input
stringlengths
33
5k
output
stringlengths
32
5k
import multiprocessing from copy import deepcopy from functools import partial from typing import TYPE_CHECKING from hubble.executor.helper import is_valid_huburi from hubble.executor.hubio import HubIO from jina.enums import GatewayProtocolType, PodRoleType from jina.parsers.helper import _set_gateway_uses if TYPE_CHECKING: from argparse import Namespace def _get_event(obj) -> multiprocessing.Event: if isinstance(obj, multiprocessing.Process) or isinstance( obj, multiprocessing.context.ForkProcess ): return multiprocessing.Event() elif isinstance(obj, multiprocessing.context.SpawnProcess): return multiprocessing.get_context('spawn').Event() else: raise TypeError(f'{obj} is not an instance of "multiprocessing.Process"') class ConditionalEvent: """ :class:`ConditionalEvent` provides a common interface to an event (multiprocessing or threading event) that gets triggered when any of the events provided in input is triggered (OR logic) :param events_list: The list of events that compose this composable event """ def __init__(self, events_list): super().__init__() self.event = None self.event = multiprocessing.synchronize.Event( ctx=multiprocessing.get_context() ) self.event_list = events_list for e in events_list: self._setup(e, self._state_changed) self._state_changed() def _state_changed(self): bools = [e.is_set() for e in self.event_list] if any(bools): self.event.set() else: self.event.clear() def _custom_set(self, e): e._set() e._state_changed() def _custom_clear(self, e): e._clear() e._state_changed() def _setup(self, e, changed_callback): e._set = e.set e._clear = e.clear e._state_changed = changed_callback e.set = partial(self._custom_set, e) e.clear = partial(self._custom_clear, e) def update_runtime_cls(args, copy=False) -> 'Namespace': """Get runtime_cls as a string from args :param args: pod/deployment namespace args :param copy: True if args shouldn't be modified in-place :return: runtime class as a string """ _args = deepcopy(args) if copy else args if _args.runtime_cls == 'WorkerRuntime' and is_valid_huburi(_args.uses): _hub_args = deepcopy(_args) _hub_args.uri = _args.uses _hub_args.no_usage = True _args.uses = HubIO(_hub_args).pull() if hasattr(_args, 'protocol'): _set_gateway_uses(_args) if _args.pod_role == PodRoleType.HEAD: _args.runtime_cls = 'HeadRuntime' return _args
import multiprocessing from copy import deepcopy from functools import partial from typing import TYPE_CHECKING from hubble.executor.helper import is_valid_huburi from hubble.executor.hubio import HubIO from jina.enums import GatewayProtocolType, PodRoleType if TYPE_CHECKING: from argparse import Namespace def _get_event(obj) -> multiprocessing.Event: if isinstance(obj, multiprocessing.Process) or isinstance( obj, multiprocessing.context.ForkProcess ): return multiprocessing.Event() elif isinstance(obj, multiprocessing.context.SpawnProcess): return multiprocessing.get_context('spawn').Event() else: raise TypeError(f'{obj} is not an instance of "multiprocessing.Process"') class ConditionalEvent: """ :class:`ConditionalEvent` provides a common interface to an event (multiprocessing or threading event) that gets triggered when any of the events provided in input is triggered (OR logic) :param events_list: The list of events that compose this composable event """ def __init__(self, events_list): super().__init__() self.event = None self.event = multiprocessing.synchronize.Event( ctx=multiprocessing.get_context() ) self.event_list = events_list for e in events_list: self._setup(e, self._state_changed) self._state_changed() def _state_changed(self): bools = [e.is_set() for e in self.event_list] if any(bools): self.event.set() else: self.event.clear() def _custom_set(self, e): e._set() e._state_changed() def _custom_clear(self, e): e._clear() e._state_changed() def _setup(self, e, changed_callback): e._set = e.set e._clear = e.clear e._state_changed = changed_callback e.set = partial(self._custom_set, e) e.clear = partial(self._custom_clear, e) def update_runtime_cls(args, copy=False) -> 'Namespace': """Get runtime_cls as a string from args :param args: pod/deployment namespace args :param copy: True if args shouldn't be modified in-place :return: runtime class as a string """ _args = deepcopy(args) if copy else args gateway_runtime_dict = { GatewayProtocolType.GRPC: 'GRPCGatewayRuntime', GatewayProtocolType.WEBSOCKET: 'WebSocketGatewayRuntime', GatewayProtocolType.HTTP: 'HTTPGatewayRuntime', } if _args.runtime_cls == 'WorkerRuntime' and is_valid_huburi(_args.uses): _hub_args = deepcopy(_args) _hub_args.uri = _args.uses _hub_args.no_usage = True _args.uses = HubIO(_hub_args).pull() if hasattr(_args, 'protocol'): _args.runtime_cls = gateway_runtime_dict[_args.protocol] if _args.pod_role == PodRoleType.HEAD: _args.runtime_cls = 'HeadRuntime' return _args
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray.base_doc.mixins.io import IOMixin from docarray.base_doc.mixins.update import UpdateMixin __all__ = ['IOMixin', 'UpdateMixin']
from docarray.base_doc.mixins.io import IOMixin from docarray.base_doc.mixins.update import UpdateMixin __all__ = ['IOMixin', 'UpdateMixin']
"""FastAPI framework, high performance, easy to learn, fast to code, ready for production""" __version__ = "0.115.4" from starlette import status as status from .applications import FastAPI as FastAPI from .background import BackgroundTasks as BackgroundTasks from .datastructures import UploadFile as UploadFile from .exceptions import HTTPException as HTTPException from .exceptions import WebSocketException as WebSocketException from .param_functions import Body as Body from .param_functions import Cookie as Cookie from .param_functions import Depends as Depends from .param_functions import File as File from .param_functions import Form as Form from .param_functions import Header as Header from .param_functions import Path as Path from .param_functions import Query as Query from .param_functions import Security as Security from .requests import Request as Request from .responses import Response as Response from .routing import APIRouter as APIRouter from .websockets import WebSocket as WebSocket from .websockets import WebSocketDisconnect as WebSocketDisconnect
"""FastAPI framework, high performance, easy to learn, fast to code, ready for production""" __version__ = "0.115.3" from starlette import status as status from .applications import FastAPI as FastAPI from .background import BackgroundTasks as BackgroundTasks from .datastructures import UploadFile as UploadFile from .exceptions import HTTPException as HTTPException from .exceptions import WebSocketException as WebSocketException from .param_functions import Body as Body from .param_functions import Cookie as Cookie from .param_functions import Depends as Depends from .param_functions import File as File from .param_functions import Form as Form from .param_functions import Header as Header from .param_functions import Path as Path from .param_functions import Query as Query from .param_functions import Security as Security from .requests import Request as Request from .responses import Response as Response from .routing import APIRouter as APIRouter from .websockets import WebSocket as WebSocket from .websockets import WebSocketDisconnect as WebSocketDisconnect
from typing_extensions import TYPE_CHECKING from docarray.typing.bytes import AudioBytes, ImageBytes, VideoBytes from docarray.typing.id import ID from docarray.typing.tensor import ImageNdArray, ImageTensor from docarray.typing.tensor.audio import AudioNdArray from docarray.typing.tensor.embedding.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.tensor.video import VideoNdArray from docarray.typing.url import ( AnyUrl, AudioUrl, ImageUrl, Mesh3DUrl, PointCloud3DUrl, TextUrl, VideoUrl, ) from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.typing.tensor import TensorFlowTensor # noqa: F401 from docarray.typing.tensor import TorchEmbedding, TorchTensor # noqa: F401 from docarray.typing.tensor.audio import AudioTensorFlowTensor # noqa: F401 from docarray.typing.tensor.audio import AudioTorchTensor # noqa: F401 from docarray.typing.tensor.embedding import TensorFlowEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTensorFlowTensor # noqa: F401 from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.video import VideoTensorFlowTensor # noqa: F401 from docarray.typing.tensor.video import VideoTorchTensor # noqa: F401 __all__ = [ 'NdArray', 'NdArrayEmbedding', 'AudioNdArray', 'VideoNdArray', 'AnyEmbedding', 'ImageUrl', 'AudioUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl', 'VideoUrl', 'AnyUrl', 'ID', 'AnyTensor', 'ImageTensor', 'ImageNdArray', 'ImageBytes', 'VideoBytes', 'AudioBytes', ] _torch_tensors = [ 'TorchTensor', 'TorchEmbedding', 'ImageTorchTensor', 'AudioTorchTensor', 'VideoTorchTensor', ] _tf_tensors = [ 'TensorFlowTensor', 'TensorFlowEmbedding', 'ImageTensorFlowTensor', 'AudioTensorFlowTensor', 'VideoTensorFlowTensor', ] __all_test__ = __all__ + _torch_tensors def __getattr__(name: str): if name in _torch_tensors: import_library('torch', raise_error=True) elif name in _tf_tensors: import_library('tensorflow', raise_error=True) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) import docarray.typing.tensor tensor_cls = getattr(docarray.typing.tensor, name) if name not in __all__: __all__.append(name) return tensor_cls
from typing_extensions import TYPE_CHECKING from docarray.typing.bytes import AudioBytes, ImageBytes, VideoBytes from docarray.typing.id import ID from docarray.typing.tensor import ImageNdArray, ImageTensor from docarray.typing.tensor.audio import AudioNdArray from docarray.typing.tensor.embedding.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.tensor.video import VideoNdArray from docarray.typing.url import ( AnyUrl, AudioUrl, ImageUrl, Mesh3DUrl, PointCloud3DUrl, TextUrl, VideoUrl, ) from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.typing.tensor import TensorFlowTensor # noqa: F401 from docarray.typing.tensor import TorchEmbedding, TorchTensor # noqa: F401 from docarray.typing.tensor.audio import AudioTensorFlowTensor # noqa: F401 from docarray.typing.tensor.audio import AudioTorchTensor # noqa: F401 from docarray.typing.tensor.embedding import TensorFlowEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTensorFlowTensor # noqa: F401 from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.video import VideoTensorFlowTensor # noqa: F401 from docarray.typing.tensor.video import VideoTorchTensor # noqa: F401 __all__ = [ 'NdArray', 'NdArrayEmbedding', 'AudioNdArray', 'VideoNdArray', 'AnyEmbedding', 'ImageUrl', 'AudioUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl', 'VideoUrl', 'AnyUrl', 'ID', 'AnyTensor', 'ImageTensor', 'ImageNdArray', 'ImageBytes', 'VideoBytes', 'AudioBytes', ] _torch_tensors = [ 'TorchTensor', 'TorchEmbedding', 'ImageTorchTensor', 'AudioTorchTensor', 'VideoTorchTensor', ] _tf_tensors = [ 'TensorFlowTensor', 'TensorFlowEmbedding', 'ImageTensorFlowTensor', 'AudioTensorFlowTensor', 'VideoTensorFlowTensor', ] def __getattr__(name: str): if name in _torch_tensors: import_library('torch', raise_error=True) elif name in _tf_tensors: import_library('tensorflow', raise_error=True) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) import docarray.typing.tensor tensor_cls = getattr(docarray.typing.tensor, name) if name not in __all__: __all__.append(name) return tensor_cls
import socket import sys from threading import Thread import numpy as np import pytest from loky import get_reusable_executor import xgboost as xgb from xgboost import RabitTracker, build_info, federated from xgboost import testing as tm def run_rabit_worker(rabit_env: dict, world_size: int) -> int: with xgb.collective.CommunicatorContext(**rabit_env): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == socket.gethostname() ret = xgb.collective.broadcast("test1234", 0) assert str(ret) == "test1234" reduced = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(reduced, np.asarray([2, 4, 6])) return 0 @pytest.mark.skipif(**tm.no_loky()) def test_rabit_communicator() -> None: world_size = 2 tracker = RabitTracker(host_ip="127.0.0.1", n_workers=world_size) tracker.start() workers = [] with get_reusable_executor(max_workers=world_size) as pool: for _ in range(world_size): worker = pool.submit( run_rabit_worker, rabit_env=tracker.worker_args(), world_size=world_size ) workers.append(worker) for worker in workers: assert worker.result() == 0 def run_federated_worker(port: int, world_size: int, rank: int) -> int: with xgb.collective.CommunicatorContext( dmlc_communicator="federated", federated_server_address=f"localhost:{port}", federated_world_size=world_size, federated_rank=rank, ): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == f"rank:{rank}" bret = xgb.collective.broadcast("test1234", 0) assert str(bret) == "test1234" aret = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(aret, np.asarray([2, 4, 6])) return 0 @pytest.mark.skipif(**tm.skip_win()) @pytest.mark.skipif(**tm.no_loky()) def test_federated_communicator(): if not build_info()["USE_FEDERATED"]: pytest.skip("XGBoost not built with federated learning enabled") port = 9091 world_size = 2 with get_reusable_executor(max_workers=world_size+1) as pool: kwargs={"port": port, "n_workers": world_size, "blocking": False} tracker = pool.submit(federated.run_federated_server, **kwargs) if not tracker.running(): raise RuntimeError("Error starting Federated Learning server") workers = [] for rank in range(world_size): worker = pool.submit( run_federated_worker, port=port, world_size=world_size, rank=rank ) workers.append(worker) for worker in workers: assert worker.result() == 0
import multiprocessing import socket import sys from threading import Thread import numpy as np import pytest import xgboost as xgb from xgboost import RabitTracker, build_info, federated from xgboost import testing as tm def run_rabit_worker(rabit_env, world_size): with xgb.collective.CommunicatorContext(**rabit_env): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == socket.gethostname() ret = xgb.collective.broadcast("test1234", 0) assert str(ret) == "test1234" ret = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(ret, np.asarray([2, 4, 6])) def test_rabit_communicator() -> None: world_size = 2 tracker = RabitTracker(host_ip="127.0.0.1", n_workers=world_size) tracker.start() workers = [] for _ in range(world_size): worker = multiprocessing.Process( target=run_rabit_worker, args=(tracker.worker_args(), world_size) ) workers.append(worker) worker.start() for worker in workers: worker.join() assert worker.exitcode == 0 def run_federated_worker(port: int, world_size: int, rank: int) -> None: with xgb.collective.CommunicatorContext( dmlc_communicator="federated", federated_server_address=f"localhost:{port}", federated_world_size=world_size, federated_rank=rank, ): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == f"rank:{rank}" bret = xgb.collective.broadcast("test1234", 0) assert str(bret) == "test1234" aret = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(aret, np.asarray([2, 4, 6])) @pytest.mark.skipif(**tm.skip_win()) def test_federated_communicator(): if not build_info()["USE_FEDERATED"]: pytest.skip("XGBoost not built with federated learning enabled") port = 9091 world_size = 2 tracker = multiprocessing.Process( target=federated.run_federated_server, kwargs={"port": port, "n_workers": world_size, "blocking": False}, ) tracker.start() if not tracker.is_alive(): raise Exception("Error starting Federated Learning server") workers = [] for rank in range(world_size): worker = multiprocessing.Process( target=run_federated_worker, args=(port, world_size, rank) ) workers.append(worker) worker.start() for worker in workers: worker.join() assert worker.exitcode == 0
import os from typing import Type import orjson from pydantic import BaseModel, Field, parse_obj_as from rich.console import Console from docarray.base_document.base_node import BaseNode from docarray.base_document.io.json import orjson_dumps, orjson_dumps_and_decode from docarray.base_document.mixins import IOMixin, UpdateMixin from docarray.typing import ID _console: Console = Console() class BaseDocument(BaseModel, IOMixin, UpdateMixin, BaseNode): """ The base class for Documents """ id: ID = Field(default_factory=lambda: parse_obj_as(ID, os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode json_encoders = {dict: orjson_dumps} validate_assignment = True @classmethod def _get_field_type(cls, field: str) -> Type: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self): with _console.capture() as capture: _console.print(self) return capture.get().strip() def summary(self) -> None: """Print non-empty fields and nested structure of this Document object.""" from docarray.display.document_summary import DocumentSummary DocumentSummary(doc=self).summary() @classmethod def schema_summary(cls) -> None: """Print a summary of the Documents schema.""" from docarray.display.document_summary import DocumentSummary DocumentSummary.schema_summary(cls) def _ipython_display_(self): """Displays the object in IPython as a summary""" self.summary()
import os from typing import Type, Optional, TypeVar import orjson from pydantic import BaseModel, Field, parse_obj_as from rich.console import Console import pickle import base64 from docarray.base_document.base_node import BaseNode from docarray.base_document.io.json import orjson_dumps, orjson_dumps_and_decode from docarray.utils.compress import _compress_bytes, _decompress_bytes from docarray.base_document.mixins import ProtoMixin, UpdateMixin from docarray.typing import ID _console: Console = Console() T = TypeVar('T', bound='BaseDocument') class BaseDocument(BaseModel, ProtoMixin, UpdateMixin, BaseNode): """ The base class for Document """ id: ID = Field(default_factory=lambda: parse_obj_as(ID, os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode json_encoders = {dict: orjson_dumps} validate_assignment = True @classmethod def _get_field_type(cls, field: str) -> Type['BaseDocument']: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self): with _console.capture() as capture: _console.print(self) return capture.get().strip() def summary(self) -> None: """Print non-empty fields and nested structure of this Document object.""" from docarray.display.document_summary import DocumentSummary DocumentSummary(doc=self).summary() @classmethod def schema_summary(cls) -> None: """Print a summary of the Documents schema.""" from docarray.display.document_summary import DocumentSummary DocumentSummary.schema_summary(cls) def __bytes__(self) -> bytes: return self.to_bytes() def to_bytes( self, protocol: str = 'protobuf', compress: Optional[str] = None ) -> bytes: """Serialize itself into bytes. For more Pythonic code, please use ``bytes(...)``. :param protocol: protocol to use. It can be 'pickle' or 'protobuf' :param compress: compress algorithm to use :return: the binary serialization in bytes """ import pickle if protocol == 'pickle': bstr = pickle.dumps(self) elif protocol == 'protobuf': bstr = self.to_protobuf().SerializePartialToString() else: raise ValueError( f'protocol={protocol} is not supported. Can be only `protobuf` or pickle protocols 0-5.' ) return _compress_bytes(bstr, algorithm=compress) @classmethod def from_bytes( cls: Type[T], data: bytes, protocol: str = 'protobuf', compress: Optional[str] = None, ) -> T: """Build Document object from binary bytes :param data: binary bytes :param protocol: protocol to use. It can be 'pickle' or 'protobuf' :param compress: compress method to use :return: a Document object """ bstr = _decompress_bytes(data, algorithm=compress) if protocol == 'pickle': return pickle.loads(bstr) elif protocol == 'protobuf': from docarray.proto import DocumentProto pb_msg = DocumentProto() pb_msg.ParseFromString(bstr) return cls.from_protobuf(pb_msg) else: raise ValueError( f'protocol={protocol} is not supported. Can be only `protobuf` or pickle protocols 0-5.' ) def to_base64( self, protocol: str = 'protobuf', compress: Optional[str] = None ) -> str: """Serialize a Document object into as base64 string :param protocol: protocol to use. It can be 'pickle' or 'protobuf' :param compress: compress method to use :return: a base64 encoded string """ return base64.b64encode(self.to_bytes(protocol, compress)).decode('utf-8') @classmethod def from_base64( cls: Type[T], data: str, protocol: str = 'pickle', compress: Optional[str] = None, ) -> T: """Build Document object from binary bytes :param data: a base64 encoded string :param protocol: protocol to use. It can be 'pickle' or 'protobuf' :param compress: compress method to use :return: a Document object """ return cls.from_bytes(base64.b64decode(data), protocol, compress) def _ipython_display_(self): """Displays the object in IPython as a summary""" self.summary()
import logging from backend.util.settings import AppEnvironment, BehaveAs, Settings settings = Settings() def configure_logging(): import autogpt_libs.logging.config if ( settings.config.behave_as == BehaveAs.LOCAL or settings.config.app_env == AppEnvironment.LOCAL ): autogpt_libs.logging.config.configure_logging(force_cloud_logging=False) else: autogpt_libs.logging.config.configure_logging(force_cloud_logging=True) # Silence httpx logger logging.getLogger("httpx").setLevel(logging.WARNING) class TruncatedLogger: def __init__( self, logger: logging.Logger, prefix: str = "", metadata: dict | None = None, max_length: int = 1000, ): self.logger = logger self.metadata = metadata or {} self.max_length = max_length self.prefix = prefix def info(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.info(msg, extra=self._get_metadata(**extra)) def warning(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.warning(msg, extra=self._get_metadata(**extra)) def error(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.error(msg, extra=self._get_metadata(**extra)) def debug(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.debug(msg, extra=self._get_metadata(**extra)) def exception(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.exception(msg, extra=self._get_metadata(**extra)) def _get_metadata(self, **extra): metadata = {**self.metadata, **extra} return {"json_fields": metadata} if metadata else {} def _wrap(self, msg: str, **extra): extra_msg = str(extra or "") text = f"{self.prefix} {msg} {extra_msg}" if len(text) > self.max_length: text = text[: self.max_length] + "..." return text class PrefixFilter(logging.Filter): def __init__(self, prefix: str): super().__init__() self.prefix = prefix def filter(self, record): record.msg = f"{self.prefix} {record.msg}" return True
from logging import Logger from backend.util.settings import AppEnvironment, BehaveAs, Settings settings = Settings() def configure_logging(): import logging import autogpt_libs.logging.config if ( settings.config.behave_as == BehaveAs.LOCAL or settings.config.app_env == AppEnvironment.LOCAL ): autogpt_libs.logging.config.configure_logging(force_cloud_logging=False) else: autogpt_libs.logging.config.configure_logging(force_cloud_logging=True) # Silence httpx logger logging.getLogger("httpx").setLevel(logging.WARNING) class TruncatedLogger: def __init__( self, logger: Logger, prefix: str = "", metadata: dict | None = None, max_length: int = 1000, ): self.logger = logger self.metadata = metadata or {} self.max_length = max_length self.prefix = prefix def info(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.info(msg, extra=self._get_metadata(**extra)) def warning(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.warning(msg, extra=self._get_metadata(**extra)) def error(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.error(msg, extra=self._get_metadata(**extra)) def debug(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.debug(msg, extra=self._get_metadata(**extra)) def exception(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.exception(msg, extra=self._get_metadata(**extra)) def _get_metadata(self, **extra): metadata = {**self.metadata, **extra} return {"json_fields": metadata} if metadata else {} def _wrap(self, msg: str, **extra): extra_msg = str(extra or "") text = f"{self.prefix} {msg} {extra_msg}" if len(text) > self.max_length: text = text[: self.max_length] + "..." return text
from pydantic import BaseModel from typing import Dict def _to_camel_case(snake_str: str) -> str: components = snake_str.split('_') # We capitalize the first letter of each component except the first one # with the 'title' method and join them together. return components[0] + ''.join(x.title() for x in components[1:]) class JinaHealthModel(BaseModel): """Pydantic BaseModel for Jina health check, used as the response model in REST app.""" ... class JinaInfoModel(BaseModel): """Pydantic BaseModel for Jina status, used as the response model in REST app.""" jina: Dict envs: Dict class Config: alias_generator = _to_camel_case allow_population_by_field_name = True
from pydantic import BaseModel class JinaHealthModel(BaseModel): """Pydantic BaseModel for Jina health check, used as the response model in REST app.""" ...
