples_1) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. for key, loss in empty_gt_losses.items(): _loss = loss.item() if 'bbox' in key or 'iou' in key or 'dn' in key: self.assertEqual( _loss, 0, f'there should be no {key}({_loss}) ' f'when no ground true boxes') elif 'cls' in key: self.assertGreater(_loss, 0, f'{key}({_loss}) should be non-zero') # When truth is non-empty then both cls and box loss should # be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) data_sample.gt_instances = gt_instances batch_data_samples_2 = [data_sample] one_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples_2) for loss in one_gt_losses.values(): self.assertGreater( loss.item(), 0, 'cls loss, or box loss, or iou loss should be non-zero') model.eval() # test _forward model._forward( random_image, batch_data_samples=batch_data_samples_2) # test only predict model.predict( random_image, batch_data_samples=batch_data_samples_2, rescale=True)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.models import build_detector from mmdet.structures import DetDataSample from mmdet.testing import get_detector_cfg from mmdet.utils import register_all_modules class TestDINO(TestCase): def setUp(self): register_all_modules() def test_dino_head_loss(self): """Tests transformer head loss when truth is empty and non-empty.""" s = 256 metainfo = { 'img_shape': (s, s), 'scale_factor': (1, 1), 'pad_shape': (s, s), 'batch_input_shape': (s, s) } data_sample = DetDataSample() data_sample.set_metainfo(metainfo) configs = [get_detector_cfg('dino/dino_4scale_r50_8xb2-12e_coco.py')] for config in configs: model = build_detector(config) model.init_weights() random_image = torch.rand(1, 3, s, s) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) data_sample.gt_instances = gt_instances batch_data_samples_1 = [data_sample] empty_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples_1) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. for key, loss in empty_gt_losses.items(): _loss = loss.item() if 'bbox' in key or 'iou' in key or 'dn' in key: self.assertEqual( _loss, 0, f'there should be no {key}({_loss}) ' f'when no ground true boxes') elif 'cls' in key: self.assertGreater(_loss, 0, f'{key}({_loss}) should be non-zero') # When truth is non-empty then both cls and box loss should # be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) data_sample.gt_instances = gt_instances batch_data_samples_2 = [data_sample] one_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples_2) for loss in one_gt_losses.values(): self.assertGreater( loss.item(), 0, 'cls loss, or box loss, or iou loss should be non-zero') model.eval() # test _forward model._forward( random_image, batch_data_samples=batch_data_samples_2) # test only predict model.predict( random_image, batch_data_samples=batch_data_samples_2, rescale=True)
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. CT will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_ct_from_file.py path/to/sentences.txt """ import gzip import logging import math import sys from datetime import datetime import tqdm from sentence_transformers import LoggingHandler, SentenceTransformer, losses, models #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 16 pos_neg_ratio = 8 # batch_size must be devisible by pos_neg_ratio num_epochs = 1 max_seq_length = 75 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print(f"Run this script with: python {sys.argv[0]} path/to/sentences.txt") exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_ct{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Hugging Face/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info(f"Train sentences: {len(train_sentences)}") # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader( train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio ) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. CT will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_ct_from_file.py path/to/sentences.txt """ import gzip import logging import math import sys from datetime import datetime import tqdm from sentence_transformers import LoggingHandler, SentenceTransformer, losses, models #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 16 pos_neg_ratio = 8 # batch_size must be devisible by pos_neg_ratio num_epochs = 1 max_seq_length = 75 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print(f"Run this script with: python {sys.argv[0]} path/to/sentences.txt") exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_ct{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info(f"Train sentences: {len(train_sentences)}") # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader( train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio ) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy
""" ========================================== Feature importances with a forest of trees ========================================== This example shows the use of a forest of trees to evaluate the importance of features on an artificial classification task. The blue bars are the feature importances of the forest, along with their inter-trees variability represented by the error bars. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt # %% # Data generation and model fitting # --------------------------------- # We generate a synthetic dataset with only 3 informative features. We will # explicitly not shuffle the dataset to ensure that the informative features # will correspond to the three first columns of X. In addition, we will split # our dataset into training and testing subsets. from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split X, y = make_classification( n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False, ) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42) # %% # A random forest classifier will be fitted to compute the feature importances. from sklearn.ensemble import RandomForestClassifier feature_names = [f"feature {i}" for i in range(X.shape[1])] forest = RandomForestClassifier(random_state=0) forest.fit(X_train, y_train) # %% # Feature importance based on mean decrease in impurity # ----------------------------------------------------- # Feature importances are provided by the fitted attribute # `feature_importances_` and they are computed as the mean and standard # deviation of accumulation of the impurity decrease within each tree. # # .. warning:: # Impurity-based feature importances can be misleading for **high # cardinality** features (many unique values). See # :ref:`permutation_importance` as an alternative below. import time import numpy as np start_time = time.time() importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) elapsed_time = time.time() - start_time print(f"Elapsed time to compute the importances: {elapsed_time:.3f} seconds") # %% # Let's plot the impurity-based importance. import pandas as pd forest_importances = pd.Series(importances, index=feature_names) fig, ax = plt.subplots() forest_importances.plot.bar(yerr=std, ax=ax) ax.set_title("Feature importances using MDI") ax.set_ylabel("Mean decrease in impurity") fig.tight_layout() # %% # We observe that, as expected, the three first features are found important. # # Feature importance based on feature permutation # ----------------------------------------------- # Permutation feature importance overcomes limitations of the impurity-based # feature importance: they do not have a bias toward high-cardinality features # and can be computed on a left-out test set. from sklearn.inspection import permutation_importance start_time = time.time() result = permutation_importance( forest, X_test, y_test, n_repeats=10, random_state=42, n_jobs=2 ) elapsed_time = time.time() - start_time print(f"Elapsed time to compute the importances: {elapsed_time:.3f} seconds") forest_importances = pd.Series(result.importances_mean, index=feature_names) # %% # The computation for full permutation importance is more costly. Each feature is # shuffled n times and the model is used to make predictions on the permuted data to see # the drop in performance. Please see :ref:`permutation_importance` for more details. # We can now plot the importance ranking. fig, ax = plt.subplots() forest_importances.plot.bar(yerr=result.importances_std, ax=ax) ax.set_title("Feature importances using permutation on full model") ax.set_ylabel("Mean accuracy decrease") fig.tight_layout() plt.show() # %% # The same features are detected as most important using both methods. Although # the relative importances vary. As seen on the plots, MDI is less likely than # permutation importance to fully omit a feature.
""" ========================================== Feature importances with a forest of trees ========================================== This example shows the use of a forest of trees to evaluate the importance of features on an artificial classification task. The blue bars are the feature importances of the forest, along with their inter-trees variability represented by the error bars. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt # %% # Data generation and model fitting # --------------------------------- # We generate a synthetic dataset with only 3 informative features. We will # explicitly not shuffle the dataset to ensure that the informative features # will correspond to the three first columns of X. In addition, we will split # our dataset into training and testing subsets. from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split X, y = make_classification( n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False, ) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42) # %% # A random forest classifier will be fitted to compute the feature importances. from sklearn.ensemble import RandomForestClassifier feature_names = [f"feature {i}" for i in range(X.shape[1])] forest = RandomForestClassifier(random_state=0) forest.fit(X_train, y_train) # %% # Feature importance based on mean decrease in impurity # ----------------------------------------------------- # Feature importances are provided by the fitted attribute # `feature_importances_` and they are computed as the mean and standard # deviation of accumulation of the impurity decrease within each tree. # # .. warning:: # Impurity-based feature importances can be misleading for **high # cardinality** features (many unique values). See # :ref:`permutation_importance` as an alternative below. import time import numpy as np start_time = time.time() importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) elapsed_time = time.time() - start_time print(f"Elapsed time to compute the importances: {elapsed_time:.3f} seconds") # %% # Let's plot the impurity-based importance. import pandas as pd forest_importances = pd.Series(importances, index=feature_names) fig, ax = plt.subplots() forest_importances.plot.bar(yerr=std, ax=ax) ax.set_title("Feature importances using MDI") ax.set_ylabel("Mean decrease in impurity") fig.tight_layout() # %% # We observe that, as expected, the three first features are found important. # # Feature importance based on feature permutation # ----------------------------------------------- # Permutation feature importance overcomes limitations of the impurity-based # feature importance: they do not have a bias toward high-cardinality features # and can be computed on a left-out test set. from sklearn.inspection import permutation_importance start_time = time.time() result = permutation_importance( forest, X_test, y_test, n_repeats=10, random_state=42, n_jobs=2 ) elapsed_time = time.time() - start_time print(f"Elapsed time to compute the importances: {elapsed_time:.3f} seconds") forest_importances = pd.Series(result.importances_mean, index=feature_names) # %% # The computation for full permutation importance is more costly. Features are # shuffled n times and the model refitted to estimate the importance of it. # Please see :ref:`permutation_importance` for more details. We can now plot # the importance ranking. fig, ax = plt.subplots() forest_importances.plot.bar(yerr=result.importances_std, ax=ax) ax.set_title("Feature importances using permutation on full model") ax.set_ylabel("Mean accuracy decrease") fig.tight_layout() plt.show() # %% # The same features are detected as most important using both methods. Although # the relative importances vary. As seen on the plots, MDI is less likely than # permutation importance to fully omit a feature.
import os import pytest import torch import whisper from whisper.tokenizer import get_tokenizer @pytest.mark.parametrize("model_name", whisper.available_models()) def test_transcribe(model_name: str): device = "cuda" if torch.cuda.is_available() else "cpu" model = whisper.load_model(model_name).to(device) audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac") language = "en" if model_name.endswith(".en") else None result = model.transcribe( audio_path, language=language, temperature=0.0, word_timestamps=True ) assert result["language"] == "en" assert result["text"] == "".join([s["text"] for s in result["segments"]]) transcription = result["text"].lower() assert "my fellow americans" in transcription assert "your country" in transcription assert "do for you" in transcription tokenizer = get_tokenizer(model.is_multilingual) all_tokens = [t for s in result["segments"] for t in s["tokens"]] assert tokenizer.decode(all_tokens) == result["text"] assert tokenizer.decode_with_timestamps(all_tokens).startswith("<|0.00|>") timing_checked = False for segment in result["segments"]: for timing in segment["words"]: assert timing["start"] < timing["end"] if timing["word"].strip(" ,") == "Americans": assert timing["start"] <= 1.8 assert timing["end"] >= 1.8 timing_checked = True assert timing_checked
import os import pytest import torch import whisper @pytest.mark.parametrize("model_name", whisper.available_models()) def test_transcribe(model_name: str): device = "cuda" if torch.cuda.is_available() else "cpu" model = whisper.load_model(model_name).to(device) audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac") language = "en" if model_name.endswith(".en") else None result = model.transcribe( audio_path, language=language, temperature=0.0, word_timestamps=True ) assert result["language"] == "en" assert result["text"] == "".join([s["text"] for s in result["segments"]]) transcription = result["text"].lower() assert "my fellow americans" in transcription assert "your country" in transcription assert "do for you" in transcription timing_checked = False for segment in result["segments"]: for timing in segment["words"]: assert timing["start"] < timing["end"] if timing["word"].strip(" ,") == "Americans": assert timing["start"] <= 1.8 assert timing["end"] >= 1.8 print(timing) timing_checked = True assert timing_checked
import argparse from jina.enums import GatewayProtocolType from jina.helper import parse_host_scheme from jina.logging.predefined import default_logger class NetworkChecker: """Check if a BaseDeployment is running or not.""" def __init__(self, args: 'argparse.Namespace'): """ Create a new :class:`NetworkChecker`. :param args: args provided by the CLI. """ import time from jina import Client from jina.logging.profile import TimeContext from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime try: total_time = 0 total_success = 0 for j in range(args.attempts): with TimeContext( f'ping {args.target} on {args.host} at {j} round', default_logger ) as tc: if args.target == 'executor': hostname, port, protocol, _ = parse_host_scheme(args.host) r = WorkerRuntime.is_ready(ctrl_address=f'{hostname}:{port}') elif args.target == 'gateway': hostname, port, protocol, _ = parse_host_scheme(args.host) r = GatewayRuntime.is_ready( f'{hostname}:{port}', protocol=GatewayProtocolType.from_string(protocol) ) elif args.target == 'flow': r = Client(host=args.host).is_flow_ready(timeout=args.timeout / 1000) if not r: default_logger.warning( 'not responding, attempt (%d/%d) in 1s' % (j + 1, args.attempts) ) else: total_success += 1 total_time += tc.duration if args.attempts > 0: time.sleep(1) if total_success < args.attempts: default_logger.debug( 'message lost %.0f%% (%d/%d) ' % ( (1 - total_success / args.attempts) * 100, args.attempts - total_success, args.attempts, ) ) if total_success > 0: default_logger.debug( 'avg. latency: %.0f ms' % (total_time / total_success * 1000) ) if total_success >= args.min_successful_attempts: default_logger.debug( f'readiness check succeeded {total_success} times!!!' ) exit(0) else: default_logger.debug( f'readiness check succeeded {total_success} times, less than {args.min_successful_attempts}' ) except KeyboardInterrupt: pass # returns 1 (anomaly) when it comes to here exit(1)
import argparse from jina.enums import GatewayProtocolType from jina.helper import parse_host_scheme from jina.logging.predefined import default_logger class NetworkChecker: """Check if a BaseDeployment is running or not.""" def __init__(self, args: 'argparse.Namespace'): """ Create a new :class:`NetworkChecker`. :param args: args provided by the CLI. """ import time from jina import Client from jina.logging.profile import TimeContext from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime try: total_time = 0 total_success = 0 for j in range(args.attempts): with TimeContext( f'ping {args.target} on {args.host} at {j} round', default_logger ) as tc: if args.target == 'executor': hostname, port, protocol, _ = parse_host_scheme(args.host) r = WorkerRuntime.is_ready(f'{hostname}:{port}') elif args.target == 'gateway': hostname, port, protocol, _ = parse_host_scheme(args.host) r = GatewayRuntime.is_ready( f'{hostname}:{port}', protocol=GatewayProtocolType.from_string(protocol), ) elif args.target == 'flow': r = Client(host=args.host).is_flow_ready(timeout=args.timeout) if not r: default_logger.warning( 'not responding, attempt (%d/%d) in 1s' % (j + 1, args.attempts) ) else: total_success += 1 total_time += tc.duration if args.attempts > 0: time.sleep(1) if total_success < args.attempts: default_logger.debug( 'message lost %.0f%% (%d/%d) ' % ( (1 - total_success / args.attempts) * 100, args.attempts - total_success, args.attempts, ) ) if total_success > 0: default_logger.debug( 'avg. latency: %.0f ms' % (total_time / total_success * 1000) ) if total_success >= args.min_successful_attempts: default_logger.debug( f'readiness check succeeded {total_success} times!!!' ) exit(0) else: default_logger.debug( f'readiness check succeeded {total_success} times, less than {args.min_successful_attempts}' ) except KeyboardInterrupt: pass # returns 1 (anomaly) when it comes to here exit(1)
from enum import Enum # --8<-- [start:ProviderName] class ProviderName(str, Enum): ANTHROPIC = "anthropic" COMPASS = "compass" DISCORD = "discord" D_ID = "d_id" E2B = "e2b" EXA = "exa" FAL = "fal" GITHUB = "github" GOOGLE = "google" GOOGLE_MAPS = "google_maps" GROQ = "groq" HUBSPOT = "hubspot" IDEOGRAM = "ideogram" JINA = "jina" LINEAR = "linear" MEDIUM = "medium" MEM0 = "mem0" NOTION = "notion" NVIDIA = "nvidia" OLLAMA = "ollama" OPENAI = "openai" OPENWEATHERMAP = "openweathermap" OPEN_ROUTER = "open_router" PINECONE = "pinecone" REDDIT = "reddit" REPLICATE = "replicate" REVID = "revid" SCREENSHOTONE = "screenshotone" SLANT3D = "slant3d" SMTP = "smtp" TWITTER = "twitter" TODOIST = "todoist" UNREAL_SPEECH = "unreal_speech" # --8<-- [end:ProviderName]
from enum import Enum # --8<-- [start:ProviderName] class ProviderName(str, Enum): ANTHROPIC = "anthropic" COMPASS = "compass" DISCORD = "discord" D_ID = "d_id" E2B = "e2b" EXA = "exa" FAL = "fal" GITHUB = "github" GOOGLE = "google" GOOGLE_MAPS = "google_maps" GROQ = "groq" HUBSPOT = "hubspot" IDEOGRAM = "ideogram" JINA = "jina" LINEAR = "linear" MEDIUM = "medium" MEM0 = "mem0" NOTION = "notion" NVIDIA = "nvidia" OLLAMA = "ollama" OPENAI = "openai" OPENWEATHERMAP = "openweathermap" OPEN_ROUTER = "open_router" PINECONE = "pinecone" REDDIT = "reddit" REPLICATE = "replicate" REVID = "revid" SLANT3D = "slant3d" SMTP = "smtp" TWITTER = "twitter" TODOIST = "todoist" UNREAL_SPEECH = "unreal_speech" # --8<-- [end:ProviderName]
import pytest from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.output_parsers.react_single_input import ( ReActSingleInputOutputParser, ) def test_action() -> None: """Test standard parsing of action/action input.""" parser = ReActSingleInputOutputParser() _input = """Thought: agent thought here Action: search Action Input: what is the temperature in SF?""" output = parser.invoke(_input) expected_output = AgentAction( tool="search", tool_input="what is the temperature in SF?", log=_input, ) assert output == expected_output def test_finish() -> None: """Test standard parsing of agent finish.""" parser = ReActSingleInputOutputParser() _input = """Thought: agent thought here Final Answer: The temperature is 100""" output = parser.invoke(_input) expected_output = AgentFinish( return_values={"output": "The temperature is 100"}, log=_input, ) assert output == expected_output def test_action_with_finish() -> None: """Test that if final thought is in action/action input, error is raised.""" parser = ReActSingleInputOutputParser() _input = """Thought: agent thought here Action: search Final Answer: Action Input: what is the temperature in SF?""" with pytest.raises(OutputParserException): parser.invoke(_input)
import pytest from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.output_parsers.react_single_input import ( ReActSingleInputOutputParser, ) def test_action() -> None: """Test standard parsing of action/action input.""" parser = ReActSingleInputOutputParser() _input = """Thought: agent thought here Action: search Action Input: what is the temperature in SF?""" output = parser.invoke(_input) expected_output = AgentAction( tool="search", tool_input="what is the temperature in SF?", log=_input ) assert output == expected_output def test_finish() -> None: """Test standard parsing of agent finish.""" parser = ReActSingleInputOutputParser() _input = """Thought: agent thought here Final Answer: The temperature is 100""" output = parser.invoke(_input) expected_output = AgentFinish( return_values={"output": "The temperature is 100"}, log=_input ) assert output == expected_output def test_action_with_finish() -> None: """Test that if final thought is in action/action input, error is raised.""" parser = ReActSingleInputOutputParser() _input = """Thought: agent thought here Action: search Final Answer: Action Input: what is the temperature in SF?""" with pytest.raises(OutputParserException): parser.invoke(_input)
from typing import TYPE_CHECKING, Type, TypeVar from pydantic import AnyUrl as BaseAnyUrl from pydantic import errors, parse_obj_as from docarray.proto import NodeProto from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic.networks import Parts T = TypeVar('T', bound='AnyUrl') class AnyUrl(BaseAnyUrl, AbstractType): host_required = ( False # turn off host requirement to allow passing of local paths as URL ) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(any_url=str(self)) @classmethod def validate_parts(cls, parts: 'Parts', validate_port: bool = True) -> 'Parts': """ A method used to validate parts of a URL. Our URLs should be able to function both in local and remote settings. Therefore, we allow missing `scheme`, making it possible to pass a file path. """ scheme = parts['scheme'] if scheme is None: pass # allow missing scheme, unlike pydantic elif cls.allowed_schemes and scheme.lower() not in cls.allowed_schemes: raise errors.UrlSchemePermittedError(set(cls.allowed_schemes)) if validate_port: cls._validate_port(parts['port']) user = parts['user'] if cls.user_required and user is None: raise errors.UrlUserInfoError() return parts @classmethod def from_protobuf(cls: Type[T], pb_msg: 'str') -> T: """ read url from a proto msg :param pb_msg: :return: url """ return parse_obj_as(cls, pb_msg)
from typing import TYPE_CHECKING, Type, TypeVar from pydantic import AnyUrl as BaseAnyUrl from pydantic import errors, parse_obj_as from docarray.document.base_node import BaseNode from docarray.proto import NodeProto if TYPE_CHECKING: from pydantic.networks import Parts T = TypeVar('T', bound='AnyUrl') class AnyUrl(BaseAnyUrl, BaseNode): host_required = ( False # turn off host requirement to allow passing of local paths as URL ) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(any_url=str(self)) @classmethod def validate_parts(cls, parts: 'Parts', validate_port: bool = True) -> 'Parts': """ A method used to validate parts of a URL. Our URLs should be able to function both in local and remote settings. Therefore, we allow missing `scheme`, making it possible to pass a file path. """ scheme = parts['scheme'] if scheme is None: pass # allow missing scheme, unlike pydantic elif cls.allowed_schemes and scheme.lower() not in cls.allowed_schemes: raise errors.UrlSchemePermittedError(set(cls.allowed_schemes)) if validate_port: cls._validate_port(parts['port']) user = parts['user'] if cls.user_required and user is None: raise errors.UrlUserInfoError() return parts @classmethod def from_protobuf(cls: Type[T], pb_msg: 'str') -> T: """ read url from a proto msg :param pb_msg: :return: url """ return parse_obj_as(cls, pb_msg)