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import StableCascadeUNet from diffusers.utils import logging from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, require_torch_accelerator, slow, torch_device, ) logger = logging.get_logger(__name__) enable_full_determinism() @slow @require_torch_accelerator class StableCascadeUNetSingleFileTest(unittest.TestCase): def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_single_file_components_stage_b(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade", variant="bf16", subfolder="decoder", use_safetensors=True ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading" def test_single_file_components_stage_b_lite(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade", variant="bf16", subfolder="decoder_lite" ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading" def test_single_file_components_stage_c(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior" ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading" def test_single_file_components_stage_c_lite(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_lite_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior_lite" ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading"
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import StableCascadeUNet from diffusers.utils import logging from diffusers.utils.testing_utils import ( enable_full_determinism, require_torch_gpu, slow, ) logger = logging.get_logger(__name__) enable_full_determinism() @slow @require_torch_gpu class StableCascadeUNetSingleFileTest(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_single_file_components_stage_b(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade", variant="bf16", subfolder="decoder", use_safetensors=True ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading" def test_single_file_components_stage_b_lite(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade", variant="bf16", subfolder="decoder_lite" ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading" def test_single_file_components_stage_c(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior" ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading" def test_single_file_components_stage_c_lite(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_lite_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior_lite" ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading"
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .misc import (center_of_mass, filter_scores_and_topk, flip_tensor, generate_coordinate, levels_to_images, mask2ndarray, multi_apply, select_single_mlvl, stack_batch, unmap) from .typing import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptSampleList, OptSamplingResultList, SampleList, SamplingResultList) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate', 'select_single_mlvl', 'filter_scores_and_topk', 'sync_random_seed', 'stack_batch', 'levels_to_images', 'ConfigType', 'OptConfigType', 'MultiConfig', 'OptMultiConfig', 'InstanceList', 'OptInstanceList', 'SampleList', 'OptSampleList', 'SamplingResultList', 'OptSamplingResultList' ]
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .misc import (center_of_mass, filter_scores_and_topk, flip_tensor, generate_coordinate, levels_to_images, mask2ndarray, multi_apply, select_single_mlvl, stack_batch, unmap) from .typing import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptSampleList, SampleList, SamplingResultList) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate', 'select_single_mlvl', 'filter_scores_and_topk', 'sync_random_seed', 'stack_batch', 'levels_to_images', 'ConfigType', 'OptConfigType', 'MultiConfig', 'OptMultiConfig', 'InstanceList', 'OptInstanceList', 'SampleList', 'OptSampleList', 'SamplingResultList' ]
"""Loading a pickled model generated by test_pickling.py, only used by `test_gpu_with_dask.py`""" import json import os import numpy as np import pytest from test_gpu_pickling import build_dataset, load_pickle, model_path import xgboost as xgb from xgboost import testing as tm class TestLoadPickle: def test_load_pkl(self) -> None: """Test whether prediction is correct.""" assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" bst = load_pickle(model_path) x, y = build_dataset() if isinstance(bst, xgb.Booster): test_x = xgb.DMatrix(x) res = bst.predict(test_x) else: res = bst.predict(x) assert len(res) == 10 bst.set_params(n_jobs=1) # triggers a re-configuration res = bst.predict(x) assert len(res) == 10 def test_context_is_removed(self) -> None: """Under invalid CUDA_VISIBLE_DEVICES, context should reset""" assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cpu" def test_context_is_preserved(self) -> None: """Test the device context is preserved after pickling.""" assert "CUDA_VISIBLE_DEVICES" not in os.environ.keys() bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cuda:0" def test_wrap_gpu_id(self) -> None: assert os.environ["CUDA_VISIBLE_DEVICES"] == "0" bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cuda:0" x, y = build_dataset() test_x = xgb.DMatrix(x) res = bst.predict(test_x) assert len(res) == 10 def test_training_on_cpu_only_env(self) -> None: assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" rng = np.random.RandomState(1994) X = rng.randn(10, 10) y = rng.randn(10) with pytest.warns(UserWarning, match="No visible GPU is found"): # Test no thrust exception is thrown with pytest.raises(xgb.core.XGBoostError, match="have at least one device"): xgb.train({"tree_method": "gpu_hist"}, xgb.DMatrix(X, y))
"""Loading a pickled model generated by test_pickling.py, only used by `test_gpu_with_dask.py`""" import json import os import numpy as np import pytest from test_gpu_pickling import build_dataset, load_pickle, model_path import xgboost as xgb from xgboost import testing as tm class TestLoadPickle: def test_load_pkl(self) -> None: """Test whether prediction is correct.""" assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" bst = load_pickle(model_path) x, y = build_dataset() if isinstance(bst, xgb.Booster): test_x = xgb.DMatrix(x) res = bst.predict(test_x) else: res = bst.predict(x) assert len(res) == 10 bst.set_params(n_jobs=1) # triggers a re-configuration res = bst.predict(x) assert len(res) == 10 def test_context_is_removed(self) -> None: """Under invalid CUDA_VISIBLE_DEVICES, context should reset""" assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cpu" def test_context_is_preserved(self) -> None: """Test the device context is preserved after pickling.""" assert "CUDA_VISIBLE_DEVICES" not in os.environ.keys() bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cuda:0" def test_wrap_gpu_id(self) -> None: assert os.environ["CUDA_VISIBLE_DEVICES"] == "0" bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cuda:0" x, y = build_dataset() test_x = xgb.DMatrix(x) res = bst.predict(test_x) assert len(res) == 10 def test_training_on_cpu_only_env(self) -> None: assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" rng = np.random.RandomState(1994) X = rng.randn(10, 10) y = rng.randn(10) with pytest.warns(UserWarning, match="No visible GPU is found"): # Test no thrust exception is thrown with pytest.raises(xgb.core.XGBoostError, match="have at least one device"): xgb.train({"tree_method": "gpu_hist"}, xgb.DMatrix(X, y))
from typing import Union, Optional, Iterable from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods""" def _insert_doc_at_idx(self, doc, idx: Optional[int] = None): if idx is None: idx = len(self) self._sql( f'INSERT INTO {self._table_name} (doc_id, serialized_value, item_order) VALUES (?, ?, ?)', (doc.id, doc, idx), ) self._offset2ids.insert(idx, doc.id) def _shift_index_right_backward(self, start: int): idx = len(self) - 1 while idx >= start: self._sql( f'UPDATE {self._table_name} SET item_order = ? WHERE item_order = ?', (idx + 1, idx), ) idx -= 1 def insert(self, index: int, value: 'Document'): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. """ length = len(self) if index < 0: index = length + index index = max(0, min(length, index)) self._shift_index_right_backward(index) self._insert_doc_at_idx(doc=value, idx=index) self._commit() def append(self, doc: 'Document', commit: bool = True) -> None: self._sql( f'INSERT INTO {self._table_name} (doc_id, serialized_value, item_order) VALUES (?, ?, ?)', (doc.id, doc, len(self)), ) self._offset2ids.append(doc.id) if commit: self._commit() def __del__(self) -> None: super().__del__() if not self._persist: self._sql( 'DELETE FROM metadata WHERE table_name=? AND container_type=?', (self._table_name, self.__class__.__name__), ) self._sql(f'DROP TABLE IF EXISTS {self._table_name}') self._commit() def __contains__(self, item: Union[str, 'Document']): if isinstance(item, str): r = self._sql(f'SELECT 1 FROM {self._table_name} WHERE doc_id=?', (item,)) return len(list(r)) > 0 elif isinstance(item, Document): return item.id in self # fall back to str check else: return False def __len__(self) -> int: request = self._sql(f'SELECT COUNT(*) FROM {self._table_name}') return request.fetchone()[0] def __repr__(self): return f'<DocumentArray[SQLite] (length={len(self)}) at {id(self)}>' def __eq__(self, other): """In sqlite backend, data are considered as identical if configs point to the same database source""" return ( type(self) is type(other) and type(self._config) is type(other._config) and self._config == other._config ) def extend(self, docs: Iterable['Document']) -> None: for doc in docs: self.append(doc, commit=False) self._commit()
from typing import Union, Optional, Iterable from ..base.seqlike import BaseSequenceLikeMixin from .... import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods""" def _insert_doc_at_idx(self, doc, idx: Optional[int] = None): if idx is None: idx = len(self) self._sql( f'INSERT INTO {self._table_name} (doc_id, serialized_value, item_order) VALUES (?, ?, ?)', (doc.id, doc, idx), ) self._offset2ids.insert(idx, doc.id) def _shift_index_right_backward(self, start: int): idx = len(self) - 1 while idx >= start: self._sql( f'UPDATE {self._table_name} SET item_order = ? WHERE item_order = ?', (idx + 1, idx), ) idx -= 1 def insert(self, index: int, value: 'Document'): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. """ length = len(self) if index < 0: index = length + index index = max(0, min(length, index)) self._shift_index_right_backward(index) self._insert_doc_at_idx(doc=value, idx=index) self._commit() def append(self, doc: 'Document', commit: bool = True) -> None: self._sql( f'INSERT INTO {self._table_name} (doc_id, serialized_value, item_order) VALUES (?, ?, ?)', (doc.id, doc, len(self)), ) self._offset2ids.append(doc.id) if commit: self._commit() def __del__(self) -> None: super().__del__() if not self._persist: self._sql( 'DELETE FROM metadata WHERE table_name=? AND container_type=?', (self._table_name, self.__class__.__name__), ) self._sql(f'DROP TABLE IF EXISTS {self._table_name}') self._commit() def __contains__(self, item: Union[str, 'Document']): if isinstance(item, str): r = self._sql(f'SELECT 1 FROM {self._table_name} WHERE doc_id=?', (item,)) return len(list(r)) > 0 elif isinstance(item, Document): return item.id in self # fall back to str check else: return False def __len__(self) -> int: request = self._sql(f'SELECT COUNT(*) FROM {self._table_name}') return request.fetchone()[0] def __repr__(self): return f'<DocumentArray[SQLite] (length={len(self)}) at {id(self)}>' def __eq__(self, other): """In sqlite backend, data are considered as identical if configs point to the same database source""" return ( type(self) is type(other) and type(self._config) is type(other._config) and self._config == other._config ) def extend(self, docs: Iterable['Document']) -> None: for doc in docs: self.append(doc, commit=False) self._commit()
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders.parsers.html.bs4 import BS4HTMLParser # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BS4HTMLParser": "langchain_community.document_loaders.parsers.html.bs4", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BS4HTMLParser", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders.parsers.html.bs4 import BS4HTMLParser # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BS4HTMLParser": "langchain_community.document_loaders.parsers.html.bs4" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BS4HTMLParser", ]
from __future__ import annotations import logging import torch from torch import Tensor, nn from sentence_transformers.models.Module import Module logger = logging.getLogger(__name__) class WordWeights(Module): """This model can weight word embeddings, for example, with idf-values.""" config_keys: list[str] = ["vocab", "word_weights", "unknown_word_weight"] def __init__(self, vocab: list[str], word_weights: dict[str, float], unknown_word_weight: float = 1): """ Initializes the WordWeights class. Args: vocab (List[str]): Vocabulary of the tokenizer. word_weights (Dict[str, float]): Mapping of tokens to a float weight value. Word embeddings are multiplied by this float value. Tokens in word_weights must not be equal to the vocab (can contain more or less values). unknown_word_weight (float, optional): Weight for words in vocab that do not appear in the word_weights lookup. These can be, for example, rare words in the vocab where no weight exists. Defaults to 1. """ super().__init__() self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 weights.append(weight) logger.info( f"{num_unknown_words} of {len(vocab)} words without a weighting value. Set weight to {unknown_word_weight}" ) self.emb_layer = nn.Embedding(len(vocab), 1) self.emb_layer.load_state_dict({"weight": torch.FloatTensor(weights).unsqueeze(1)}) def forward(self, features: dict[str, Tensor]): attention_mask = features["attention_mask"] token_embeddings = features["token_embeddings"] # Compute a weight value for each token token_weights_raw = self.emb_layer(features["input_ids"]).squeeze(-1) token_weights = token_weights_raw * attention_mask.float() token_weights_sum = torch.sum(token_weights, 1) # Multiply embedding by token weight value token_weights_expanded = token_weights.unsqueeze(-1).expand(token_embeddings.size()) token_embeddings = token_embeddings * token_weights_expanded features.update({"token_embeddings": token_embeddings, "token_weights_sum": token_weights_sum}) return features def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.save_config(output_path)
from __future__ import annotations import json import logging import os import torch from torch import Tensor, nn logger = logging.getLogger(__name__) class WordWeights(nn.Module): """This model can weight word embeddings, for example, with idf-values.""" def __init__(self, vocab: list[str], word_weights: dict[str, float], unknown_word_weight: float = 1): """ Initializes the WordWeights class. Args: vocab (List[str]): Vocabulary of the tokenizer. word_weights (Dict[str, float]): Mapping of tokens to a float weight value. Word embeddings are multiplied by this float value. Tokens in word_weights must not be equal to the vocab (can contain more or less values). unknown_word_weight (float, optional): Weight for words in vocab that do not appear in the word_weights lookup. These can be, for example, rare words in the vocab where no weight exists. Defaults to 1. """ super().__init__() self.config_keys = ["vocab", "word_weights", "unknown_word_weight"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 weights.append(weight) logger.info( f"{num_unknown_words} of {len(vocab)} words without a weighting value. Set weight to {unknown_word_weight}" ) self.emb_layer = nn.Embedding(len(vocab), 1) self.emb_layer.load_state_dict({"weight": torch.FloatTensor(weights).unsqueeze(1)}) def forward(self, features: dict[str, Tensor]): attention_mask = features["attention_mask"] token_embeddings = features["token_embeddings"] # Compute a weight value for each token token_weights_raw = self.emb_layer(features["input_ids"]).squeeze(-1) token_weights = token_weights_raw * attention_mask.float() token_weights_sum = torch.sum(token_weights, 1) # Multiply embedding by token weight value token_weights_expanded = token_weights.unsqueeze(-1).expand(token_embeddings.size()) token_embeddings = token_embeddings * token_weights_expanded features.update({"token_embeddings": token_embeddings, "token_weights_sum": token_weights_sum}) return features def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return WordWeights(**config)
import urllib.request from typing import List from defusedxml.ElementTree import fromstring from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from llama_index.readers.web import AsyncWebPageReader XML_SITEMAP_SCHEMA = "http://www.sitemaps.org/schemas/sitemap/0.9" STRIPE_SITEMAP_URL = "https://stripe.com/sitemap/sitemap.xml" DEFAULT_FILTERS = ["/docs"] class StripeDocsReader(BaseReader): """ Asynchronous Stripe documentation reader. Reads pages from the Stripe documentation based on the sitemap.xml. Args: html_to_text (bool): Whether to convert HTML to text. limit (int): Maximum number of concurrent requests. """ def __init__(self, html_to_text: bool = False, limit: int = 10) -> None: self._async_loader = AsyncWebPageReader(html_to_text=html_to_text, limit=limit) self._html_to_text = html_to_text self._limit = limit def _load_url(self, url: str) -> str: return urllib.request.urlopen(url).read() def _load_sitemap(self) -> str: return self._load_url(STRIPE_SITEMAP_URL) def _parse_sitemap( self, raw_sitemap: str, filters: List[str] = DEFAULT_FILTERS ) -> List: root_sitemap = fromstring(raw_sitemap) sitemap_partition_urls = [] sitemap_urls = [] for sitemap in root_sitemap.findall(f"{{{XML_SITEMAP_SCHEMA}}}sitemap"): loc = sitemap.find(f"{{{XML_SITEMAP_SCHEMA}}}loc").text sitemap_partition_urls.append(loc) for sitemap_partition_url in sitemap_partition_urls: sitemap_partition = fromstring(self._load_url(sitemap_partition_url)) # Find all <url /> and iterate through them for url in sitemap_partition.findall(f"{{{XML_SITEMAP_SCHEMA}}}url"): loc = url.find(f"{{{XML_SITEMAP_SCHEMA}}}loc").text contains_filter = any(filter in loc for filter in filters) if contains_filter: sitemap_urls.append(loc) return sitemap_urls def load_data(self, filters: List[str] = DEFAULT_FILTERS) -> List[Document]: sitemap = self._load_sitemap() sitemap_urls = self._parse_sitemap(sitemap, filters) return self._async_loader.load_data(urls=sitemap_urls)
import urllib.request import xml.etree.ElementTree as ET from typing import List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from llama_index.readers.web import AsyncWebPageReader XML_SITEMAP_SCHEMA = "http://www.sitemaps.org/schemas/sitemap/0.9" STRIPE_SITEMAP_URL = "https://stripe.com/sitemap/sitemap.xml" DEFAULT_FILTERS = ["/docs"] class StripeDocsReader(BaseReader): """Asynchronous Stripe documentation reader. Reads pages from the Stripe documentation based on the sitemap.xml. Args: html_to_text (bool): Whether to convert HTML to text. limit (int): Maximum number of concurrent requests. """ def __init__(self, html_to_text: bool = False, limit: int = 10) -> None: self._async_loader = AsyncWebPageReader(html_to_text=html_to_text, limit=limit) self._html_to_text = html_to_text self._limit = limit def _load_url(self, url: str) -> str: return urllib.request.urlopen(url).read() def _load_sitemap(self) -> str: return self._load_url(STRIPE_SITEMAP_URL) def _parse_sitemap( self, raw_sitemap: str, filters: List[str] = DEFAULT_FILTERS ) -> List: root_sitemap = ET.fromstring(raw_sitemap) sitemap_partition_urls = [] sitemap_urls = [] for sitemap in root_sitemap.findall(f"{{{XML_SITEMAP_SCHEMA}}}sitemap"): loc = sitemap.find(f"{{{XML_SITEMAP_SCHEMA}}}loc").text sitemap_partition_urls.append(loc) for sitemap_partition_url in sitemap_partition_urls: sitemap_partition = ET.fromstring(self._load_url(sitemap_partition_url)) # Find all <url /> and iterate through them for url in sitemap_partition.findall(f"{{{XML_SITEMAP_SCHEMA}}}url"): loc = url.find(f"{{{XML_SITEMAP_SCHEMA}}}loc").text contains_filter = any(filter in loc for filter in filters) if contains_filter: sitemap_urls.append(loc) return sitemap_urls def load_data(self, filters: List[str] = DEFAULT_FILTERS) -> List[Document]: sitemap = self._load_sitemap() sitemap_urls = self._parse_sitemap(sitemap, filters) return self._async_loader.load_data(urls=sitemap_urls)
"""Multion tool spec.""" from llama_index.core.tools.tool_spec.base import BaseToolSpec class MultionToolSpec(BaseToolSpec): """Multion tool spec.""" spec_functions = ["browse"] def __init__(self, api_key: str) -> None: """Initialize with parameters.""" from multion.client import MultiOn self.multion = MultiOn(api_key=api_key) def browse(self, cmd: str): """ Browse the web using Multion Multion gives the ability for LLMs to control web browsers using natural language instructions. You may have to repeat the instruction through multiple steps or update your instruction to get to the final desired state. If the status is 'CONTINUE', reissue the same instruction to continue execution Args: cmd (str): The detailed and specific natural language instructrion for web browsing """ return self.multion.browse(cmd=cmd, local=True)
"""Multion tool spec.""" from llama_index.core.tools.tool_spec.base import BaseToolSpec class MultionToolSpec(BaseToolSpec): """Multion tool spec.""" spec_functions = ["browse"] def __init__(self, api_key: str) -> None: """Initialize with parameters.""" from multion.client import MultiOn self.multion = MultiOn(api_key=api_key) def browse(self, cmd: str): """ Browse the web using Multion Multion gives the ability for LLMs to control web browsers using natural language instructions. You may have to repeat the instruction through multiple steps or update your instruction to get to the final desired state. If the status is 'CONTINUE', reissue the same instruction to continue execution Args: cmd (str): The detailed and specific natural language instructrion for web browsing """ return self.multion.browse(cmd=cmd, local=True)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Literal from sentence_transformers.evaluation import BinaryClassificationEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseBinaryClassificationEvaluator(BinaryClassificationEvaluator): def __init__( self, sentences1: list[str], sentences2: list[str], labels: list[int], name: str = "", batch_size: int = 32, show_progress_bar: bool = False, write_csv: bool = True, truncate_dim: int | None = None, similarity_fn_names: list[Literal["cosine", "dot", "euclidean", "manhattan"]] | None = None, ): return super().__init__( sentences1=sentences1, sentences2=sentences2, labels=labels, name=name, batch_size=batch_size, show_progress_bar=show_progress_bar, write_csv=write_csv, truncate_dim=truncate_dim, similarity_fn_names=similarity_fn_names, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path=output_path, epoch=epoch, steps=steps) def compute_metrices(self, model: SparseEncoder) -> dict[str, dict[str, float]]: return super().compute_metrices(model=model) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> Tensor: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Literal from sentence_transformers.evaluation import BinaryClassificationEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseBinaryClassificationEvaluator(BinaryClassificationEvaluator): def __init__( self, sentences1: list[str], sentences2: list[str], labels: list[int], name: str = "", batch_size: int = 32, show_progress_bar: bool = False, write_csv: bool = True, truncate_dim: int | None = None, similarity_fn_names: list[Literal["cosine", "dot", "euclidean", "manhattan"]] | None = None, ): return super().__init__( sentences1=sentences1, sentences2=sentences2, labels=labels, name=name, batch_size=batch_size, show_progress_bar=show_progress_bar, write_csv=write_csv, truncate_dim=truncate_dim, similarity_fn_names=similarity_fn_names, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path=output_path, epoch=epoch, steps=steps) def compute_metrices(self, model: SparseEncoder) -> dict[str, dict[str, float]]: return super().compute_metrices(model=model) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> Tensor: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.backend.config import backend from keras.src.backend.config import epsilon from keras.src.backend.config import floatx from keras.src.backend.config import image_data_format from keras.src.backend.config import set_epsilon from keras.src.backend.config import set_floatx from keras.src.backend.config import set_image_data_format from keras.src.dtype_policies.dtype_policy import dtype_policy from keras.src.dtype_policies.dtype_policy import set_dtype_policy from keras.src.layers.attention.attention import disable_flash_attention from keras.src.layers.attention.attention import enable_flash_attention from keras.src.layers.attention.attention import is_flash_attention_enabled from keras.src.saving.serialization_lib import enable_unsafe_deserialization from keras.src.utils.backend_utils import set_backend from keras.src.utils.io_utils import disable_interactive_logging from keras.src.utils.io_utils import enable_interactive_logging from keras.src.utils.io_utils import is_interactive_logging_enabled from keras.src.utils.traceback_utils import disable_traceback_filtering from keras.src.utils.traceback_utils import enable_traceback_filtering from keras.src.utils.traceback_utils import is_traceback_filtering_enabled
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.backend.config import backend from keras.src.backend.config import epsilon from keras.src.backend.config import floatx from keras.src.backend.config import image_data_format from keras.src.backend.config import set_epsilon from keras.src.backend.config import set_floatx from keras.src.backend.config import set_image_data_format from keras.src.dtype_policies.dtype_policy import dtype_policy from keras.src.dtype_policies.dtype_policy import set_dtype_policy from keras.src.saving.serialization_lib import enable_unsafe_deserialization from keras.src.utils.backend_utils import set_backend from keras.src.utils.io_utils import disable_interactive_logging from keras.src.utils.io_utils import enable_interactive_logging from keras.src.utils.io_utils import is_interactive_logging_enabled from keras.src.utils.traceback_utils import disable_traceback_filtering from keras.src.utils.traceback_utils import enable_traceback_filtering from keras.src.utils.traceback_utils import is_traceback_filtering_enabled
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import subprocess def is_installed(package: str) -> bool: """Check package whether installed. Args: package (str): Name of package to be checked. """ # When executing `import mmengine.runner`, # pkg_resources will be imported and it takes too much time. # Therefore, import it in function scope to save time. import importlib.util import pkg_resources from pkg_resources import get_distribution # refresh the pkg_resources # more datails at https://github.com/pypa/setuptools/issues/373 importlib.reload(pkg_resources) try: get_distribution(package) return True except pkg_resources.DistributionNotFound: spec = importlib.util.find_spec(package) if spec is None: return False elif spec.origin is not None: return True else: return False def get_installed_path(package: str) -> str: """Get installed path of package. Args: package (str): Name of package. Example: >>> get_installed_path('mmcls') >>> '.../lib/python3.7/site-packages/mmcls' """ import importlib.util from pkg_resources import DistributionNotFound, get_distribution # if the package name is not the same as module name, module name should be # inferred. For example, mmcv-full is the package name, but mmcv is module # name. If we want to get the installed path of mmcv-full, we should concat # the pkg.location and module name try: pkg = get_distribution(package) except DistributionNotFound as e: # if the package is not installed, package path set in PYTHONPATH # can be detected by `find_spec` spec = importlib.util.find_spec(package) if spec is not None: if spec.origin is not None: return osp.dirname(spec.origin) else: # `get_installed_path` cannot get the installed path of # namespace packages raise RuntimeError( f'{package} is a namespace package, which is invalid ' 'for `get_install_path`') else: raise e possible_path = osp.join(pkg.location, package) if osp.exists(possible_path): return possible_path else: return osp.join(pkg.location, package2module(package)) def package2module(package: str): """Infer module name from package. Args: package (str): Package to infer module name. """ from pkg_resources import get_distribution pkg = get_distribution(package) if pkg.has_metadata('top_level.txt'): module_name = pkg.get_metadata('top_level.txt').split('\n')[0] return module_name else: raise ValueError(f'can not infer the module name of {package}') def call_command(cmd: list) -> None: try: subprocess.check_call(cmd) except Exception as e: raise e # type: ignore def install_package(package: str): if not is_installed(package): call_command(['python', '-m', 'pip', 'install', package])
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import subprocess def is_installed(package: str) -> bool: """Check package whether installed. Args: package (str): Name of package to be checked. """ # When executing `import mmengine.runner`, # pkg_resources will be imported and it takes too much time. # Therefore, import it in function scope to save time. import importlib.util import pkg_resources from pkg_resources import get_distribution # refresh the pkg_resources # more datails at https://github.com/pypa/setuptools/issues/373 importlib.reload(pkg_resources) try: get_distribution(package) return True except pkg_resources.DistributionNotFound: return importlib.util.find_spec(package) is not None def get_installed_path(package: str) -> str: """Get installed path of package. Args: package (str): Name of package. Example: >>> get_installed_path('mmcls') >>> '.../lib/python3.7/site-packages/mmcls' """ import importlib.util from pkg_resources import DistributionNotFound, get_distribution # if the package name is not the same as module name, module name should be # inferred. For example, mmcv-full is the package name, but mmcv is module # name. If we want to get the installed path of mmcv-full, we should concat # the pkg.location and module name try: pkg = get_distribution(package) except DistributionNotFound as e: # if the package is not installed, package path set in PYTHONPATH # can be detected by `find_spec` spec = importlib.util.find_spec(package) if spec is not None: if spec.origin is not None: return osp.dirname(spec.origin) # For namespace packages, the origin is None, and the first path # in submodule_search_locations will be returned. # namespace packages: https://packaging.python.org/en/latest/guides/packaging-namespace-packages/ # noqa: E501 elif spec.submodule_search_locations is not None: locations = spec.submodule_search_locations if isinstance(locations, list): return locations[0] else: # `submodule_search_locations` is not subscriptable in # python3.7. There for we use `_path` to get the first # path. return locations._path[0] # type: ignore else: raise e else: raise e possible_path = osp.join(pkg.location, package) if osp.exists(possible_path): return possible_path else: return osp.join(pkg.location, package2module(package)) def package2module(package: str): """Infer module name from package. Args: package (str): Package to infer module name. """ from pkg_resources import get_distribution pkg = get_distribution(package) if pkg.has_metadata('top_level.txt'): module_name = pkg.get_metadata('top_level.txt').split('\n')[0] return module_name else: raise ValueError(f'can not infer the module name of {package}') def call_command(cmd: list) -> None: try: subprocess.check_call(cmd) except Exception as e: raise e # type: ignore def install_package(package: str): if not is_installed(package): call_command(['python', '-m', 'pip', 'install', package])
_base_ = './sparse-rcnn_r50_fpn_ms-480-800-3x_coco.py' num_proposals = 300 model = dict( rpn_head=dict(num_proposals=num_proposals), test_cfg=dict( _delete_=True, rpn=None, rcnn=dict(max_per_img=num_proposals))) # augmentation strategy originates from DETR. train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './sparse-rcnn_r50_fpn_ms-480-800-3x_coco.py' num_proposals = 300 model = dict( rpn_head=dict(num_proposals=num_proposals), test_cfg=dict( _delete_=True, rpn=None, rcnn=dict(max_per_img=num_proposals))) # augmentation strategy originates from DETR. train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_hunyuan_skyreels_image2video"] = ["HunyuanSkyreelsImageToVideoPipeline"] _import_structure["pipeline_hunyuan_video"] = ["HunyuanVideoPipeline"] _import_structure["pipeline_hunyuan_video_image2video"] = ["HunyuanVideoImageToVideoPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_hunyuan_skyreels_image2video import HunyuanSkyreelsImageToVideoPipeline from .pipeline_hunyuan_video import HunyuanVideoPipeline from .pipeline_hunyuan_video_image2video import HunyuanVideoImageToVideoPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_hunyuan_skyreels_image2video"] = ["HunyuanSkyreelsImageToVideoPipeline"] _import_structure["pipeline_hunyuan_video"] = ["HunyuanVideoPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_hunyuan_skyreels_image2video import HunyuanSkyreelsImageToVideoPipeline from .pipeline_hunyuan_video import HunyuanVideoPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
from __future__ import annotations import logging import time from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env from pydantic import model_validator from langchain_community.tools.azure_ai_services.utils import ( detect_file_src_type, download_audio_from_url, ) logger = logging.getLogger(__name__) class AzureAiServicesSpeechToTextTool(BaseTool): """Tool that queries the Azure AI Services Speech to Text API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/ai-services/speech-service/get-started-speech-to-text?pivots=programming-language-python """ azure_ai_services_key: str = "" #: :meta private: azure_ai_services_region: str = "" #: :meta private: speech_language: str = "en-US" #: :meta private: speech_config: Any #: :meta private: name: str = "azure_ai_services_speech_to_text" description: str = ( "A wrapper around Azure AI Services Speech to Text. " "Useful for when you need to transcribe audio to text. " "Input should be a url to an audio file." ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_ai_services_key = get_from_dict_or_env( values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY" ) azure_ai_services_region = get_from_dict_or_env( values, "azure_ai_services_region", "AZURE_AI_SERVICES_REGION" ) try: import azure.cognitiveservices.speech as speechsdk values["speech_config"] = speechsdk.SpeechConfig( subscription=azure_ai_services_key, region=azure_ai_services_region ) except ImportError: raise ImportError( "azure-cognitiveservices-speech is not installed. " "Run `pip install azure-cognitiveservices-speech` to install." ) return values def _continuous_recognize(self, speech_recognizer: Any) -> str: done = False text = "" def stop_cb(evt: Any) -> None: """callback that stop continuous recognition""" speech_recognizer.stop_continuous_recognition_async() nonlocal done done = True def retrieve_cb(evt: Any) -> None: """callback that retrieves the intermediate recognition results""" nonlocal text text += evt.result.text # retrieve text on recognized events speech_recognizer.recognized.connect(retrieve_cb) # stop continuous recognition on either session stopped or canceled events speech_recognizer.session_stopped.connect(stop_cb) speech_recognizer.canceled.connect(stop_cb) # Start continuous speech recognition speech_recognizer.start_continuous_recognition_async() while not done: time.sleep(0.5) return text def _speech_to_text(self, audio_path: str, speech_language: str) -> str: try: import azure.cognitiveservices.speech as speechsdk except ImportError: pass audio_src_type = detect_file_src_type(audio_path) if audio_src_type == "local": audio_config = speechsdk.AudioConfig(filename=audio_path) elif audio_src_type == "remote": tmp_audio_path = download_audio_from_url(audio_path) audio_config = speechsdk.AudioConfig(filename=tmp_audio_path) else: raise ValueError(f"Invalid audio path: {audio_path}") self.speech_config.speech_recognition_language = speech_language speech_recognizer = speechsdk.SpeechRecognizer(self.speech_config, audio_config) return self._continuous_recognize(speech_recognizer) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: text = self._speech_to_text(query, self.speech_language) return text except Exception as e: raise RuntimeError( f"Error while running AzureAiServicesSpeechToTextTool: {e}" )
from __future__ import annotations import logging import time from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env from pydantic import model_validator from langchain_community.tools.azure_ai_services.utils import ( detect_file_src_type, download_audio_from_url, ) logger = logging.getLogger(__name__) class AzureAiServicesSpeechToTextTool(BaseTool): # type: ignore[override] """Tool that queries the Azure AI Services Speech to Text API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/ai-services/speech-service/get-started-speech-to-text?pivots=programming-language-python """ azure_ai_services_key: str = "" #: :meta private: azure_ai_services_region: str = "" #: :meta private: speech_language: str = "en-US" #: :meta private: speech_config: Any #: :meta private: name: str = "azure_ai_services_speech_to_text" description: str = ( "A wrapper around Azure AI Services Speech to Text. " "Useful for when you need to transcribe audio to text. " "Input should be a url to an audio file." ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_ai_services_key = get_from_dict_or_env( values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY" ) azure_ai_services_region = get_from_dict_or_env( values, "azure_ai_services_region", "AZURE_AI_SERVICES_REGION" ) try: import azure.cognitiveservices.speech as speechsdk values["speech_config"] = speechsdk.SpeechConfig( subscription=azure_ai_services_key, region=azure_ai_services_region ) except ImportError: raise ImportError( "azure-cognitiveservices-speech is not installed. " "Run `pip install azure-cognitiveservices-speech` to install." ) return values def _continuous_recognize(self, speech_recognizer: Any) -> str: done = False text = "" def stop_cb(evt: Any) -> None: """callback that stop continuous recognition""" speech_recognizer.stop_continuous_recognition_async() nonlocal done done = True def retrieve_cb(evt: Any) -> None: """callback that retrieves the intermediate recognition results""" nonlocal text text += evt.result.text # retrieve text on recognized events speech_recognizer.recognized.connect(retrieve_cb) # stop continuous recognition on either session stopped or canceled events speech_recognizer.session_stopped.connect(stop_cb) speech_recognizer.canceled.connect(stop_cb) # Start continuous speech recognition speech_recognizer.start_continuous_recognition_async() while not done: time.sleep(0.5) return text def _speech_to_text(self, audio_path: str, speech_language: str) -> str: try: import azure.cognitiveservices.speech as speechsdk except ImportError: pass audio_src_type = detect_file_src_type(audio_path) if audio_src_type == "local": audio_config = speechsdk.AudioConfig(filename=audio_path) elif audio_src_type == "remote": tmp_audio_path = download_audio_from_url(audio_path) audio_config = speechsdk.AudioConfig(filename=tmp_audio_path) else: raise ValueError(f"Invalid audio path: {audio_path}") self.speech_config.speech_recognition_language = speech_language speech_recognizer = speechsdk.SpeechRecognizer(self.speech_config, audio_config) return self._continuous_recognize(speech_recognizer) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: text = self._speech_to_text(query, self.speech_language) return text except Exception as e: raise RuntimeError( f"Error while running AzureAiServicesSpeechToTextTool: {e}" )
from pathlib import Path from typing import List, Tuple, Union import torch import torchaudio from torch.utils.data import Dataset SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]] class WSJ0Mix(Dataset): """Create a Dataset for wsj0-mix. Args: root (str or Path): Path to the directory where the dataset is found. num_speakers (int): The number of speakers, which determines the directories to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect N source audios. sample_rate (int): Expected sample rate of audio files. If any of the audio has a different sample rate, raises ``ValueError``. audio_ext (str, optional): The extension of audio files to find. (default: ".wav") """ def __init__( self, root: Union[str, Path], num_speakers: int, sample_rate: int, audio_ext: str = ".wav", ): self.root = Path(root) self.sample_rate = sample_rate self.mix_dir = (self.root / "mix").resolve() self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)] self.files = [p.name for p in self.mix_dir.glob(f"*{audio_ext}")] self.files.sort() def _load_audio(self, path) -> torch.Tensor: waveform, sample_rate = torchaudio.load(path) if sample_rate != self.sample_rate: raise ValueError( f"The dataset contains audio file of sample rate {sample_rate}, " f"but the requested sample rate is {self.sample_rate}." ) return waveform def _load_sample(self, filename) -> SampleType: mixed = self._load_audio(str(self.mix_dir / filename)) srcs = [] for i, dir_ in enumerate(self.src_dirs): src = self._load_audio(str(dir_ / filename)) if mixed.shape != src.shape: raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}") srcs.append(src) return self.sample_rate, mixed, srcs def __len__(self) -> int: return len(self.files) def __getitem__(self, key: int) -> SampleType: """Load the n-th sample from the dataset. Args: key (int): The index of the sample to be loaded Returns: tuple: ``(sample_rate, mix_waveform, list_of_source_waveforms)`` """ return self._load_sample(self.files[key])
from pathlib import Path from typing import Union, Tuple, List import torch import torchaudio from torch.utils.data import Dataset SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]] class WSJ0Mix(Dataset): """Create a Dataset for wsj0-mix. Args: root (str or Path): Path to the directory where the dataset is found. num_speakers (int): The number of speakers, which determines the directories to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect N source audios. sample_rate (int): Expected sample rate of audio files. If any of the audio has a different sample rate, raises ``ValueError``. audio_ext (str, optional): The extension of audio files to find. (default: ".wav") """ def __init__( self, root: Union[str, Path], num_speakers: int, sample_rate: int, audio_ext: str = ".wav", ): self.root = Path(root) self.sample_rate = sample_rate self.mix_dir = (self.root / "mix").resolve() self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)] self.files = [p.name for p in self.mix_dir.glob(f"*{audio_ext}")] self.files.sort() def _load_audio(self, path) -> torch.Tensor: waveform, sample_rate = torchaudio.load(path) if sample_rate != self.sample_rate: raise ValueError( f"The dataset contains audio file of sample rate {sample_rate}, " f"but the requested sample rate is {self.sample_rate}." ) return waveform def _load_sample(self, filename) -> SampleType: mixed = self._load_audio(str(self.mix_dir / filename)) srcs = [] for i, dir_ in enumerate(self.src_dirs): src = self._load_audio(str(dir_ / filename)) if mixed.shape != src.shape: raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}") srcs.append(src) return self.sample_rate, mixed, srcs def __len__(self) -> int: return len(self.files) def __getitem__(self, key: int) -> SampleType: """Load the n-th sample from the dataset. Args: key (int): The index of the sample to be loaded Returns: tuple: ``(sample_rate, mix_waveform, list_of_source_waveforms)`` """ return self._load_sample(self.files[key])
from docarray.array.documentarray import DocumentArray
from .documentarray import DocumentArray
""" This examples measures the inference speed of a certain model Usage: python evaluation_inference_speed.py OR python evaluation_inference_speed.py model_name """ import sys import time import torch from datasets import load_dataset from sentence_transformers import SentenceTransformer # Limit torch to 4 threads torch.set_num_threads(4) model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-nli-mean-tokens" # Load a sentence transformer model model = SentenceTransformer(model_name) max_sentences = 100_000 all_nli_dataset = load_dataset("sentence-transformers/all-nli", "pair", split="train") sentences = list(set(all_nli_dataset["anchor"]))[:max_sentences] print("Model Name:", model_name) print("Number of sentences:", len(sentences)) for i in range(3): print("Run", i) start_time = time.time() emb = model.encode(sentences, batch_size=32) end_time = time.time() diff_time = end_time - start_time print(f"Done after {diff_time:.2f} seconds") print(f"Speed: {len(sentences) / diff_time:.2f} sentences / second") print("=====")
""" This examples measures the inference speed of a certain model Usage: python evaluation_inference_speed.py OR python evaluation_inference_speed.py model_name """ import sys import time import torch from datasets import load_dataset from sentence_transformers import SentenceTransformer # Limit torch to 4 threads torch.set_num_threads(4) model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-nli-mean-tokens" # Load a sentence transformer model model = SentenceTransformer(model_name) max_sentences = 100_000 all_nli_dataset = load_dataset("sentence-transformers/all-nli", "pair", split="train") sentences = list(set(all_nli_dataset["anchor"]))[:max_sentences] print("Model Name:", model_name) print("Number of sentences:", len(sentences)) for i in range(3): print("Run", i) start_time = time.time() emb = model.encode(sentences, batch_size=32) end_time = time.time() diff_time = end_time - start_time print("Done after {:.2f} seconds".format(diff_time)) print("Speed: {:.2f} sentences / second".format(len(sentences) / diff_time)) print("=====")
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa model = dict( type='MaskRCNN', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[96, 192, 384, 768])) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.) }), optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa model = dict( type='MaskRCNN', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[96, 192, 384, 768])) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.) }), optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05))
_base_ = './faster-rcnn_r50_fpn_1x_coco.py' # MMEngine support the following two ways, users can choose # according to convenience # optim_wrapper = dict(type='AmpOptimWrapper') _base_.optim_wrapper.type = 'AmpOptimWrapper'
_base_ = './faster-rcnn_r50_fpn_1x_coco.py' # fp16 settings fp16 = dict(loss_scale=512.)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from jina import Document, Flow from torch_object_detection_segmenter import TorchObjectDetectionSegmenter def test_exec(): f = Flow().add(uses=TorchObjectDetectionSegmenter) with f: resp = f.post(on='/test', inputs=Document(), return_results=True) assert resp is not None @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from jina import Document, Flow from ...torch_object_detection_segmenter import TorchObjectDetectionSegmenter def test_exec(): f = Flow().add(uses=TorchObjectDetectionSegmenter) with f: resp = f.post(on='/test', inputs=Document(), return_results=True) assert resp is not None @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, )
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from huggingface_hub import VideoClassificationOutputElement, hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( compare_pipeline_output_to_hub_spec, is_pipeline_test, nested_simplify, require_av, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_av class VideoClassificationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING example_video_filepath = None @classmethod def _load_dataset(cls): # Lazy loading of the dataset. Because it is a class method, it will only be loaded once per pytest process. if cls.example_video_filepath is None: cls.example_video_filepath = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) def get_test_pipeline( self, model, tokenizer=None, image_processor=None, feature_extractor=None, processor=None, torch_dtype="float32", ): self._load_dataset() video_classifier = VideoClassificationPipeline( model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor, processor=processor, torch_dtype=torch_dtype, top_k=2, ) examples = [ self.example_video_filepath, # TODO: re-enable this once we have a stable hub solution for CI # "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def run_pipeline_test(self, video_classifier, examples): for example in examples: outputs = video_classifier(example) self.assertEqual( outputs, [ {"score": ANY(float), "label": ANY(str)}, {"score": ANY(float), "label": ANY(str)}, ], ) for element in outputs: compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement) @require_torch def test_small_model_pt(self): small_model = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" small_feature_extractor = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) video_classifier = pipeline( "video-classification", model=small_model, feature_extractor=small_feature_extractor, frame_sampling_rate=4 ) video_file_path = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset") output = video_classifier(video_file_path, top_k=2) self.assertEqual( nested_simplify(output, decimals=4), [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ) for element in output: compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement) outputs = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ], ) for output in outputs: for element in output: compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement)