import logging from typing import Annotated from autogpt_libs.auth.middleware import APIKeyValidator from fastapi import APIRouter, Body, Depends, HTTPException, Query from fastapi.responses import JSONResponse from backend.data.user import ( get_user_by_email, set_user_email_verification, unsubscribe_user_by_token, ) from backend.server.routers.postmark.models import ( PostmarkBounceEnum, PostmarkBounceWebhook, PostmarkClickWebhook, PostmarkDeliveryWebhook, PostmarkOpenWebhook, PostmarkSpamComplaintWebhook, PostmarkSubscriptionChangeWebhook, PostmarkWebhook, ) from backend.util.settings import Settings settings = Settings() postmark_validator = APIKeyValidator( "X-Postmark-Webhook-Token", settings.secrets.postmark_webhook_token, ) router = APIRouter() logger = logging.getLogger(__name__) @router.post("/unsubscribe") async def unsubscribe_via_one_click(token: Annotated[str, Query()]): logger.info(f"Received unsubscribe request from One Click Unsubscribe: {token}") try: await unsubscribe_user_by_token(token) except Exception as e: logger.exception("Unsubscribe token %s failed: %s", token, e) raise HTTPException( status_code=500, detail={"message": str(e), "hint": "Verify Postmark token settings."}, ) return JSONResponse(status_code=200, content={"status": "ok"}) @router.post("/", dependencies=[Depends(postmark_validator.get_dependency())]) async def postmark_webhook_handler( webhook: Annotated[ PostmarkWebhook, Body(discriminator="RecordType"), ] ): logger.info(f"Received webhook from Postmark: {webhook}") match webhook: case PostmarkDeliveryWebhook(): delivery_handler(webhook) case PostmarkBounceWebhook(): await bounce_handler(webhook) case PostmarkSpamComplaintWebhook(): spam_handler(webhook) case PostmarkOpenWebhook(): open_handler(webhook) case PostmarkClickWebhook(): click_handler(webhook) case PostmarkSubscriptionChangeWebhook(): subscription_handler(webhook) case _: logger.warning( "Unhandled Postmark webhook type %s. Update handler mappings.", type(webhook), ) return async def bounce_handler(event: PostmarkBounceWebhook): logger.info(f"Bounce handler {event=}") if event.TypeCode in [ PostmarkBounceEnum.Transient, PostmarkBounceEnum.SoftBounce, PostmarkBounceEnum.DnsError, ]: logger.info( f"Softish bounce: {event.TypeCode} for {event.Email}, not setting email verification to false" ) return logger.info(f"{event.Email=}") user = await get_user_by_email(event.Email) if not user: logger.warning( "Received bounce for unknown email %s. Ensure user records are current.", event.Email, ) return await set_user_email_verification(user.id, False) logger.debug(f"Setting email verification to false for user: {user.id}") def spam_handler(event: PostmarkSpamComplaintWebhook): logger.info("Spam handler") pass def delivery_handler(event: PostmarkDeliveryWebhook): logger.info("Delivery handler") pass def open_handler(event: PostmarkOpenWebhook): logger.info("Open handler") pass def click_handler(event: PostmarkClickWebhook): logger.info("Click handler") pass def subscription_handler(event: PostmarkSubscriptionChangeWebhook): logger.info("Subscription handler") pass
import logging from typing import Annotated from autogpt_libs.auth.middleware import APIKeyValidator from fastapi import APIRouter, Body, Depends, Query from fastapi.responses import JSONResponse from backend.data.user import ( get_user_by_email, set_user_email_verification, unsubscribe_user_by_token, ) from backend.server.routers.postmark.models import ( PostmarkBounceEnum, PostmarkBounceWebhook, PostmarkClickWebhook, PostmarkDeliveryWebhook, PostmarkOpenWebhook, PostmarkSpamComplaintWebhook, PostmarkSubscriptionChangeWebhook, PostmarkWebhook, ) from backend.util.settings import Settings settings = Settings() postmark_validator = APIKeyValidator( "X-Postmark-Webhook-Token", settings.secrets.postmark_webhook_token, ) router = APIRouter() logger = logging.getLogger(__name__) @router.post("/unsubscribe") async def unsubscribe_via_one_click(token: Annotated[str, Query()]): logger.info(f"Received unsubscribe request from One Click Unsubscribe: {token}") try: await unsubscribe_user_by_token(token) except Exception as e: logger.error(f"Failed to unsubscribe user by token {token}: {e}") raise e return JSONResponse(status_code=200, content={"status": "ok"}) @router.post("/", dependencies=[Depends(postmark_validator.get_dependency())]) async def postmark_webhook_handler( webhook: Annotated[ PostmarkWebhook, Body(discriminator="RecordType"), ] ): logger.info(f"Received webhook from Postmark: {webhook}") match webhook: case PostmarkDeliveryWebhook(): delivery_handler(webhook) case PostmarkBounceWebhook(): await bounce_handler(webhook) case PostmarkSpamComplaintWebhook(): spam_handler(webhook) case PostmarkOpenWebhook(): open_handler(webhook) case PostmarkClickWebhook(): click_handler(webhook) case PostmarkSubscriptionChangeWebhook(): subscription_handler(webhook) case _: logger.warning(f"Unknown webhook type: {type(webhook)}") return async def bounce_handler(event: PostmarkBounceWebhook): logger.info(f"Bounce handler {event=}") if event.TypeCode in [ PostmarkBounceEnum.Transient, PostmarkBounceEnum.SoftBounce, PostmarkBounceEnum.DnsError, ]: logger.info( f"Softish bounce: {event.TypeCode} for {event.Email}, not setting email verification to false" ) return logger.info(f"{event.Email=}") user = await get_user_by_email(event.Email) if not user: logger.error(f"User not found for email: {event.Email}") return await set_user_email_verification(user.id, False) logger.debug(f"Setting email verification to false for user: {user.id}") def spam_handler(event: PostmarkSpamComplaintWebhook): logger.info("Spam handler") pass def delivery_handler(event: PostmarkDeliveryWebhook): logger.info("Delivery handler") pass def open_handler(event: PostmarkOpenWebhook): logger.info("Open handler") pass def click_handler(event: PostmarkClickWebhook): logger.info("Click handler") pass def subscription_handler(event: PostmarkSubscriptionChangeWebhook): logger.info("Subscription handler") pass
from __future__ import annotations from dataclasses import dataclass from sentence_transformers.training_args import SentenceTransformerTrainingArguments @dataclass class SparseEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" SparseEncoderTrainingArguments extends :class:`~SentenceTransformerTrainingArguments` which itself extend :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. router_mapping (`Optional[Dict[str, str]]`, *optional*): A mapping of dataset column names to Router routes, like "query" or "document". This is used to specify which Router submodule to use for each dataset. Two formats are accepted: 1. `Dict[str, str]`: A mapping of column names to routes. 2. `Dict[str, Dict[str, str]]`: A mapping of dataset names to a mapping of column names to routes for multi-dataset training/evaluation. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter name regular expressions to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'SparseStaticEmbedding\.*': 1e-3}` for the SparseStaticEmbedding module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
from __future__ import annotations from dataclasses import dataclass from sentence_transformers.training_args import SentenceTransformerTrainingArguments @dataclass class SparseEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" SparseEncoderTrainingArguments extends :class:`~SentenceTransformerTrainingArguments` which itself extend :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. router_mapping (`Optional[Dict[str, str]]`, *optional*): A mapping of dataset column names to Router routes, like "query" or "document". This is used to specify which Router submodule to use for each dataset. Two formats are accepted: 1. `Dict[str, str]`: A mapping of column names to routes. 2. `Dict[str, Dict[str, str]]`: A mapping of dataset names to a mapping of column names to routes for multi-dataset training/evaluation. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter name regular expressions to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'IDF\.*': 1e-3}` for the IDF module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
# Copyright (c) OpenMMLab. All rights reserved. from pathlib import Path from typing import List import mmengine from mmengine.dataset import BaseDataset from mmengine.fileio import get_file_backend from mmdet.registry import DATASETS @DATASETS.register_module() class CocoCaptionDataset(BaseDataset): """COCO2014 Caption dataset.""" def load_data_list(self) -> List[dict]: """Load data list.""" img_prefix = self.data_prefix['img_path'] annotations = mmengine.load(self.ann_file) file_backend = get_file_backend(img_prefix) data_list = [] for ann in annotations: data_info = { 'img_id': Path(ann['image']).stem.split('_')[-1], 'img_path': file_backend.join_path(img_prefix, ann['image']), 'gt_caption': ann['caption'], } data_list.append(data_info) return data_list
# Copyright (c) OpenMMLab. All rights reserved. from pathlib import Path from typing import List import mmengine from mmengine.dataset import BaseDataset from mmengine.fileio import get_file_backend from mmdet.registry import DATASETS @DATASETS.register_module() class COCOCaptionDataset(BaseDataset): """COCO Caption dataset. Args: data_root (str): The root directory for ``data_prefix`` and ``ann_file``.. ann_file (str): Annotation file path. data_prefix (dict): Prefix for data field. Defaults to ``dict(img_path='')``. pipeline (Sequence): Processing pipeline. Defaults to an empty tuple. **kwargs: Other keyword arguments in :class:`BaseDataset`. """ def load_data_list(self) -> List[dict]: """Load data list.""" img_prefix = self.data_prefix['img_path'] annotations = mmengine.load(self.ann_file) file_backend = get_file_backend(img_prefix) data_list = [] for ann in annotations: data_info = { 'img_id': Path(ann['image']).stem.split('_')[-1], 'img_path': file_backend.join_path(img_prefix, ann['image']), 'gt_caption': ann['caption'], } data_list.append(data_info) return data_list
# Copyright (c) OpenMMLab. All rights reserved. import asyncio from argparse import ArgumentParser import mmcv from mmdet.apis import (async_inference_detector, inference_detector, init_detector) from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = ArgumentParser() parser.add_argument('img', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument('--out-file', default=None, help='Path to output file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--palette', default='none', choices=['coco', 'voc', 'citys', 'random', 'none'], help='Color palette used for visualization') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') parser.add_argument( '--async-test', action='store_true', help='whether to set async options for async inference.') args = parser.parse_args() return args def main(args): # register all modules in mmdet into the registries register_all_modules() # TODO: Support inference of image directory. # build the model from a config file and a checkpoint file model = init_detector( args.config, args.checkpoint, palette=args.palette, device=args.device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta # test a single image result = inference_detector(model, args.img) # show the results img = mmcv.imread(args.img) img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.add_datasample( 'result', img, data_sample=result, draw_gt=False, show=args.out_file is None, wait_time=0, out_file=args.out_file, pred_score_thr=args.score_thr) async def async_main(args): # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) visualizer.dataset_meta = model.dataset_meta # test a single image tasks = asyncio.create_task(async_inference_detector(model, args.img)) result = await asyncio.gather(tasks) # show the results img = mmcv.imread(args.img) img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.add_datasample( 'result', img, pred_sample=result[0], show=args.out_file is None, wait_time=0, out_file=args.out_file, pred_score_thr=args.score_thr) if __name__ == '__main__': args = parse_args() assert not args.async_test, 'async inference is not supported yet.' if args.async_test: asyncio.run(async_main(args)) else: main(args)
# Copyright (c) OpenMMLab. All rights reserved. import asyncio from argparse import ArgumentParser import mmcv from mmdet.apis import (async_inference_detector, inference_detector, init_detector) from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = ArgumentParser() parser.add_argument('img', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument('--out-file', default=None, help='Path to output file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--palette', default='coco', choices=['coco', 'voc', 'citys', 'random'], help='Color palette used for visualization') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') parser.add_argument( '--async-test', action='store_true', help='whether to set async options for async inference.') args = parser.parse_args() return args def main(args): # register all modules in mmdet into the registries register_all_modules() # TODO: Support inference of image directory. # build the model from a config file and a checkpoint file model = init_detector( args.config, args.checkpoint, palette=args.palette, device=args.device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta # test a single image result = inference_detector(model, args.img) # show the results img = mmcv.imread(args.img) img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.add_datasample( 'result', img, data_sample=result, draw_gt=False, show=args.out_file is None, wait_time=0, out_file=args.out_file, pred_score_thr=args.score_thr) async def async_main(args): # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) visualizer.dataset_meta = model.dataset_meta # test a single image tasks = asyncio.create_task(async_inference_detector(model, args.img)) result = await asyncio.gather(tasks) # show the results img = mmcv.imread(args.img) img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.add_datasample( 'result', img, pred_sample=result[0], show=args.out_file is None, wait_time=0, out_file=args.out_file, pred_score_thr=args.score_thr) if __name__ == '__main__': args = parse_args() assert not args.async_test, 'async inference is not supported yet.' if args.async_test: asyncio.run(async_main(args)) else: main(args)
from __future__ import annotations import logging import os from datasets import load_dataset from sentence_transformers.sparse_encoder import ( SparseEncoder, ) from sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator import SparseNanoBEIREvaluator from sentence_transformers.sparse_encoder.losses import SparseMultipleNegativesRankingLoss, SpladeLoss from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import SparseEncoderTrainingArguments from sentence_transformers.training_args import BatchSamplers # Set up logging logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): # Initialize the SPLADE model model_name = "sparse-embedding/splade-distilbert-base-uncased-init" model = SparseEncoder(model_name) model.eval() # 2a. Load the NQ dataset: https://huggingface.co/datasets/sentence-transformers/natural-questions logging.info("Read the Natural Questions training dataset") full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Initialize the loss lambda_query = 5e-5 lambda_corpus = 3e-5 loss = SpladeLoss( model=model, main_loss=SparseMultipleNegativesRankingLoss(model=model, scale=20, similarity_fct=model.similarity), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, ) # Weight for document loss run_name = f"splade-distilbert-nq-fresh-lq{lambda_query}-lc{lambda_corpus}" os.makedirs(f"runs/{run_name}", exist_ok=True) dev_evaluator = SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=16) os.makedirs(f"runs/{run_name}/eval", exist_ok=True) # Set up training arguments training_args = SparseEncoderTrainingArguments( output_dir=f"runs/{run_name}", num_train_epochs=1, per_device_train_batch_size=12, per_device_eval_batch_size=16, bf16=True, logging_steps=200, eval_strategy="steps", eval_steps=1650, save_strategy="steps", save_steps=1650, learning_rate=4e-5, optim="adamw_torch", run_name=run_name, seed=42, batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch load_best_model_at_end=True, metric_for_best_model="eval_NanoBEIR_mean_dot_ndcg@10", ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance again after training dev_evaluator(model, output_path=f"runs/{run_name}/eval", epoch=1) # 8. Save the trained & evaluated model locally os.makedirs(f"runs/{run_name}/final", exist_ok=True) model.save_pretrained(f"runs/{run_name}/final") model.push_to_hub(f"sparse-embedding/{run_name}", private=True) if __name__ == "__main__": main()
from __future__ import annotations import logging import os from datasets import load_dataset from sentence_transformers.sparse_encoder import ( SparseEncoder, ) from sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator import SparseNanoBEIREvaluator from sentence_transformers.sparse_encoder.losses import SparseMultipleNegativesRankingLoss, SpladeLoss from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import SparseEncoderTrainingArguments from sentence_transformers.training_args import BatchSamplers # Set up logging logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): # Initialize the SPLADE model model_name = "sparse-embedding/splade-distilbert-base-uncased-init" model = SparseEncoder(model_name) model.eval() # 2a. Load the NQ dataset: https://huggingface.co/datasets/sentence-transformers/natural-questions logging.info("Read the Natural Questions training dataset") full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Initialize the loss lambda_query = 5e-5 lambda_corpus = 3e-5 loss = SpladeLoss( model=model, main_loss=SparseMultipleNegativesRankingLoss(model=model, scale=20, similarity_fct=model.similarity), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, ) # Weight for document loss run_name = f"splade-distilbert-nq-fresh-lq{lambda_query}-lc{lambda_corpus}" os.makedirs(f"runs/{run_name}", exist_ok=True) dev_evaluator = SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=16) os.makedirs(f"runs/{run_name}/eval", exist_ok=True) # Set up training arguments training_args = SparseEncoderTrainingArguments( output_dir=f"runs/{run_name}", num_train_epochs=1, per_device_train_batch_size=12, per_device_eval_batch_size=16, bf16=True, logging_steps=200, eval_strategy="steps", eval_steps=1400, save_strategy="steps", save_steps=1400, learning_rate=4e-5, optim="adamw_torch", run_name=run_name, batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance again after training dev_evaluator(model, output_path=f"runs/{run_name}/eval", epoch=1) # 8. Save the trained & evaluated model locally os.makedirs(f"runs/{run_name}/final", exist_ok=True) model.save_pretrained(f"runs/{run_name}/final") model.push_to_hub(f"sparse-embedding/{run_name}", private=True) if __name__ == "__main__": main()
from __future__ import annotations from typing import Any from langchain_text_splitters.base import TextSplitter class KonlpyTextSplitter(TextSplitter): """Splitting text using Konlpy package. It is good for splitting Korean text. """ def __init__( self, separator: str = "\n\n", **kwargs: Any, ) -> None: """Initialize the Konlpy text splitter.""" super().__init__(**kwargs) self._separator = separator try: import konlpy except ImportError: raise ImportError( """ Konlpy is not installed, please install it with `pip install konlpy` """ ) self.kkma = konlpy.tag.Kkma() def split_text(self, text: str) -> list[str]: """Split incoming text and return chunks.""" splits = self.kkma.sentences(text) return self._merge_splits(splits, self._separator)
from __future__ import annotations from typing import Any, List from langchain_text_splitters.base import TextSplitter class KonlpyTextSplitter(TextSplitter): """Splitting text using Konlpy package. It is good for splitting Korean text. """ def __init__( self, separator: str = "\n\n", **kwargs: Any, ) -> None: """Initialize the Konlpy text splitter.""" super().__init__(**kwargs) self._separator = separator try: import konlpy except ImportError: raise ImportError( """ Konlpy is not installed, please install it with `pip install konlpy` """ ) self.kkma = konlpy.tag.Kkma() def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = self.kkma.sentences(text) return self._merge_splits(splits, self._separator)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path import pytest from jina import Document, DocumentArray, Executor from ...laser_encoder import LaserEncoder @pytest.fixture() def docs_generator(): return DocumentArray((Document(text='random text') for _ in range(30))) def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.language == 'en' def test_flair_batch(docs_generator): encoder = LaserEncoder() docs = docs_generator encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert len(docs.get_attributes('embedding')) == 30 assert docs[0].embedding.shape == (1024,) def test_traversal_path(): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] encoder = LaserEncoder() encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['c']}) for path, count in [[['r'], 0], [['c'], 3], [['cc'], 0]]: assert len(docs.traverse_flat(path).get_attributes('embedding')) == count if count > 0: assert docs.traverse_flat(path).get_attributes('embedding')[0].shape == ( 1024, ) encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['cc']}) for path, count in [[['r'], 0], [['c'], 3], [['cc'], 2]]: assert len(docs.traverse_flat(path).get_attributes('embedding')) == count if count > 0: assert docs.traverse_flat(path).get_attributes('embedding')[0].shape == ( 1024, ) def test_no_documents(): encoder = LaserEncoder() docs = [] encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert not docs
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from jina import Document, DocumentArray from ...laser_encoder import LaserEncoder @pytest.fixture() def docs_generator(): return DocumentArray((Document(text='random text') for _ in range(30))) def test_flair_batch(docs_generator): encoder = LaserEncoder() docs = docs_generator encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert len(docs.get_attributes('embedding')) == 30 assert docs[0].embedding.shape == (1024,) def test_traversal_path(): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text) ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] encoder = LaserEncoder() encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['c']}) for path, count in [[['r'], 0], [['c'], 3], [['cc'], 0]]: assert len(docs.traverse_flat(path).get_attributes('embedding')) == count if count > 0: assert docs.traverse_flat(path).get_attributes('embedding')[0].shape == (1024,) encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['cc']}) for path, count in [[['r'], 0], [['c'], 3], [['cc'], 2]]: assert len(docs.traverse_flat(path).get_attributes('embedding')) == count if count > 0: assert docs.traverse_flat(path).get_attributes('embedding')[0].shape == (1024,) def test_no_documents(): encoder = LaserEncoder() docs = [] encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert not docs
"""**Messages** are objects used in prompts and chat conversations. **Class hierarchy:** .. code-block:: BaseMessage --> SystemMessage, AIMessage, HumanMessage, ChatMessage, FunctionMessage, ToolMessage --> BaseMessageChunk --> SystemMessageChunk, AIMessageChunk, HumanMessageChunk, ChatMessageChunk, FunctionMessageChunk, ToolMessageChunk **Main helpers:** .. code-block:: ChatPromptTemplate """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.messages.ai import ( AIMessage, AIMessageChunk, ) from langchain_core.messages.base import ( BaseMessage, BaseMessageChunk, merge_content, message_to_dict, messages_to_dict, ) from langchain_core.messages.chat import ChatMessage, ChatMessageChunk from langchain_core.messages.function import FunctionMessage, FunctionMessageChunk from langchain_core.messages.human import HumanMessage, HumanMessageChunk from langchain_core.messages.modifier import RemoveMessage from langchain_core.messages.system import SystemMessage, SystemMessageChunk from langchain_core.messages.tool import ( InvalidToolCall, ToolCall, ToolCallChunk, ToolMessage, ToolMessageChunk, ) from langchain_core.messages.utils import ( AnyMessage, MessageLikeRepresentation, _message_from_dict, convert_to_messages, convert_to_openai_messages, filter_messages, get_buffer_string, merge_message_runs, message_chunk_to_message, messages_from_dict, trim_messages, ) __all__ = [ "AIMessage", "AIMessageChunk", "AnyMessage", "BaseMessage", "BaseMessageChunk", "ChatMessage", "ChatMessageChunk", "FunctionMessage", "FunctionMessageChunk", "HumanMessage", "HumanMessageChunk", "InvalidToolCall", "MessageLikeRepresentation", "SystemMessage", "SystemMessageChunk", "ToolCall", "ToolCallChunk", "ToolMessage", "ToolMessageChunk", "RemoveMessage", "_message_from_dict", "convert_to_messages", "get_buffer_string", "merge_content", "message_chunk_to_message", "message_to_dict", "messages_from_dict", "messages_to_dict", "filter_messages", "merge_message_runs", "trim_messages", "convert_to_openai_messages", ] _dynamic_imports = { "AIMessage": "ai", "AIMessageChunk": "ai", "BaseMessage": "base", "BaseMessageChunk": "base", "merge_content": "base", "message_to_dict": "base", "messages_to_dict": "base", "ChatMessage": "chat", "ChatMessageChunk": "chat", "FunctionMessage": "function", "FunctionMessageChunk": "function", "HumanMessage": "human", "HumanMessageChunk": "human", "RemoveMessage": "modifier", "SystemMessage": "system", "SystemMessageChunk": "system", "InvalidToolCall": "tool", "ToolCall": "tool", "ToolCallChunk": "tool", "ToolMessage": "tool", "ToolMessageChunk": "tool", "AnyMessage": "utils", "MessageLikeRepresentation": "utils", "_message_from_dict": "utils", "convert_to_messages": "utils", "convert_to_openai_messages": "utils", "filter_messages": "utils", "get_buffer_string": "utils", "merge_message_runs": "utils", "message_chunk_to_message": "utils", "messages_from_dict": "utils", "trim_messages": "utils", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Messages** are objects used in prompts and chat conversations. **Class hierarchy:** .. code-block:: BaseMessage --> SystemMessage, AIMessage, HumanMessage, ChatMessage, FunctionMessage, ToolMessage --> BaseMessageChunk --> SystemMessageChunk, AIMessageChunk, HumanMessageChunk, ChatMessageChunk, FunctionMessageChunk, ToolMessageChunk **Main helpers:** .. code-block:: ChatPromptTemplate """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.messages.ai import ( AIMessage, AIMessageChunk, ) from langchain_core.messages.base import ( BaseMessage, BaseMessageChunk, merge_content, message_to_dict, messages_to_dict, ) from langchain_core.messages.chat import ChatMessage, ChatMessageChunk from langchain_core.messages.function import FunctionMessage, FunctionMessageChunk from langchain_core.messages.human import HumanMessage, HumanMessageChunk from langchain_core.messages.modifier import RemoveMessage from langchain_core.messages.system import SystemMessage, SystemMessageChunk from langchain_core.messages.tool import ( InvalidToolCall, ToolCall, ToolCallChunk, ToolMessage, ToolMessageChunk, ) from langchain_core.messages.utils import ( AnyMessage, MessageLikeRepresentation, _message_from_dict, convert_to_messages, convert_to_openai_messages, filter_messages, get_buffer_string, merge_message_runs, message_chunk_to_message, messages_from_dict, trim_messages, ) __all__ = [ "AIMessage", "AIMessageChunk", "AnyMessage", "BaseMessage", "BaseMessageChunk", "ChatMessage", "ChatMessageChunk", "FunctionMessage", "FunctionMessageChunk", "HumanMessage", "HumanMessageChunk", "InvalidToolCall", "MessageLikeRepresentation", "SystemMessage", "SystemMessageChunk", "ToolCall", "ToolCallChunk", "ToolMessage", "ToolMessageChunk", "RemoveMessage", "_message_from_dict", "convert_to_messages", "get_buffer_string", "merge_content", "message_chunk_to_message", "message_to_dict", "messages_from_dict", "messages_to_dict", "filter_messages", "merge_message_runs", "trim_messages", "convert_to_openai_messages", ] _dynamic_imports = { "AIMessage": "ai", "AIMessageChunk": "ai", "BaseMessage": "base", "BaseMessageChunk": "base", "merge_content": "base", "message_to_dict": "base", "messages_to_dict": "base", "ChatMessage": "chat", "ChatMessageChunk": "chat", "FunctionMessage": "function", "FunctionMessageChunk": "function", "HumanMessage": "human", "HumanMessageChunk": "human", "RemoveMessage": "modifier", "SystemMessage": "system", "SystemMessageChunk": "system", "InvalidToolCall": "tool", "ToolCall": "tool", "ToolCallChunk": "tool", "ToolMessage": "tool", "ToolMessageChunk": "tool", "AnyMessage": "utils", "MessageLikeRepresentation": "utils", "_message_from_dict": "utils", "convert_to_messages": "utils", "convert_to_openai_messages": "utils", "filter_messages": "utils", "get_buffer_string": "utils", "merge_message_runs": "utils", "message_chunk_to_message": "utils", "messages_from_dict": "utils", "trim_messages": "utils", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