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from huggingface_hub import VideoClassificationOutputElement, hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( compare_pipeline_output_to_hub_spec, is_pipeline_test, nested_simplify, require_av, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_av class VideoClassificationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING example_video_filepath = None @classmethod def _load_dataset(cls): # Lazy loading of the dataset. Because it is a class method, it will only be loaded once per pytest process. if cls.example_video_filepath is None: cls.example_video_filepath = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) def get_test_pipeline( self, model, tokenizer=None, image_processor=None, feature_extractor=None, processor=None, torch_dtype="float32", ): self._load_dataset() video_classifier = VideoClassificationPipeline( model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor, processor=processor, torch_dtype=torch_dtype, top_k=2, ) examples = [ self.example_video_filepath, # TODO: re-enable this once we have a stable hub solution for CI # "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def run_pipeline_test(self, video_classifier, examples): for example in examples: outputs = video_classifier(example) self.assertEqual( outputs, [ {"score": ANY(float), "label": ANY(str)}, {"score": ANY(float), "label": ANY(str)}, ], ) for element in outputs: compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement) @require_torch def test_small_model_pt(self): small_model = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" small_feature_extractor = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) video_classifier = pipeline( "video-classification", model=small_model, feature_extractor=small_feature_extractor, frame_sampling_rate=4 ) video_file_path = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset") output = video_classifier(video_file_path, top_k=2) self.assertEqual( nested_simplify(output, decimals=4), [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ) for element in output: compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement) outputs = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ], ) for output in outputs: for element in output: compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement) @require_tf @unittest.skip def test_small_model_tf(self): pass
"""Pydantic v1 compatibility shim.""" from langchain_core._api import warn_deprecated try: from pydantic.v1.main import * # noqa: F403 except ImportError: from pydantic.main import * # type: ignore # noqa: F403 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
from langchain_core._api import warn_deprecated try: from pydantic.v1.main import * # noqa: F403 except ImportError: from pydantic.main import * # type: ignore # noqa: F403 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
""" This script contains an example how to perform semantic search with Qdrant. You need Qdrant up and running locally: https://qdrant.tech/documentation/quickstart/ Further, you need the Python Qdrant Client installed: https://python-client.qdrant.tech/, e.g.: ``` pip install qdrant-client ``` This script was created for `qdrant-client` v1.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_qdrant # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True) # Initially, we don't have a qdrant index yet corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_qdrant( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
""" This script contains an example how to perform semantic search with Qdrant. You need Qdrant up and running locally: https://qdrant.tech/documentation/quickstart/ Further, you need the Python Qdrant Client installed: https://python-client.qdrant.tech/, e.g.: ``` pip install qdrant-client ``` This script was created for `qdrant-client` v1.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_qdrant # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 5. Encode the corpus corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True) # Initially, we don't have a qdrant index yet corpus_index = None while True: # 6. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 7. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_qdrant( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=5, output_index=True, ) # 8. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 10. Prompt for more queries queries = [input("Please enter a question: ")]
_base_ = './fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py' model = dict( data_preprocessor=dict( mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False)) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py' model = dict( data_preprocessor=dict( mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
import os import re from dataclasses import fields from pathlib import Path from docarray.document.data import DocumentData with open('../docarray/document/mixins/_property.py', 'w') as fp: fp.write( f'''# auto-generated from {os.path.relpath(__file__, start=Path(__file__).parent.parent.parent)} from typing import TYPE_CHECKING, Dict, List, Optional, Union, Any if TYPE_CHECKING: from docarray.score import NamedScore from docarray.array.match import MatchArray from docarray.array.chunk import ChunkArray from docarray import DocumentArray from docarray.typing import ArrayType, StructValueType, DocumentContentType class _PropertyMixin: ''' ) for f in fields(DocumentData): if f.name.startswith('_'): continue ftype = ( str(f.type) .replace('typing.', '') .replace('datetime.datetime', '\'datetime\'') ) ftype = re.sub(r'Union\[(.*), NoneType]', r'Optional[\g<1>]', ftype) ftype = re.sub(r'ForwardRef\((\'.*\')\)', r'\g<1>', ftype) ftype = re.sub(r'<class \'(.*)\'>', r'\g<1>', ftype) r_ftype = ftype if f.name == 'chunks': r_ftype = 'Optional[\'ChunkArray\']' elif f.name == 'matches': r_ftype = 'Optional[\'MatchArray\']' fp.write( f''' @property def {f.name}(self) -> {r_ftype}: self._data._set_default_value_if_none('{f.name}') return self._data.{f.name} ''' ) ftype = re.sub(r'Optional\[(.*)]', r'\g<1>', ftype) fp.write( f''' @{f.name}.setter def {f.name}(self, value: {ftype}): self._data.{f.name} = value ''' )
import re from dataclasses import fields from docarray.document.data import DocumentData with open('../docarray/document/mixins/_property.py', 'w') as fp: fp.write( f'''# auto-generated from {__file__} from typing import TYPE_CHECKING, Dict, List, Optional if TYPE_CHECKING: from ...score import NamedScore from ...array.match import MatchArray from ...array.chunk import ChunkArray from ... import DocumentArray from ...typing import ArrayType, StructValueType, DocumentContentType class _PropertyMixin: ''' ) for f in fields(DocumentData): if f.name.startswith('_'): continue ftype = ( str(f.type) .replace('typing.Dict', 'Dict') .replace('typing.List', 'List') .replace('datetime.datetime', '\'datetime\'') ) ftype = re.sub(r'typing.Union\[(.*), NoneType]', r'Optional[\g<1>]', ftype) ftype = re.sub(r'ForwardRef\((\'.*\')\)', r'\g<1>', ftype) ftype = re.sub(r'<class \'(.*)\'>', r'\g<1>', ftype) r_ftype = ftype if f.name == 'chunks': r_ftype = 'Optional[\'ChunkArray\']' elif f.name == 'matches': r_ftype = 'Optional[\'MatchArray\']' fp.write( f''' @property def {f.name}(self) -> {r_ftype}: self._data._set_default_value_if_none('{f.name}') return self._data.{f.name} ''' ) ftype = re.sub(r'Optional\[(.*)]', r'\g<1>', ftype) fp.write( f''' @{f.name}.setter def {f.name}(self, value: {ftype}): self._data.{f.name} = value ''' )
_base_ = [ '../common/mstrain-poly_3x_coco_instance.py', '../_base_/models/mask_rcnn_r50_fpn.py' ] model = dict( backbone=dict( _delete_=True, type='RegNet', arch='regnetx_400mf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_400mf')), neck=dict( type='FPN', in_channels=[32, 64, 160, 384], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005), clip_grad=dict(max_norm=35, norm_type=2))
_base_ = [ '../common/mstrain-poly_3x_coco_instance.py', '../_base_/models/mask_rcnn_r50_fpn.py' ] model = dict( backbone=dict( _delete_=True, type='RegNet', arch='regnetx_400mf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_400mf')), neck=dict( type='FPN', in_channels=[32, 64, 160, 384], out_channels=256, num_outs=5)) optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
from ._multi_channel import MVDR, PSD, RTFMVDR, SoudenMVDR from ._transforms import ( AmplitudeToDB, ComputeDeltas, Fade, FrequencyMasking, GriffinLim, InverseMelScale, InverseSpectrogram, LFCC, MelScale, MelSpectrogram, MFCC, MuLawDecoding, MuLawEncoding, PitchShift, Resample, RNNTLoss, SlidingWindowCmn, SpectralCentroid, Spectrogram, TimeMasking, TimeStretch, Vad, Vol, ) __all__ = [ "AmplitudeToDB", "ComputeDeltas", "Fade", "FrequencyMasking", "GriffinLim", "InverseMelScale", "InverseSpectrogram", "LFCC", "MFCC", "MVDR", "MelScale", "MelSpectrogram", "MuLawDecoding", "MuLawEncoding", "PSD", "PitchShift", "RNNTLoss", "RTFMVDR", "Resample", "SlidingWindowCmn", "SoudenMVDR", "SpectralCentroid", "Spectrogram", "TimeMasking", "TimeStretch", "Vad", "Vol", ]
from ._multi_channel import MVDR, PSD, RTFMVDR, SoudenMVDR from ._transforms import ( Spectrogram, InverseSpectrogram, GriffinLim, AmplitudeToDB, MelScale, InverseMelScale, MelSpectrogram, MFCC, LFCC, MuLawEncoding, MuLawDecoding, Resample, TimeStretch, Fade, FrequencyMasking, TimeMasking, SlidingWindowCmn, Vad, SpectralCentroid, Vol, ComputeDeltas, PitchShift, RNNTLoss, ) __all__ = [ "AmplitudeToDB", "ComputeDeltas", "Fade", "FrequencyMasking", "GriffinLim", "InverseMelScale", "InverseSpectrogram", "LFCC", "MFCC", "MVDR", "MelScale", "MelSpectrogram", "MuLawDecoding", "MuLawEncoding", "PSD", "PitchShift", "RNNTLoss", "RTFMVDR", "Resample", "SlidingWindowCmn", "SoudenMVDR", "SpectralCentroid", "Spectrogram", "TimeMasking", "TimeStretch", "Vad", "Vol", ]
# model settings model = dict( type='RetinaNet', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_input', num_outs=5), bbox_head=dict( type='RetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), # model training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), sampler=dict( type='PseudoSampler'), # Focal loss should use PseudoSampler allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100))
# model settings preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( type='RetinaNet', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_input', num_outs=5), bbox_head=dict( type='RetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), # model training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), sampler=dict( type='PseudoSampler'), # Focal loss should use PseudoSampler allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100))
# Copyright (c) OpenMMLab. All rights reserved. import base64 import os import mmcv import numpy as np import torch from ts.torch_handler.base_handler import BaseHandler from mmdet.apis import inference_detector, init_detector class MMdetHandler(BaseHandler): threshold = 0.5 def initialize(self, context): properties = context.system_properties self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' self.device = torch.device(self.map_location + ':' + str(properties.get('gpu_id')) if torch.cuda. is_available() else self.map_location) self.manifest = context.manifest model_dir = properties.get('model_dir') serialized_file = self.manifest['model']['serializedFile'] checkpoint = os.path.join(model_dir, serialized_file) self.config_file = os.path.join(model_dir, 'config.py') self.model = init_detector(self.config_file, checkpoint, self.device) self.initialized = True def preprocess(self, data): images = [] for row in data: image = row.get('data') or row.get('body') if isinstance(image, str): image = base64.b64decode(image) image = mmcv.imfrombytes(image) images.append(image) return images def inference(self, data, *args, **kwargs): results = inference_detector(self.model, data) return results def postprocess(self, data): # Format output following the example ObjectDetectionHandler format output = [] for data_sample in data: pred_instances = data_sample.pred_instances bboxes = pred_instances.bboxes.cpu().numpy().astype( np.float32).tolist() labels = pred_instances.labels.cpu().numpy().astype( np.int32).tolist() scores = pred_instances.scores.cpu().numpy().astype( np.float32).tolist() preds = [] for idx in range(len(labels)): cls_score, bbox, cls_label = scores[idx], bboxes[idx], labels[ idx] if cls_score >= self.threshold: class_name = self.model.dataset_meta['classes'][cls_label] result = dict( class_label=cls_label, class_name=class_name, bbox=bbox, score=cls_score) preds.append(result) output.append(preds) return output
# Copyright (c) OpenMMLab. All rights reserved. import base64 import os import mmcv import numpy as np import torch from ts.torch_handler.base_handler import BaseHandler from mmdet.apis import inference_detector, init_detector from mmdet.utils import register_all_modules register_all_modules(True) class MMdetHandler(BaseHandler): threshold = 0.5 def initialize(self, context): properties = context.system_properties self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' self.device = torch.device(self.map_location + ':' + str(properties.get('gpu_id')) if torch.cuda. is_available() else self.map_location) self.manifest = context.manifest model_dir = properties.get('model_dir') serialized_file = self.manifest['model']['serializedFile'] checkpoint = os.path.join(model_dir, serialized_file) self.config_file = os.path.join(model_dir, 'config.py') self.model = init_detector(self.config_file, checkpoint, self.device) self.initialized = True def preprocess(self, data): images = [] for row in data: image = row.get('data') or row.get('body') if isinstance(image, str): image = base64.b64decode(image) image = mmcv.imfrombytes(image) images.append(image) return images def inference(self, data, *args, **kwargs): results = inference_detector(self.model, data) return results def postprocess(self, data): # Format output following the example ObjectDetectionHandler format output = [] for data_sample in data: pred_instances = data_sample.pred_instances bboxes = pred_instances.bboxes.cpu().numpy().astype( np.float32).tolist() labels = pred_instances.labels.cpu().numpy().astype( np.int32).tolist() scores = pred_instances.scores.cpu().numpy().astype( np.float32).tolist() preds = [] for idx in range(len(labels)): cls_score, bbox, cls_label = scores[idx], bboxes[idx], labels[ idx] if cls_score >= self.threshold: class_name = self.model.dataset_meta['classes'][cls_label] result = dict( class_label=cls_label, class_name=class_name, bbox=bbox, score=cls_score) preds.append(result) output.append(preds) return output
from docarray.typing.tensor.embedding import Embedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import Tensor __all__ = [ 'NdArray', 'Tensor', 'Embedding', 'NdArrayEmbedding', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor'])
from docarray.typing.tensor.embedding import Embedding, NdArrayEmbedding, TorchEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import Tensor from docarray.typing.tensor.torch_tensor import TorchTensor __all__ = [ 'NdArray', 'TorchTensor', 'Tensor', 'Embedding', 'TorchEmbedding', 'NdArrayEmbedding', ]
import os from typing import BinaryIO, Optional, Union import pyarrow as pa import pyarrow.parquet as pq from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class ParquetDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} hash = _PACKAGED_DATASETS_MODULES["parquet"][1] self.builder = Parquet( cache_dir=cache_dir, data_files=path_or_paths, features=features, hash=hash, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None ignore_verifications = False use_auth_token = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, use_auth_token=use_auth_token, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.split, ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset class ParquetDatasetWriter: def __init__( self, dataset: Dataset, path_or_buf: Union[PathLike, BinaryIO], batch_size: Optional[int] = None, **parquet_writer_kwargs, ): self.dataset = dataset self.path_or_buf = path_or_buf self.batch_size = batch_size self.parquet_writer_kwargs = parquet_writer_kwargs def write(self) -> int: batch_size = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf, (str, bytes, os.PathLike)): with open(self.path_or_buf, "wb+") as buffer: written = self._write(file_obj=buffer, batch_size=batch_size, **self.parquet_writer_kwargs) else: written = self._write(file_obj=self.path_or_buf, batch_size=batch_size, **self.parquet_writer_kwargs) return written def _write(self, file_obj: BinaryIO, batch_size: int, **parquet_writer_kwargs) -> int: """Writes the pyarrow table as Parquet to a binary file handle. Caller is responsible for opening and closing the handle. """ written = 0 _ = parquet_writer_kwargs.pop("path_or_buf", None) schema = pa.schema(self.dataset.features.type) writer = pq.ParquetWriter(file_obj, schema=schema, **parquet_writer_kwargs) for offset in range(0, len(self.dataset), batch_size): batch = query_table( table=self.dataset._data, key=slice(offset, offset + batch_size), indices=self.dataset._indices if self.dataset._indices is not None else None, ) writer.write_table(batch) written += batch.nbytes writer.close() return written
import os from typing import BinaryIO, Optional, Union import pyarrow as pa import pyarrow.parquet as pq from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class ParquetDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} hash = _PACKAGED_DATASETS_MODULES["parquet"][1] self.builder = Parquet( cache_dir=cache_dir, data_files=path_or_paths, features=features, hash=hash, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None ignore_verifications = False use_auth_token = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, use_auth_token=use_auth_token, ) dataset = self.builder.as_dataset( split=self.split, ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset class ParquetDatasetWriter: def __init__( self, dataset: Dataset, path_or_buf: Union[PathLike, BinaryIO], batch_size: Optional[int] = None, **parquet_writer_kwargs, ): self.dataset = dataset self.path_or_buf = path_or_buf self.batch_size = batch_size self.parquet_writer_kwargs = parquet_writer_kwargs def write(self) -> int: batch_size = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf, (str, bytes, os.PathLike)): with open(self.path_or_buf, "wb+") as buffer: written = self._write(file_obj=buffer, batch_size=batch_size, **self.parquet_writer_kwargs) else: written = self._write(file_obj=self.path_or_buf, batch_size=batch_size, **self.parquet_writer_kwargs) return written def _write(self, file_obj: BinaryIO, batch_size: int, **parquet_writer_kwargs) -> int: """Writes the pyarrow table as Parquet to a binary file handle. Caller is responsible for opening and closing the handle. """ written = 0 _ = parquet_writer_kwargs.pop("path_or_buf", None) schema = pa.schema(self.dataset.features.type) writer = pq.ParquetWriter(file_obj, schema=schema, **parquet_writer_kwargs) for offset in range(0, len(self.dataset), batch_size): batch = query_table( table=self.dataset._data, key=slice(offset, offset + batch_size), indices=self.dataset._indices if self.dataset._indices is not None else None, ) writer.write_table(batch) written += batch.nbytes writer.close() return written
from typing import Any, Optional, Union, cast from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.output_parsers import BaseLLMOutputParser from langchain_core.output_parsers.openai_functions import ( OutputFunctionsParser, PydanticOutputFunctionsParser, ) from langchain_core.prompts import PromptTemplate from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.utils.pydantic import is_basemodel_subclass from pydantic import BaseModel, Field from langchain.chains.llm import LLMChain from langchain.chains.openai_functions.utils import get_llm_kwargs class AnswerWithSources(BaseModel): """An answer to the question, with sources.""" answer: str = Field(..., description="Answer to the question that was asked") sources: list[str] = Field( ..., description="List of sources used to answer the question" ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with structured responses: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_structure_chain( llm: BaseLanguageModel, schema: Union[dict, type[BaseModel]], output_parser: str = "base", prompt: Optional[Union[PromptTemplate, ChatPromptTemplate]] = None, verbose: bool = False, # noqa: FBT001,FBT002 ) -> LLMChain: """Create a question answering chain that returns an answer with sources based on schema. Args: llm: Language model to use for the chain. schema: Pydantic schema to use for the output. output_parser: Output parser to use. Should be one of `pydantic` or `base`. Default to `base`. prompt: Optional prompt to use for the chain. Returns: """ if output_parser == "pydantic": if not (isinstance(schema, type) and is_basemodel_subclass(schema)): msg = ( "Must provide a pydantic class for schema when output_parser is " "'pydantic'." ) raise ValueError(msg) _output_parser: BaseLLMOutputParser = PydanticOutputFunctionsParser( pydantic_schema=schema ) elif output_parser == "base": _output_parser = OutputFunctionsParser() else: msg = ( f"Got unexpected output_parser: {output_parser}. " f"Should be one of `pydantic` or `base`." ) raise ValueError(msg) if isinstance(schema, type) and is_basemodel_subclass(schema): if hasattr(schema, "model_json_schema"): schema_dict = cast(dict, schema.model_json_schema()) else: schema_dict = cast(dict, schema.schema()) else: schema_dict = cast(dict, schema) function = { "name": schema_dict["title"], "description": schema_dict["description"], "parameters": schema_dict, } llm_kwargs = get_llm_kwargs(function) messages = [ SystemMessage( content=( "You are a world class algorithm to answer " "questions in a specific format." ) ), HumanMessage(content="Answer question using the following context"), HumanMessagePromptTemplate.from_template("{context}"), HumanMessagePromptTemplate.from_template("Question: {question}"), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = prompt or ChatPromptTemplate(messages=messages) # type: ignore[arg-type] return LLMChain( llm=llm, prompt=prompt, llm_kwargs=llm_kwargs, output_parser=_output_parser, verbose=verbose, ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with sources: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_sources_chain( llm: BaseLanguageModel, verbose: bool = False, # noqa: FBT001,FBT002 **kwargs: Any, ) -> LLMChain: """Create a question answering chain that returns an answer with sources. Args: llm: Language model to use for the chain. verbose: Whether to print the details of the chain **kwargs: Keyword arguments to pass to `create_qa_with_structure_chain`. Returns: Chain (LLMChain) that can be used to answer questions with citations. """ return create_qa_with_structure_chain( llm, AnswerWithSources, verbose=verbose, **kwargs )
from typing import Any, Optional, Union, cast from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.output_parsers import BaseLLMOutputParser from langchain_core.output_parsers.openai_functions import ( OutputFunctionsParser, PydanticOutputFunctionsParser, ) from langchain_core.prompts import PromptTemplate from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.utils.pydantic import is_basemodel_subclass from pydantic import BaseModel, Field from langchain.chains.llm import LLMChain from langchain.chains.openai_functions.utils import get_llm_kwargs class AnswerWithSources(BaseModel): """An answer to the question, with sources.""" answer: str = Field(..., description="Answer to the question that was asked") sources: list[str] = Field( ..., description="List of sources used to answer the question" ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with structured responses: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_structure_chain( llm: BaseLanguageModel, schema: Union[dict, type[BaseModel]], output_parser: str = "base", prompt: Optional[Union[PromptTemplate, ChatPromptTemplate]] = None, verbose: bool = False, ) -> LLMChain: """Create a question answering chain that returns an answer with sources based on schema. Args: llm: Language model to use for the chain. schema: Pydantic schema to use for the output. output_parser: Output parser to use. Should be one of `pydantic` or `base`. Default to `base`. prompt: Optional prompt to use for the chain. Returns: """ if output_parser == "pydantic": if not (isinstance(schema, type) and is_basemodel_subclass(schema)): msg = ( "Must provide a pydantic class for schema when output_parser is " "'pydantic'." ) raise ValueError(msg) _output_parser: BaseLLMOutputParser = PydanticOutputFunctionsParser( pydantic_schema=schema ) elif output_parser == "base": _output_parser = OutputFunctionsParser() else: msg = ( f"Got unexpected output_parser: {output_parser}. " f"Should be one of `pydantic` or `base`." ) raise ValueError(msg) if isinstance(schema, type) and is_basemodel_subclass(schema): if hasattr(schema, "model_json_schema"): schema_dict = cast(dict, schema.model_json_schema()) else: schema_dict = cast(dict, schema.schema()) else: schema_dict = cast(dict, schema) function = { "name": schema_dict["title"], "description": schema_dict["description"], "parameters": schema_dict, } llm_kwargs = get_llm_kwargs(function) messages = [ SystemMessage( content=( "You are a world class algorithm to answer " "questions in a specific format." ) ), HumanMessage(content="Answer question using the following context"), HumanMessagePromptTemplate.from_template("{context}"), HumanMessagePromptTemplate.from_template("Question: {question}"), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = prompt or ChatPromptTemplate(messages=messages) # type: ignore[arg-type] return LLMChain( llm=llm, prompt=prompt, llm_kwargs=llm_kwargs, output_parser=_output_parser, verbose=verbose, ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with sources: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_sources_chain( llm: BaseLanguageModel, verbose: bool = False, **kwargs: Any ) -> LLMChain: """Create a question answering chain that returns an answer with sources. Args: llm: Language model to use for the chain. verbose: Whether to print the details of the chain **kwargs: Keyword arguments to pass to `create_qa_with_structure_chain`. Returns: Chain (LLMChain) that can be used to answer questions with citations. """ return create_qa_with_structure_chain( llm, AnswerWithSources, verbose=verbose, **kwargs )
from __future__ import annotations from typing import Any, List, Optional, Tuple, Union import torch from torchvision.transforms import InterpolationMode from ._feature import _Feature, FillTypeJIT class Mask(_Feature): @classmethod def _wrap(cls, tensor: torch.Tensor) -> Mask: return tensor.as_subclass(cls) def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> Mask: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor) @classmethod def wrap_like( cls, other: Mask, tensor: torch.Tensor, ) -> Mask: return cls._wrap(tensor) @property def spatial_size(self) -> Tuple[int, int]: return tuple(self.shape[-2:]) # type: ignore[return-value] def horizontal_flip(self) -> Mask: output = self._F.horizontal_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def vertical_flip(self) -> Mask: output = self._F.vertical_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def resize( # type: ignore[override] self, size: List[int], interpolation: InterpolationMode = InterpolationMode.NEAREST, max_size: Optional[int] = None, antialias: bool = False, ) -> Mask: output = self._F.resize_mask(self.as_subclass(torch.Tensor), size, max_size=max_size) return Mask.wrap_like(self, output) def crop(self, top: int, left: int, height: int, width: int) -> Mask: output = self._F.crop_mask(self.as_subclass(torch.Tensor), top, left, height, width) return Mask.wrap_like(self, output) def center_crop(self, output_size: List[int]) -> Mask: output = self._F.center_crop_mask(self.as_subclass(torch.Tensor), output_size=output_size) return Mask.wrap_like(self, output) def resized_crop( self, top: int, left: int, height: int, width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.NEAREST, antialias: bool = False, ) -> Mask: output = self._F.resized_crop_mask(self.as_subclass(torch.Tensor), top, left, height, width, size=size) return Mask.wrap_like(self, output) def pad( self, padding: Union[int, List[int]], fill: FillTypeJIT = None, padding_mode: str = "constant", ) -> Mask: output = self._F.pad_mask(self.as_subclass(torch.Tensor), padding, padding_mode=padding_mode, fill=fill) return Mask.wrap_like(self, output) def rotate( self, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST, expand: bool = False, fill: FillTypeJIT = None, center: Optional[List[float]] = None, ) -> Mask: output = self._F.rotate_mask(self.as_subclass(torch.Tensor), angle, expand=expand, center=center, fill=fill) return Mask.wrap_like(self, output) def affine( self, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, center: Optional[List[float]] = None, ) -> Mask: output = self._F.affine_mask( self.as_subclass(torch.Tensor), angle, translate=translate, scale=scale, shear=shear, fill=fill, center=center, ) return Mask.wrap_like(self, output) def perspective( self, perspective_coeffs: List[float], interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, ) -> Mask: output = self._F.perspective_mask(self.as_subclass(torch.Tensor), perspective_coeffs, fill=fill) return Mask.wrap_like(self, output) def elastic( self, displacement: torch.Tensor, interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, ) -> Mask: output = self._F.elastic_mask(self.as_subclass(torch.Tensor), displacement, fill=fill) return Mask.wrap_like(self, output)
from __future__ import annotations from typing import Any, cast, List, Optional, Tuple, Union import torch from torchvision.transforms import InterpolationMode from ._feature import _Feature, FillTypeJIT class Mask(_Feature): @classmethod def _wrap(cls, tensor: torch.Tensor) -> Mask: return tensor.as_subclass(cls) def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> Mask: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor) @classmethod def wrap_like( cls, other: Mask, tensor: torch.Tensor, ) -> Mask: return cls._wrap(tensor) @property def spatial_size(self) -> Tuple[int, int]: return cast(Tuple[int, int], tuple(self.shape[-2:])) def horizontal_flip(self) -> Mask: output = self._F.horizontal_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def vertical_flip(self) -> Mask: output = self._F.vertical_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def resize( # type: ignore[override] self, size: List[int], interpolation: InterpolationMode = InterpolationMode.NEAREST, max_size: Optional[int] = None, antialias: bool = False, ) -> Mask: output = self._F.resize_mask(self.as_subclass(torch.Tensor), size, max_size=max_size) return Mask.wrap_like(self, output) def crop(self, top: int, left: int, height: int, width: int) -> Mask: output = self._F.crop_mask(self.as_subclass(torch.Tensor), top, left, height, width) return Mask.wrap_like(self, output) def center_crop(self, output_size: List[int]) -> Mask: output = self._F.center_crop_mask(self.as_subclass(torch.Tensor), output_size=output_size) return Mask.wrap_like(self, output) def resized_crop( self, top: int, left: int, height: int, width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.NEAREST, antialias: bool = False, ) -> Mask: output = self._F.resized_crop_mask(self.as_subclass(torch.Tensor), top, left, height, width, size=size) return Mask.wrap_like(self, output) def pad( self, padding: Union[int, List[int]], fill: FillTypeJIT = None, padding_mode: str = "constant", ) -> Mask: output = self._F.pad_mask(self.as_subclass(torch.Tensor), padding, padding_mode=padding_mode, fill=fill) return Mask.wrap_like(self, output) def rotate( self, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST, expand: bool = False, fill: FillTypeJIT = None, center: Optional[List[float]] = None, ) -> Mask: output = self._F.rotate_mask(self.as_subclass(torch.Tensor), angle, expand=expand, center=center, fill=fill) return Mask.wrap_like(self, output) def affine( self, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, center: Optional[List[float]] = None, ) -> Mask: output = self._F.affine_mask( self.as_subclass(torch.Tensor), angle, translate=translate, scale=scale, shear=shear, fill=fill, center=center, ) return Mask.wrap_like(self, output) def perspective( self, perspective_coeffs: List[float], interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, ) -> Mask: output = self._F.perspective_mask(self.as_subclass(torch.Tensor), perspective_coeffs, fill=fill) return Mask.wrap_like(self, output) def elastic( self, displacement: torch.Tensor, interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, ) -> Mask: output = self._F.elastic_mask(self.as_subclass(torch.Tensor), displacement, fill=fill) return Mask.wrap_like(self, output)
import logging import os from abc import abstractmethod from typing import TYPE_CHECKING, Optional from jina.importer import ImportExtensions from jina.serve.gateway import BaseGateway if TYPE_CHECKING: from fastapi import FastAPI class FastAPIBaseGateway(BaseGateway): """Base FastAPI gateway. Implement this abstract class in-case you want to build a fastapi-based Gateway by implementing the `app` property. This property should return a fastapi app. The base Gateway will handle starting a server and serving the application using that server.""" def __init__( self, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: bool = False, **kwargs ): """Initialize the FastAPIBaseGateway :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.uvicorn_kwargs = uvicorn_kwargs or {} if ssl_keyfile and 'ssl_keyfile' not in self.uvicorn_kwargs.keys(): self.uvicorn_kwargs['ssl_keyfile'] = ssl_keyfile if ssl_certfile and 'ssl_certfile' not in self.uvicorn_kwargs.keys(): self.uvicorn_kwargs['ssl_certfile'] = ssl_certfile if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') @property @abstractmethod def app(self): '''Get a FastAPI app''' ... async def setup_server(self): """ Initialize and return GRPC server """ with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) # app property will generate a new fastapi app each time called app = self.app _install_health_check(app, self.logger) self.server = UviServer( config=Config( app=app, host=self.host, port=self.port, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **self.uvicorn_kwargs, ) ) await self.server.setup() async def shutdown(self): """ Free resources allocated when setting up HTTP server """ self.server.should_exit = True await self.server.shutdown() async def run_server(self): """Run HTTP server forever""" await self.server.serve() def _install_health_check(app: 'FastAPI', logger): health_check_exists = False for route in app.routes: if getattr(route, 'path', None) == '/' and 'GET' in getattr( route, 'methods', None ): health_check_exists = True logger.warning( 'endpoint GET on "/" is used for health checks, make sure it\'s still accessible' ) if not health_check_exists: from jina.serve.runtimes.gateway.http.models import JinaHealthModel @app.get( path='/', summary='Get the health of Jina Gateway service', response_model=JinaHealthModel, ) async def _gateway_health(): """ Get the health of this Gateway service. .. # noqa: DAR201 """ return {}
import logging import os from abc import abstractmethod from typing import TYPE_CHECKING, Optional from jina.importer import ImportExtensions from jina.serve.gateway import BaseGateway if TYPE_CHECKING: from fastapi import FastAPI class FastAPIBaseGateway(BaseGateway): """Base FastAPI gateway. Implement this abstract class in-case you want to build a fastapi-based Gateway by implementing the `app` property. This property should return a fastapi app. The base Gateway will handle starting a server and serving the application using that server.""" def __init__( self, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: bool = False, **kwargs ): """Initialize the FastAPIBaseGateway :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.uvicorn_kwargs = uvicorn_kwargs or {} if ssl_keyfile and 'ssl_keyfile' not in self.uvicorn_kwargs.keys(): self.uvicorn_kwargs['ssl_keyfile'] = ssl_keyfile if ssl_certfile and 'ssl_certfile' not in self.uvicorn_kwargs.keys(): self.uvicorn_kwargs['ssl_certfile'] = ssl_certfile if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') @property @abstractmethod def app(self): '''Get a FastAPI app''' ... async def setup_server(self): """ Initialize and return GRPC server """ with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) # app property will generate a new fastapi app each time called app = self.app _install_health_check(app, self.logger) self.server = UviServer( config=Config( app=app, host=self.host, port=self.port, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **self.uvicorn_kwargs, ) ) await self.server.setup() async def shutdown(self): """ Free resources allocated when setting up HTTP server """ self.server.should_exit = True await self.server.shutdown() async def run_server(self): """Run HTTP server forever""" await self.server.serve() def _install_health_check(app: 'FastAPI', logger): health_check_exists = False for route in app.routes: if getattr(route, 'path', None) == '/' and 'GET' in getattr( route, 'methods', None ): health_check_exists = True logger.warning( 'endpoint GET on "/" is used for health checks, make sure it\'s still accessible' ) if not health_check_exists: @app.get('/') def health_check(): return {}
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean) from .misc import (center_of_mass, flip_tensor, generate_coordinate, mask2ndarray, multi_apply, unmap) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate' ]
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean) from .misc import flip_tensor, mask2ndarray, multi_apply, unmap __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict' ]
from typing import List, _LiteralGenericAlias, get_args, Tuple import kuzu Triple = Tuple[str, str, str] def create_fresh_database(db: str) -> None: """ Create a new Kùzu database by removing existing database directory and its contents. """ import shutil shutil.rmtree(db, ignore_errors=True) def get_list_from_literal(literal: _LiteralGenericAlias) -> List[str]: """ Get a list of strings from a Literal type. Parameters: literal (_LiteralGenericAlias): The Literal type from which to extract the strings. Returns: List[str]: A list of strings extracted from the Literal type. """ if not isinstance(literal, _LiteralGenericAlias): raise TypeError( f"{literal} must be a Literal type.\nTry using typing.Literal{literal}." ) return list(get_args(literal)) def remove_empty_values(input_dict): """ Remove entries with empty values from the dictionary. Parameters: input_dict (dict): The dictionary from which empty values need to be removed. Returns: dict: A new dictionary with all empty values removed. """ # Create a new dictionary excluding empty values and remove the `e.` prefix from the keys return {key.replace("e.", ""): value for key, value in input_dict.items() if value} def get_filtered_props(records: dict, filter_list: List[str]) -> dict: return {k: v for k, v in records.items() if k not in filter_list} # Lookup entry by middle value of tuple def lookup_relation(relation: str, triples: List[Triple]) -> Triple: """ Look up a triple in a list of triples by the middle value. """ for triple in triples: if triple[1] == relation: return triple return None def create_chunk_node_table(connection: kuzu.Connection) -> None: # For now, the additional `properties` dict from LlamaIndex is stored as a string # TODO: See if it makes sense to add better support for property metadata as columns connection.execute( f""" CREATE NODE TABLE IF NOT EXISTS Chunk ( id STRING, text STRING, label STRING, embedding DOUBLE[], creation_date DATE, last_modified_date DATE, file_name STRING, file_path STRING, file_size INT64, file_type STRING, ref_doc_id STRING, PRIMARY KEY(id) ) """ ) def create_entity_node_tables(connection: kuzu.Connection, entities: List[str]) -> None: for tbl_name in entities: # For now, the additional `properties` dict from LlamaIndex is stored as a string # TODO: See if it makes sense to add better support for property metadata as columns connection.execute( f""" CREATE NODE TABLE IF NOT EXISTS {tbl_name} ( id STRING, name STRING, label STRING, embedding DOUBLE[], creation_date DATE, last_modified_date DATE, file_name STRING, file_path STRING, file_size INT64, file_type STRING, triplet_source_id STRING, PRIMARY KEY(id) ) """ ) def create_entity_relationship_table( connection: kuzu.Connection, label: str, src_id: str, dst_id: str ) -> None: connection.execute( f""" CREATE REL TABLE IF NOT EXISTS {label} ( FROM {src_id} TO {dst_id}, label STRING, triplet_source_id STRING ); """ ) def create_relation_tables( connection: kuzu.Connection, entities: List[str], relationship_schema: List[Triple] ) -> None: # Create relationship tables for each entity for src, rel_label, dst in relationship_schema: create_entity_relationship_table(connection, rel_label, src, dst) ddl = "CREATE REL TABLE IF NOT EXISTS MENTIONS (" table_names = [] for entity in entities: table_names.append(f"FROM Chunk TO {entity}") table_names = list(set(table_names)) ddl += ", ".join(table_names) # Add common properties for all the tables here ddl += ", label STRING, triplet_source_id STRING)" if ddl: connection.execute(ddl)
from typing import List, _LiteralGenericAlias, get_args, Tuple import kuzu Triple = Tuple[str, str, str] def create_fresh_database(db: str) -> None: """ Create a new Kùzu database by removing existing database directory and its contents. """ import shutil shutil.rmtree(db, ignore_errors=True) def get_list_from_literal(literal: _LiteralGenericAlias) -> List[str]: """ Get a list of strings from a Literal type. Parameters: literal (_LiteralGenericAlias): The Literal type from which to extract the strings. Returns: List[str]: A list of strings extracted from the Literal type. """ if not isinstance(literal, _LiteralGenericAlias): raise TypeError( f"{literal} must be a Literal type.\nTry using typing.Literal{literal}." ) return list(get_args(literal)) def remove_empty_values(input_dict): """ Remove entries with empty values from the dictionary. Parameters: input_dict (dict): The dictionary from which empty values need to be removed. Returns: dict: A new dictionary with all empty values removed. """ # Create a new dictionary excluding empty values and remove the `e.` prefix from the keys return {key.replace("e.", ""): value for key, value in input_dict.items() if value} def get_filtered_props(records: dict, filter_list: List[str]) -> dict: return {k: v for k, v in records.items() if k not in filter_list} # Lookup entry by middle value of tuple def lookup_relation(relation: str, triples: List[Triple]) -> Triple: """ Look up a triple in a list of triples by the middle value. """ for triple in triples: if triple[1] == relation: return triple return None def create_chunk_node_table(connection: kuzu.Connection) -> None: # For now, the additional `properties` dict from LlamaIndex is stored as a string # TODO: See if it makes sense to add better support for property metadata as columns connection.execute( f""" CREATE NODE TABLE IF NOT EXISTS Chunk ( id STRING, text STRING, label STRING, embedding DOUBLE[], creation_date DATE, last_modified_date DATE, file_name STRING, file_path STRING, file_size INT64, file_type STRING, ref_doc_id STRING, PRIMARY KEY(id) ) """ ) def create_entity_node_tables(connection: kuzu.Connection, entities: List[str]) -> None: for tbl_name in entities: # For now, the additional `properties` dict from LlamaIndex is stored as a string # TODO: See if it makes sense to add better support for property metadata as columns connection.execute( f""" CREATE NODE TABLE IF NOT EXISTS {tbl_name} ( id STRING, name STRING, label STRING, embedding DOUBLE[], creation_date DATE, last_modified_date DATE, file_name STRING, file_path STRING, file_size INT64, file_type STRING, triplet_source_id STRING, PRIMARY KEY(id) ) """ ) def create_entity_relationship_table( connection: kuzu.Connection, label: str, src_id: str, dst_id: str ) -> None: connection.execute( f""" CREATE REL TABLE IF NOT EXISTS {label} ( FROM {src_id} TO {dst_id}, label STRING, triplet_source_id STRING ); """ ) def create_relation_tables( connection: kuzu.Connection, entities: List[str], relationship_schema: List[Triple] ) -> None: # Create relationship tables for each entity for src, rel_label, dst in relationship_schema: create_entity_relationship_table(connection, rel_label, src, dst) ddl = "CREATE REL TABLE GROUP IF NOT EXISTS MENTIONS (" table_names = [] for entity in entities: table_names.append(f"FROM Chunk TO {entity}") table_names = list(set(table_names)) ddl += ", ".join(table_names) # Add common properties for all the tables here ddl += ", label STRING, triplet_source_id STRING)" if ddl: connection.execute(ddl)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Tuple import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import bias_init_with_prob, normal_init from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import OptConfigType, OptMultiConfig from .anchor_head import AnchorHead @MODELS.register_module() class RetinaSepBNHead(AnchorHead): """"RetinaHead with separate BN. In RetinaHead, conv/norm layers are shared across different FPN levels, while in RetinaSepBNHead, conv layers are shared across different FPN levels, but BN layers are separated. """ def __init__(self, num_classes: int, num_ins: int, in_channels: int, stacked_convs: int = 4, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None, **kwargs) -> None: assert init_cfg is None, 'To prevent abnormal initialization ' \ 'behavior, init_cfg is not allowed to be set' self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.num_ins = num_ins super().__init__( num_classes=num_classes, in_channels=in_channels, init_cfg=init_cfg, **kwargs) def _init_layers(self) -> None: """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.num_ins): cls_convs = nn.ModuleList() reg_convs = nn.ModuleList() for j in range(self.stacked_convs): chn = self.in_channels if j == 0 else self.feat_channels cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.cls_convs.append(cls_convs) self.reg_convs.append(reg_convs) for i in range(self.stacked_convs): for j in range(1, self.num_ins): self.cls_convs[j][i].conv = self.cls_convs[0][i].conv self.reg_convs[j][i].conv = self.reg_convs[0][i].conv self.retina_cls = nn.Conv2d( self.feat_channels, self.num_base_priors * self.cls_out_channels, 3, padding=1) self.retina_reg = nn.Conv2d( self.feat_channels, self.num_base_priors * 4, 3, padding=1) def init_weights(self) -> None: """Initialize weights of the head.""" super().init_weights() for m in self.cls_convs[0]: normal_init(m.conv, std=0.01) for m in self.reg_convs[0]: normal_init(m.conv, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.retina_cls, std=0.01, bias=bias_cls) normal_init(self.retina_reg, std=0.01) def forward(self, feats: Tuple[Tensor]) -> tuple: """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of classification scores and bbox prediction - cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes. - bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4. """ cls_scores = [] bbox_preds = [] for i, x in enumerate(feats): cls_feat = feats[i] reg_feat = feats[i] for cls_conv in self.cls_convs[i]: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs[i]: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_pred = self.retina_reg(reg_feat) cls_scores.append(cls_score) bbox_preds.append(bbox_pred) return cls_scores, bbox_preds