# Copyright (c) OpenMMLab. All rights reserved. import unittest import torch import torch.nn as nn import mmengine from mmengine.device import get_device, is_mlu_available from mmengine.runner import autocast from mmengine.utils import digit_version from mmengine.utils.dl_utils import TORCH_VERSION class TestAmp(unittest.TestCase): def test_autocast(self): if is_mlu_available(): device = 'mlu' with autocast(device_type=device): # torch.autocast support mlu mode. layer = nn.Conv2d(1, 1, 1).to(device) res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertIn(res.dtype, (torch.bfloat16, torch.float16)) with autocast(enabled=False, device_type=device): res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertEqual(res.dtype, torch.float32) # Test with fp32_enabled with autocast(enabled=False, device_type=device): layer = nn.Conv2d(1, 1, 1).to(device) res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertEqual(res.dtype, torch.float32) elif not torch.cuda.is_available(): if digit_version(TORCH_VERSION) < digit_version('1.10.0'): # `torch.cuda.amp.autocast` is only support in gpu mode, if # cuda is not available, it will return an empty context and # should not accept any arguments. with self.assertRaisesRegex(RuntimeError, 'If pytorch versions is '): with autocast(): pass with autocast(enabled=False): layer = nn.Conv2d(1, 1, 1) res = layer(torch.randn(1, 1, 1, 1)) self.assertEqual(res.dtype, torch.float32) else: with autocast(device_type='cpu'): # torch.autocast support cpu mode. layer = nn.Conv2d(1, 1, 1) res = layer(torch.randn(1, 1, 1, 1)) self.assertIn(res.dtype, (torch.bfloat16, torch.float16)) with autocast(enabled=False): res = layer(torch.randn(1, 1, 1, 1)) self.assertEqual(res.dtype, torch.float32) else: if digit_version(TORCH_VERSION) < digit_version('1.10.0'): devices = ['cuda'] else: devices = ['cpu', 'cuda'] for device in devices: with autocast(device_type=device): # torch.autocast support cpu and cuda mode. layer = nn.Conv2d(1, 1, 1).to(device) res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertIn(res.dtype, (torch.bfloat16, torch.float16)) with autocast(enabled=False, device_type=device): res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertEqual(res.dtype, torch.float32) # Test with fp32_enabled with autocast(enabled=False, device_type=device): layer = nn.Conv2d(1, 1, 1).to(device) res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertEqual(res.dtype, torch.float32) # Test mps if digit_version(TORCH_VERSION) >= digit_version('1.12.0'): mmengine.runner.amp.get_device = lambda: 'mps' with autocast(enabled=False): layer = nn.Conv2d(1, 1, 1) res = layer(torch.randn(1, 1, 1, 1)) self.assertEqual(res.dtype, torch.float32) with self.assertRaisesRegex(ValueError, 'User specified autocast device_type'): with autocast(enabled=True): pass # Native pytorch does not support mlu, here we simply test autocast # will call `torch.autocast`, which will be overridden by mlu version # pytorch mmengine.runner.amp.get_device = lambda: 'mlu' with self.assertRaises(RuntimeError): with autocast(enabled=False): pass mmengine.runner.amp.get_device = get_device
# Copyright (c) OpenMMLab. All rights reserved. import unittest import torch import torch.nn as nn import mmengine from mmengine.device import get_device from mmengine.runner import autocast from mmengine.utils import digit_version from mmengine.utils.dl_utils import TORCH_VERSION class TestAmp(unittest.TestCase): def test_autocast(self): if not torch.cuda.is_available(): if digit_version(TORCH_VERSION) < digit_version('1.10.0'): # `torch.cuda.amp.autocast` is only support in gpu mode, if # cuda is not available, it will return an empty context and # should not accept any arguments. with self.assertRaisesRegex(RuntimeError, 'If pytorch versions is '): with autocast(): pass with autocast(enabled=False): layer = nn.Conv2d(1, 1, 1) res = layer(torch.randn(1, 1, 1, 1)) self.assertEqual(res.dtype, torch.float32) else: with autocast(device_type='cpu'): # torch.autocast support cpu mode. layer = nn.Conv2d(1, 1, 1) res = layer(torch.randn(1, 1, 1, 1)) self.assertIn(res.dtype, (torch.bfloat16, torch.float16)) with autocast(enabled=False): res = layer(torch.randn(1, 1, 1, 1)) self.assertEqual(res.dtype, torch.float32) else: if digit_version(TORCH_VERSION) < digit_version('1.10.0'): devices = ['cuda'] else: devices = ['cpu', 'cuda'] for device in devices: with autocast(device_type=device): # torch.autocast support cpu and cuda mode. layer = nn.Conv2d(1, 1, 1).to(device) res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertIn(res.dtype, (torch.bfloat16, torch.float16)) with autocast(enabled=False, device_type=device): res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertEqual(res.dtype, torch.float32) # Test with fp32_enabled with autocast(enabled=False, device_type=device): layer = nn.Conv2d(1, 1, 1).to(device) res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertEqual(res.dtype, torch.float32) # Test mps if digit_version(TORCH_VERSION) >= digit_version('1.12.0'): mmengine.runner.amp.get_device = lambda: 'mps' with autocast(enabled=False): layer = nn.Conv2d(1, 1, 1) res = layer(torch.randn(1, 1, 1, 1)) self.assertEqual(res.dtype, torch.float32) with self.assertRaisesRegex(ValueError, 'User specified autocast device_type'): with autocast(enabled=True): pass # Native pytorch does not support mlu, here we simply test autocast # will call `torch.autocast`, which will be overridden by mlu version # pytorch mmengine.runner.amp.get_device = lambda: 'mlu' with self.assertRaises(RuntimeError): with autocast(enabled=False): pass mmengine.runner.amp.get_device = get_device
"""Callback Handler that prints to std out.""" from __future__ import annotations from typing import TYPE_CHECKING, Any, Optional from typing_extensions import override from langchain_core.callbacks.base import BaseCallbackHandler from langchain_core.utils import print_text if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish class StdOutCallbackHandler(BaseCallbackHandler): """Callback Handler that prints to std out.""" def __init__(self, color: Optional[str] = None) -> None: """Initialize callback handler. Args: color: The color to use for the text. Defaults to None. """ self.color = color @override def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. Args: serialized (dict[str, Any]): The serialized chain. inputs (dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ if "name" in kwargs: name = kwargs["name"] elif serialized: name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) else: name = "<unknown>" print(f"\n\n\033[1m> Entering new {name} chain...\033[0m") # noqa: T201 @override def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: outputs (dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ print("\n\033[1m> Finished chain.\033[0m") # noqa: T201 @override def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. color (Optional[str]): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(action.log, color=color or self.color) @override def on_tool_end( self, output: Any, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation. Args: output (Any): The output to print. color (Optional[str]): The color to use for the text. Defaults to None. observation_prefix (Optional[str]): The observation prefix. Defaults to None. llm_prefix (Optional[str]): The LLM prefix. Defaults to None. **kwargs (Any): Additional keyword arguments. """ output = str(output) if observation_prefix is not None: print_text(f"\n{observation_prefix}") print_text(output, color=color or self.color) if llm_prefix is not None: print_text(f"\n{llm_prefix}") @override def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any, ) -> None: """Run when the agent ends. Args: text (str): The text to print. color (Optional[str]): The color to use for the text. Defaults to None. end (str): The end character to use. Defaults to "". **kwargs (Any): Additional keyword arguments. """ print_text(text, color=color or self.color, end=end) @override def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. color (Optional[str]): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(finish.log, color=color or self.color, end="\n")
"""Callback Handler that prints to std out.""" from __future__ import annotations from typing import TYPE_CHECKING, Any, Optional from typing_extensions import override from langchain_core.callbacks.base import BaseCallbackHandler from langchain_core.utils import print_text if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish class StdOutCallbackHandler(BaseCallbackHandler): """Callback Handler that prints to std out.""" def __init__(self, color: Optional[str] = None) -> None: """Initialize callback handler. Args: color: The color to use for the text. Defaults to None. """ self.color = color @override def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. Args: serialized (Dict[str, Any]): The serialized chain. inputs (Dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ if "name" in kwargs: name = kwargs["name"] elif serialized: name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) else: name = "<unknown>" print(f"\n\n\033[1m> Entering new {name} chain...\033[0m") # noqa: T201 @override def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: outputs (Dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ print("\n\033[1m> Finished chain.\033[0m") # noqa: T201 @override def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. color (Optional[str]): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(action.log, color=color or self.color) @override def on_tool_end( self, output: Any, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation. Args: output (Any): The output to print. color (Optional[str]): The color to use for the text. Defaults to None. observation_prefix (Optional[str]): The observation prefix. Defaults to None. llm_prefix (Optional[str]): The LLM prefix. Defaults to None. **kwargs (Any): Additional keyword arguments. """ output = str(output) if observation_prefix is not None: print_text(f"\n{observation_prefix}") print_text(output, color=color or self.color) if llm_prefix is not None: print_text(f"\n{llm_prefix}") @override def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any, ) -> None: """Run when the agent ends. Args: text (str): The text to print. color (Optional[str]): The color to use for the text. Defaults to None. end (str): The end character to use. Defaults to "". **kwargs (Any): Additional keyword arguments. """ print_text(text, color=color or self.color, end=end) @override def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. color (Optional[str]): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(finish.log, color=color or self.color, end="\n")
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union import torch from mmengine.data import BaseDataElement from mmengine.hooks import Hook from mmengine.runner import Runner from mmdet.registry import HOOKS @HOOKS.register_module() class CheckInvalidLossHook(Hook): """Check invalid loss hook. This hook will regularly check whether the loss is valid during training. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval: int = 50) -> None: self.interval = interval def after_train_iter( self, runner: Runner, batch_idx: int, data_batch: Optional[Sequence[dict]] = None, outputs: Optional[Union[Sequence[BaseDataElement], dict]] = None) -> None: """Regularly check whether the loss is valid every n iterations. Args: runner (:obj:`Runner`): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], Optional): Data from dataloader. Defaults to None. outputs (Union[Sequence[:obj:`BaseDataElement`], dict], Optional): Outputs from model. Defaults to None. """ if self.every_n_train_iters(runner, self.interval): assert torch.isfinite(outputs['loss']), \ runner.logger.info('loss become infinite or NaN!')
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.runner.hooks import Hook from mmdet.registry import HOOKS @HOOKS.register_module() class CheckInvalidLossHook(Hook): """Check invalid loss hook. This hook will regularly check whether the loss is valid during training. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval=50): self.interval = interval def after_train_iter(self, runner): if self.every_n_iters(runner, self.interval): assert torch.isfinite(runner.outputs['loss']), \ runner.logger.info('loss become infinite or NaN!')
# Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import CogView4Transformer2DModel from diffusers.utils.testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class CogView3PlusTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = CogView4Transformer2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 height = 8 width = 8 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) original_size = torch.tensor([height * 8, width * 8]).unsqueeze(0).repeat(batch_size, 1).to(torch_device) target_size = torch.tensor([height * 8, width * 8]).unsqueeze(0).repeat(batch_size, 1).to(torch_device) crop_coords = torch.tensor([0, 0]).unsqueeze(0).repeat(batch_size, 1).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, "original_size": original_size, "target_size": target_size, "crop_coords": crop_coords, } @property def input_shape(self): return (4, 8, 8) @property def output_shape(self): return (4, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": 2, "in_channels": 4, "num_layers": 2, "attention_head_dim": 4, "num_attention_heads": 4, "out_channels": 4, "text_embed_dim": 8, "time_embed_dim": 8, "condition_dim": 4, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"CogView4Transformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import CogView4Transformer2DModel from diffusers.utils.testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class CogView3PlusTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = CogView4Transformer2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 height = 8 width = 8 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) original_size = torch.tensor([height * 8, width * 8]).unsqueeze(0).repeat(batch_size, 1).to(torch_device) target_size = torch.tensor([height * 8, width * 8]).unsqueeze(0).repeat(batch_size, 1).to(torch_device) crop_coords = torch.tensor([0, 0]).unsqueeze(0).repeat(batch_size, 1).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, "original_size": original_size, "target_size": target_size, "crop_coords": crop_coords, } @property def input_shape(self): return (4, 8, 8) @property def output_shape(self): return (4, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": 2, "in_channels": 4, "num_layers": 2, "attention_head_dim": 4, "num_attention_heads": 4, "out_channels": 4, "text_embed_dim": 8, "time_embed_dim": 8, "condition_dim": 4, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"CogView4Transformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
import multiprocessing import pytest from jina import DocumentArray, Executor, requests from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.worker import WorkerRuntime from jina.serve.streamer import GatewayStreamer from jina.types.request.data import DataRequest from tests.helper import _generate_pod_args class StreamerTestExecutor(Executor): @requests def foo(self, docs, parameters, **kwargs): text_to_add = parameters.get('text_to_add', 'default ') for doc in docs: doc.text += text_to_add def _create_worker_runtime(port, name=''): args = _generate_pod_args() args.port = port args.name = name args.uses = 'StreamerTestExecutor' with WorkerRuntime(args) as runtime: runtime.run_forever() def _setup(pod0_port, pod1_port): pod0_process = multiprocessing.Process( target=_create_worker_runtime, args=(pod0_port,) ) pod0_process.start() pod1_process = multiprocessing.Process( target=_create_worker_runtime, args=(pod1_port,) ) pod1_process.start() AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{pod0_port}', ready_or_shutdown_event=multiprocessing.Event(), ) AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{pod1_port}', ready_or_shutdown_event=multiprocessing.Event(), ) return pod0_process, pod1_process @pytest.mark.parametrize( 'parameters, target_executor, expected_text', [ # (None, None, 'default default '), ({'pod0__text_to_add': 'param_pod0 '}, None, 'param_pod0 default '), (None, 'pod1', 'default '), ({'pod0__text_to_add': 'param_pod0 '}, 'pod0', 'param_pod0 '), ], ) @pytest.mark.parametrize('results_in_order', [False, True]) @pytest.mark.asyncio async def test_custom_gateway( port_generator, parameters, target_executor, expected_text, results_in_order ): pod0_port = port_generator() pod1_port = port_generator() pod0_process, pod1_process = _setup(pod0_port, pod1_port) graph_description = { "start-gateway": ["pod0"], "pod0": ["pod1"], "pod1": ["end-gateway"], } pod_addresses = {"pod0": [f"0.0.0.0:{pod0_port}"], "pod1": [f"0.0.0.0:{pod1_port}"]} # send requests to the gateway gateway_streamer = GatewayStreamer( graph_representation=graph_description, executor_addresses=pod_addresses ) try: input_da = DocumentArray.empty(60) resp = DocumentArray.empty(0) num_resp = 0 async for r in gateway_streamer.stream_docs( docs=input_da, request_size=10, parameters=parameters, target_executor=target_executor, results_in_order=results_in_order, ): num_resp += 1 resp.extend(r) assert num_resp == 6 assert len(resp) == 60 for doc in resp: assert doc.text == expected_text request = DataRequest() request.data.docs = DocumentArray.empty(60) unary_response = await gateway_streamer.process_single_data(request=request) assert len(unary_response.docs) == 60 except Exception: assert False finally: # clean up runtimes pod0_process.terminate() pod1_process.terminate() pod0_process.join() pod1_process.join() await gateway_streamer.close()
import multiprocessing import pytest from jina import DocumentArray, Executor, requests from jina.parsers import set_pod_parser from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.worker import WorkerRuntime from jina.serve.streamer import GatewayStreamer from jina.types.request.data import DataRequest class StreamerTestExecutor(Executor): @requests def foo(self, docs, parameters, **kwargs): text_to_add = parameters.get('text_to_add', 'default ') for doc in docs: doc.text += text_to_add def _create_worker_runtime(port, name=''): args = set_pod_parser().parse_args([]) args.port = port args.name = name args.uses = 'StreamerTestExecutor' with WorkerRuntime(args) as runtime: runtime.run_forever() def _setup(pod0_port, pod1_port): pod0_process = multiprocessing.Process( target=_create_worker_runtime, args=(pod0_port,) ) pod0_process.start() pod1_process = multiprocessing.Process( target=_create_worker_runtime, args=(pod1_port,) ) pod1_process.start() AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{pod0_port}', ready_or_shutdown_event=multiprocessing.Event(), ) AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{pod1_port}', ready_or_shutdown_event=multiprocessing.Event(), ) return pod0_process, pod1_process @pytest.mark.parametrize( 'parameters, target_executor, expected_text', [ # (None, None, 'default default '), ({'pod0__text_to_add': 'param_pod0 '}, None, 'param_pod0 default '), (None, 'pod1', 'default '), ({'pod0__text_to_add': 'param_pod0 '}, 'pod0', 'param_pod0 '), ], ) @pytest.mark.parametrize('results_in_order', [False, True]) @pytest.mark.asyncio async def test_custom_gateway( port_generator, parameters, target_executor, expected_text, results_in_order ): pod0_port = port_generator() pod1_port = port_generator() pod0_process, pod1_process = _setup(pod0_port, pod1_port) graph_description = { "start-gateway": ["pod0"], "pod0": ["pod1"], "pod1": ["end-gateway"], } pod_addresses = {"pod0": [f"0.0.0.0:{pod0_port}"], "pod1": [f"0.0.0.0:{pod1_port}"]} # send requests to the gateway gateway_streamer = GatewayStreamer( graph_representation=graph_description, executor_addresses=pod_addresses ) try: input_da = DocumentArray.empty(60) resp = DocumentArray.empty(0) num_resp = 0 async for r in gateway_streamer.stream_docs( docs=input_da, request_size=10, parameters=parameters, target_executor=target_executor, results_in_order=results_in_order, ): num_resp += 1 resp.extend(r) assert num_resp == 6 assert len(resp) == 60 for doc in resp: assert doc.text == expected_text request = DataRequest() request.data.docs = DocumentArray.empty(60) unary_response = await gateway_streamer.process_single_data(request=request) assert len(unary_response.docs) == 60 except Exception: assert False finally: # clean up runtimes pod0_process.terminate() pod1_process.terminate() pod0_process.join() pod1_process.join() await gateway_streamer.close()
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import Video from docarray.typing import AudioNdArray, NdArray, VideoNdArray from tests import TOYDATA_DIR LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE]) def test_video(file_url): vid = Video(url=file_url) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() assert isinstance(vid.tensor, VideoNdArray) assert isinstance(vid.audio.tensor, AudioNdArray) assert isinstance(vid.key_frame_indices, NdArray) def test_video_np(): image = parse_obj_as(Video, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_video_torch(): image = parse_obj_as(Video, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() def test_video_shortcut_doc(): class MyDoc(BaseDocument): image: Video image2: Video image3: Video doc = MyDoc( image='http://myurl.mp4', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.mp4' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all()
import pytest from docarray.documents import Video from docarray.typing import AudioNdArray, NdArray, VideoNdArray from tests import TOYDATA_DIR LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE]) def test_video(file_url): vid = Video(url=file_url) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() assert isinstance(vid.tensor, VideoNdArray) assert isinstance(vid.audio.tensor, AudioNdArray) assert isinstance(vid.key_frame_indices, NdArray)
import os.path from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import numpy as np from PIL import Image from .utils import check_integrity, download_url, verify_str_arg from .vision import VisionDataset class SVHN(VisionDataset): """`SVHN <http://ufldl.stanford.edu/housenumbers/>`_ Dataset. Note: The SVHN dataset assigns the label `10` to the digit `0`. However, in this Dataset, we assign the label `0` to the digit `0` to be compatible with PyTorch loss functions which expect the class labels to be in the range `[0, C-1]` .. warning:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load data from `.mat` format. Args: root (str or ``pathlib.Path``): Root directory of the dataset where the data is stored. split (string): One of {'train', 'test', 'extra'}. Accordingly dataset is selected. 'extra' is Extra training set. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ split_list = { "train": [ "http://ufldl.stanford.edu/housenumbers/train_32x32.mat", "train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373", ], "test": [ "http://ufldl.stanford.edu/housenumbers/test_32x32.mat", "test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3", ], "extra": [ "http://ufldl.stanford.edu/housenumbers/extra_32x32.mat", "extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7", ], } def __init__( self, root: Union[str, Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.split = verify_str_arg(split, "split", tuple(self.split_list.keys())) self.url = self.split_list[split][0] self.filename = self.split_list[split][1] self.file_md5 = self.split_list[split][2] if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # import here rather than at top of file because this is # an optional dependency for torchvision import scipy.io as sio # reading(loading) mat file as array loaded_mat = sio.loadmat(os.path.join(self.root, self.filename)) self.data = loaded_mat["X"] # loading from the .mat file gives an np.ndarray of type np.uint8 # converting to np.int64, so that we have a LongTensor after # the conversion from the numpy array # the squeeze is needed to obtain a 1D tensor self.labels = loaded_mat["y"].astype(np.int64).squeeze() # the svhn dataset assigns the class label "10" to the digit 0 # this makes it inconsistent with several loss functions # which expect the class labels to be in the range [0, C-1] np.place(self.labels, self.labels == 10, 0) self.data = np.transpose(self.data, (3, 2, 0, 1)) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.labels[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(np.transpose(img, (1, 2, 0))) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data) def _check_integrity(self) -> bool: root = self.root md5 = self.split_list[self.split][2] fpath = os.path.join(root, self.filename) return check_integrity(fpath, md5) def download(self) -> None: md5 = self.split_list[self.split][2] download_url(self.url, self.root, self.filename, md5) def extra_repr(self) -> str: return "Split: {split}".format(**self.__dict__)
import os.path from typing import Any, Callable, Optional, Tuple import numpy as np from PIL import Image from .utils import check_integrity, download_url, verify_str_arg from .vision import VisionDataset class SVHN(VisionDataset): """`SVHN <http://ufldl.stanford.edu/housenumbers/>`_ Dataset. Note: The SVHN dataset assigns the label `10` to the digit `0`. However, in this Dataset, we assign the label `0` to the digit `0` to be compatible with PyTorch loss functions which expect the class labels to be in the range `[0, C-1]` .. warning:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load data from `.mat` format. Args: root (string): Root directory of the dataset where the data is stored. split (string): One of {'train', 'test', 'extra'}. Accordingly dataset is selected. 'extra' is Extra training set. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ split_list = { "train": [ "http://ufldl.stanford.edu/housenumbers/train_32x32.mat", "train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373", ], "test": [ "http://ufldl.stanford.edu/housenumbers/test_32x32.mat", "test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3", ], "extra": [ "http://ufldl.stanford.edu/housenumbers/extra_32x32.mat", "extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7", ], } def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.split = verify_str_arg(split, "split", tuple(self.split_list.keys())) self.url = self.split_list[split][0] self.filename = self.split_list[split][1] self.file_md5 = self.split_list[split][2] if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # import here rather than at top of file because this is # an optional dependency for torchvision import scipy.io as sio # reading(loading) mat file as array loaded_mat = sio.loadmat(os.path.join(self.root, self.filename)) self.data = loaded_mat["X"] # loading from the .mat file gives an np.ndarray of type np.uint8 # converting to np.int64, so that we have a LongTensor after # the conversion from the numpy array # the squeeze is needed to obtain a 1D tensor self.labels = loaded_mat["y"].astype(np.int64).squeeze() # the svhn dataset assigns the class label "10" to the digit 0 # this makes it inconsistent with several loss functions # which expect the class labels to be in the range [0, C-1] np.place(self.labels, self.labels == 10, 0) self.data = np.transpose(self.data, (3, 2, 0, 1)) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.labels[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(np.transpose(img, (1, 2, 0))) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data) def _check_integrity(self) -> bool: root = self.root md5 = self.split_list[self.split][2] fpath = os.path.join(root, self.filename) return check_integrity(fpath, md5) def download(self) -> None: md5 = self.split_list[self.split][2] download_url(self.url, self.root, self.filename, md5) def extra_repr(self) -> str: return "Split: {split}".format(**self.__dict__)
import multiprocessing import pytest from jina import Client from jina.parsers import set_gateway_parser, set_pod_parser from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.gateway.grpc import GRPCGatewayRuntime from jina.serve.runtimes.gateway.http import HTTPGatewayRuntime from jina.serve.runtimes.gateway.websocket import WebSocketGatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime def _create_worker_runtime(port, name='', executor=None): args = set_pod_parser().parse_args([]) args.port = port args.name = name if executor: args.uses = executor with WorkerRuntime(args) as runtime: runtime.run_forever() def _create_gateway_runtime(graph_description, pod_addresses, port, protocol='grpc'): if protocol == 'http': gateway_runtime = HTTPGatewayRuntime elif protocol == 'websocket': gateway_runtime = WebSocketGatewayRuntime else: gateway_runtime = GRPCGatewayRuntime with gateway_runtime( set_gateway_parser().parse_args( [ '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--port', str(port), ] ) ) as runtime: runtime.run_forever() def _setup(worker_port, port, protocol): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' # create a single worker runtime worker_process = multiprocessing.Process( target=_create_worker_runtime, args=(worker_port,) ) worker_process.start() # create a single gateway runtime gateway_process = multiprocessing.Process( target=_create_gateway_runtime, args=(graph_description, pod_addresses, port, protocol), ) gateway_process.start() AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{worker_port}', ready_or_shutdown_event=multiprocessing.Event(), ) AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) return worker_process, gateway_process @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) def test_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', port=port, protocol=protocol) dry_run_alive = c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_async_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', asyncio=True, port=port, protocol=protocol) dry_run_alive = await c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = await c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
import multiprocessing import pytest from jina import Client from jina.parsers import set_gateway_parser, set_pod_parser from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.gateway.grpc import GRPCGatewayRuntime from jina.serve.runtimes.gateway.http import HTTPGatewayRuntime from jina.serve.runtimes.gateway.websocket import WebSocketGatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime def _create_worker_runtime(port, name='', executor=None): args = set_pod_parser().parse_args([]) args.port = port args.name = name if executor: args.uses = executor with WorkerRuntime(args) as runtime: runtime.run_forever() def _create_gateway_runtime(graph_description, pod_addresses, port, protocol='grpc'): if protocol == 'http': gateway_runtime = HTTPGatewayRuntime elif protocol == 'websocket': gateway_runtime = WebSocketGatewayRuntime else: gateway_runtime = GRPCGatewayRuntime with gateway_runtime( set_gateway_parser().parse_args( [ '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--port', str(port), ] ) ) as runtime: runtime.run_forever() def _setup(worker_port, port, protocol): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' # create a single worker runtime worker_process = multiprocessing.Process( target=_create_worker_runtime, args=(worker_port,) ) worker_process.start() # create a single gateway runtime gateway_process = multiprocessing.Process( target=_create_gateway_runtime, args=(graph_description, pod_addresses, port, protocol), ) gateway_process.start() AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{worker_port}', ready_or_shutdown_event=multiprocessing.Event(), ) AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) return worker_process, gateway_process @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) def test_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', port=port, protocol=protocol) dry_run_alive = c.dry_run() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = c.dry_run() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_async_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', asyncio=True, port=port, protocol=protocol) dry_run_alive = await c.dry_run() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = await c.dry_run() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
"""langchain-core version information and utilities.""" VERSION = "0.3.61"
"""langchain-core version information and utilities.""" VERSION = "0.3.60"
""" This example runs a BiLSTM after the word embedding lookup. The output of the BiLSTM is than pooled, for example with max-pooling (which gives a system like InferSent) or with mean-pooling. Note, you can also pass BERT embeddings to the BiLSTM. """ import traceback from datasets import load_dataset from sentence_transformers import models, losses from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) num_train_epochs = 1 batch_size = 32 output_dir = "output/training_stsbenchmark_bilstm-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 2. Define the model # Map tokens to traditional word embeddings like GloVe word_embedding_model = models.WordEmbeddings.from_text_file("glove.6B.300d.txt.gz") lstm = models.LSTM(word_embedding_dimension=word_embedding_model.get_word_embedding_dimension(), hidden_dim=1024) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( lstm.get_word_embedding_dimension(), pooling_mode="mean", ) model = SentenceTransformer(modules=[word_embedding_model, lstm, pooling_model]) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/losses.html#cosentloss) needs two text columns and # one similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="glove-bilstm-sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 8. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = "glove-bilstm-sts" try: model.push_to_hub(model_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}')`." )
""" This example runs a BiLSTM after the word embedding lookup. The output of the BiLSTM is than pooled, for example with max-pooling (which gives a system like InferSent) or with mean-pooling. Note, you can also pass BERT embeddings to the BiLSTM. """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses, util from sentence_transformers import LoggingHandler, SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import os import csv import gzip #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Read the dataset batch_size = 32 model_save_path = "output/training_stsbenchmark_bilstm-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) # Map tokens to traditional word embeddings like GloVe word_embedding_model = models.WordEmbeddings.from_text_file("glove.6B.300d.txt.gz") lstm = models.LSTM(word_embedding_dimension=word_embedding_model.get_word_embedding_dimension(), hidden_dim=1024) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( lstm.get_word_embedding_dimension(), pooling_mode_mean_tokens=False, pooling_mode_cls_token=False, pooling_mode_max_tokens=True, ) model = SentenceTransformer(modules=[word_embedding_model, lstm, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training num_epochs = 10 warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") model.evaluate(evaluator)
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Accelerate utilities: Utilities related to accelerate """ from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def apply_forward_hook(method): """ Decorator that applies a registered CpuOffload hook to an arbitrary function rather than `forward`. This is useful for cases where a PyTorch module provides functions other than `forward` that should trigger a move to the appropriate acceleration device. This is the case for `encode` and `decode` in [`AutoencoderKL`]. This decorator looks inside the internal `_hf_hook` property to find a registered offload hook. :param method: The method to decorate. This method should be a method of a PyTorch module. """ if not is_accelerate_available(): return method accelerate_version = version.parse(accelerate.__version__).base_version if version.parse(accelerate_version) < version.parse("0.17.0"): return method def wrapper(self, *args, **kwargs): if hasattr(self, "_hf_hook") and hasattr(self._hf_hook, "pre_forward"): self._hf_hook.pre_forward(self) return method(self, *args, **kwargs) return wrapper
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Accelerate utilities: Utilities related to accelerate """ from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def apply_forward_hook(method): """ Decorator that applies a registered CpuOffload hook to an arbitrary function rather than `forward`. This is useful for cases where a PyTorch module provides functions other than `forward` that should trigger a move to the appropriate acceleration device. This is the case for `encode` and `decode` in [`AutoencoderKL`]. This decorator looks inside the internal `_hf_hook` property to find a registered offload hook. :param method: The method to decorate. This method should be a method of a PyTorch module. """ if not is_accelerate_available(): return method accelerate_version = version.parse(accelerate.__version__).base_version if version.parse(accelerate_version) < version.parse("0.17.0"): return method def wrapper(self, *args, **kwargs): if hasattr(self, "_hf_hook") and hasattr(self._hf_hook, "pre_forward"): self._hf_hook.pre_forward(self) return method(self, *args, **kwargs) return wrapper
import json import pytest import types from typing import Optional, Type from unittest import mock from requests import Response from llama_index.core.base.llms.base import BaseLLM from llama_index.core.base.llms.types import CompletionResponse from llama_index.llms.siliconflow import SiliconFlow RESPONSE_JSON = { "id": "<string>", "choices": [ { "message": {"role": "assistant", "content": "<string>"}, "finish_reason": "stop", } ], "usage": { "prompt_tokens": 123, "completion_tokens": 123, "total_tokens": 123, }, "created": 123, "model": "<string>", "object": "chat.completion", } class MockAsyncResponse: def __init__(self, json_data) -> None: self._json_data = json_data def raise_for_status(self) -> None: pass async def __aenter__(self) -> "MockAsyncResponse": return self async def __aexit__( self, exc_type: Optional[Type[BaseException]], exc: Optional[BaseException], tb: Optional[types.TracebackType], ) -> None: pass async def json(self) -> dict: return self._json_data def test_llm_class(): names_of_base_classes = [b.__name__ for b in SiliconFlow.__mro__] assert BaseLLM.__name__ in names_of_base_classes def test_llm_model_alias(): model = "deepseek-ai/DeepSeek-V2.5" api_key = "api_key_test" llm = SiliconFlow(model=model, api_key=api_key) assert llm.model == model assert llm.model_kwargs is not None def test_llm_complete(): input_text = "..." mock_response = Response() mock_response.status_code = 200 mock_response._content = json.dumps(RESPONSE_JSON).encode("utf-8") expected_result = CompletionResponse(text="<string>", raw=RESPONSE_JSON) llm = SiliconFlow(api_key="...") with mock.patch("requests.Session.post", return_value=mock_response) as mock_post: actual_result = llm.complete(input_text) assert actual_result.text == expected_result.text assert actual_result.additional_kwargs == actual_result.additional_kwargs assert actual_result.raw == actual_result.raw assert actual_result.logprobs == actual_result.logprobs mock_post.assert_called_once_with( llm.base_url, json={ "model": llm.model, "messages": [{"role": "user", "content": input_text}], "stream": False, "n": 1, "tools": None, "response_format": {"type": "text"}, **llm.model_kwargs, }, headers=llm._headers, timeout=llm.timeout, ) @pytest.mark.asyncio async def test_llm_async_complete(): input_text = "..." mock_response = MockAsyncResponse(json_data=RESPONSE_JSON) expected_result = CompletionResponse(text="<string>", raw=RESPONSE_JSON) llm = SiliconFlow(api_key="...") with mock.patch( "aiohttp.ClientSession.post", return_value=mock_response ) as mock_post: actual_result = await llm.acomplete(input_text) assert actual_result.text == expected_result.text assert actual_result.additional_kwargs == actual_result.additional_kwargs assert actual_result.raw == actual_result.raw assert actual_result.logprobs == actual_result.logprobs mock_post.assert_called_once_with( llm.base_url, json={ "model": llm.model, "messages": [{"role": "user", "content": input_text}], "stream": False, "n": 1, "tools": None, "response_format": {"type": "text"}, **llm.model_kwargs, }, headers=llm._headers, timeout=llm.timeout, )
import json import pytest import types from typing import Optional, Type from unittest import mock from requests import Response from llama_index.core.base.llms.base import BaseLLM from llama_index.core.base.llms.types import CompletionResponse from llama_index.llms.siliconflow import SiliconFlow RESPONSE_JSON = { "id": "<string>", "choices": [ { "message": {"role": "assistant", "content": "<string>"}, "finish_reason": "stop", } ], "usage": { "prompt_tokens": 123, "completion_tokens": 123, "total_tokens": 123, }, "created": 123, "model": "<string>", "object": "chat.completion", } class MockAsyncResponse: def __init__(self, json_data) -> None: self._json_data = json_data def raise_for_status(self) -> None: pass async def __aenter__(self) -> "MockAsyncResponse": return self async def __aexit__( self, exc_type: Optional[Type[BaseException]], exc: Optional[BaseException], tb: Optional[types.TracebackType], ) -> None: pass async def json(self) -> dict: return self._json_data def test_llm_class(): names_of_base_classes = [b.__name__ for b in SiliconFlow.__mro__] assert BaseLLM.__name__ in names_of_base_classes def test_llm_model_alias(): model = "deepseek-ai/DeepSeek-V2.5" api_key = "api_key_test" llm = SiliconFlow(model=model, api_key=api_key) assert llm.model == model assert llm.model_kwargs is not None def test_llm_complete(): input_text = "..." mock_response = Response() mock_response.status_code = 200 mock_response._content = json.dumps(RESPONSE_JSON).encode("utf-8") expected_result = CompletionResponse(text="<string>", raw=RESPONSE_JSON) llm = SiliconFlow(api_key="...") with mock.patch("requests.Session.post", return_value=mock_response) as mock_post: actual_result = llm.complete(input_text) assert actual_result.text == expected_result.text assert actual_result.additional_kwargs == actual_result.additional_kwargs assert actual_result.raw == actual_result.raw assert actual_result.logprobs == actual_result.logprobs mock_post.assert_called_once_with( llm.base_url, json={ "model": llm.model, "messages": [{"role": "user", "content": input_text}], "stream": False, "n": 1, "tools": None, "response_format": {"type": "text"}, **llm.model_kwargs, }, headers=llm._headers, timeout=llm.timeout, ) @pytest.mark.asyncio() async def test_llm_async_complete(): input_text = "..." mock_response = MockAsyncResponse(json_data=RESPONSE_JSON) expected_result = CompletionResponse(text="<string>", raw=RESPONSE_JSON) llm = SiliconFlow(api_key="...") with mock.patch( "aiohttp.ClientSession.post", return_value=mock_response ) as mock_post: actual_result = await llm.acomplete(input_text) assert actual_result.text == expected_result.text assert actual_result.additional_kwargs == actual_result.additional_kwargs assert actual_result.raw == actual_result.raw assert actual_result.logprobs == actual_result.logprobs mock_post.assert_called_once_with( llm.base_url, json={ "model": llm.model, "messages": [{"role": "user", "content": input_text}], "stream": False, "n": 1, "tools": None, "response_format": {"type": "text"}, **llm.model_kwargs, }, headers=llm._headers, timeout=llm.timeout, )
from ._hdemucs import HDemucs, hdemucs_high, hdemucs_low, hdemucs_medium from .conformer import Conformer from .conv_tasnet import conv_tasnet_base, ConvTasNet from .deepspeech import DeepSpeech from .emformer import Emformer from .rnnt import emformer_rnnt_base, emformer_rnnt_model, RNNT from .rnnt_decoder import Hypothesis, RNNTBeamSearch from .tacotron2 import Tacotron2 from .wav2letter import Wav2Letter from .wav2vec2 import ( hubert_base, hubert_large, hubert_pretrain_base, hubert_pretrain_large, hubert_pretrain_model, hubert_pretrain_xlarge, hubert_xlarge, HuBERTPretrainModel, wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, wav2vec2_model, wav2vec2_xlsr_1b, wav2vec2_xlsr_2b, wav2vec2_xlsr_300m, Wav2Vec2Model, wavlm_base, wavlm_large, wavlm_model, ) from .wavernn import WaveRNN __all__ = [ "Wav2Letter", "WaveRNN", "ConvTasNet", "conv_tasnet_base", "DeepSpeech", "Wav2Vec2Model", "HuBERTPretrainModel", "wavlm_model", "wavlm_base", "wavlm_large", "wav2vec2_model", "wav2vec2_base", "wav2vec2_large", "wav2vec2_large_lv60k", "hubert_base", "hubert_large", "hubert_xlarge", "hubert_pretrain_model", "hubert_pretrain_base", "hubert_pretrain_large", "hubert_pretrain_xlarge", "wav2vec2_xlsr_300m", "wav2vec2_xlsr_1b", "wav2vec2_xlsr_2b", "Tacotron2", "Conformer", "Emformer", "Hypothesis", "RNNT", "RNNTBeamSearch", "emformer_rnnt_base", "emformer_rnnt_model", "HDemucs", "hdemucs_low", "hdemucs_medium", "hdemucs_high", ]
from ._hdemucs import HDemucs, hdemucs_high, hdemucs_low, hdemucs_medium from .conformer import Conformer from .conv_tasnet import conv_tasnet_base, ConvTasNet from .deepspeech import DeepSpeech from .emformer import Emformer from .rnnt import emformer_rnnt_base, emformer_rnnt_model, RNNT from .rnnt_decoder import Hypothesis, RNNTBeamSearch from .tacotron2 import Tacotron2 from .wav2letter import Wav2Letter from .wav2vec2 import ( hubert_base, hubert_large, hubert_pretrain_base, hubert_pretrain_large, hubert_pretrain_model, hubert_pretrain_xlarge, hubert_xlarge, HuBERTPretrainModel, wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, wav2vec2_model, Wav2Vec2Model, wavlm_base, wavlm_large, wavlm_model, ) from .wavernn import WaveRNN __all__ = [ "Wav2Letter", "WaveRNN", "ConvTasNet", "conv_tasnet_base", "DeepSpeech", "Wav2Vec2Model", "HuBERTPretrainModel", "wavlm_model", "wavlm_base", "wavlm_large", "wav2vec2_model", "wav2vec2_base", "wav2vec2_large", "wav2vec2_large_lv60k", "hubert_base", "hubert_large", "hubert_xlarge", "hubert_pretrain_model", "hubert_pretrain_base", "hubert_pretrain_large", "hubert_pretrain_xlarge", "Tacotron2", "Conformer", "Emformer", "Hypothesis", "RNNT", "RNNTBeamSearch", "emformer_rnnt_base", "emformer_rnnt_model", "HDemucs", "hdemucs_low", "hdemucs_medium", "hdemucs_high", ]
from typing import Optional import pytest import torch from docarray import BaseDoc, DocArray from docarray.array.abstract_array import AnyDocArray from docarray.documents import TextDoc from docarray.typing import TorchTensor num_docs = 5 num_sub_docs = 2 num_sub_sub_docs = 3 @pytest.fixture def multi_model_docs(): class SubSubDoc(BaseDoc): sub_sub_text: TextDoc sub_sub_tensor: TorchTensor[2] class SubDoc(BaseDoc): sub_text: TextDoc sub_da: DocArray[SubSubDoc] class MultiModalDoc(BaseDoc): mm_text: TextDoc mm_tensor: Optional[TorchTensor[3, 2, 2]] mm_da: DocArray[SubDoc] docs = DocArray[MultiModalDoc]( [ MultiModalDoc( mm_text=TextDoc(text=f'hello{i}'), mm_da=[ SubDoc( sub_text=TextDoc(text=f'sub_{i}_1'), sub_da=DocArray[SubSubDoc]( [ SubSubDoc( sub_sub_text=TextDoc(text='subsub'), sub_sub_tensor=torch.zeros(2), ) for _ in range(num_sub_sub_docs) ] ), ) for _ in range(num_sub_docs) ], ) for i in range(num_docs) ] ) return docs @pytest.mark.parametrize( 'access_path,len_result', [ ('mm_text', num_docs), # List of 5 Text objs ('mm_text__text', num_docs), # List of 5 strings ('mm_da', num_docs * num_sub_docs), # List of 5 * 2 SubDoc objs ('mm_da__sub_text', num_docs * num_sub_docs), # List of 5 * 2 Text objs ( 'mm_da__sub_da', num_docs * num_sub_docs * num_sub_sub_docs, ), # List of 5 * 2 * 3 SubSubDoc objs ( 'mm_da__sub_da__sub_sub_text', num_docs * num_sub_docs * num_sub_sub_docs, ), # List of 5 * 2 * 3 Text objs ], ) def test_traverse_flat(multi_model_docs, access_path, len_result): traversed = multi_model_docs.traverse_flat(access_path) assert len(traversed) == len_result def test_traverse_stacked_da(): class Image(BaseDoc): tensor: TorchTensor[3, 224, 224] batch = DocArray[Image]( [ Image( tensor=torch.zeros(3, 224, 224), ) for _ in range(2) ] ) batch_stacked = batch.stack() tensors = batch_stacked.traverse_flat(access_path='tensor') assert tensors.shape == (2, 3, 224, 224) assert isinstance(tensors, torch.Tensor) @pytest.mark.parametrize( 'input_list,output_list', [ ([1, 2, 3], [1, 2, 3]), ([[1], [2], [3]], [1, 2, 3]), ([[[1]], [[2]], [[3]]], [[1], [2], [3]]), ], ) def test_flatten_one_level(input_list, output_list): flattened = AnyDocArray._flatten_one_level(sequence=input_list) assert flattened == output_list def test_flatten_one_level_list_of_da(): doc = BaseDoc() input_list = [DocArray([doc, doc, doc])] flattened = AnyDocArray._flatten_one_level(sequence=input_list) assert flattened == [doc, doc, doc]