# Copyright (c) OpenMMLab. All rights reserved. from typing import Tuple import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model.utils import bias_init_with_prob, normal_init from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import OptConfigType, OptMultiConfig from .anchor_head import AnchorHead @MODELS.register_module() class RetinaSepBNHead(AnchorHead): """"RetinaHead with separate BN. In RetinaHead, conv/norm layers are shared across different FPN levels, while in RetinaSepBNHead, conv layers are shared across different FPN levels, but BN layers are separated. """ def __init__(self, num_classes: int, num_ins: int, in_channels: int, stacked_convs: int = 4, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None, **kwargs) -> None: assert init_cfg is None, 'To prevent abnormal initialization ' \ 'behavior, init_cfg is not allowed to be set' self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.num_ins = num_ins super().__init__( num_classes=num_classes, in_channels=in_channels, init_cfg=init_cfg, **kwargs) def _init_layers(self) -> None: """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.num_ins): cls_convs = nn.ModuleList() reg_convs = nn.ModuleList() for j in range(self.stacked_convs): chn = self.in_channels if j == 0 else self.feat_channels cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.cls_convs.append(cls_convs) self.reg_convs.append(reg_convs) for i in range(self.stacked_convs): for j in range(1, self.num_ins): self.cls_convs[j][i].conv = self.cls_convs[0][i].conv self.reg_convs[j][i].conv = self.reg_convs[0][i].conv self.retina_cls = nn.Conv2d( self.feat_channels, self.num_base_priors * self.cls_out_channels, 3, padding=1) self.retina_reg = nn.Conv2d( self.feat_channels, self.num_base_priors * 4, 3, padding=1) def init_weights(self) -> None: """Initialize weights of the head.""" super().init_weights() for m in self.cls_convs[0]: normal_init(m.conv, std=0.01) for m in self.reg_convs[0]: normal_init(m.conv, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.retina_cls, std=0.01, bias=bias_cls) normal_init(self.retina_reg, std=0.01) def forward(self, feats: Tuple[Tensor]) -> tuple: """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of classification scores and bbox prediction - cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes. - bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4. """ cls_scores = [] bbox_preds = [] for i, x in enumerate(feats): cls_feat = feats[i] reg_feat = feats[i] for cls_conv in self.cls_convs[i]: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs[i]: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_pred = self.retina_reg(reg_feat) cls_scores.append(cls_score) bbox_preds.append(bbox_pred) return cls_scores, bbox_preds
import numpy as np from docarray import BaseDocument from docarray.typing import AnyEmbedding def test_set_embedding(): class MyDocument(BaseDocument): embedding: AnyEmbedding d = MyDocument(embedding=np.zeros((3, 224, 224))) assert isinstance(d.embedding, np.ndarray) assert (d.embedding == np.zeros((3, 224, 224))).all()
import numpy as np from docarray import BaseDocument from docarray.typing import Embedding def test_set_embedding(): class MyDocument(BaseDocument): embedding: Embedding d = MyDocument(embedding=np.zeros((3, 224, 224))) assert isinstance(d.embedding, np.ndarray) assert (d.embedding == np.zeros((3, 224, 224))).all()
"""Test the standard tests on the custom chat model in the docs.""" from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_tests.unit_tests import ChatModelUnitTests from .custom_chat_model import ChatParrotLink class TestChatParrotLinkUnit(ChatModelUnitTests): @property def chat_model_class(self) -> type[ChatParrotLink]: return ChatParrotLink @property def chat_model_params(self) -> dict: return {"model": "bird-brain-001", "temperature": 0, "parrot_buffer_length": 50} class TestChatParrotLinkIntegration(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[ChatParrotLink]: return ChatParrotLink @property def chat_model_params(self) -> dict: return {"model": "bird-brain-001", "temperature": 0, "parrot_buffer_length": 50}
""" Test the standard tests on the custom chat model in the docs """ from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_tests.unit_tests import ChatModelUnitTests from .custom_chat_model import ChatParrotLink class TestChatParrotLinkUnit(ChatModelUnitTests): @property def chat_model_class(self) -> type[ChatParrotLink]: return ChatParrotLink @property def chat_model_params(self) -> dict: return {"model": "bird-brain-001", "temperature": 0, "parrot_buffer_length": 50} class TestChatParrotLinkIntegration(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[ChatParrotLink]: return ChatParrotLink @property def chat_model_params(self) -> dict: return {"model": "bird-brain-001", "temperature": 0, "parrot_buffer_length": 50}
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .memory_profiler_hook import MemoryProfilerHook from .set_epoch_info_hook import SetEpochInfoHook from .sync_norm_hook import SyncNormHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'YOLOXModeSwitchHook', 'SyncNormHook', 'CheckInvalidLossHook', 'SetEpochInfoHook', 'MemoryProfilerHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .ema import ExpMomentumEMAHook, LinearMomentumEMAHook from .memory_profiler_hook import MemoryProfilerHook from .set_epoch_info_hook import SetEpochInfoHook from .sync_norm_hook import SyncNormHook from .sync_random_size_hook import SyncRandomSizeHook from .wandblogger_hook import MMDetWandbHook from .yolox_lrupdater_hook import YOLOXLrUpdaterHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'SyncRandomSizeHook', 'YOLOXModeSwitchHook', 'SyncNormHook', 'ExpMomentumEMAHook', 'LinearMomentumEMAHook', 'YOLOXLrUpdaterHook', 'CheckInvalidLossHook', 'SetEpochInfoHook', 'MemoryProfilerHook', 'MMDetWandbHook' ]
import subprocess import pytest from jina import Document, DocumentArray, Flow from ...tfidf_text_executor import TFIDFTextEncoder _EMBEDDING_DIM = 130107 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=TFIDFTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == ( 1, _EMBEDDING_DIM, ) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
import os from jina import Flow, Document, DocumentArray from ...tfidf_text_executor import TFIDFTextEncoder # is implicitly required cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_flow_generates_embedding(): doc = DocumentArray([Document(text='Han likes eating pizza')]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: responses = f.index(inputs=doc, return_results=True) assert responses[0].docs[0].embedding is not None # input has 4 different words assert responses[0].docs[0].embedding.nnz == 4
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import pytest import torch from diffusers import SanaTransformer2DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class SanaTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = SanaTransformer2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 height = 32 width = 32 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": 1, "in_channels": 4, "out_channels": 4, "num_layers": 1, "attention_head_dim": 4, "num_attention_heads": 2, "num_cross_attention_heads": 2, "cross_attention_head_dim": 4, "cross_attention_dim": 8, "caption_channels": 8, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"SanaTransformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) @pytest.mark.xfail( condition=torch.device(torch_device).type == "cuda", reason="Test currently fails.", strict=True, ) def test_cpu_offload(self): return super().test_cpu_offload() @pytest.mark.xfail( condition=torch.device(torch_device).type == "cuda", reason="Test currently fails.", strict=True, ) def test_disk_offload_with_safetensors(self): return super().test_disk_offload_with_safetensors() @pytest.mark.xfail( condition=torch.device(torch_device).type == "cuda", reason="Test currently fails.", strict=True, ) def test_disk_offload_without_safetensors(self): return super().test_disk_offload_without_safetensors()
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import SanaTransformer2DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class SanaTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = SanaTransformer2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 height = 32 width = 32 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": 1, "in_channels": 4, "out_channels": 4, "num_layers": 1, "attention_head_dim": 4, "num_attention_heads": 2, "num_cross_attention_heads": 2, "cross_attention_head_dim": 4, "cross_attention_dim": 8, "caption_channels": 8, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"SanaTransformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
import random import time import pytest from jina import Client, Document, DocumentArray, Executor, Flow, requests @pytest.mark.parametrize('protocol', ['grpc']) def test_return_order_in_client(protocol): class ExecutorRandomSleepExecutor(Executor): @requests def foo(self, *args, **kwargs): rand_sleep = random.uniform(0.1, 1.3) time.sleep(rand_sleep) f = Flow(protocol=protocol).add(uses=ExecutorRandomSleepExecutor, replicas=2) input_text = [f'ordinal-{i}' for i in range(180)] input_da = DocumentArray([Document(text=t) for t in input_text]) with f: for _ in range(5): result_flow = f.post( '/', inputs=input_da, request_size=10, results_in_order=True ) for input, output in zip(input_da, result_flow): assert input.text == output.text c = Client(port=f.port, protocol=str(f.protocol)) for _ in range(5): result_client = c.post( '/', inputs=input_da, request_size=10, results_in_order=True ) for input, output in zip(input_da, result_client): assert input.text == output.text
from jina import Flow, Executor, requests, Document, DocumentArray, Client import random import time import pytest @pytest.mark.parametrize('protocol', ['grpc']) def test_return_order_in_client(protocol): class ExecutorRandomSleepExecutor(Executor): @requests def foo(self, *args, **kwargs): rand_sleep = random.uniform(0.1, 1.3) time.sleep(rand_sleep) f = Flow(protocol=protocol).add(uses=ExecutorRandomSleepExecutor, replicas=2) input_text = [f'ordinal-{i}' for i in range(180)] input_da = DocumentArray([Document(text=t) for t in input_text]) with f: for _ in range(5): result_flow = f.post('/', inputs=input_da, request_size=10, results_in_order=True) for input, output in zip(input_da, result_flow): assert input.text == output.text c = Client(port=f.port, protocol=str(f.protocol)) for _ in range(5): result_client = c.post('/', inputs=input_da, request_size=10, results_in_order=True) for input, output in zip(input_da, result_client): assert input.text == output.text
import csv import gzip import logging import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 128 epochs = 1 max_seq_length = 75 # Save path to store our model model_save_path = "output/training_stsb_ct-improved-{}-{}".format( model_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) ################# Train sentences ################# # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = "data/wiki1m_for_simcse.txt" if not os.path.exists(wikipedia_dataset_path): util.http_get( "https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt", wikipedia_dataset_path, ) # train_sentences are simply your list of sentences train_sentences = [] with open(wikipedia_dataset_path, "r", encoding="utf8") as fIn: for line in fIn: train_sentences.append(InputExample(texts=[line.strip(), line.strip()])) ################# Download and load STSb ################# data_folder = "data/stsbenchmark" sts_dataset_path = f"{data_folder}/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = DataLoader(train_sentences, batch_size=batch_size, shuffle=True, drop_last=True) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLossInBatchNegatives(model, scale=1, similarity_fct=util.dot_score) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=1, evaluation_steps=1000, warmup_steps=1000, output_path=model_save_path, optimizer_params={"lr": 5e-5}, use_amp=True, # Set to True, if your GPU supports FP16 cores ) ########### Load the model and evaluate on test set model = SentenceTransformer(model_save_path) test_evaluator(model)
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers import SentenceTransformer, LoggingHandler, models, util, InputExample from sentence_transformers import losses import os import gzip import csv from datetime import datetime import logging from torch.utils.data import DataLoader #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 128 epochs = 1 max_seq_length = 75 # Save path to store our model model_save_path = "output/training_stsb_ct-improved-{}-{}".format( model_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) ################# Train sentences ################# # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = "data/wiki1m_for_simcse.txt" if not os.path.exists(wikipedia_dataset_path): util.http_get( "https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt", wikipedia_dataset_path, ) # train_sentences are simply your list of sentences train_sentences = [] with open(wikipedia_dataset_path, "r", encoding="utf8") as fIn: for line in fIn: train_sentences.append(InputExample(texts=[line.strip(), line.strip()])) ################# Download and load STSb ################# data_folder = "data/stsbenchmark" sts_dataset_path = f"{data_folder}/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = DataLoader(train_sentences, batch_size=batch_size, shuffle=True, drop_last=True) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLossInBatchNegatives(model, scale=1, similarity_fct=util.dot_score) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=1, evaluation_steps=1000, warmup_steps=1000, output_path=model_save_path, optimizer_params={"lr": 5e-5}, use_amp=True, # Set to True, if your GPU supports FP16 cores ) ########### Load the model and evaluate on test set model = SentenceTransformer(model_save_path) test_evaluator(model)
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os import platform import warnings import cv2 import torch.multiprocessing as mp from mmengine import DefaultScope def setup_multi_processes(cfg): """Setup multi-processing environment variables.""" # set multi-process start method as `fork` to speed up the training if platform.system() != 'Windows': mp_start_method = cfg.get('mp_start_method', 'fork') current_method = mp.get_start_method(allow_none=True) if current_method is not None and current_method != mp_start_method: warnings.warn( f'Multi-processing start method `{mp_start_method}` is ' f'different from the previous setting `{current_method}`.' f'It will be force set to `{mp_start_method}`. You can change ' f'this behavior by changing `mp_start_method` in your config.') mp.set_start_method(mp_start_method, force=True) # disable opencv multithreading to avoid system being overloaded opencv_num_threads = cfg.get('opencv_num_threads', 0) cv2.setNumThreads(opencv_num_threads) # setup OMP threads # This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa workers_per_gpu = cfg.data.get('workers_per_gpu', 1) if 'train_dataloader' in cfg.data: workers_per_gpu = \ max(cfg.data.train_dataloader.get('workers_per_gpu', 1), workers_per_gpu) if 'OMP_NUM_THREADS' not in os.environ and workers_per_gpu > 1: omp_num_threads = 1 warnings.warn( f'Setting OMP_NUM_THREADS environment variable for each process ' f'to be {omp_num_threads} in default, to avoid your system being ' f'overloaded, please further tune the variable for optimal ' f'performance in your application as needed.') os.environ['OMP_NUM_THREADS'] = str(omp_num_threads) # setup MKL threads if 'MKL_NUM_THREADS' not in os.environ and workers_per_gpu > 1: mkl_num_threads = 1 warnings.warn( f'Setting MKL_NUM_THREADS environment variable for each process ' f'to be {mkl_num_threads} in default, to avoid your system being ' f'overloaded, please further tune the variable for optimal ' f'performance in your application as needed.') os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads) def register_all_modules(init_default_scope: bool = True) -> None: """Register all modules in mmdet into the registries. Args: init_default_scope (bool): Whether initialize the mmdet default scope. When `init_default_scope=True`, the global default scope will be set to `mmdet`, and all registries will build modules from mmdet's registry node. To understand more about the registry, please refer to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md Defaults to True. """ # noqa import mmdet.datasets # noqa: F401,F403 import mmdet.engine # noqa: F401,F403 import mmdet.evaluation # noqa: F401,F403 import mmdet.models # noqa: F401,F403 import mmdet.visualization # noqa: F401,F403 if init_default_scope: never_created = DefaultScope.get_current_instance() is None \ or not DefaultScope.check_instance_created('mmdet') if never_created: DefaultScope.get_instance('mmdet', scope_name='mmdet') return current_scope = DefaultScope.get_current_instance() if current_scope.scope_name != 'mmdet': warnings.warn('The current default scope ' f'"{current_scope.scope_name}" is not "mmdet", ' '`register_all_modules` will force the current' 'default scope to be "mmdet". If this is not ' 'expected, please set `init_default_scope=False`.') # avoid name conflict new_instance_name = f'mmdet-{datetime.datetime.now()}' DefaultScope.get_instance(new_instance_name, scope_name='mmdet')
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os import platform import warnings import cv2 import torch.multiprocessing as mp from mmengine import DefaultScope def setup_multi_processes(cfg): """Setup multi-processing environment variables.""" # set multi-process start method as `fork` to speed up the training if platform.system() != 'Windows': mp_start_method = cfg.get('mp_start_method', 'fork') current_method = mp.get_start_method(allow_none=True) if current_method is not None and current_method != mp_start_method: warnings.warn( f'Multi-processing start method `{mp_start_method}` is ' f'different from the previous setting `{current_method}`.' f'It will be force set to `{mp_start_method}`. You can change ' f'this behavior by changing `mp_start_method` in your config.') mp.set_start_method(mp_start_method, force=True) # disable opencv multithreading to avoid system being overloaded opencv_num_threads = cfg.get('opencv_num_threads', 0) cv2.setNumThreads(opencv_num_threads) # setup OMP threads # This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa workers_per_gpu = cfg.data.get('workers_per_gpu', 1) if 'train_dataloader' in cfg.data: workers_per_gpu = \ max(cfg.data.train_dataloader.get('workers_per_gpu', 1), workers_per_gpu) if 'OMP_NUM_THREADS' not in os.environ and workers_per_gpu > 1: omp_num_threads = 1 warnings.warn( f'Setting OMP_NUM_THREADS environment variable for each process ' f'to be {omp_num_threads} in default, to avoid your system being ' f'overloaded, please further tune the variable for optimal ' f'performance in your application as needed.') os.environ['OMP_NUM_THREADS'] = str(omp_num_threads) # setup MKL threads if 'MKL_NUM_THREADS' not in os.environ and workers_per_gpu > 1: mkl_num_threads = 1 warnings.warn( f'Setting MKL_NUM_THREADS environment variable for each process ' f'to be {mkl_num_threads} in default, to avoid your system being ' f'overloaded, please further tune the variable for optimal ' f'performance in your application as needed.') os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads) def register_all_modules(init_default_scope: bool = True) -> None: """Register all modules in mmdet into the registries. Args: init_default_scope (bool): Whether initialize the mmdet default scope. When `init_default_scope=True`, the global default scope will be set to `mmdet`, and all registries will build modules from mmdet's registry node. To understand more about the registry, please refer to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md Defaults to True. """ # noqa import mmdet.core # noqa: F401,F403 import mmdet.datasets # noqa: F401,F403 import mmdet.metrics # noqa: F401,F403 import mmdet.models # noqa: F401,F403 if init_default_scope: never_created = DefaultScope.get_current_instance() is None \ or not DefaultScope.check_instance_created('mmdet') if never_created: DefaultScope.get_instance('mmdet', scope_name='mmdet') return current_scope = DefaultScope.get_current_instance() if current_scope.scope_name != 'mmdet': warnings.warn('The current default scope ' f'"{current_scope.scope_name}" is not "mmdet", ' '`register_all_modules` will force the current' 'default scope to be "mmdet". If this is not ' 'expected, please set `init_default_scope=False`.') # avoid name conflict new_instance_name = f'mmdet-{datetime.datetime.now()}' DefaultScope.get_instance(new_instance_name, scope_name='mmdet')
""" ================================================ Kernel Density Estimate of Species Distributions ================================================ This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric -- i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <https://matplotlib.org/basemap/>`_ to plot the coast lines and national boundaries of South America. This example does not perform any learning over the data (see :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` for an example of classification based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in geospatial coordinates. The two species are: - `"Bradypus variegatus" <https://www.iucnredlist.org/species/3038/47437046>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- - `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # noqa: E501 # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import fetch_species_distributions from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ["Bradypus Variegatus", "Microryzomys Minutus"] Xtrain = np.vstack([data["train"]["dd lat"], data["train"]["dd long"]]).T ytrain = np.array( [d.decode("ascii").startswith("micro") for d in data["train"]["species"]], dtype="int", ) Xtrain *= np.pi / 180.0 # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180.0 # Plot map of South America with distributions of each species fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity( bandwidth=0.04, metric="haversine", kernel="gaussian", algorithm="ball_tree" ) kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = np.full(land_mask.shape[0], -9999, dtype="int") Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap( projection="cyl", llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution="c", ) m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour( X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid" ) plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show()
""" ================================================ Kernel Density Estimate of Species Distributions ================================================ This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric -- i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <https://matplotlib.org/basemap/>`_ to plot the coast lines and national boundaries of South America. This example does not perform any learning over the data (see :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` for an example of classification based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in geospatial coordinates. The two species are: - `"Bradypus variegatus" <https://www.iucnredlist.org/species/3038/47437046>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # noqa: E501 # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import fetch_species_distributions from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ["Bradypus Variegatus", "Microryzomys Minutus"] Xtrain = np.vstack([data["train"]["dd lat"], data["train"]["dd long"]]).T ytrain = np.array( [d.decode("ascii").startswith("micro") for d in data["train"]["species"]], dtype="int", ) Xtrain *= np.pi / 180.0 # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180.0 # Plot map of South America with distributions of each species fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity( bandwidth=0.04, metric="haversine", kernel="gaussian", algorithm="ball_tree" ) kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = np.full(land_mask.shape[0], -9999, dtype="int") Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap( projection="cyl", llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution="c", ) m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour( X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid" ) plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show()
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .logger import get_root_logger from .misc import find_latest_checkpoint __all__ = [ 'get_root_logger', 'collect_env', 'find_latest_checkpoint', ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .logger import get_root_logger __all__ = ['get_root_logger', 'collect_env']