from typing import Optional import pytest import torch from docarray import BaseDocument, DocumentArray from docarray.array.abstract_array import AnyDocumentArray from docarray.documents import TextDoc from docarray.typing import TorchTensor num_docs = 5 num_sub_docs = 2 num_sub_sub_docs = 3 @pytest.fixture def multi_model_docs(): class SubSubDoc(BaseDocument): sub_sub_text: TextDoc sub_sub_tensor: TorchTensor[2] class SubDoc(BaseDocument): sub_text: TextDoc sub_da: DocumentArray[SubSubDoc] class MultiModalDoc(BaseDocument): mm_text: TextDoc mm_tensor: Optional[TorchTensor[3, 2, 2]] mm_da: DocumentArray[SubDoc] docs = DocumentArray[MultiModalDoc]( [ MultiModalDoc( mm_text=TextDoc(text=f'hello{i}'), mm_da=[ SubDoc( sub_text=TextDoc(text=f'sub_{i}_1'), sub_da=DocumentArray[SubSubDoc]( [ SubSubDoc( sub_sub_text=TextDoc(text='subsub'), sub_sub_tensor=torch.zeros(2), ) for _ in range(num_sub_sub_docs) ] ), ) for _ in range(num_sub_docs) ], ) for i in range(num_docs) ] ) return docs @pytest.mark.parametrize( 'access_path,len_result', [ ('mm_text', num_docs), # List of 5 Text objs ('mm_text__text', num_docs), # List of 5 strings ('mm_da', num_docs * num_sub_docs), # List of 5 * 2 SubDoc objs ('mm_da__sub_text', num_docs * num_sub_docs), # List of 5 * 2 Text objs ( 'mm_da__sub_da', num_docs * num_sub_docs * num_sub_sub_docs, ), # List of 5 * 2 * 3 SubSubDoc objs ( 'mm_da__sub_da__sub_sub_text', num_docs * num_sub_docs * num_sub_sub_docs, ), # List of 5 * 2 * 3 Text objs ], ) def test_traverse_flat(multi_model_docs, access_path, len_result): traversed = multi_model_docs.traverse_flat(access_path) assert len(traversed) == len_result def test_traverse_stacked_da(): class Image(BaseDocument): tensor: TorchTensor[3, 224, 224] batch = DocumentArray[Image]( [ Image( tensor=torch.zeros(3, 224, 224), ) for _ in range(2) ] ) batch_stacked = batch.stack() tensors = batch_stacked.traverse_flat(access_path='tensor') assert tensors.shape == (2, 3, 224, 224) assert isinstance(tensors, torch.Tensor) @pytest.mark.parametrize( 'input_list,output_list', [ ([1, 2, 3], [1, 2, 3]), ([[1], [2], [3]], [1, 2, 3]), ([[[1]], [[2]], [[3]]], [[1], [2], [3]]), ], ) def test_flatten_one_level(input_list, output_list): flattened = AnyDocumentArray._flatten_one_level(sequence=input_list) assert flattened == output_list def test_flatten_one_level_list_of_da(): doc = BaseDocument() input_list = [DocumentArray([doc, doc, doc])] flattened = AnyDocumentArray._flatten_one_level(sequence=input_list) assert flattened == [doc, doc, doc]
__version__ = '0.32.2' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
__version__ = '0.32.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
import os from typing import Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import Image from tests import TOYDATA_DIR @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDocument): count: Optional[int] text: str class MyDocNested(MyDoc): image: Image image2: Image return MyDocNested def test_to_from_csv(tmpdir, nested_doc_cls): da = DocumentArray[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=Image(url='aux.png'), image2=Image(url='aux.png'), ), nested_doc_cls(text='hello world', image=Image(), image2=Image()), ] ) tmp_file = str(tmpdir / 'tmp.csv') da.to_csv(tmp_file) assert os.path.isfile(tmp_file) da_from = DocumentArray[nested_doc_cls].from_csv(tmp_file) for doc1, doc2 in zip(da, da_from): assert doc1 == doc2 def test_from_csv_nested(nested_doc_cls): da = DocumentArray[nested_doc_cls].from_csv( file_path=str(TOYDATA_DIR / 'docs_nested.csv') ) assert len(da) == 3 for i, doc in enumerate(da): assert doc.count.__class__ == int assert doc.count == int(f'{i}{i}{i}') assert doc.text.__class__ == str assert doc.text == f'hello {i}' assert doc.image.__class__ == Image assert doc.image.tensor is None assert doc.image.embedding is None assert doc.image.bytes is None assert doc.image2.__class__ == Image assert doc.image2.tensor is None assert doc.image2.embedding is None assert doc.image2.bytes is None assert da[0].image2.url == 'image_10.png' assert da[1].image2.url is None assert da[2].image2.url is None @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[Image] class Middle(BaseDocument): img: Optional[Image] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[Image] middle: Optional[Middle] doc = Outer(img=Image(), middle=Middle(img=Image(), inner=Inner(img=Image()))) return doc def test_from_csv_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): DocumentArray.from_csv(file_path=str(TOYDATA_DIR / 'docs_nested.csv')) def test_from_csv_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): DocumentArray[nested_doc.__class__].from_csv( file_path=str(TOYDATA_DIR / 'docs.csv') )
import os from typing import Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import Image from tests import TOYDATA_DIR @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDocument): count: Optional[int] text: str class MyDocNested(MyDoc): image: Image image2: Image return MyDocNested def test_to_from_csv(tmpdir, nested_doc_cls): da = DocumentArray[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=Image(url='aux.png'), image2=Image(url='aux.png'), ), nested_doc_cls(text='hello world', image=Image(), image2=Image()), ] ) tmp_file = str(tmpdir / 'tmp.csv') da.to_csv(tmp_file) assert os.path.isfile(tmp_file) da_from = DocumentArray[nested_doc_cls].from_csv(tmp_file) for doc1, doc2 in zip(da, da_from): assert doc1 == doc2 def test_from_csv_nested(nested_doc_cls): da = DocumentArray[nested_doc_cls].from_csv( file_path=str(TOYDATA_DIR / 'docs_nested.csv') ) assert len(da) == 3 for i, doc in enumerate(da): assert doc.count.__class__ == int assert doc.count == int(f'{i}{i}{i}') assert doc.text.__class__ == str assert doc.text == f'hello {i}' assert doc.image.__class__ == Image assert doc.image.tensor is None assert doc.image.embedding is None assert doc.image.bytes is None assert doc.image2.__class__ == Image assert doc.image2.tensor is None assert doc.image2.embedding is None assert doc.image2.bytes is None assert da[0].image2.url == 'image_10.png' assert da[1].image2.url is None assert da[2].image2.url is None @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[Image] class Middle(BaseDocument): img: Optional[Image] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[Image] middle: Optional[Middle] doc = Outer(img=Image(), middle=Middle(img=Image(), inner=Inner(img=Image()))) return doc def test_from_csv_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): DocumentArray.from_csv(file_path=str(TOYDATA_DIR / 'docs_nested.csv')) def test_from_csv_with_wrong_schema_raise_exception(nested_doc): with pytest.raises( ValueError, match='Fields provided in the csv file do not match the schema' ): DocumentArray[nested_doc.__class__].from_csv( file_path=str(TOYDATA_DIR / 'docs.csv') )
"""Human message.""" from typing import Any, Literal, Union from langchain_core.messages.base import BaseMessage, BaseMessageChunk class HumanMessage(BaseMessage): """Message from a human. HumanMessages are messages that are passed in from a human to the model. Example: .. code-block:: python from langchain_core.messages import HumanMessage, SystemMessage messages = [ SystemMessage( content="You are a helpful assistant! Your name is Bob." ), HumanMessage( content="What is your name?" ) ] # Instantiate a chat model and invoke it with the messages model = ... print(model.invoke(messages)) """ example: bool = False """Use to denote that a message is part of an example conversation. At the moment, this is ignored by most models. Usage is discouraged. Defaults to False. """ type: Literal["human"] = "human" """The type of the message (used for serialization). Defaults to "human".""" def __init__( self, content: Union[str, list[Union[str, dict]]], **kwargs: Any ) -> None: """Pass in content as positional arg. Args: content: The string contents of the message. kwargs: Additional fields to pass to the message. """ super().__init__(content=content, **kwargs) HumanMessage.model_rebuild() class HumanMessageChunk(HumanMessage, BaseMessageChunk): """Human Message chunk.""" # Ignoring mypy re-assignment here since we're overriding the value # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["HumanMessageChunk"] = "HumanMessageChunk" # type: ignore[assignment] """The type of the message (used for serialization). Defaults to "HumanMessageChunk"."""
from typing import Any, Literal, Union from langchain_core.messages.base import BaseMessage, BaseMessageChunk class HumanMessage(BaseMessage): """Message from a human. HumanMessages are messages that are passed in from a human to the model. Example: .. code-block:: python from langchain_core.messages import HumanMessage, SystemMessage messages = [ SystemMessage( content="You are a helpful assistant! Your name is Bob." ), HumanMessage( content="What is your name?" ) ] # Instantiate a chat model and invoke it with the messages model = ... print(model.invoke(messages)) """ example: bool = False """Use to denote that a message is part of an example conversation. At the moment, this is ignored by most models. Usage is discouraged. Defaults to False. """ type: Literal["human"] = "human" """The type of the message (used for serialization). Defaults to "human".""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"]. """ return ["langchain", "schema", "messages"] def __init__( self, content: Union[str, list[Union[str, dict]]], **kwargs: Any ) -> None: """Pass in content as positional arg. Args: content: The string contents of the message. kwargs: Additional fields to pass to the message. """ super().__init__(content=content, **kwargs) HumanMessage.model_rebuild() class HumanMessageChunk(HumanMessage, BaseMessageChunk): """Human Message chunk.""" # Ignoring mypy re-assignment here since we're overriding the value # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["HumanMessageChunk"] = "HumanMessageChunk" # type: ignore[assignment] """The type of the message (used for serialization). Defaults to "HumanMessageChunk".""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"]. """ return ["langchain", "schema", "messages"]
""" This script contains an example how to perform semantic search with OpenSearch. You need OpenSearch up and running locally: https://docs.opensearch.org/docs/latest/getting-started/quickstart/ Further, you need the Python OpenSearch Client installed: https://docs.opensearch.org/docs/latest/clients/python-low-level/, e.g.: ``` pip install opensearch-py ``` This script was created for `opensearch` v2.15.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.models import Router from sentence_transformers.sparse_encoder.models import IDF, MLMTransformer, SpladePooling from sentence_transformers.sparse_encoder.search_engines import semantic_search_opensearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] print(f"Finish loading data. Corpus size: {len(corpus)}") # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model model_id = "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill" doc_encoder = MLMTransformer(model_id) router = Router.for_query_document( query_modules=[ IDF.from_json( model_id, tokenizer=doc_encoder.tokenizer, frozen=True, ), ], document_modules=[ doc_encoder, SpladePooling("max", activation_function="log1p_relu"), ], ) sparse_model = SparseEncoder(modules=[router], similarity_fn_name="dot") print("Start encoding corpus...") start_time = time.time() # 4. Encode the corpus corpus_embeddings = sparse_model.encode( [{"doc": doc} for doc in corpus], convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True ) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using inference-free mode start_time = time.time() query_embeddings = sparse_model.encode([{"query": query} for query in queries], convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Query encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using OpenSearch results, search_time, corpus_index = semantic_search_opensearch( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
""" This script contains an example how to perform semantic search with OpenSearch. You need OpenSearch up and running locally: https://docs.opensearch.org/docs/latest/getting-started/quickstart/ Further, you need the Python OpenSearch Client installed: https://docs.opensearch.org/docs/latest/clients/python-low-level/, e.g.: ``` pip install opensearch-py ``` This script was created for `opensearch` v2.15.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder, models from sentence_transformers.sparse_encoder.models import IDF, MLMTransformer, SpladePooling from sentence_transformers.sparse_encoder.search_engines import semantic_search_opensearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] print(f"Finish loading data. Corpus size: {len(corpus)}") # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model model_id = "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill" doc_encoder = MLMTransformer(model_id) asym = models.Router( { "query": [ IDF.from_json( model_id, tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling("max", activation_function="log1p_relu"), ], } ) sparse_model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) print("Start encoding corpus...") start_time = time.time() # 4. Encode the corpus corpus_embeddings = sparse_model.encode( [{"doc": doc} for doc in corpus], convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True ) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using inference-free mode start_time = time.time() query_embeddings = sparse_model.encode([{"query": query} for query in queries], convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Query encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using OpenSearch results, search_time, corpus_index = semantic_search_opensearch( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
from typing import TYPE_CHECKING from docarray.dataclasses.enums import DocumentMetadata, ImageType if TYPE_CHECKING: # pragma: no cover from docarray import Document def image_getter(doc: 'Document'): if doc._metadata[DocumentMetadata.IMAGE_TYPE] == ImageType.URI: return doc.uri elif doc._metadata[DocumentMetadata.IMAGE_TYPE] == ImageType.PIL: from PIL import Image return Image.fromarray(doc.tensor) elif doc._metadata[DocumentMetadata.IMAGE_TYPE] == ImageType.NDARRAY: return doc.tensor def text_getter(doc: 'Document'): return doc.text def uri_getter(doc: 'Document'): return doc.uri def audio_getter(doc: 'Document'): return doc.uri or doc.tensor def video_getter(doc: 'Document'): return doc.uri or doc.tensor def mesh_getter(doc: 'Document'): return doc.uri or doc.tensor def tabular_getter(doc: 'Document'): return doc.uri def blob_getter(doc: 'Document'): return doc.uri or doc.blob def json_getter(doc: 'Document'): return doc.tags
from typing import TYPE_CHECKING if TYPE_CHECKING: # pragma: no cover from docarray import Document def image_getter(doc: 'Document'): if doc._metadata['image_type'] == 'uri': return doc.uri elif doc._metadata['image_type'] == 'PIL': from PIL import Image return Image.fromarray(doc.tensor) elif doc._metadata['image_type'] == 'ndarray': return doc.tensor def text_getter(doc: 'Document'): return doc.text def uri_getter(doc: 'Document'): return doc.uri def audio_getter(doc: 'Document'): return doc.uri or doc.tensor def video_getter(doc: 'Document'): return doc.uri or doc.tensor def mesh_getter(doc: 'Document'): return doc.uri or doc.tensor def tabular_getter(doc: 'Document'): return doc.uri def blob_getter(doc: 'Document'): return doc.uri or doc.blob def json_getter(doc: 'Document'): return doc.tags
import numpy as np from absl.testing import parameterized from keras.src import backend from keras.src import ops from keras.src import testing from keras.src.optimizers.loss_scale_optimizer import LossScaleOptimizer from keras.src.optimizers.sgd import SGD class LossScaleOptimizerTest(testing.TestCase): def _skip_test_for_stateless(self, stateless): if not stateless and backend.backend() == "jax": self.skipTest( "LossScaleOptimizer must use stateless_apply with JAX." ) if stateless and backend.backend() == "tensorflow": self.skipTest( "stateless_apply is not supported with the TF backend." ) def test_config(self): inner_optimizer = SGD( learning_rate=0.5, momentum=0.06, nesterov=True, weight_decay=0.004, ) optimizer = LossScaleOptimizer(inner_optimizer) self.run_class_serialization_test(optimizer) @parameterized.named_parameters(("stateless", True), ("stateful", False)) def test_finite_step(self, stateless): self._skip_test_for_stateless(stateless) inner_optimizer = SGD(learning_rate=0.5) optimizer = LossScaleOptimizer(inner_optimizer) grads = [ops.array([1.0, 6.0, 7.0, 2.0]) * optimizer.initial_scale] vars = [backend.Variable([1.0, 2.0, 3.0, 4.0])] if stateless: optimizer.build(vars) vars, _ = optimizer.stateless_apply( optimizer.variables, grads, vars ) else: optimizer.apply(grads, vars) self.assertAllClose( vars, [[0.5, -1.0, -0.5, 3.0]], rtol=1e-4, atol=1e-4 ) @parameterized.named_parameters(("stateless", True), ("stateful", False)) def test_infinite_step(self, stateless): self._skip_test_for_stateless(stateless) inner_optimizer = SGD(learning_rate=0.5) optimizer = LossScaleOptimizer(inner_optimizer) grads = [ops.array([np.inf, np.inf, np.inf, np.inf])] vars = [backend.Variable([1.0, 2.0, 3.0, 4.0])] if stateless: optimizer.build(vars) vars, _ = optimizer.stateless_apply( optimizer.variables, grads, vars ) else: optimizer.apply(grads, vars) self.assertAllClose(vars, [[1.0, 2.0, 3.0, 4.0]], rtol=1e-4, atol=1e-4) @parameterized.named_parameters(("stateless", True), ("stateful", False)) def test_downscaling(self, stateless): self._skip_test_for_stateless(stateless) inner_optimizer = SGD(learning_rate=0.5) optimizer = LossScaleOptimizer(inner_optimizer, initial_scale=400.0) vars = [backend.Variable([1.0, 2.0, 3.0, 4.0])] optimizer.build(vars) opt_vars = optimizer.variables grads = [ops.array([np.inf, np.inf, np.inf, np.inf])] for _ in range(4): if stateless: _, opt_vars = optimizer.stateless_apply(opt_vars, grads, vars) for ref_v, v in zip(optimizer.variables, opt_vars): ref_v.assign(v) else: optimizer.apply(grads, vars) self.assertAllClose(optimizer.scale_loss(1.0), 25.0) @parameterized.named_parameters(("stateless", True), ("stateful", False)) def test_upscaling(self, stateless): self._skip_test_for_stateless(stateless) inner_optimizer = SGD(learning_rate=0.5) optimizer = LossScaleOptimizer( inner_optimizer, initial_scale=2.0, dynamic_growth_steps=2, ) vars = [backend.Variable([1.0, 2.0, 3.0, 4.0])] optimizer.build(vars) opt_vars = optimizer.variables grads = [ops.array([1.0, 6.0, 7.0, 2.0])] for _ in range(8): if stateless: _, opt_vars = optimizer.stateless_apply(opt_vars, grads, vars) for ref_v, v in zip(optimizer.variables, opt_vars): ref_v.assign(v) else: optimizer.apply(grads, vars) self.assertAllClose(optimizer.scale_loss(1.0), 32.0)
import numpy as np from absl.testing import parameterized from keras.src import backend from keras.src import ops from keras.src import testing from keras.src.optimizers.loss_scale_optimizer import LossScaleOptimizer from keras.src.optimizers.sgd import SGD class LossScaleOptimizerTest(testing.TestCase, parameterized.TestCase): def _skip_test_for_stateless(self, stateless): if not stateless and backend.backend() == "jax": self.skipTest( "LossScaleOptimizer must use stateless_apply with JAX." ) if stateless and backend.backend() == "tensorflow": self.skipTest( "stateless_apply is not supported with the TF backend." ) def test_config(self): inner_optimizer = SGD( learning_rate=0.5, momentum=0.06, nesterov=True, weight_decay=0.004, ) optimizer = LossScaleOptimizer(inner_optimizer) self.run_class_serialization_test(optimizer) @parameterized.named_parameters(("stateless", True), ("stateful", False)) def test_finite_step(self, stateless): self._skip_test_for_stateless(stateless) inner_optimizer = SGD(learning_rate=0.5) optimizer = LossScaleOptimizer(inner_optimizer) grads = [ops.array([1.0, 6.0, 7.0, 2.0]) * optimizer.initial_scale] vars = [backend.Variable([1.0, 2.0, 3.0, 4.0])] if stateless: optimizer.build(vars) vars, _ = optimizer.stateless_apply( optimizer.variables, grads, vars ) else: optimizer.apply(grads, vars) self.assertAllClose( vars, [[0.5, -1.0, -0.5, 3.0]], rtol=1e-4, atol=1e-4 ) @parameterized.named_parameters(("stateless", True), ("stateful", False)) def test_infinite_step(self, stateless): self._skip_test_for_stateless(stateless) inner_optimizer = SGD(learning_rate=0.5) optimizer = LossScaleOptimizer(inner_optimizer) grads = [ops.array([np.inf, np.inf, np.inf, np.inf])] vars = [backend.Variable([1.0, 2.0, 3.0, 4.0])] if stateless: optimizer.build(vars) vars, _ = optimizer.stateless_apply( optimizer.variables, grads, vars ) else: optimizer.apply(grads, vars) self.assertAllClose(vars, [[1.0, 2.0, 3.0, 4.0]], rtol=1e-4, atol=1e-4) @parameterized.named_parameters(("stateless", True), ("stateful", False)) def test_downscaling(self, stateless): self._skip_test_for_stateless(stateless) inner_optimizer = SGD(learning_rate=0.5) optimizer = LossScaleOptimizer(inner_optimizer, initial_scale=400.0) vars = [backend.Variable([1.0, 2.0, 3.0, 4.0])] optimizer.build(vars) opt_vars = optimizer.variables grads = [ops.array([np.inf, np.inf, np.inf, np.inf])] for _ in range(4): if stateless: _, opt_vars = optimizer.stateless_apply(opt_vars, grads, vars) for ref_v, v in zip(optimizer.variables, opt_vars): ref_v.assign(v) else: optimizer.apply(grads, vars) self.assertAllClose(optimizer.scale_loss(1.0), 25.0) @parameterized.named_parameters(("stateless", True), ("stateful", False)) def test_upscaling(self, stateless): self._skip_test_for_stateless(stateless) inner_optimizer = SGD(learning_rate=0.5) optimizer = LossScaleOptimizer( inner_optimizer, initial_scale=2.0, dynamic_growth_steps=2, ) vars = [backend.Variable([1.0, 2.0, 3.0, 4.0])] optimizer.build(vars) opt_vars = optimizer.variables grads = [ops.array([1.0, 6.0, 7.0, 2.0])] for _ in range(8): if stateless: _, opt_vars = optimizer.stateless_apply(opt_vars, grads, vars) for ref_v, v in zip(optimizer.variables, opt_vars): ref_v.assign(v) else: optimizer.apply(grads, vars) self.assertAllClose(optimizer.scale_loss(1.0), 32.0)
from google.protobuf import __version__ as __pb__version__ from jina._docarray import docarray_v2 as is_docarray_v2 if __pb__version__.startswith('4'): if is_docarray_v2: from jina.proto.docarray_v2.pb.jina_pb2_grpc import * else: from jina.proto.docarray_v1.pb.jina_pb2_grpc import * else: if is_docarray_v2: from jina.proto.docarray_v2.pb2.jina_pb2_grpc import * else: from jina.proto.docarray_v1.pb2.jina_pb2_grpc import *
from google.protobuf import __version__ as __pb__version__ from jina._docarray import docarray_v2 as is_docarray_v2 if __pb__version__.startswith('4'): if is_docarray_v2: from .docarray_v2.pb.jina_pb2_grpc import * else: from .docarray_v1.pb.jina_pb2_grpc import * else: if is_docarray_v2: from .docarray_v2.pb2.jina_pb2_grpc import * else: from .docarray_v1.pb2.jina_pb2_grpc import *
from abc import abstractmethod from typing import Iterable, Union from qdrant_client import QdrantClient from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): @property @abstractmethod def client(self) -> QdrantClient: raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def config(self): raise NotImplementedError() @abstractmethod def _upload_batch(self, docs: Iterable['Document']): raise NotImplementedError() def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self.client.openapi_client.client.host == other.openapi_client.client.host and self.config == other.config ) def __len__(self): return self.client.get_collection(self.collection_name).points_count def __contains__(self, x: Union[str, 'Document']): if isinstance(x, str): return self._id_exists(x) elif isinstance(x, Document): return self._id_exists(x.id) else: return False def _id_exists(self, x: str): try: self._get_doc_by_id(x) return True except KeyError: return False def __repr__(self): return f'<DocumentArray[Qdrant] (length={len(self)}) at {id(self)}>' def _extend(self, docs: Iterable['Document'], **kwargs): docs = list(docs) self._upload_batch(docs) self._offset2ids.extend([doc.id for doc in docs])
from abc import abstractmethod from typing import Iterable, Union from qdrant_client import QdrantClient from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): @property @abstractmethod def client(self) -> QdrantClient: raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def config(self): raise NotImplementedError() @abstractmethod def _upload_batch(self, docs: Iterable['Document']): raise NotImplementedError() def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self.client.openapi_client.client.host == other.openapi_client.client.host and self.config == other.config ) def __len__(self): return self.client.http.collections_api.get_collection( self.collection_name ).result.vectors_count def __contains__(self, x: Union[str, 'Document']): if isinstance(x, str): return self._id_exists(x) elif isinstance(x, Document): return self._id_exists(x.id) else: return False def _id_exists(self, x: str): try: self._get_doc_by_id(x) return True except KeyError: return False def __repr__(self): return f'<DocumentArray[Qdrant] (length={len(self)}) at {id(self)}>' def _extend(self, docs: Iterable['Document'], **kwargs): docs = list(docs) self._upload_batch(docs) self._offset2ids.extend([doc.id for doc in docs])
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.backend.config import backend from keras.src.backend.config import disable_flash_attention from keras.src.backend.config import enable_flash_attention from keras.src.backend.config import epsilon from keras.src.backend.config import floatx from keras.src.backend.config import image_data_format from keras.src.backend.config import is_flash_attention_enabled from keras.src.backend.config import set_epsilon from keras.src.backend.config import set_floatx from keras.src.backend.config import set_image_data_format from keras.src.dtype_policies.dtype_policy import dtype_policy from keras.src.dtype_policies.dtype_policy import set_dtype_policy from keras.src.saving.serialization_lib import enable_unsafe_deserialization from keras.src.utils.backend_utils import set_backend from keras.src.utils.io_utils import disable_interactive_logging from keras.src.utils.io_utils import enable_interactive_logging from keras.src.utils.io_utils import is_interactive_logging_enabled from keras.src.utils.traceback_utils import disable_traceback_filtering from keras.src.utils.traceback_utils import enable_traceback_filtering from keras.src.utils.traceback_utils import is_traceback_filtering_enabled
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.backend.config import backend from keras.src.backend.config import epsilon from keras.src.backend.config import floatx from keras.src.backend.config import image_data_format from keras.src.backend.config import set_epsilon from keras.src.backend.config import set_floatx from keras.src.backend.config import set_image_data_format from keras.src.dtype_policies.dtype_policy import dtype_policy from keras.src.dtype_policies.dtype_policy import set_dtype_policy from keras.src.layers.attention.attention import disable_flash_attention from keras.src.layers.attention.attention import enable_flash_attention from keras.src.layers.attention.attention import is_flash_attention_enabled from keras.src.saving.serialization_lib import enable_unsafe_deserialization from keras.src.utils.backend_utils import set_backend from keras.src.utils.io_utils import disable_interactive_logging from keras.src.utils.io_utils import enable_interactive_logging from keras.src.utils.io_utils import is_interactive_logging_enabled from keras.src.utils.traceback_utils import disable_traceback_filtering from keras.src.utils.traceback_utils import enable_traceback_filtering from keras.src.utils.traceback_utils import is_traceback_filtering_enabled
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/openimages_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict(bbox_head=dict(num_classes=601)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 64, by_epoch=False, begin=0, end=26000), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001), clip_grad=dict(max_norm=35, norm_type=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/openimages_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict(bbox_head=dict(num_classes=601)) optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) lr_config = dict( policy='step', warmup='linear', warmup_iters=26000, warmup_ratio=1.0 / 64, step=[8, 11]) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
import os import platform import tempfile import pytest from sentence_transformers import SentenceTransformer, CrossEncoder from sentence_transformers.models import Transformer, Pooling from datasets import load_dataset, DatasetDict @pytest.fixture() def stsb_bert_tiny_model() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture(scope="session") def stsb_bert_tiny_model_reused() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture() def paraphrase_distilroberta_base_v1_model() -> SentenceTransformer: return SentenceTransformer("paraphrase-distilroberta-base-v1") @pytest.fixture() def distilroberta_base_ce_model() -> CrossEncoder: return CrossEncoder("distilroberta-base", num_labels=1) @pytest.fixture() def clip_vit_b_32_model() -> SentenceTransformer: return SentenceTransformer("clip-ViT-B-32") @pytest.fixture() def distilbert_base_uncased_model() -> SentenceTransformer: word_embedding_model = Transformer("distilbert-base-uncased") pooling_model = Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) return model @pytest.fixture(scope="session") def stsb_dataset_dict() -> DatasetDict: return load_dataset("mteb/stsbenchmark-sts") @pytest.fixture() def cache_dir(): """ In the CI environment, we use a temporary directory as `cache_dir` to avoid keeping the downloaded models on disk after the test. This is only required for Ubuntu, as we otherwise have disk space issues there. """ if os.environ.get("CI", None) and platform.system() == "Linux": with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield None
import os import platform import tempfile import pytest from sentence_transformers import SentenceTransformer, CrossEncoder from sentence_transformers.models import Transformer, Pooling @pytest.fixture() def stsb_bert_tiny_model() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture(scope="session") def stsb_bert_tiny_model_reused() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture() def paraphrase_distilroberta_base_v1_model() -> SentenceTransformer: return SentenceTransformer("paraphrase-distilroberta-base-v1") @pytest.fixture() def distilroberta_base_ce_model() -> CrossEncoder: return CrossEncoder("distilroberta-base", num_labels=1) @pytest.fixture() def clip_vit_b_32_model() -> SentenceTransformer: return SentenceTransformer("clip-ViT-B-32") @pytest.fixture() def distilbert_base_uncased_model() -> SentenceTransformer: word_embedding_model = Transformer("distilbert-base-uncased") pooling_model = Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) return model @pytest.fixture() def cache_dir(): """ In the CI environment, we use a temporary directory as `cache_dir` to avoid keeping the downloaded models on disk after the test. This is only required for Ubuntu, as we otherwise have disk space issues there. """ if os.environ.get("CI", None) and platform.system() == "Linux": with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield None
from dataclasses import dataclass, field from typing import Union from transformers import TrainingArguments as TransformersTrainingArguments from transformers.utils import ExplicitEnum class BatchSamplers(ExplicitEnum): """ Stores the acceptable string identifiers for batch samplers. """ BATCH_SAMPLER = "batch_sampler" # Just the default PyTorch batch sampler [default] NO_DUPLICATES = "no_duplicates" # Ensures no duplicate samples in a batch GROUP_BY_LABEL = "group_by_label" # Ensure each batch has 2+ samples from the same label class MultiDatasetBatchSamplers(ExplicitEnum): """ Stores the acceptable string identifiers for multi-dataset batch samplers. """ ROUND_ROBIN = "round_robin" # Round-robin sampling from each dataset PROPORTIONAL = "proportional" # Sample from each dataset in proportion to its size [default] @dataclass class SentenceTransformerTrainingArguments(TransformersTrainingArguments): batch_sampler: Union[BatchSamplers, str] = field( default=BatchSamplers.BATCH_SAMPLER, metadata={"help": "The batch sampler to use."} ) multi_dataset_batch_sampler: Union[MultiDatasetBatchSamplers, str] = field( default=MultiDatasetBatchSamplers.PROPORTIONAL, metadata={"help": "The multi-dataset batch sampler to use."} ) def __post_init__(self): super().__post_init__() self.batch_sampler = BatchSamplers(self.batch_sampler) self.multi_dataset_batch_sampler = MultiDatasetBatchSamplers(self.multi_dataset_batch_sampler) # The `compute_loss` method in `SentenceTransformerTrainer` is overridden to only compute the prediction loss, # so we set `prediction_loss_only` to `True` here to avoid self.prediction_loss_only = True
from dataclasses import dataclass, field from typing import Union from transformers import TrainingArguments as TransformersTrainingArguments from transformers.utils import ExplicitEnum class BatchSamplers(ExplicitEnum): """ Stores the acceptable string identifiers for batch samplers. """ BATCH_SAMPLER = "batch_sampler" # Just the default PyTorch batch sampler [default] NO_DUPLICATES = "no_duplicates" # Ensures no duplicate samples in a batch GROUP_BY_LABEL = "group_by_label" # Ensure each batch has 2+ samples from the same label class MultiDatasetBatchSamplers(ExplicitEnum): """ Stores the acceptable string identifiers for multi-dataset batch samplers. """ ROUND_ROBIN = "round_robin" # Round-robin sampling from each dataset PROPORTIONAL = "proportional" # Sample from each dataset in proportion to its size [default] @dataclass class SentenceTransformerTrainingArguments(TransformersTrainingArguments): batch_sampler: Union[BatchSamplers, str] = field( default=BatchSamplers.BATCH_SAMPLER, metadata={"help": "The batch sampler to use."} ) multi_dataset_batch_sampler: Union[MultiDatasetBatchSamplers, str] = field( default=MultiDatasetBatchSamplers.PROPORTIONAL, metadata={"help": "The multi-dataset batch sampler to use."} ) def __post_init__(self): super().__post_init__() self.batch_sampler = BatchSamplers(self.batch_sampler) self.multi_dataset_batch_sampler = MultiDatasetBatchSamplers(self.multi_dataset_batch_sampler)
from langchain_core.tracers.evaluation import ( EvaluatorCallbackHandler, wait_for_all_evaluators, ) __all__ = ["EvaluatorCallbackHandler", "wait_for_all_evaluators"]
from langchain_core.tracers.evaluation import ( EvaluatorCallbackHandler, wait_for_all_evaluators, ) __all__ = ["wait_for_all_evaluators", "EvaluatorCallbackHandler"]
import sys from dataclasses import dataclass from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast if TYPE_CHECKING: import sqlite3 import sqlalchemy logger = datasets.utils.logging.get_logger(__name__) @dataclass class SqlConfig(datasets.BuilderConfig): """BuilderConfig for SQL.""" sql: Union[str, "sqlalchemy.sql.Selectable"] = None con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] = None index_col: Optional[Union[str, List[str]]] = None coerce_float: bool = True params: Optional[Union[List, Tuple, Dict]] = None parse_dates: Optional[Union[List, Dict]] = None columns: Optional[List[str]] = None chunksize: Optional[int] = 10_000 features: Optional[datasets.Features] = None def __post_init__(self): if self.sql is None: raise ValueError("sql must be specified") if self.con is None: raise ValueError("con must be specified") def create_config_id( self, config_kwargs: dict, custom_features: Optional[datasets.Features] = None, ) -> str: config_kwargs = config_kwargs.copy() # We need to stringify the Selectable object to make its hash deterministic # The process of stringifying is explained here: http://docs.sqlalchemy.org/en/latest/faq/sqlexpressions.html sql = config_kwargs["sql"] if not isinstance(sql, str): if datasets.config.SQLALCHEMY_AVAILABLE and "sqlalchemy" in sys.modules: import sqlalchemy if isinstance(sql, sqlalchemy.sql.Selectable): engine = sqlalchemy.create_engine(config_kwargs["con"].split("://")[0] + "://") sql_str = str(sql.compile(dialect=engine.dialect)) config_kwargs["sql"] = sql_str else: raise TypeError( f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}" ) else: raise TypeError( f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}" ) con = config_kwargs["con"] if not isinstance(con, str): config_kwargs["con"] = id(con) logger.info( f"SQL connection 'con' of type {type(con)} couldn't be hashed properly. To enable hashing, specify 'con' as URI string instead." ) return super().create_config_id(config_kwargs, custom_features=custom_features) @property def pd_read_sql_kwargs(self): pd_read_sql_kwargs = dict( index_col=self.index_col, columns=self.columns, params=self.params, coerce_float=self.coerce_float, parse_dates=self.parse_dates, ) return pd_read_sql_kwargs class Sql(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = SqlConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={})] def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: schema = self.config.features.arrow_schema if all(not require_storage_cast(feature) for feature in self.config.features.values()): # cheaper cast pa_table = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=schema) else: # more expensive cast; allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, schema) return pa_table def _generate_tables(self): chunksize = self.config.chunksize sql_reader = pd.read_sql( self.config.sql, self.config.con, chunksize=chunksize, **self.config.pd_read_sql_kwargs ) sql_reader = [sql_reader] if chunksize is None else sql_reader for chunk_idx, df in enumerate(sql_reader): pa_table = pa.Table.from_pandas(df) yield chunk_idx, self._cast_table(pa_table)
import sys from dataclasses import dataclass from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast if TYPE_CHECKING: import sqlalchemy @dataclass class SqlConfig(datasets.BuilderConfig): """BuilderConfig for SQL.""" sql: Union[str, "sqlalchemy.sql.Selectable"] = None con: str = None index_col: Optional[Union[str, List[str]]] = None coerce_float: bool = True params: Optional[Union[List, Tuple, Dict]] = None parse_dates: Optional[Union[List, Dict]] = None columns: Optional[List[str]] = None chunksize: Optional[int] = 10_000 features: Optional[datasets.Features] = None def __post_init__(self): if self.sql is None: raise ValueError("sql must be specified") if self.con is None: raise ValueError("con must be specified") if not isinstance(self.con, str): raise ValueError(f"con must be a database URI string, but got {self.con} with type {type(self.con)}.") def create_config_id( self, config_kwargs: dict, custom_features: Optional[datasets.Features] = None, ) -> str: # We need to stringify the Selectable object to make its hash deterministic # The process of stringifying is explained here: http://docs.sqlalchemy.org/en/latest/faq/sqlexpressions.html sql = config_kwargs["sql"] if not isinstance(sql, str): if datasets.config.SQLALCHEMY_AVAILABLE and "sqlalchemy" in sys.modules: import sqlalchemy if isinstance(sql, sqlalchemy.sql.Selectable): config_kwargs = config_kwargs.copy() engine = sqlalchemy.create_engine(config_kwargs["con"].split("://")[0] + "://") sql_str = str(sql.compile(dialect=engine.dialect)) config_kwargs["sql"] = sql_str else: raise TypeError( f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}" ) else: raise TypeError( f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}" ) return super().create_config_id(config_kwargs, custom_features=custom_features) @property def pd_read_sql_kwargs(self): pd_read_sql_kwargs = dict( index_col=self.index_col, columns=self.columns, params=self.params, coerce_float=self.coerce_float, parse_dates=self.parse_dates, ) return pd_read_sql_kwargs class Sql(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = SqlConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={})] def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: schema = self.config.features.arrow_schema if all(not require_storage_cast(feature) for feature in self.config.features.values()): # cheaper cast pa_table = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=schema) else: # more expensive cast; allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, schema) return pa_table def _generate_tables(self): chunksize = self.config.chunksize sql_reader = pd.read_sql( self.config.sql, self.config.con, chunksize=chunksize, **self.config.pd_read_sql_kwargs ) sql_reader = [sql_reader] if chunksize is None else sql_reader for chunk_idx, df in enumerate(sql_reader): pa_table = pa.Table.from_pandas(df) yield chunk_idx, self._cast_table(pa_table)
"""Pydantic v1 compatibility shim.""" from importlib import metadata from langchain_core._api.deprecation import warn_deprecated # Create namespaces for pydantic v1 and v2. # This code must stay at the top of the file before other modules may # attempt to import pydantic since it adds pydantic_v1 and pydantic_v2 to sys.modules. # # This hack is done for the following reasons: # * Langchain will attempt to remain compatible with both pydantic v1 and v2 since # both dependencies and dependents may be stuck on either version of v1 or v2. # * Creating namespaces for pydantic v1 and v2 should allow us to write code that # unambiguously uses either v1 or v2 API. # * This change is easier to roll out and roll back. try: from pydantic.v1 import * # noqa: F403 except ImportError: from pydantic import * # noqa: F403 try: _PYDANTIC_MAJOR_VERSION: int = int(metadata.version("pydantic").split(".")[0]) except metadata.PackageNotFoundError: _PYDANTIC_MAJOR_VERSION = 0 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
"""Pydantic v1 compatibility shim.""" from importlib import metadata from langchain_core._api.deprecation import warn_deprecated # Create namespaces for pydantic v1 and v2. # This code must stay at the top of the file before other modules may # attempt to import pydantic since it adds pydantic_v1 and pydantic_v2 to sys.modules. # # This hack is done for the following reasons: # * Langchain will attempt to remain compatible with both pydantic v1 and v2 since # both dependencies and dependents may be stuck on either version of v1 or v2. # * Creating namespaces for pydantic v1 and v2 should allow us to write code that # unambiguously uses either v1 or v2 API. # * This change is easier to roll out and roll back. try: from pydantic.v1 import * # noqa: F403 except ImportError: from pydantic import * # type: ignore # noqa: F403 try: _PYDANTIC_MAJOR_VERSION: int = int(metadata.version("pydantic").split(".")[0]) except metadata.PackageNotFoundError: _PYDANTIC_MAJOR_VERSION = 0 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoTensorFlowTensor') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_tensorflow_tensor') class VideoTensorFlowTensor( TensorFlowTensor, VideoTensorMixin, metaclass=metaTensorFlow ): """ Subclass of [`TensorFlowTensor`][docarray.typing.TensorFlowTensor], to represent a video tensor. Adds video-specific features to the tensor. --- ```python from typing import Optional import tensorflow as tf from docarray import BaseDoc from docarray.typing import VideoTensorFlowTensor, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoTensorFlowTensor] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=tf.random.normal((100, 224, 224, 3)), ) # doc_1.video_tensor.save(file_path='file_1.mp4') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true', ) doc_2.video_tensor = doc_2.url.load().video # doc_2.video_tensor.save(file_path='file_2.wav') ``` --- """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoTensorFlowTensor') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_tensorflow_tensor') class VideoTensorFlowTensor( TensorFlowTensor, VideoTensorMixin, metaclass=metaTensorFlow ): """ Subclass of [`TensorFlowTensor`][docarray.typing.TensorFlowTensor], to represent a video tensor. Adds video-specific features to the tensor. --- ```python from typing import Optional import tensorflow as tf from docarray import BaseDoc from docarray.typing import VideoTensorFlowTensor, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoTensorFlowTensor] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=tf.random.normal((100, 224, 224, 3)), ) # doc_1.video_tensor.save(file_path='file_1.mp4') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true', ) doc_2.video_tensor = doc_2.url.load().video # doc_2.video_tensor.save(file_path='file_2.wav') ``` --- """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
import pathlib from typing import Any, Dict, List, Tuple, Union import torch from torchdata.datapipes.iter import CSVParser, IterDataPipe, Mapper from torchvision.datapoints import Image from torchvision.prototype.datapoints import OneHotLabel from torchvision.prototype.datasets.utils import Dataset, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from .._api import register_dataset, register_info NAME = "semeion" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=[str(i) for i in range(10)]) @register_dataset(NAME) class SEMEION(Dataset): """Semeion dataset homepage="https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit", """ def __init__(self, root: Union[str, pathlib.Path], *, skip_integrity_check: bool = False) -> None: self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: data = HttpResource( "http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data", sha256="f43228ae3da5ea6a3c95069d53450b86166770e3b719dcc333182128fe08d4b1", ) return [data] def _prepare_sample(self, data: Tuple[str, ...]) -> Dict[str, Any]: image_data, label_data = data[:256], data[256:-1] return dict( image=Image(torch.tensor([float(pixel) for pixel in image_data], dtype=torch.float).reshape(16, 16)), label=OneHotLabel([int(label) for label in label_data], categories=self._categories), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = CSVParser(dp, delimiter=" ") dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 1_593
import pathlib from typing import Any, Dict, List, Tuple, Union import torch from torchdata.datapipes.iter import CSVParser, IterDataPipe, Mapper from torchvision.prototype.datapoints import Image, OneHotLabel from torchvision.prototype.datasets.utils import Dataset, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from .._api import register_dataset, register_info NAME = "semeion" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=[str(i) for i in range(10)]) @register_dataset(NAME) class SEMEION(Dataset): """Semeion dataset homepage="https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit", """ def __init__(self, root: Union[str, pathlib.Path], *, skip_integrity_check: bool = False) -> None: self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: data = HttpResource( "http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data", sha256="f43228ae3da5ea6a3c95069d53450b86166770e3b719dcc333182128fe08d4b1", ) return [data] def _prepare_sample(self, data: Tuple[str, ...]) -> Dict[str, Any]: image_data, label_data = data[:256], data[256:-1] return dict( image=Image(torch.tensor([float(pixel) for pixel in image_data], dtype=torch.float).reshape(16, 16)), label=OneHotLabel([int(label) for label in label_data], categories=self._categories), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = CSVParser(dp, delimiter=" ") dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 1_593
"""FastAPI framework, high performance, easy to learn, fast to code, ready for production""" __version__ = "0.116.0" from starlette import status as status from .applications import FastAPI as FastAPI from .background import BackgroundTasks as BackgroundTasks from .datastructures import UploadFile as UploadFile from .exceptions import HTTPException as HTTPException from .exceptions import WebSocketException as WebSocketException from .param_functions import Body as Body from .param_functions import Cookie as Cookie from .param_functions import Depends as Depends from .param_functions import File as File from .param_functions import Form as Form from .param_functions import Header as Header from .param_functions import Path as Path from .param_functions import Query as Query from .param_functions import Security as Security from .requests import Request as Request from .responses import Response as Response from .routing import APIRouter as APIRouter from .websockets import WebSocket as WebSocket from .websockets import WebSocketDisconnect as WebSocketDisconnect
"""FastAPI framework, high performance, easy to learn, fast to code, ready for production""" __version__ = "0.115.14" from starlette import status as status from .applications import FastAPI as FastAPI from .background import BackgroundTasks as BackgroundTasks from .datastructures import UploadFile as UploadFile from .exceptions import HTTPException as HTTPException from .exceptions import WebSocketException as WebSocketException from .param_functions import Body as Body from .param_functions import Cookie as Cookie from .param_functions import Depends as Depends from .param_functions import File as File from .param_functions import Form as Form from .param_functions import Header as Header from .param_functions import Path as Path from .param_functions import Query as Query from .param_functions import Security as Security from .requests import Request as Request from .responses import Response as Response from .routing import APIRouter as APIRouter from .websockets import WebSocket as WebSocket from .websockets import WebSocketDisconnect as WebSocketDisconnect
_base_ = './cascade-rcnn_r50_fpn_20e_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './cascade_rcnn_r50_fpn_20e_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