import re import pytest from llama_index.core.workflow.decorators import step from llama_index.core.workflow.errors import WorkflowValidationError from llama_index.core.workflow.events import Event, StartEvent, StopEvent from llama_index.core.workflow.workflow import Workflow def test_decorated_config(workflow): def f(self, ev: Event) -> Event: return Event() res = step(workflow=workflow.__class__)(f) config = getattr(res, "__step_config") assert config.accepted_events == [Event] assert config.event_name == "ev" assert config.return_types == [Event] def test_decorate_method(): class TestWorkflow(Workflow): @step def f1(self, ev: StartEvent) -> Event: return ev @step def f2(self, ev: Event) -> StopEvent: return StopEvent() wf = TestWorkflow() assert getattr(wf.f1, "__step_config") assert getattr(wf.f2, "__step_config") def test_decorate_wrong_signature(): def f(): pass with pytest.raises(WorkflowValidationError): step()(f) def test_decorate_free_function(): class TestWorkflow(Workflow): pass @step(workflow=TestWorkflow) def f(ev: Event) -> Event: return Event() assert TestWorkflow._step_functions == {"f": f} def test_decorate_free_function_wrong_decorator(): with pytest.raises( WorkflowValidationError, match=re.escape( "To decorate f please pass a workflow class to the @step decorator." ), ): @step def f(ev: Event) -> Event: return Event() def test_decorate_free_function_wrong_num_workers(): class TestWorkflow(Workflow): pass with pytest.raises( WorkflowValidationError, match="num_workers must be an integer greater than 0" ): @step(workflow=TestWorkflow, num_workers=0) def f1(ev: Event) -> Event: return Event() with pytest.raises( WorkflowValidationError, match="num_workers must be an integer greater than 0" ): @step(workflow=TestWorkflow, num_workers=0.5) def f2(ev: Event) -> Event: return Event()
import re import pytest from llama_index.core.workflow.decorators import step from llama_index.core.workflow.errors import WorkflowValidationError from llama_index.core.workflow.events import Event from llama_index.core.workflow.workflow import Workflow def test_decorated_config(workflow): def f(self, ev: Event) -> Event: return Event() res = step(workflow=workflow.__class__)(f) config = getattr(res, "__step_config") assert config.accepted_events == [Event] assert config.event_name == "ev" assert config.return_types == [Event] def test_decorate_method(): class TestWorkflow(Workflow): @step def f1(self, ev: Event) -> Event: return ev @step def f2(self, ev: Event) -> Event: return ev wf = TestWorkflow() assert getattr(wf.f1, "__step_config") assert getattr(wf.f2, "__step_config") def test_decorate_wrong_signature(): def f(): pass with pytest.raises(WorkflowValidationError): step()(f) def test_decorate_free_function(): class TestWorkflow(Workflow): pass @step(workflow=TestWorkflow) def f(ev: Event) -> Event: return Event() assert TestWorkflow._step_functions == {"f": f} def test_decorate_free_function_wrong_decorator(): with pytest.raises( WorkflowValidationError, match=re.escape( "To decorate f please pass a workflow class to the @step decorator." ), ): @step def f(ev: Event) -> Event: return Event() def test_decorate_free_function_wrong_num_workers(): class TestWorkflow(Workflow): pass with pytest.raises( WorkflowValidationError, match="num_workers must be an integer greater than 0" ): @step(workflow=TestWorkflow, num_workers=0) def f1(ev: Event) -> Event: return Event() with pytest.raises( WorkflowValidationError, match="num_workers must be an integer greater than 0" ): @step(workflow=TestWorkflow, num_workers=0.5) def f2(ev: Event) -> Event: return Event()
_base_ = './sparse-rcnn_r50_fpn_ms-480-800-3x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
"""Create Package variants for PyPI distribution.""" import argparse import os from test_utils import PY_PACKAGE IN_PATH = os.path.join(PY_PACKAGE, "pyproject.toml.in") OUT_PATH = os.path.join(PY_PACKAGE, "pyproject.toml") CHOICES = ["default", "cpu", "manylinux2014"] NCCL_WHL = """ \"nvidia-nccl-cu12 ; platform_system == 'Linux' and platform_machine != 'aarch64'\",""" NAME = "{{ name }}" NCCL = "{{ nccl }}" def copyfile(src: str, dst: str) -> None: with open(src, "rb") as fd: content = fd.read() with open(dst, "wb") as fd: fd.write(content) def make_pyproject(variant: str) -> None: assert variant in CHOICES with open(IN_PATH) as fd: pyproject = fd.read() readme_dft = os.path.join(PY_PACKAGE, "README.dft.rst") readme_cpu = os.path.join(PY_PACKAGE, "README.cpu.rst") readme = os.path.join(PY_PACKAGE, "README.rst") if variant == "cpu": pyproject = pyproject.replace(NAME, "xgboost-cpu").replace(NCCL, "") copyfile(readme_cpu, readme) elif variant == "manylinux2014": pyproject = pyproject.replace(NAME, "xgboost").replace(NCCL, "") copyfile(readme_dft, readme) else: pyproject = pyproject.replace(NAME, "xgboost").replace(NCCL, NCCL_WHL) copyfile(readme_dft, readme) pyproject = ( f"# Generated by `{os.path.basename(__file__)}`, don't edit.\n" + pyproject ) with open(OUT_PATH, "w") as fd: fd.write(pyproject) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--variant", type=str, choices=CHOICES, default="default", ) args = parser.parse_args() make_pyproject(args.variant)
"""Create Package variants for PyPI distribution.""" import argparse import os from test_utils import PY_PACKAGE, ROOT IN_PATH = os.path.join(PY_PACKAGE, "pyproject.toml.in") OUT_PATH = os.path.join(PY_PACKAGE, "pyproject.toml") WHL_CPU = """ [tool.hatch.build.targets.wheel] packages = ["xgboost/"] """ CHOICES = ["default", "cpu", "manylinux2014"] def copyfile(src: str, dst: str) -> None: with open(src, "rb") as fd: content = fd.read() with open(dst, "wb") as fd: fd.write(content) def make_pyproject(variant: str) -> None: assert variant in CHOICES with open(IN_PATH) as fd: pyproject = fd.read() readme_dft = os.path.join(PY_PACKAGE, "README.dft.rst") readme_cpu = os.path.join(PY_PACKAGE, "README.cpu.rst") readme = os.path.join(PY_PACKAGE, "README.rst") if variant == "cpu": pyproject = ( pyproject.replace("{{ name }}", "xgboost-cpu") .replace("{{ wheel }}", WHL_CPU) .replace("{{ nccl }}", "") ) copyfile(readme_cpu, readme) elif variant == "manylinux2014": pyproject = ( pyproject.replace("{{ name }}", "xgboost") .replace("{{ wheel }}", "") .replace("{{ nccl }}", "") ) copyfile(readme_dft, readme) else: pyproject = ( pyproject.replace("{{ name }}", "xgboost") .replace("{{ wheel }}", "") .replace( "{{ nccl }}", """ \"nvidia-nccl-cu12 ; platform_system == 'Linux' and platform_machine != 'aarch64'\",""", ) ) copyfile(readme_dft, readme) pyproject = ( f"# Generated by `{os.path.basename(__file__)}`, don't edit.\n" + pyproject ) with open(OUT_PATH, "w") as fd: fd.write(pyproject) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--variant", type=str, choices=CHOICES, default="default", ) args = parser.parse_args() make_pyproject(args.variant)
import json from typing import Any, Dict, List, Optional, Tuple import pytest from jina import Executor, Flow, requests from jina.clients.base.grpc import client_grpc_options from jina.clients.base.helper import HTTPClientlet, WebsocketClientlet from jina.clients.request.helper import _new_data_request from jina.excepts import BadServer from jina.logging.logger import JinaLogger from jina.serve.helper import get_default_grpc_options from jina.types.request.data import DataRequest logger = JinaLogger('clientlet') class ClientTestExecutor(Executor): @requests def error(self, **kwargs): raise NotImplementedError @pytest.fixture def flow_with_exception_request(): return Flow().add(uses=ClientTestExecutor).add() @pytest.mark.asyncio async def test_http_clientlet(): from jina.helper import random_port port = random_port() with Flow(port=port, protocol='http').add(): async with HTTPClientlet( url=f'http://localhost:{port}/post', logger=logger ) as iolet: request = _new_data_request('/', None, {'a': 'b'}) assert request.header.target_executor == '' r = await iolet.send_message(request) response = DataRequest(await r.json()) assert response.header.exec_endpoint == '/' assert response.parameters == {'a': 'b'} @pytest.mark.asyncio async def test_http_clientlet_target(): from jina.helper import random_port port = random_port() with Flow(port=port, protocol='http').add(): async with HTTPClientlet( url=f'http://localhost:{port}/post', logger=logger ) as iolet: request = _new_data_request('/', 'nothing', {'a': 'b'}) assert request.header.target_executor == 'nothing' r = await iolet.send_message(request) response = DataRequest(await r.json()) assert response.header.exec_endpoint == '/' assert response.parameters == {'a': 'b'} @pytest.mark.asyncio async def test_websocket_clientlet(): with pytest.raises(ConnectionError): async with WebsocketClientlet(url='ws://localhost:12345', logger=logger): pass def test_client_behaviour(flow_with_exception_request, mocker): on_done_mock = mocker.Mock() on_always_mock = mocker.Mock() on_error_mock = None with pytest.raises(BadServer): with flow_with_exception_request as f: f.post( '', on_done=on_done_mock, on_error=on_error_mock, on_always=on_always_mock, ) on_always_mock.assert_called_once() on_done_mock.assert_not_called() def _get_grpc_service_config_json( options: List[Tuple[str, Any]] ) -> Optional[Dict[str, Any]]: for tup in options: if tup[0] == 'grpc.service_config': return json.loads(tup[1]) return None @pytest.mark.parametrize('max_attempts', [-1, 1, 2]) @pytest.mark.parametrize('grpc_options', [None, {"grpc.keepalive_time_ms": 9999}]) def test_client_grpc_options(max_attempts, grpc_options): default_options = get_default_grpc_options() backoff_multiplier = 1.5 initial_backoff = 0.5 max_backoff = 5 options = client_grpc_options( backoff_multiplier=backoff_multiplier, initial_backoff=initial_backoff, max_attempts=max_attempts, max_backoff=max_backoff, args_channel_options=grpc_options, ) assert len(options) >= len(default_options) if grpc_options and max_attempts <= 1: assert len(default_options) + 1 == len(options) elif grpc_options and max_attempts > 1: assert len(default_options) + 3 == len(options) elif not grpc_options and max_attempts <= 1: assert len(options) == len(default_options) elif not grpc_options and max_attempts > 1: assert len(default_options) + 2 == len(options) if max_attempts <= 1: assert not _get_grpc_service_config_json(options) else: service_config_json = _get_grpc_service_config_json(options) retry_config = service_config_json['methodConfig'][0] assert retry_config['name'] == [{}] assert retry_config['retryPolicy'] == { 'maxAttempts': max_attempts, 'initialBackoff': f'{initial_backoff}s', 'backoffMultiplier': backoff_multiplier, 'maxBackoff': f'{max_backoff}s', 'retryableStatusCodes': ['UNAVAILABLE', 'DEADLINE_EXCEEDED', 'INTERNAL'], }
import pytest from jina import Executor, Flow, requests from jina.clients.base.helper import HTTPClientlet, WebsocketClientlet from jina.clients.request.helper import _new_data_request from jina.excepts import BadServer from jina.logging.logger import JinaLogger from jina.types.request.data import DataRequest logger = JinaLogger('clientlet') class ClientTestExecutor(Executor): @requests def error(self, **kwargs): raise NotImplementedError @pytest.fixture def flow_with_exception_request(): return Flow().add(uses=ClientTestExecutor).add() @pytest.mark.asyncio async def test_http_clientlet(): from jina.helper import random_port port = random_port() with Flow(port=port, protocol='http').add(): async with HTTPClientlet( url=f'http://localhost:{port}/post', logger=logger ) as iolet: request = _new_data_request('/', None, {'a': 'b'}) assert request.header.target_executor == '' r = await iolet.send_message(request) response = DataRequest(await r.json()) assert response.header.exec_endpoint == '/' assert response.parameters == {'a': 'b'} @pytest.mark.asyncio async def test_http_clientlet_target(): from jina.helper import random_port port = random_port() with Flow(port=port, protocol='http').add(): async with HTTPClientlet( url=f'http://localhost:{port}/post', logger=logger ) as iolet: request = _new_data_request('/', 'nothing', {'a': 'b'}) assert request.header.target_executor == 'nothing' r = await iolet.send_message(request) response = DataRequest(await r.json()) assert response.header.exec_endpoint == '/' assert response.parameters == {'a': 'b'} @pytest.mark.asyncio async def test_websocket_clientlet(): with pytest.raises(ConnectionError): async with WebsocketClientlet(url='ws://localhost:12345', logger=logger): pass def test_client_behaviour(flow_with_exception_request, mocker): on_done_mock = mocker.Mock() on_always_mock = mocker.Mock() on_error_mock = None with pytest.raises(BadServer): with flow_with_exception_request as f: f.post( '', on_done=on_done_mock, on_error=on_error_mock, on_always=on_always_mock, ) on_always_mock.assert_called_once() on_done_mock.assert_not_called()
import pytest from langchain_core.agents import ( AgentActionMessageLog, AgentFinish, ) from langchain_core.exceptions import OutputParserException from langchain_core.messages import AIMessage, SystemMessage from langchain.agents.output_parsers.openai_functions import ( OpenAIFunctionsAgentOutputParser, ) def test_not_an_ai() -> None: parser = OpenAIFunctionsAgentOutputParser() err = f"Expected an AI message got {SystemMessage!s}" with pytest.raises(TypeError, match=err): parser.invoke(SystemMessage(content="x")) # Test: Model response (not a function call). def test_model_response() -> None: parser = OpenAIFunctionsAgentOutputParser() msg = AIMessage(content="Model response.") result = parser.invoke(msg) assert isinstance(result, AgentFinish) assert result.return_values == {"output": "Model response."} assert result.log == "Model response." # Test: Model response with a function call. def test_func_call() -> None: parser = OpenAIFunctionsAgentOutputParser() msg = AIMessage( content="LLM thoughts.", additional_kwargs={ "function_call": {"name": "foo", "arguments": '{"param": 42}'}, }, ) result = parser.invoke(msg) assert isinstance(result, AgentActionMessageLog) assert result.tool == "foo" assert result.tool_input == {"param": 42} assert result.log == ( "\nInvoking: `foo` with `{'param': 42}`\nresponded: LLM thoughts.\n\n" ) assert result.message_log == [msg] # Test: Model response with a function call for a function taking no arguments def test_func_call_no_args() -> None: parser = OpenAIFunctionsAgentOutputParser() msg = AIMessage( content="LLM thoughts.", additional_kwargs={"function_call": {"name": "foo", "arguments": ""}}, ) result = parser.invoke(msg) assert isinstance(result, AgentActionMessageLog) assert result.tool == "foo" assert result.tool_input == {} assert result.log == ("\nInvoking: `foo` with `{}`\nresponded: LLM thoughts.\n\n") assert result.message_log == [msg] # Test: Model response with a function call (old style tools). def test_func_call_oldstyle() -> None: parser = OpenAIFunctionsAgentOutputParser() msg = AIMessage( content="LLM thoughts.", additional_kwargs={ "function_call": {"name": "foo", "arguments": '{"__arg1": "42"}'}, }, ) result = parser.invoke(msg) assert isinstance(result, AgentActionMessageLog) assert result.tool == "foo" assert result.tool_input == "42" assert result.log == "\nInvoking: `foo` with `42`\nresponded: LLM thoughts.\n\n" assert result.message_log == [msg] # Test: Invalid function call args. def test_func_call_invalid() -> None: parser = OpenAIFunctionsAgentOutputParser() msg = AIMessage( content="LLM thoughts.", additional_kwargs={"function_call": {"name": "foo", "arguments": "{42]"}}, ) err = ( "Could not parse tool input: {'name': 'foo', 'arguments': '{42]'} " "because the `arguments` is not valid JSON." ) with pytest.raises(OutputParserException, match=err): parser.invoke(msg)
import pytest from langchain_core.agents import ( AgentActionMessageLog, AgentFinish, ) from langchain_core.exceptions import OutputParserException from langchain_core.messages import AIMessage, SystemMessage from langchain.agents.output_parsers.openai_functions import ( OpenAIFunctionsAgentOutputParser, ) def test_not_an_ai() -> None: parser = OpenAIFunctionsAgentOutputParser() err = f"Expected an AI message got {SystemMessage!s}" with pytest.raises(TypeError, match=err): parser.invoke(SystemMessage(content="x")) # Test: Model response (not a function call). def test_model_response() -> None: parser = OpenAIFunctionsAgentOutputParser() msg = AIMessage(content="Model response.") result = parser.invoke(msg) assert isinstance(result, AgentFinish) assert result.return_values == {"output": "Model response."} assert result.log == "Model response." # Test: Model response with a function call. def test_func_call() -> None: parser = OpenAIFunctionsAgentOutputParser() msg = AIMessage( content="LLM thoughts.", additional_kwargs={ "function_call": {"name": "foo", "arguments": '{"param": 42}'} }, ) result = parser.invoke(msg) assert isinstance(result, AgentActionMessageLog) assert result.tool == "foo" assert result.tool_input == {"param": 42} assert result.log == ( "\nInvoking: `foo` with `{'param': 42}`\nresponded: LLM thoughts.\n\n" ) assert result.message_log == [msg] # Test: Model response with a function call for a function taking no arguments def test_func_call_no_args() -> None: parser = OpenAIFunctionsAgentOutputParser() msg = AIMessage( content="LLM thoughts.", additional_kwargs={"function_call": {"name": "foo", "arguments": ""}}, ) result = parser.invoke(msg) assert isinstance(result, AgentActionMessageLog) assert result.tool == "foo" assert result.tool_input == {} assert result.log == ("\nInvoking: `foo` with `{}`\nresponded: LLM thoughts.\n\n") assert result.message_log == [msg] # Test: Model response with a function call (old style tools). def test_func_call_oldstyle() -> None: parser = OpenAIFunctionsAgentOutputParser() msg = AIMessage( content="LLM thoughts.", additional_kwargs={ "function_call": {"name": "foo", "arguments": '{"__arg1": "42"}'} }, ) result = parser.invoke(msg) assert isinstance(result, AgentActionMessageLog) assert result.tool == "foo" assert result.tool_input == "42" assert result.log == "\nInvoking: `foo` with `42`\nresponded: LLM thoughts.\n\n" assert result.message_log == [msg] # Test: Invalid function call args. def test_func_call_invalid() -> None: parser = OpenAIFunctionsAgentOutputParser() msg = AIMessage( content="LLM thoughts.", additional_kwargs={"function_call": {"name": "foo", "arguments": "{42]"}}, ) err = ( "Could not parse tool input: {'name': 'foo', 'arguments': '{42]'} " "because the `arguments` is not valid JSON." ) with pytest.raises(OutputParserException, match=err): parser.invoke(msg)
"""Module for helper functions for parsing requirements file.""" import os import re from typing import Dict, Tuple, cast, List from pkg_resources import Requirement # Adopted from requirements-parser: # https://github.com/madpah/requirements-parser VCS = [ 'git', 'hg', 'svn', 'bzr', ] VCS_SCHEMES = [ 'git', 'git+https', 'git+ssh', 'git+git', 'hg+http', 'hg+https', 'hg+static-http', 'hg+ssh', 'svn', 'svn+svn', 'svn+http', 'svn+https', 'svn+ssh', 'bzr+http', 'bzr+https', 'bzr+ssh', 'bzr+sftp', 'bzr+ftp', 'bzr+lp', ] URI_REGEX = re.compile( r'^(?P<scheme>https?|file|ftps?)://(?P<path>[^#]+)' r'(#(?P<fragment>\S+))?' ) VCS_SCHEMES_REGEX = r'|'.join([scheme.replace('+', r'\+') for scheme in VCS_SCHEMES]) VCS_REGEX = re.compile( rf'^(?P<scheme>{VCS_SCHEMES_REGEX})://((?P<login>[^/@]+)@)?' r'(?P<path>[^#@]+)(@(?P<revision>[^#]+))?(#(?P<fragment>\S+))?' ) ENV_VAR_RE = re.compile(r"(?P<var>\$\{(?P<name>[A-Z0-9_]+)\})") ENV_VAR_RE_ONLY_MATCH_UPPERCASE_UNDERLINE = re.compile(r"^[A-Z0-9_]+$"); extras_require_search = re.compile(r'(?P<name>.+)\[(?P<extras>[^\]]+)\]') def _parse_fragment(fragment_string: str) -> Dict[str, str]: """Takes a fragment string nd returns a dict of the components :param fragment_string: a fragment string :return: a dict of components """ fragment_string = fragment_string.lstrip('#') try: return dict( cast(Tuple[str, str], tuple(key_value_string.split('='))) for key_value_string in fragment_string.split('&') ) except ValueError: raise ValueError(f'Invalid fragment string {fragment_string}') def parse_requirement(line: str) -> 'Requirement': """Parses a Requirement from a line of a requirement file. :param line: a line of a requirement file :returns: a Requirement instance for the given line """ vcs_match = VCS_REGEX.match(line) uri_match = URI_REGEX.match(line) if vcs_match is not None: groups = vcs_match.groupdict() name = os.path.basename(groups['path']).split('.')[0] egg = None if groups['fragment']: fragment = _parse_fragment(groups['fragment']) egg = fragment.get('egg') line = f'{egg or name} @ {line}' elif uri_match is not None: groups = uri_match.groupdict() name = os.path.basename(groups['path']).split('.')[0] egg = None if groups['fragment']: fragment = _parse_fragment(groups['fragment']) egg = fragment.get('egg') line = f'{egg or name} @ {line}' return Requirement.parse(line) def get_env_variables(line: str) -> List: """ search the environment variable only match uppercase letter and number and the `_` (underscore). :param line: a line of a requirement file :return: a List of components """ env_variables = []; for env_var, var_name in ENV_VAR_RE.findall(line): env_variables.append(var_name) env_variables = list(set(env_variables)); return env_variables def check_env_variable(env_variable: str) -> bool: """ check the environment variables is limited to uppercase letter and number and the `_` (underscore). :param env_variable: env_variable in the requirements.txt file :return: True or False if not satisfied """ return True if ENV_VAR_RE_ONLY_MATCH_UPPERCASE_UNDERLINE.match(env_variable) is not None else False def expand_env_variables(line: str) -> str: """ Replace all environment variables that can be retrieved via `os.getenv`. The only allowed format for environment variables defined in the requirement file is `${MY_VARIABLE_1}` to ensure two things: 1. Strings that contain a `$` aren't accidentally (partially) expanded. 2. Ensure consistency across platforms for requirement files. Valid characters in variable names follow the `POSIX standard <http://pubs.opengroup.org/onlinepubs/9699919799/>`_ and are limited to uppercase letter and number and the `_` (underscore). Replace environment variables in requirement if it's defined. :param line: a line of a requirement file :return: line """ for env_var, var_name in ENV_VAR_RE.findall(line): value = os.getenv(var_name) if not value: raise Exception(f'The given requirements.txt require environment variables `{var_name}` does not exist!') line = line.replace(env_var, value) return line
"""Module for helper functions for parsing requirements file.""" import os import re from typing import Dict, Tuple, cast from pkg_resources import Requirement # Adopted from requirements-parser: # https://github.com/madpah/requirements-parser VCS = [ 'git', 'hg', 'svn', 'bzr', ] VCS_SCHEMES = [ 'git', 'git+https', 'git+ssh', 'git+git', 'hg+http', 'hg+https', 'hg+static-http', 'hg+ssh', 'svn', 'svn+svn', 'svn+http', 'svn+https', 'svn+ssh', 'bzr+http', 'bzr+https', 'bzr+ssh', 'bzr+sftp', 'bzr+ftp', 'bzr+lp', ] URI_REGEX = re.compile( r'^(?P<scheme>https?|file|ftps?)://(?P<path>[^#]+)' r'(#(?P<fragment>\S+))?' ) VCS_SCHEMES_REGEX = r'|'.join([scheme.replace('+', r'\+') for scheme in VCS_SCHEMES]) VCS_REGEX = re.compile( rf'^(?P<scheme>{VCS_SCHEMES_REGEX})://((?P<login>[^/@]+)@)?' r'(?P<path>[^#@]+)(@(?P<revision>[^#]+))?(#(?P<fragment>\S+))?' ) extras_require_search = re.compile(r'(?P<name>.+)\[(?P<extras>[^\]]+)\]') def _parse_fragment(fragment_string: str) -> Dict[str, str]: """Takes a fragment string nd returns a dict of the components :param fragment_string: a fragment string :return: a dict of components """ fragment_string = fragment_string.lstrip('#') try: return dict( cast(Tuple[str, str], tuple(key_value_string.split('='))) for key_value_string in fragment_string.split('&') ) except ValueError: raise ValueError(f'Invalid fragment string {fragment_string}') def parse_requirement(line: str) -> 'Requirement': """Parses a Requirement from a line of a requirement file. :param line: a line of a requirement file :returns: a Requirement instance for the given line """ vcs_match = VCS_REGEX.match(line) uri_match = URI_REGEX.match(line) if vcs_match is not None: groups = vcs_match.groupdict() name = os.path.basename(groups['path']).split('.')[0] egg = None if groups['fragment']: fragment = _parse_fragment(groups['fragment']) egg = fragment.get('egg') line = f'{egg or name} @ {line}' elif uri_match is not None: groups = uri_match.groupdict() name = os.path.basename(groups['path']).split('.')[0] egg = None if groups['fragment']: fragment = _parse_fragment(groups['fragment']) egg = fragment.get('egg') line = f'{egg or name} @ {line}' return Requirement.parse(line)