# Copyright (c) OpenMMLab. All rights reserved. from contextlib import contextmanager import torch import torch.nn as nn from torch.cuda.amp import GradScaler from mmengine.registry import OPTIM_WRAPPERS from mmengine.utils import digit_version from mmengine.utils.dl_utils import TORCH_VERSION from .optimizer_wrapper import OptimWrapper @OPTIM_WRAPPERS.register_module() class AmpOptimWrapper(OptimWrapper): """A subclass of :class:`OptimWrapper` that supports automatic mixed precision training based on torch.cuda.amp. ``AmpOptimWrapper`` provides a unified interface with ``OptimWrapper``, so ``AmpOptimWrapper`` can be used in the same way as ``OptimWrapper``. Warnings: ``AmpOptimWrapper`` requires PyTorch >= 1.6. Args: loss_scale (float or str or dict): The initial configuration of `torch.cuda.amp.GradScaler`. See more specific arguments introduction at `PyTorch AMP <https://pytorch.org/docs/stable/amp.html?highlight=gradscalertorch.cuda.amp.GradScaler>`_ # noqa: E501 Defaults to ``dynamic``. - "dynamic": Initialize GradScale without any arguments. - float: Initialize GradScaler with ``init_scale``. - dict: Initialize GradScaler with more detail configuration. **kwargs: Keyword arguments passed to OptimWrapper. Note: If you use ``IterBasedRunner`` and enable gradient accumulation, the original `max_iters` should be multiplied by ``accumulative_counts``. """ def __init__(self, loss_scale='dynamic', **kwargs): assert digit_version(TORCH_VERSION) >= digit_version('1.6.0'), ( '`torch.cuda.amp` is only available when pytorch version >= 1.6') assert torch.cuda.is_available(), ( '``AmpOptimizerWrapper`` is only available training on gpu') super().__init__(**kwargs) self._scale_update_param = None if loss_scale == 'dynamic': # If loss_scale is a string, it must be 'dynamic', then dynamic # loss scaling will be used. self.loss_scaler = GradScaler() elif isinstance(loss_scale, float): # Static loss scaling self._scale_update_param = loss_scale self.loss_scaler = GradScaler(init_scale=loss_scale) elif isinstance(loss_scale, dict): # More specific configuration. self.loss_scaler = GradScaler(**loss_scale) else: raise TypeError('loss_scale must be of type float, dict, or ' f'"dynamic", but got {loss_scale}') def backward(self, loss: torch.Tensor): """Perform gradient back propagation with :attr:`loss_scaler`. Args: loss (torch.Tensor): The loss of current iteration. """ self.loss_scaler.scale(loss).backward() self._inner_count += 1 def step(self): """Update parameters with :attr:`loss_scaler`.""" if self.clip_grad_kwargs: self.loss_scaler.unscale_(self.optimizer) self._clip_grad() self.loss_scaler.step(self.optimizer) self.loss_scaler.update(self._scale_update_param) def state_dict(self) -> dict: """Get the state dictionary of :attr:`optimizer` and :attr:`loss_scaler`. Based on the state dictionary of the optimizer, the returned state dictionary will add a key named "loss_scaler". Returns: dict: The merged state dict of :attr:`loss_scaler` and :attr:`optimizer`. """ # save state_dict of loss_scaler state_dict = self.optimizer.state_dict() state_dict['loss_scaler'] = self.loss_scaler.state_dict() return state_dict def load_state_dict(self, state_dict: dict): """Load and parse the state dictionary of :attr:`optimizer` and :attr:`loss_scaler`. If state_dict contains "loss_scaler.", the :attr:`loss_scaler` will load the corresponding keys. Otherwise, only the :attr:`optimizer` will load the state dictionary. Args: state_dict (dict): The state dict of :attr:`optimizer` and :attr:`loss_scaler` """ if 'loss_scaler' in state_dict: self.loss_scaler.load_state_dict(state_dict.pop('loss_scaler')) self.optimizer.load_state_dict(state_dict) @contextmanager def optim_context(self, model: nn.Module): """Enables the context for mixed precision training, and enables the context for disabling gradient synchronization during gradient accumulation context. Args: model (nn.Module): The training model. """ from mmengine.runner.amp import autocast with super().optim_context(model), autocast(): yield
# Copyright (c) OpenMMLab. All rights reserved. from contextlib import contextmanager import torch import torch.nn as nn from torch.cuda.amp import GradScaler from mmengine.registry import OPTIM_WRAPPERS from mmengine.utils import TORCH_VERSION, digit_version from .optimizer_wrapper import OptimWrapper @OPTIM_WRAPPERS.register_module() class AmpOptimWrapper(OptimWrapper): """A subclass of :class:`OptimWrapper` that supports automatic mixed precision training based on torch.cuda.amp. ``AmpOptimWrapper`` provides a unified interface with ``OptimWrapper``, so ``AmpOptimWrapper`` can be used in the same way as ``OptimWrapper``. Warnings: ``AmpOptimWrapper`` requires PyTorch >= 1.6. Args: loss_scale (float or str or dict): The initial configuration of `torch.cuda.amp.GradScaler`. See more specific arguments introduction at `PyTorch AMP <https://pytorch.org/docs/stable/amp.html?highlight=gradscalertorch.cuda.amp.GradScaler>`_ # noqa: E501 Defaults to ``dynamic``. - "dynamic": Initialize GradScale without any arguments. - float: Initialize GradScaler with ``init_scale``. - dict: Initialize GradScaler with more detail configuration. **kwargs: Keyword arguments passed to OptimWrapper. Note: If you use ``IterBasedRunner`` and enable gradient accumulation, the original `max_iters` should be multiplied by ``accumulative_counts``. """ def __init__(self, loss_scale='dynamic', **kwargs): assert digit_version(TORCH_VERSION) >= digit_version('1.6.0'), ( '`torch.cuda.amp` is only available when pytorch version >= 1.6') assert torch.cuda.is_available(), ( '``AmpOptimizerWrapper`` is only available training on gpu') super().__init__(**kwargs) self._scale_update_param = None if loss_scale == 'dynamic': # If loss_scale is a string, it must be 'dynamic', then dynamic # loss scaling will be used. self.loss_scaler = GradScaler() elif isinstance(loss_scale, float): # Static loss scaling self._scale_update_param = loss_scale self.loss_scaler = GradScaler(init_scale=loss_scale) elif isinstance(loss_scale, dict): # More specific configuration. self.loss_scaler = GradScaler(**loss_scale) else: raise TypeError('loss_scale must be of type float, dict, or ' f'"dynamic", but got {loss_scale}') def backward(self, loss: torch.Tensor): """Perform gradient back propagation with :attr:`loss_scaler`. Args: loss (torch.Tensor): The loss of current iteration. """ self.loss_scaler.scale(loss).backward() self._inner_count += 1 def step(self): """Update parameters with :attr:`loss_scaler`.""" if self.clip_grad_kwargs: self.loss_scaler.unscale_(self.optimizer) self._clip_grad() self.loss_scaler.step(self.optimizer) self.loss_scaler.update(self._scale_update_param) def state_dict(self) -> dict: """Get the state dictionary of :attr:`optimizer` and :attr:`loss_scaler`. Based on the state dictionary of the optimizer, the returned state dictionary will add a key named "loss_scaler". Returns: dict: The merged state dict of :attr:`loss_scaler` and :attr:`optimizer`. """ # save state_dict of loss_scaler state_dict = self.optimizer.state_dict() state_dict['loss_scaler'] = self.loss_scaler.state_dict() return state_dict def load_state_dict(self, state_dict: dict): """Load and parse the state dictionary of :attr:`optimizer` and :attr:`loss_scaler`. If state_dict contains "loss_scaler.", the :attr:`loss_scaler` will load the corresponding keys. Otherwise, only the :attr:`optimizer` will load the state dictionary. Args: state_dict (dict): The state dict of :attr:`optimizer` and :attr:`loss_scaler` """ if 'loss_scaler' in state_dict: self.loss_scaler.load_state_dict(state_dict.pop('loss_scaler')) self.optimizer.load_state_dict(state_dict) @contextmanager def optim_context(self, model: nn.Module): """Enables the context for mixed precision training, and enables the context for disabling gradient synchronization during gradient accumulation context. Args: model (nn.Module): The training model. """ from mmengine.runner.amp import autocast with super().optim_context(model), autocast(): yield
import pathlib from typing import Any, Dict, List, Tuple, Union from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.prototype.datapoints import Label from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from .._api import register_dataset, register_info NAME = "country211" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class Country211(Dataset): """ - **homepage**: https://github.com/openai/CLIP/blob/main/data/country211.md """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "val", "test")) self._split_folder_name = "valid" if split == "val" else split self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: return [ HttpResource( "https://openaipublic.azureedge.net/clip/data/country211.tgz", sha256="c011343cdc1296a8c31ff1d7129cf0b5e5b8605462cffd24f89266d6e6f4da3c", ) ] def _prepare_sample(self, data: Tuple[str, Any]) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _filter_split(self, data: Tuple[str, Any], *, split: str) -> bool: return pathlib.Path(data[0]).parent.parent.name == split def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, path_comparator("parent.parent.name", self._split_folder_name)) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return { "train": 31_650, "val": 10_550, "test": 21_100, }[self._split] def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) return sorted({pathlib.Path(path).parent.name for path, _ in dp})
import pathlib from typing import Any, Dict, List, Tuple, Union from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from torchvision.prototype.features import Label from .._api import register_dataset, register_info NAME = "country211" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class Country211(Dataset): """ - **homepage**: https://github.com/openai/CLIP/blob/main/data/country211.md """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "val", "test")) self._split_folder_name = "valid" if split == "val" else split self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: return [ HttpResource( "https://openaipublic.azureedge.net/clip/data/country211.tgz", sha256="c011343cdc1296a8c31ff1d7129cf0b5e5b8605462cffd24f89266d6e6f4da3c", ) ] def _prepare_sample(self, data: Tuple[str, Any]) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _filter_split(self, data: Tuple[str, Any], *, split: str) -> bool: return pathlib.Path(data[0]).parent.parent.name == split def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, path_comparator("parent.parent.name", self._split_folder_name)) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return { "train": 31_650, "val": 10_550, "test": 21_100, }[self._split] def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) return sorted({pathlib.Path(path).parent.name for path, _ in dp})
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.openapi.toolkit import ( OpenAPIToolkit, RequestsToolkit, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "RequestsToolkit": "langchain_community.agent_toolkits.openapi.toolkit", "OpenAPIToolkit": "langchain_community.agent_toolkits.openapi.toolkit", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "OpenAPIToolkit", "RequestsToolkit", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.openapi.toolkit import ( OpenAPIToolkit, RequestsToolkit, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "RequestsToolkit": "langchain_community.agent_toolkits.openapi.toolkit", "OpenAPIToolkit": "langchain_community.agent_toolkits.openapi.toolkit", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "RequestsToolkit", "OpenAPIToolkit", ]
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ import csv import gzip import logging import math import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEF1Evaluator, CESoftmaxAccuracyEvaluator from sentence_transformers.evaluation import SequentialEvaluator from sentence_transformers.readers import InputExample #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # As dataset, we use SNLI + MultiNLI # Check if dataset exists. If not, download and extract it nli_dataset_path = "datasets/AllNLI.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) # Read the AllNLI.tsv.gz file and create the training dataset logger.info("Read AllNLI train dataset") label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_samples = [] dev_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: label_id = label2int[row["label"]] if row["split"] == "train": train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) else: dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Define our CrossEncoder model. We use distilroberta-base as basis and setup it up to predict 3 labels model = CrossEncoder("distilroberta-base", num_labels=len(label2int)) # We wrap train_samples, which is a list of InputExample, in a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # During training, we use CESoftmaxAccuracyEvaluator and CEF1Evaluator to measure the performance on the dev set accuracy_evaluator = CESoftmaxAccuracyEvaluator.from_input_examples(dev_samples, name="AllNLI-dev") f1_evaluator = CEF1Evaluator.from_input_examples(dev_samples, name="AllNLI-dev") evaluator = SequentialEvaluator([accuracy_evaluator, f1_evaluator]) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=10000, warmup_steps=warmup_steps, output_path=model_save_path, )
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ from torch.utils.data import DataLoader import math from sentence_transformers import LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEF1Evaluator, CESoftmaxAccuracyEvaluator from sentence_transformers.evaluation import SequentialEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # As dataset, we use SNLI + MultiNLI # Check if dataset exists. If not, download and extract it nli_dataset_path = "datasets/AllNLI.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) # Read the AllNLI.tsv.gz file and create the training dataset logger.info("Read AllNLI train dataset") label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_samples = [] dev_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: label_id = label2int[row["label"]] if row["split"] == "train": train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) else: dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Define our CrossEncoder model. We use distilroberta-base as basis and setup it up to predict 3 labels model = CrossEncoder("distilroberta-base", num_labels=len(label2int)) # We wrap train_samples, which is a list of InputExample, in a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # During training, we use CESoftmaxAccuracyEvaluator and CEF1Evaluator to measure the performance on the dev set accuracy_evaluator = CESoftmaxAccuracyEvaluator.from_input_examples(dev_samples, name="AllNLI-dev") f1_evaluator = CEF1Evaluator.from_input_examples(dev_samples, name="AllNLI-dev") evaluator = SequentialEvaluator([accuracy_evaluator, f1_evaluator]) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=10000, warmup_steps=warmup_steps, output_path=model_save_path, )
import os from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal import xgboost as xgb from xgboost import callback class SupportedTasks(object): TRAIN = "train" class XGBoostTrainer(Executor): def __init__(self, server_address: str, world_size: int, server_cert_path: str, client_key_path: str, client_cert_path: str, use_gpus: bool): """Trainer for federated XGBoost. Args: server_address: address for the gRPC server to connect to. world_size: the number of sites. server_cert_path: the path to the server certificate file. client_key_path: the path to the client key file. client_cert_path: the path to the client certificate file. """ super().__init__() self._server_address = server_address self._world_size = world_size self._server_cert_path = server_cert_path self._client_key_path = client_key_path self._client_cert_path = client_cert_path self._use_gpus = use_gpus def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_info(fl_ctx, f"Executing {task_name}") try: if task_name == SupportedTasks.TRAIN: self._do_training(fl_ctx) return make_reply(ReturnCode.OK) else: self.log_error(fl_ctx, f"{task_name} is not a supported task.") return make_reply(ReturnCode.TASK_UNKNOWN) except BaseException as e: self.log_exception(fl_ctx, f"Task {task_name} failed. Exception: {e.__str__()}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def _do_training(self, fl_ctx: FLContext): client_name = fl_ctx.get_prop(FLContextKey.CLIENT_NAME) rank = int(client_name.split('-')[1]) - 1 communicator_env = { 'xgboost_communicator': 'federated', 'federated_server_address': self._server_address, 'federated_world_size': self._world_size, 'federated_rank': rank, 'federated_server_cert': self._server_cert_path, 'federated_client_key': self._client_key_path, 'federated_client_cert': self._client_cert_path } with xgb.collective.CommunicatorContext(**communicator_env): # Load file, file will not be sharded in federated mode. dtrain = xgb.DMatrix('agaricus.txt.train?format=libsvm') dtest = xgb.DMatrix('agaricus.txt.test?format=libsvm') # Specify parameters via map, definition are same as c++ version param = {'tree_method': 'hist', 'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'} if self._use_gpus: self.log_info(fl_ctx, f'Training with GPU {rank}') param['device'] = f"cuda:{rank}" # Specify validations set to watch performance watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 20 # Run training, all the features in training API is available. bst = xgb.train(param, dtrain, num_round, evals=watchlist, early_stopping_rounds=2, verbose_eval=False, callbacks=[callback.EvaluationMonitor(rank=rank)]) # Save the model. workspace = fl_ctx.get_prop(FLContextKey.WORKSPACE_OBJECT) run_number = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = workspace.get_run_dir(run_number) bst.save_model(os.path.join(run_dir, "test.model.json")) xgb.collective.communicator_print("Finished training\n")
import os from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal import xgboost as xgb from xgboost import callback class SupportedTasks(object): TRAIN = "train" class XGBoostTrainer(Executor): def __init__(self, server_address: str, world_size: int, server_cert_path: str, client_key_path: str, client_cert_path: str, use_gpus: bool): """Trainer for federated XGBoost. Args: server_address: address for the gRPC server to connect to. world_size: the number of sites. server_cert_path: the path to the server certificate file. client_key_path: the path to the client key file. client_cert_path: the path to the client certificate file. """ super().__init__() self._server_address = server_address self._world_size = world_size self._server_cert_path = server_cert_path self._client_key_path = client_key_path self._client_cert_path = client_cert_path self._use_gpus = use_gpus def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_info(fl_ctx, f"Executing {task_name}") try: if task_name == SupportedTasks.TRAIN: self._do_training(fl_ctx) return make_reply(ReturnCode.OK) else: self.log_error(fl_ctx, f"{task_name} is not a supported task.") return make_reply(ReturnCode.TASK_UNKNOWN) except BaseException as e: self.log_exception(fl_ctx, f"Task {task_name} failed. Exception: {e.__str__()}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def _do_training(self, fl_ctx: FLContext): client_name = fl_ctx.get_prop(FLContextKey.CLIENT_NAME) rank = int(client_name.split('-')[1]) - 1 communicator_env = { 'xgboost_communicator': 'federated', 'federated_server_address': self._server_address, 'federated_world_size': self._world_size, 'federated_rank': rank, 'federated_server_cert': self._server_cert_path, 'federated_client_key': self._client_key_path, 'federated_client_cert': self._client_cert_path } with xgb.collective.CommunicatorContext(**communicator_env): # Load file, file will not be sharded in federated mode. dtrain = xgb.DMatrix('agaricus.txt.train?format=libsvm') dtest = xgb.DMatrix('agaricus.txt.test?format=libsvm') # Specify parameters via map, definition are same as c++ version param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'} if self._use_gpus: self.log_info(fl_ctx, f'Training with GPU {rank}') param['device'] = f"cuda:{rank}" # Specify validations set to watch performance watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 20 # Run training, all the features in training API is available. bst = xgb.train(param, dtrain, num_round, evals=watchlist, early_stopping_rounds=2, verbose_eval=False, callbacks=[callback.EvaluationMonitor(rank=rank)]) # Save the model. workspace = fl_ctx.get_prop(FLContextKey.WORKSPACE_OBJECT) run_number = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = workspace.get_run_dir(run_number) bst.save_model(os.path.join(run_dir, "test.model.json")) xgb.collective.communicator_print("Finished training\n")
"""Standard LangChain interface tests.""" import pytest from langchain_core.language_models import BaseChatModel from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint class TestHuggingFaceEndpoint(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatHuggingFace @property def chat_model_params(self) -> dict: llm = HuggingFaceEndpoint( # type: ignore[call-arg] repo_id="Qwen/Qwen2.5-72B-Instruct", task="conversational", provider="fireworks-ai", temperature=0, ) return {"llm": llm} @pytest.fixture def model(self) -> BaseChatModel: return self.chat_model_class(**self.chat_model_params) # type: ignore[call-arg] @pytest.mark.xfail( reason=("Overrding, testing only typed dict and json schema structured output") ) @pytest.mark.parametrize("schema_type", ["typeddict", "json_schema"]) def test_structured_output(self, model: BaseChatModel, schema_type: str) -> None: super().test_structured_output(model, schema_type) @pytest.mark.xfail( reason=("Overrding, testing only typed dict and json schema structured output") ) @pytest.mark.parametrize("schema_type", ["typeddict", "json_schema"]) async def test_structured_output_async( self, model: BaseChatModel, schema_type: str ) -> None: # type: ignore[override] super().test_structured_output(model, schema_type) @pytest.mark.xfail(reason=("Pydantic structured output is not supported")) def test_structured_output_pydantic_2_v1(self, model: BaseChatModel) -> None: super().test_structured_output_pydantic_2_v1(model) @pytest.mark.xfail(reason=("Pydantic structured output is not supported")) def test_structured_output_optional_param(self, model: BaseChatModel) -> None: super().test_structured_output_optional_param(model) @pytest.mark.xfail(reason=("Not implemented")) def test_tool_message_histories_list_content( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_tool_message_histories_list_content( model, my_adder_tool=my_adder_tool ) @pytest.mark.xfail(reason=("Not implemented")) def test_structured_few_shot_examples( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_structured_few_shot_examples(model, my_adder_tool=my_adder_tool) @property def has_tool_choice(self) -> bool: return False
"""Standard LangChain interface tests""" import pytest from langchain_core.language_models import BaseChatModel from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint class TestHuggingFaceEndpoint(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatHuggingFace @property def chat_model_params(self) -> dict: llm = HuggingFaceEndpoint( # type: ignore[call-arg] repo_id="Qwen/Qwen2.5-72B-Instruct", task="conversational", provider="fireworks-ai", temperature=0, ) return {"llm": llm} @pytest.fixture def model(self) -> BaseChatModel: return self.chat_model_class(**self.chat_model_params) # type: ignore[call-arg] @pytest.mark.xfail( reason=("Overrding, testing only typed dict and json schema structured output") ) @pytest.mark.parametrize("schema_type", ["typeddict", "json_schema"]) def test_structured_output(self, model: BaseChatModel, schema_type: str) -> None: super().test_structured_output(model, schema_type) @pytest.mark.xfail( reason=("Overrding, testing only typed dict and json schema structured output") ) @pytest.mark.parametrize("schema_type", ["typeddict", "json_schema"]) async def test_structured_output_async( self, model: BaseChatModel, schema_type: str ) -> None: # type: ignore[override] super().test_structured_output(model, schema_type) @pytest.mark.xfail(reason=("Pydantic structured output is not supported")) def test_structured_output_pydantic_2_v1(self, model: BaseChatModel) -> None: super().test_structured_output_pydantic_2_v1(model) @pytest.mark.xfail(reason=("Pydantic structured output is not supported")) def test_structured_output_optional_param(self, model: BaseChatModel) -> None: super().test_structured_output_optional_param(model) @pytest.mark.xfail(reason=("Not implemented")) def test_tool_message_histories_list_content( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_tool_message_histories_list_content( model, my_adder_tool=my_adder_tool ) @pytest.mark.xfail(reason=("Not implemented")) def test_structured_few_shot_examples( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_structured_few_shot_examples(model, my_adder_tool=my_adder_tool) @property def has_tool_choice(self) -> bool: return False
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum")) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern))) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, False)) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, True)) def test_freq_ir(self): mags = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.frequency_impulse_response, (mags,))
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @nested_params( ["convolve", "fftconvolve"], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) self._assert_consistency(getattr(F, fn), (x, y, mode)) @nested_params([True, False]) def test_add_noise(self, use_lengths): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) if use_lengths: lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) else: lengths = None snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self._assert_consistency(F.add_noise, (waveform, noise, snr, lengths)) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum")) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern))) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, False)) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, True)) def test_speed(self): leading_dims = (3, 2) T = 200 waveform = torch.rand(*leading_dims, T, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.randint(1, T, leading_dims, dtype=self.dtype, device=self.device) self._assert_consistency(F.speed, (waveform, lengths, 1000, 1.1)) def test_preemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype) coeff = 0.9 self._assert_consistency(F.preemphasis, (waveform, coeff)) def test_deemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype) coeff = 0.9 self._assert_consistency(F.deemphasis, (waveform, coeff)) def test_freq_ir(self): mags = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.frequency_impulse_response, (mags,))
from typing import Optional from langchain_core.callbacks.manager import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain.retrievers.ensemble import EnsembleRetriever class MockRetriever(BaseRetriever): docs: list[Document] def _get_relevant_documents( self, query: str, *, run_manager: Optional[CallbackManagerForRetrieverRun] = None, ) -> list[Document]: """Return the documents""" return self.docs def test_invoke() -> None: documents1 = [ Document(page_content="a", metadata={"id": 1}), Document(page_content="b", metadata={"id": 2}), Document(page_content="c", metadata={"id": 3}), ] documents2 = [Document(page_content="b")] retriever1 = MockRetriever(docs=documents1) retriever2 = MockRetriever(docs=documents2) ensemble_retriever = EnsembleRetriever( retrievers=[retriever1, retriever2], weights=[0.5, 0.5], id_key=None, ) ranked_documents = ensemble_retriever.invoke("_") # The document with page_content "b" in documents2 # will be merged with the document with page_content "b" # in documents1, so the length of ranked_documents should be 3. # Additionally, the document with page_content "b" will be ranked 1st. assert len(ranked_documents) == 3 assert ranked_documents[0].page_content == "b" documents1 = [ Document(page_content="a", metadata={"id": 1}), Document(page_content="b", metadata={"id": 2}), Document(page_content="c", metadata={"id": 3}), ] documents2 = [Document(page_content="d")] retriever1 = MockRetriever(docs=documents1) retriever2 = MockRetriever(docs=documents2) ensemble_retriever = EnsembleRetriever( retrievers=[retriever1, retriever2], weights=[0.5, 0.5], id_key=None, ) ranked_documents = ensemble_retriever.invoke("_") # The document with page_content "d" in documents2 will not be merged # with any document in documents1, so the length of ranked_documents # should be 4. The document with page_content "a" and the document # with page_content "d" will have the same score, but the document # with page_content "a" will be ranked 1st because retriever1 has a smaller index. assert len(ranked_documents) == 4 assert ranked_documents[0].page_content == "a" documents1 = [ Document(page_content="a", metadata={"id": 1}), Document(page_content="b", metadata={"id": 2}), Document(page_content="c", metadata={"id": 3}), ] documents2 = [Document(page_content="d", metadata={"id": 2})] retriever1 = MockRetriever(docs=documents1) retriever2 = MockRetriever(docs=documents2) ensemble_retriever = EnsembleRetriever( retrievers=[retriever1, retriever2], weights=[0.5, 0.5], id_key="id", ) ranked_documents = ensemble_retriever.invoke("_") # Since id_key is specified, the document with id 2 will be merged. # Therefore, the length of ranked_documents should be 3. # Additionally, the document with page_content "b" will be ranked 1st. assert len(ranked_documents) == 3 assert ranked_documents[0].page_content == "b"
from typing import Optional from langchain_core.callbacks.manager import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain.retrievers.ensemble import EnsembleRetriever class MockRetriever(BaseRetriever): docs: list[Document] def _get_relevant_documents( self, query: str, *, run_manager: Optional[CallbackManagerForRetrieverRun] = None, ) -> list[Document]: """Return the documents""" return self.docs def test_invoke() -> None: documents1 = [ Document(page_content="a", metadata={"id": 1}), Document(page_content="b", metadata={"id": 2}), Document(page_content="c", metadata={"id": 3}), ] documents2 = [Document(page_content="b")] retriever1 = MockRetriever(docs=documents1) retriever2 = MockRetriever(docs=documents2) ensemble_retriever = EnsembleRetriever( retrievers=[retriever1, retriever2], weights=[0.5, 0.5], id_key=None ) ranked_documents = ensemble_retriever.invoke("_") # The document with page_content "b" in documents2 # will be merged with the document with page_content "b" # in documents1, so the length of ranked_documents should be 3. # Additionally, the document with page_content "b" will be ranked 1st. assert len(ranked_documents) == 3 assert ranked_documents[0].page_content == "b" documents1 = [ Document(page_content="a", metadata={"id": 1}), Document(page_content="b", metadata={"id": 2}), Document(page_content="c", metadata={"id": 3}), ] documents2 = [Document(page_content="d")] retriever1 = MockRetriever(docs=documents1) retriever2 = MockRetriever(docs=documents2) ensemble_retriever = EnsembleRetriever( retrievers=[retriever1, retriever2], weights=[0.5, 0.5], id_key=None ) ranked_documents = ensemble_retriever.invoke("_") # The document with page_content "d" in documents2 will not be merged # with any document in documents1, so the length of ranked_documents # should be 4. The document with page_content "a" and the document # with page_content "d" will have the same score, but the document # with page_content "a" will be ranked 1st because retriever1 has a smaller index. assert len(ranked_documents) == 4 assert ranked_documents[0].page_content == "a" documents1 = [ Document(page_content="a", metadata={"id": 1}), Document(page_content="b", metadata={"id": 2}), Document(page_content="c", metadata={"id": 3}), ] documents2 = [Document(page_content="d", metadata={"id": 2})] retriever1 = MockRetriever(docs=documents1) retriever2 = MockRetriever(docs=documents2) ensemble_retriever = EnsembleRetriever( retrievers=[retriever1, retriever2], weights=[0.5, 0.5], id_key="id" ) ranked_documents = ensemble_retriever.invoke("_") # Since id_key is specified, the document with id 2 will be merged. # Therefore, the length of ranked_documents should be 3. # Additionally, the document with page_content "b" will be ranked 1st. assert len(ranked_documents) == 3 assert ranked_documents[0].page_content == "b"
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os.path as osp from typing import Optional from mmengine.fileio import dump from mmengine.logging import print_log from . import root from .registry import Registry def traverse_registry_tree(registry: Registry, verbose: bool = True) -> list: """Traverse the whole registry tree from any given node, and collect information of all registered modules in this registry tree. Args: registry (Registry): a registry node in the registry tree. verbose (bool): Whether to print log. Default: True Returns: list: Statistic results of all modules in each node of the registry tree. """ root_registry = registry.root modules_info = [] def _dfs_registry(_registry): if isinstance(_registry, Registry): num_modules = len(_registry.module_dict) scope = _registry.scope registry_info = dict(num_modules=num_modules, scope=scope) for name, registered_class in _registry.module_dict.items(): folder = '/'.join(registered_class.__module__.split('.')[:-1]) if folder in registry_info: registry_info[folder].append(name) else: registry_info[folder] = [name] if verbose: print_log( f"Find {num_modules} modules in {scope}'s " f"'{_registry.name}' registry ", logger='current') modules_info.append(registry_info) else: return for _, child in _registry.children.items(): _dfs_registry(child) _dfs_registry(root_registry) return modules_info def count_registered_modules(save_path: Optional[str] = None, verbose: bool = True) -> dict: """Scan all modules in MMEngine's root and child registries and dump to json. Args: save_path (str, optional): Path to save the json file. verbose (bool): Whether to print log. Defaults to True. Returns: dict: Statistic results of all registered modules. """ # import modules to trigger registering import mmengine.dataset import mmengine.evaluator import mmengine.hooks import mmengine.model import mmengine.optim import mmengine.runner import mmengine.visualization # noqa: F401 registries_info = {} # traverse all registries in MMEngine for item in dir(root): if not item.startswith('__'): registry = getattr(root, item) if isinstance(registry, Registry): registries_info[item] = traverse_registry_tree( registry, verbose) scan_data = dict( scan_date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), registries=registries_info) if verbose: print_log( f'Finish registry analysis, got: {scan_data}', logger='current') if save_path is not None: json_path = osp.join(save_path, 'modules_statistic_results.json') dump(scan_data, json_path, indent=2) print_log(f'Result has been saved to {json_path}', logger='current') return scan_data
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os.path as osp from typing import Optional from mmengine.fileio import dump from . import root from .registry import Registry def traverse_registry_tree(registry: Registry, verbose: bool = True) -> list: """Traverse the whole registry tree from any given node, and collect information of all registered modules in this registry tree. Args: registry (Registry): a registry node in the registry tree. verbose (bool): Whether to print log. Default: True Returns: list: Statistic results of all modules in each node of the registry tree. """ root_registry = registry.root modules_info = [] def _dfs_registry(_registry): if isinstance(_registry, Registry): num_modules = len(_registry.module_dict) scope = _registry.scope registry_info = dict(num_modules=num_modules, scope=scope) for name, registered_class in _registry.module_dict.items(): folder = '/'.join(registered_class.__module__.split('.')[:-1]) if folder in registry_info: registry_info[folder].append(name) else: registry_info[folder] = [name] if verbose: print(f"Find {num_modules} modules in {scope}'s " f"'{_registry.name}' registry ") modules_info.append(registry_info) else: return for _, child in _registry.children.items(): _dfs_registry(child) _dfs_registry(root_registry) return modules_info def count_registered_modules(save_path: Optional[str] = None, verbose: bool = True) -> dict: """Scan all modules in MMEngine's root and child registries and dump to json. Args: save_path (str, optional): Path to save the json file. verbose (bool): Whether to print log. Defaults to True. Returns: dict: Statistic results of all registered modules. """ # import modules to trigger registering import mmengine.dataset import mmengine.evaluator import mmengine.hooks import mmengine.model import mmengine.optim import mmengine.runner import mmengine.visualization # noqa: F401 registries_info = {} # traverse all registries in MMEngine for item in dir(root): if not item.startswith('__'): registry = getattr(root, item) if isinstance(registry, Registry): registries_info[item] = traverse_registry_tree( registry, verbose) scan_data = dict( scan_date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), registries=registries_info) if verbose: print('Finish registry analysis, got: ', scan_data) if save_path is not None: json_path = osp.join(save_path, 'modules_statistic_results.json') dump(scan_data, json_path, indent=2) print(f'Result has been saved to {json_path}') return scan_data
_base_ = './cornernet_hourglass104_mstest_8x6_210e_coco.py' train_dataloader = dict(batch_size=3) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (3 samples per GPU) auto_scale_lr = dict(base_batch_size=96)
_base_ = [ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py' ] # model settings model = dict( type='CornerNet', backbone=dict( type='HourglassNet', downsample_times=5, num_stacks=2, stage_channels=[256, 256, 384, 384, 384, 512], stage_blocks=[2, 2, 2, 2, 2, 4], norm_cfg=dict(type='BN', requires_grad=True)), neck=None, bbox_head=dict( type='CornerHead', num_classes=80, in_channels=256, num_feat_levels=2, corner_emb_channels=1, loss_heatmap=dict( type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1), loss_embedding=dict( type='AssociativeEmbeddingLoss', pull_weight=0.10, push_weight=0.10), loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1)), # training and testing settings train_cfg=None, test_cfg=dict( corner_topk=100, local_maximum_kernel=3, distance_threshold=0.5, score_thr=0.05, max_per_img=100, nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'))) # data settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='RandomCenterCropPad', crop_size=(511, 511), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), test_mode=False, test_pad_mode=None, **img_norm_cfg), dict(type='Resize', img_scale=(511, 511), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict( type='MultiScaleFlipAug', scale_factor=1.0, flip=True, transforms=[ dict(type='Resize'), dict( type='RandomCenterCropPad', crop_size=None, ratios=None, border=None, test_mode=True, test_pad_mode=['logical_or', 127], **img_norm_cfg), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict( type='Collect', keys=['img'], meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'img_norm_cfg', 'border')), ]) ] data = dict( samples_per_gpu=3, workers_per_gpu=3, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[180]) runner = dict(type='EpochBasedRunner', max_epochs=210) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (3 samples per GPU) auto_scale_lr = dict(base_batch_size=96)
from .transformer_tf_text_encode import TransformerTFTextEncoder
from .transformer_tf_text_encode import TransformerTFTextEncoder
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth' # noqa model = dict( backbone=dict( init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint))) optim_wrapper = dict( optimizer=dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.05), paramwise_cfg=dict(norm_decay_mult=0., bypass_duplicate=True))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth' # noqa model = dict( backbone=dict( init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint))) optimizer = dict( _delete_=True, type='AdamW', lr=0.0001, weight_decay=0.05, paramwise_cfg=dict(norm_decay_mult=0., bypass_duplicate=True))
import os from jina import Executor, requests class DummyExecutor(Executor): def __init__(self, arg='hello', **kwargs): super().__init__(**kwargs) self.arg = arg @requests def foo(self, docs, **kwargs): for doc in docs: doc.text = self.arg
import os from jina import Executor, requests class DummyExecutor(Executor): @requests def foo(self, **kwargs): pass
import sqlite3 import warnings from dataclasses import dataclass, field from tempfile import NamedTemporaryFile from typing import ( Iterable, Dict, Optional, TYPE_CHECKING, Union, List, Tuple, ) from docarray.array.storage.sqlite.helper import initialize_table from docarray.array.storage.base.backend import BaseBackendMixin from docarray.helper import random_identity, dataclass_from_dict if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType def _sanitize_table_name(table_name: str) -> str: ret = ''.join(c for c in table_name if c.isalnum() or c == '_') if ret != table_name: warnings.warn(f'The table name is changed to {ret} due to illegal characters') return ret @dataclass class SqliteConfig: connection: Optional[Union[str, 'sqlite3.Connection']] = None table_name: Optional[str] = None serialize_config: Dict = field(default_factory=dict) conn_config: Dict = field(default_factory=dict) journal_mode: str = 'DELETE' synchronous: str = 'OFF' class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" schema_version = '0' def _sql(self, *args, **kwargs) -> 'sqlite3.Cursor': return self._cursor.execute(*args, **kwargs) def _commit(self): self._connection.commit() @property def _cursor(self) -> 'sqlite3.Cursor': return self._connection.cursor() def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[SqliteConfig, Dict]] = None, **kwargs, ): if not config: config = SqliteConfig() if isinstance(config, dict): config = dataclass_from_dict(SqliteConfig, config) from docarray import Document sqlite3.register_adapter( Document, lambda d: d.to_bytes(**config.serialize_config) ) sqlite3.register_converter( 'Document', lambda x: Document.from_bytes(x, **config.serialize_config) ) _conn_kwargs = dict() _conn_kwargs.update(config.conn_config) if config.connection is None: config.connection = NamedTemporaryFile().name if isinstance(config.connection, str): self._connection = sqlite3.connect( config.connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, ) elif isinstance(config.connection, sqlite3.Connection): self._connection = config.connection else: raise TypeError( f'connection argument must be None or a string or a sqlite3.Connection, not `{type(config.connection)}`' ) self._connection.execute(f'PRAGMA synchronous={config.synchronous}') self._connection.execute(f'PRAGMA journal_mode={config.journal_mode}') self._table_name = ( _sanitize_table_name(self.__class__.__name__ + random_identity()) if config.table_name is None else _sanitize_table_name(config.table_name) ) self._persist = bool(config.table_name) config.table_name = self._table_name initialize_table( self._table_name, self.__class__.__name__, self.schema_version, self._cursor ) self._connection.commit() self._config = config super()._init_storage() if _docs is None: return elif isinstance(_docs, Iterable): self.clear() self.extend(_docs) else: self.clear() if isinstance(_docs, Document): self.append(_docs) def __getstate__(self): d = dict(self.__dict__) del d['_connection'] return d def __setstate__(self, state): self.__dict__ = state _conn_kwargs = dict() _conn_kwargs.update(state['_config'].conn_config) self._connection = sqlite3.connect( state['_config'].connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, )
import sqlite3 import warnings from dataclasses import dataclass, field from tempfile import NamedTemporaryFile from typing import ( Iterable, Dict, Optional, TYPE_CHECKING, Union, List, Tuple, ) from .helper import initialize_table from ..base.backend import BaseBackendMixin from ....helper import random_identity, dataclass_from_dict if TYPE_CHECKING: from ....typing import DocumentArraySourceType def _sanitize_table_name(table_name: str) -> str: ret = ''.join(c for c in table_name if c.isalnum() or c == '_') if ret != table_name: warnings.warn(f'The table name is changed to {ret} due to illegal characters') return ret @dataclass class SqliteConfig: connection: Optional[Union[str, 'sqlite3.Connection']] = None table_name: Optional[str] = None serialize_config: Dict = field(default_factory=dict) conn_config: Dict = field(default_factory=dict) journal_mode: str = 'DELETE' synchronous: str = 'OFF' class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" schema_version = '0' def _sql(self, *args, **kwargs) -> 'sqlite3.Cursor': return self._cursor.execute(*args, **kwargs) def _commit(self): self._connection.commit() @property def _cursor(self) -> 'sqlite3.Cursor': return self._connection.cursor() def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[SqliteConfig, Dict]] = None, **kwargs, ): if not config: config = SqliteConfig() if isinstance(config, dict): config = dataclass_from_dict(SqliteConfig, config) from docarray import Document sqlite3.register_adapter( Document, lambda d: d.to_bytes(**config.serialize_config) ) sqlite3.register_converter( 'Document', lambda x: Document.from_bytes(x, **config.serialize_config) ) _conn_kwargs = dict() _conn_kwargs.update(config.conn_config) if config.connection is None: config.connection = NamedTemporaryFile().name if isinstance(config.connection, str): self._connection = sqlite3.connect( config.connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, ) elif isinstance(config.connection, sqlite3.Connection): self._connection = config.connection else: raise TypeError( f'connection argument must be None or a string or a sqlite3.Connection, not `{type(config.connection)}`' ) self._connection.execute(f'PRAGMA synchronous={config.synchronous}') self._connection.execute(f'PRAGMA journal_mode={config.journal_mode}') self._table_name = ( _sanitize_table_name(self.__class__.__name__ + random_identity()) if config.table_name is None else _sanitize_table_name(config.table_name) ) self._persist = bool(config.table_name) config.table_name = self._table_name initialize_table( self._table_name, self.__class__.__name__, self.schema_version, self._cursor ) self._connection.commit() self._config = config super()._init_storage() if _docs is None: return elif isinstance(_docs, Iterable): self.clear() self.extend(_docs) else: self.clear() if isinstance(_docs, Document): self.append(_docs) def __getstate__(self): d = dict(self.__dict__) del d['_connection'] return d def __setstate__(self, state): self.__dict__ = state _conn_kwargs = dict() _conn_kwargs.update(state['_config'].conn_config) self._connection = sqlite3.connect( state['_config'].connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, )
from jina.serve.runtimes.servers import BaseServer from aiohttp import web class LoadBalancingServer(BaseServer): """Base FastAPI server. Implement this abstract class in-case you want to build a fastapi-based server by implementing the `app` property. This property should return a fastapi app. The base Gateway will handle starting a server and serving the application using that server.""" def __init__(self, **kwargs): """Initialize the LoadBalancingServer :param kwargs: keyword args """ super().__init__(**kwargs) # get server list from args self._server_exit = False async def handle_request(self, request): """Method called to handle requests coming to the LoadBalancer :param request: request to handle :return: the response to the request """ return await self._request_handler._load_balance(request) async def setup_server(self): """ Initialize and return server """ self.logger.debug(f'Setting up LoadBalancer server') self.app = web.Application() self.app.router.add_route('*', '/{path:.*}', self.handle_request) self.logger.debug(f'LoadBalancer server setup successful') async def run_server(self): """Run HTTP server forever""" await web._run_app( app=self.app, host=self.host, port=self.port, ) async def shutdown(self): """Shutdown the server and free other allocated resources, e.g, streamer object, health check service, ...""" self.logger.debug(f'Shutting down server') self._server_exit = True await super().shutdown() await self._request_handler.close() self.logger.debug(f'Server shutdown finished') @property def _should_exit(self): """Property describing if server is ready to exit :return: boolean indicating if Server ready to exit """ return self._server_exit @property def should_exit(self): """Property describing if server is ready to exit :return: boolean indicating if Server ready to exit """ return self._should_exit
from jina.serve.runtimes.servers import BaseServer from aiohttp import web class LoadBalancingServer(BaseServer): """Base FastAPI server. Implement this abstract class in-case you want to build a fastapi-based server by implementing the `app` property. This property should return a fastapi app. The base Gateway will handle starting a server and serving the application using that server.""" def __init__( self, **kwargs ): """Initialize the LoadBalancingServer :param kwargs: keyword args """ super().__init__(**kwargs) # get server list from args self._server_exit = False async def handle_request(self, request): """Method called to handle requests coming to the LoadBalancer :param request: request to handle :return: the response to the request """ return await self._request_handler._load_balance(request) async def setup_server(self): """ Initialize and return server """ self.logger.debug(f'Setting up LoadBalancer server') self.app = web.Application() self.app.router.add_route('*', '/{path:.*}', self.handle_request) self.logger.debug(f'LoadBalancer server setup successful') async def run_server(self): """Run HTTP server forever""" await web._run_app( app=self.app, host=self.host, port=self.port, ) async def shutdown(self): """Shutdown the server and free other allocated resources, e.g, streamer object, health check service, ...""" self.logger.debug(f'Shutting down server') self._server_exit = True await super().shutdown() await self._request_handler.close() self.logger.debug(f'Server shutdown finished') @property def _should_exit(self): """Property describing if server is ready to exit :return: boolean indicating if Server ready to exit """ return self._server_exit @property def should_exit(self): """Property describing if server is ready to exit :return: boolean indicating if Server ready to exit """ return self._should_exit
# dataset settings dataset_type = 'WIDERFaceDataset' data_root = 'data/WIDERFace/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/cityscapes/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None img_scale = (640, 640) # VGA resolution train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=img_scale, keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=img_scale, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='train.txt', data_prefix=dict(img='WIDER_train'), filter_cfg=dict(filter_empty_gt=True, bbox_min_size=17, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='val.txt', data_prefix=dict(img='WIDER_val'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( # TODO: support WiderFace-Evaluation for easy, medium, hard cases type='VOCMetric', metric='mAP', eval_mode='11points') test_evaluator = val_evaluator
# dataset settings dataset_type = 'WIDERFaceDataset' data_root = 'data/WIDERFace/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=60, workers_per_gpu=2, train=dict( type='RepeatDataset', times=2, dataset=dict( type=dataset_type, ann_file=data_root + 'train.txt', img_prefix=data_root + 'WIDER_train/', min_size=17, pipeline=train_pipeline)), val=dict( type=dataset_type, ann_file=data_root + 'val.txt', img_prefix=data_root + 'WIDER_val/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'val.txt', img_prefix=data_root + 'WIDER_val/', pipeline=test_pipeline))
from langchain_core.utils.iter import NoLock, Tee, batch_iterate, tee_peer __all__ = ["NoLock", "Tee", "batch_iterate", "tee_peer"]
from langchain_core.utils.iter import NoLock, Tee, batch_iterate, tee_peer __all__ = ["NoLock", "tee_peer", "Tee", "batch_iterate"]