""" This file contains deprecated code that can only be used with the old `model.fit`-style Sentence Transformers v2.X training. It exists for backwards compatibility with the `model.old_fit` method, but will be removed in a future version. Nowadays, with Sentence Transformers v3+, it is recommended to use the `SentenceTransformerTrainer` class to train models. See https://www.sbert.net/docs/sentence_transformer/training_overview.html for more information. Instead, you should create a `datasets` `Dataset` for training: https://huggingface.co/docs/datasets/create_dataset """ from __future__ import annotations class InputExample: """Structure for one input example with texts, the label and a unique id""" def __init__(self, guid: str = "", texts: list[str] = None, label: int | float = 0): """ Creates one InputExample with the given texts, guid and label Args: guid: id for the example texts: the texts for the example. label: the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))
from __future__ import annotations class InputExample: """Structure for one input example with texts, the label and a unique id""" def __init__(self, guid: str = "", texts: list[str] = None, label: int | float = 0): """ Creates one InputExample with the given texts, guid and label Args: guid: id for the example texts: the texts for the example. label: the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', # 270k iterations with batch_size 64 is roughly equivalent to 144 epochs '../common/ssj_scp_270k_coco_instance.py' ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( backbone=dict(frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', # 270k iterations with batch_size 64 is roughly equivalent to 144 epochs '../common/ssj_scp_270k_coco_instance.py' ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # the model is trained from scratch, so init_cfg is None backbone=dict(frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
from typing import overload, Dict, Optional, List, TYPE_CHECKING, Sequence, Any from .data import DocumentData from .mixins import AllMixins from ..base import BaseDCType from ..math.ndarray import detach_tensor_if_present if TYPE_CHECKING: from ..typing import ArrayType, StructValueType, DocumentContentType class Document(AllMixins, BaseDCType): """Document is the basic data type in DocArray. A Document is a container for any kind of data, be it text, image, audio, video, or 3D meshes. You can initialize a Document object with given attributes: .. code-block:: python from docarray import Document import numpy d1 = Document(text='hello') d3 = Document(tensor=numpy.array([1, 2, 3])) d4 = Document( uri='https://jina.ai', mime_type='text/plain', granularity=1, adjacency=3, tags={'foo': 'bar'}, ) Documents support a :ref:`nested structure <recursive-nested-document>`, which can also be specified during construction: .. code-block:: python d = Document( id='d0', chunks=[Document(id='d1', chunks=Document(id='d2'))], matches=[Document(id='d3')], ) A Document can embed its contents using the :meth:`embed` method and a provided embedding model: .. code-block:: python import torchvision q = ( Document(uri='/Users/usr/path/to/image.jpg') .load_uri_to_image_tensor() .set_image_tensor_normalization() .set_image_tensor_channel_axis(-1, 0) ) model = torchvision.models.resnet50(pretrained=True) q.embed(model) Multiple Documents can be organized into a :class:`~docarray.array.document.DocumentArray`. .. seealso:: For further details, see our :ref:`user guide <document>`. """ _data_class = DocumentData _unresolved_fields_dest = 'tags' _post_init_fields = ( 'text', 'blob', 'tensor', 'content', 'uri', 'mime_type', 'chunks', 'matches', ) @overload def __init__(self): """Create an empty Document.""" ... @overload def __init__(self, _obj: Optional['Document'] = None, copy: bool = False): ... @overload def __init__(self, _obj: Optional[Any] = None): """Create a Document from a `docarray.dataclass` instance""" ... @overload def __init__( self, _obj: Optional[Dict], copy: bool = False, field_resolver: Optional[Dict[str, str]] = None, unknown_fields_handler: str = 'catch', ): ... @overload def __init__(self, blob: Optional[bytes] = None, **kwargs): """Create a Document with binary content.""" ... @overload def __init__(self, tensor: Optional['ArrayType'] = None, **kwargs): """Create a Document with NdArray-like content.""" ... @overload def __init__(self, text: Optional[str] = None, **kwargs): """Create a Document with string content.""" ... @overload def __init__(self, uri: Optional[str] = None, **kwargs): """Create a Document with content from a URI.""" ... @overload def __init__( self, parent_id: Optional[str] = None, granularity: Optional[int] = None, adjacency: Optional[int] = None, blob: Optional[bytes] = None, tensor: Optional['ArrayType'] = None, mime_type: Optional[str] = None, text: Optional[str] = None, content: Optional['DocumentContentType'] = None, weight: Optional[float] = None, uri: Optional[str] = None, tags: Optional[Dict[str, 'StructValueType']] = None, offset: Optional[float] = None, location: Optional[List[float]] = None, embedding: Optional['ArrayType'] = None, modality: Optional[str] = None, evaluations: Optional[Dict[str, Dict[str, 'StructValueType']]] = None, scores: Optional[Dict[str, Dict[str, 'StructValueType']]] = None, chunks: Optional[Sequence['Document']] = None, matches: Optional[Sequence['Document']] = None, ): ... def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __getstate__(self): state = self.__dict__.copy() for attribute in ['embedding', 'tensor']: if hasattr(self, attribute): setattr( state['_data'], attribute, detach_tensor_if_present(getattr(state['_data'], attribute)), ) return state
from typing import overload, Dict, Optional, List, TYPE_CHECKING, Sequence, Any from .data import DocumentData from .mixins import AllMixins from ..base import BaseDCType from ..math.ndarray import detach_tensor_if_present if TYPE_CHECKING: from ..typing import ArrayType, StructValueType, DocumentContentType class Document(AllMixins, BaseDCType): _data_class = DocumentData _unresolved_fields_dest = 'tags' _post_init_fields = ( 'text', 'blob', 'tensor', 'content', 'uri', 'mime_type', 'chunks', 'matches', ) @overload def __init__(self): """Create an empty Document.""" ... @overload def __init__(self, _obj: Optional['Document'] = None, copy: bool = False): ... @overload def __init__(self, _obj: Optional[Any] = None): """Create a Document from a `docarray.dataclass` instance""" ... @overload def __init__( self, _obj: Optional[Dict], copy: bool = False, field_resolver: Optional[Dict[str, str]] = None, unknown_fields_handler: str = 'catch', ): ... @overload def __init__(self, blob: Optional[bytes] = None, **kwargs): """Create a Document with binary content.""" ... @overload def __init__(self, tensor: Optional['ArrayType'] = None, **kwargs): """Create a Document with NdArray-like content.""" ... @overload def __init__(self, text: Optional[str] = None, **kwargs): """Create a Document with string content.""" ... @overload def __init__(self, uri: Optional[str] = None, **kwargs): """Create a Document with content from a URI.""" ... @overload def __init__( self, parent_id: Optional[str] = None, granularity: Optional[int] = None, adjacency: Optional[int] = None, blob: Optional[bytes] = None, tensor: Optional['ArrayType'] = None, mime_type: Optional[str] = None, text: Optional[str] = None, content: Optional['DocumentContentType'] = None, weight: Optional[float] = None, uri: Optional[str] = None, tags: Optional[Dict[str, 'StructValueType']] = None, offset: Optional[float] = None, location: Optional[List[float]] = None, embedding: Optional['ArrayType'] = None, modality: Optional[str] = None, evaluations: Optional[Dict[str, Dict[str, 'StructValueType']]] = None, scores: Optional[Dict[str, Dict[str, 'StructValueType']]] = None, chunks: Optional[Sequence['Document']] = None, matches: Optional[Sequence['Document']] = None, ): ... def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __getstate__(self): state = self.__dict__.copy() for attribute in ['embedding', 'tensor']: if hasattr(self, attribute): setattr( state['_data'], attribute, detach_tensor_if_present(getattr(state['_data'], attribute)), ) return state
from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever, RetrieverLike from pydantic import ConfigDict from langchain.retrievers.document_compressors.base import ( BaseDocumentCompressor, ) class ContextualCompressionRetriever(BaseRetriever): """Retriever that wraps a base retriever and compresses the results.""" base_compressor: BaseDocumentCompressor """Compressor for compressing retrieved documents.""" base_retriever: RetrieverLike """Base Retriever to use for getting relevant documents.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> list[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: Sequence of relevant documents """ docs = self.base_retriever.invoke( query, config={"callbacks": run_manager.get_child()}, **kwargs ) if docs: compressed_docs = self.base_compressor.compress_documents( docs, query, callbacks=run_manager.get_child() ) return list(compressed_docs) else: return [] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, **kwargs: Any, ) -> list[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: List of relevant documents """ docs = await self.base_retriever.ainvoke( query, config={"callbacks": run_manager.get_child()}, **kwargs ) if docs: compressed_docs = await self.base_compressor.acompress_documents( docs, query, callbacks=run_manager.get_child() ) return list(compressed_docs) else: return []
from typing import Any, List from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever, RetrieverLike from pydantic import ConfigDict from langchain.retrievers.document_compressors.base import ( BaseDocumentCompressor, ) class ContextualCompressionRetriever(BaseRetriever): """Retriever that wraps a base retriever and compresses the results.""" base_compressor: BaseDocumentCompressor """Compressor for compressing retrieved documents.""" base_retriever: RetrieverLike """Base Retriever to use for getting relevant documents.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: Sequence of relevant documents """ docs = self.base_retriever.invoke( query, config={"callbacks": run_manager.get_child()}, **kwargs ) if docs: compressed_docs = self.base_compressor.compress_documents( docs, query, callbacks=run_manager.get_child() ) return list(compressed_docs) else: return [] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: List of relevant documents """ docs = await self.base_retriever.ainvoke( query, config={"callbacks": run_manager.get_child()}, **kwargs ) if docs: compressed_docs = await self.base_compressor.acompress_documents( docs, query, callbacks=run_manager.get_child() ) return list(compressed_docs) else: return []
"""Test BigdlLLM""" import os import pytest from langchain_core.outputs import LLMResult from langchain_community.llms.bigdl_llm import BigdlLLM model_ids_to_test = os.getenv("TEST_BIGDLLLM_MODEL_IDS") or "" skip_if_no_model_ids = pytest.mark.skipif( not model_ids_to_test, reason="TEST_BIGDLLLM_MODEL_IDS environment variable not set.", ) model_ids_to_test = [model_id.strip() for model_id in model_ids_to_test.split(",")] # type: ignore[assignment] @skip_if_no_model_ids @pytest.mark.parametrize( "model_id", model_ids_to_test, ) def test_call(model_id: str) -> None: """Test valid call to bigdl-llm.""" llm = BigdlLLM.from_model_id( model_id=model_id, model_kwargs={"temperature": 0, "max_length": 16, "trust_remote_code": True}, ) output = llm.invoke("Hello!") assert isinstance(output, str) @skip_if_no_model_ids @pytest.mark.parametrize( "model_id", model_ids_to_test, ) def test_generate(model_id: str) -> None: """Test valid call to bigdl-llm.""" llm = BigdlLLM.from_model_id( model_id=model_id, model_kwargs={"temperature": 0, "max_length": 16, "trust_remote_code": True}, ) output = llm.generate(["Hello!"]) assert isinstance(output, LLMResult) assert isinstance(output.generations, list)
"""Test BigdlLLM""" import os import pytest from langchain_core.outputs import LLMResult from langchain_community.llms.bigdl_llm import BigdlLLM model_ids_to_test = os.getenv("TEST_BIGDLLLM_MODEL_IDS") or "" skip_if_no_model_ids = pytest.mark.skipif( not model_ids_to_test, reason="TEST_BIGDLLLM_MODEL_IDS environment variable not set.", ) model_ids_to_test = [model_id.strip() for model_id in model_ids_to_test.split(",")] # type: ignore @skip_if_no_model_ids @pytest.mark.parametrize( "model_id", model_ids_to_test, ) def test_call(model_id: str) -> None: """Test valid call to bigdl-llm.""" llm = BigdlLLM.from_model_id( model_id=model_id, model_kwargs={"temperature": 0, "max_length": 16, "trust_remote_code": True}, ) output = llm.invoke("Hello!") assert isinstance(output, str) @skip_if_no_model_ids @pytest.mark.parametrize( "model_id", model_ids_to_test, ) def test_generate(model_id: str) -> None: """Test valid call to bigdl-llm.""" llm = BigdlLLM.from_model_id( model_id=model_id, model_kwargs={"temperature": 0, "max_length": 16, "trust_remote_code": True}, ) output = llm.generate(["Hello!"]) assert isinstance(output, LLMResult) assert isinstance(output.generations, list)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch.nn as nn from mmengine.model import BaseModule from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import MultiConfig @MODELS.register_module() class FeatureRelayHead(BaseModule): """Feature Relay Head used in `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: in_channels (int): number of input channels. Defaults to 256. conv_out_channels (int): number of output channels before classification layer. Defaults to 256. roi_feat_size (int): roi feat size at box head. Default: 7. scale_factor (int): scale factor to match roi feat size at mask head. Defaults to 2. init_cfg (:obj:`ConfigDict` or dict or list[dict] or list[:obj:`ConfigDict`]): Initialization config dict. Defaults to dict(type='Kaiming', layer='Linear'). """ def __init__( self, in_channels: int = 1024, out_conv_channels: int = 256, roi_feat_size: int = 7, scale_factor: int = 2, init_cfg: MultiConfig = dict(type='Kaiming', layer='Linear') ) -> None: super().__init__(init_cfg=init_cfg) assert isinstance(roi_feat_size, int) self.in_channels = in_channels self.out_conv_channels = out_conv_channels self.roi_feat_size = roi_feat_size self.out_channels = (roi_feat_size**2) * out_conv_channels self.scale_factor = scale_factor self.fp16_enabled = False self.fc = nn.Linear(self.in_channels, self.out_channels) self.upsample = nn.Upsample( scale_factor=scale_factor, mode='bilinear', align_corners=True) def forward(self, x: Tensor) -> Optional[Tensor]: """Forward function. Args: x (Tensor): Input feature. Returns: Optional[Tensor]: Output feature. When the first dim of input is 0, None is returned. """ N, _ = x.shape if N > 0: out_C = self.out_conv_channels out_HW = self.roi_feat_size x = self.fc(x) x = x.reshape(N, out_C, out_HW, out_HW) x = self.upsample(x) return x return None
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch.nn as nn from mmengine.model import BaseModule from torch import Tensor from mmdet.core.utils.typing import MultiConfig from mmdet.registry import MODELS @MODELS.register_module() class FeatureRelayHead(BaseModule): """Feature Relay Head used in `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: in_channels (int): number of input channels. Defaults to 256. conv_out_channels (int): number of output channels before classification layer. Defaults to 256. roi_feat_size (int): roi feat size at box head. Default: 7. scale_factor (int): scale factor to match roi feat size at mask head. Defaults to 2. init_cfg (:obj:`ConfigDict` or dict or list[dict] or list[:obj:`ConfigDict`]): Initialization config dict. Defaults to dict(type='Kaiming', layer='Linear'). """ def __init__( self, in_channels: int = 1024, out_conv_channels: int = 256, roi_feat_size: int = 7, scale_factor: int = 2, init_cfg: MultiConfig = dict(type='Kaiming', layer='Linear') ) -> None: super().__init__(init_cfg=init_cfg) assert isinstance(roi_feat_size, int) self.in_channels = in_channels self.out_conv_channels = out_conv_channels self.roi_feat_size = roi_feat_size self.out_channels = (roi_feat_size**2) * out_conv_channels self.scale_factor = scale_factor self.fp16_enabled = False self.fc = nn.Linear(self.in_channels, self.out_channels) self.upsample = nn.Upsample( scale_factor=scale_factor, mode='bilinear', align_corners=True) def forward(self, x: Tensor) -> Optional[Tensor]: """Forward function. Args: x (Tensor): Input feature. Returns: Optional[Tensor]: Output feature. When the first dim of input is 0, None is returned. """ N, _ = x.shape if N > 0: out_C = self.out_conv_channels out_HW = self.roi_feat_size x = self.fc(x) x = x.reshape(N, out_C, out_HW, out_HW) x = self.upsample(x) return x return None
from .objective import squim_objective_base, squim_objective_model, SquimObjective __all__ = [ "squim_objective_base", "squim_objective_model", "SquimObjective", ]
from .objective import SQUIM_OBJECTIVE, squim_objective_base, squim_objective_model __all__ = [ "squim_objective_base", "squim_objective_model", "SQUIM_OBJECTIVE", ]
import numpy as np import torch from docarray import Document from docarray.document import AnyDocument from docarray.typing import AnyUrl, Embedding, ImageUrl, Tensor, TorchTensor def test_proto_all_types(): class Mymmdoc(Document): tensor: Tensor torch_tensor: TorchTensor embedding: Embedding any_url: AnyUrl image_url: ImageUrl doc = Mymmdoc( tensor=np.zeros((3, 224, 224)), torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((100, 1)), any_url='http://jina.ai', image_url='http://jina.ai', ) new_doc = AnyDocument.from_protobuf(doc.to_protobuf()) for field, value in new_doc: assert isinstance(value, doc._get_nested_document_class(field))
import numpy as np from docarray import Document from docarray.document import AnyDocument from docarray.typing import AnyUrl, Embedding, ImageUrl, Tensor def test_proto_all_types(): class Mymmdoc(Document): tensor: Tensor embedding: Embedding any_url: AnyUrl image_url: ImageUrl doc = Mymmdoc( tensor=np.zeros((3, 224, 224)), embedding=np.zeros((100, 1)), any_url='http://jina.ai', image_url='http://jina.ai', ) new_doc = AnyDocument.from_protobuf(doc.to_protobuf()) for field, value in new_doc: assert isinstance(value, doc._get_nested_document_class(field))
import logging import traceback from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder, CrossEncoderModelCardData from sentence_transformers.cross_encoder.evaluation import CrossEncoderNanoBEIREvaluator from sentence_transformers.cross_encoder.losses import CachedMultipleNegativesRankingLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model_name = "microsoft/MiniLM-L12-H384-uncased" train_batch_size = 64 num_epochs = 1 num_rand_negatives = 5 # How many random negatives should be used for each question-answer pair # 1a. Load a model to finetune with 1b. (Optional) model card data model = CrossEncoder( model_name, model_card_data=CrossEncoderModelCardData( language="en", license="apache-2.0", model_name="MiniLM-L12-H384 trained on GooAQ", ), ) print("Model max length:", model.max_length) print("Model num labels:", model.num_labels) # 2. Load the GooAQ dataset: https://huggingface.co/datasets/sentence-transformers/gooaq logging.info("Read the gooaq training dataset") full_dataset = load_dataset("sentence-transformers/gooaq", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Define our training loss. loss = CachedMultipleNegativesRankingLoss( model=model, num_negatives=num_rand_negatives, mini_batch_size=32, # Informs the memory usage ) # 4. Use CrossEncoderNanoBEIREvaluator, a light-weight evaluator for English reranking evaluator = CrossEncoderNanoBEIREvaluator( dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=train_batch_size, ) evaluator(model) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"reranker-{short_model_name}-gooaq-cmnrl" args = CrossEncoderTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, learning_rate=2e-5, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=50, logging_first_step=True, run_name=run_name, # Will be used in W&B if `wandb` is installed seed=12, ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=evaluator, ) trainer.train() # 7. Evaluate the final model, useful to include these in the model card evaluator(model) # 8. Save the final model final_output_dir = f"models/{run_name}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
import logging import traceback from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder, CrossEncoderModelCardData from sentence_transformers.cross_encoder.evaluation import CENanoBEIREvaluator from sentence_transformers.cross_encoder.losses import CachedMultipleNegativesRankingLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model_name = "microsoft/MiniLM-L12-H384-uncased" train_batch_size = 64 num_epochs = 1 num_rand_negatives = 5 # How many random negatives should be used for each question-answer pair # 1a. Load a model to finetune with 1b. (Optional) model card data model = CrossEncoder( model_name, model_card_data=CrossEncoderModelCardData( language="en", license="apache-2.0", model_name="MiniLM-L12-H384 trained on GooAQ", ), ) print("Model max length:", model.max_length) print("Model num labels:", model.num_labels) # 2. Load the GooAQ dataset: https://huggingface.co/datasets/sentence-transformers/gooaq logging.info("Read the gooaq training dataset") full_dataset = load_dataset("sentence-transformers/gooaq", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Define our training loss. loss = CachedMultipleNegativesRankingLoss( model=model, num_negatives=num_rand_negatives, mini_batch_size=32, # Informs the memory usage ) # 4. Use CENanoBEIREvaluator, a light-weight evaluator for English reranking evaluator = CENanoBEIREvaluator( dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=train_batch_size, ) evaluator(model) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"reranker-{short_model_name}-gooaq-cmnrl" args = CrossEncoderTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, learning_rate=2e-5, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=50, logging_first_step=True, run_name=run_name, # Will be used in W&B if `wandb` is installed seed=12, ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=evaluator, ) trainer.train() # 7. Evaluate the final model, useful to include these in the model card evaluator(model) # 8. Save the final model final_output_dir = f"models/{run_name}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_accelerator, slow, torch_device enable_full_determinism() class DDPMPipelineFastTests(unittest.TestCase): @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(4, 8), layers_per_block=1, norm_num_groups=4, sample_size=8, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def test_fast_inference(self): device = "cpu" unet = self.dummy_uncond_unet scheduler = DDPMScheduler() ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(device) ddpm.set_progress_bar_config(disable=None) generator = torch.Generator(device=device).manual_seed(0) image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="np", return_dict=False)[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 8, 8, 3) expected_slice = np.array([0.0, 0.9996672, 0.00329116, 1.0, 0.9995991, 1.0, 0.0060907, 0.00115037, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_predict_sample(self): unet = self.dummy_uncond_unet scheduler = DDPMScheduler(prediction_type="sample") ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images generator = torch.manual_seed(0) image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="np")[0] image_slice = image[0, -3:, -3:, -1] image_eps_slice = image_eps[0, -3:, -3:, -1] assert image.shape == (1, 8, 8, 3) tolerance = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance @slow @require_torch_accelerator class DDPMPipelineIntegrationTests(unittest.TestCase): def test_inference_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDPMScheduler.from_pretrained(model_id) ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddpm(generator=generator, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4200, 0.3588, 0.1939, 0.3847, 0.3382, 0.2647, 0.4155, 0.3582, 0.3385]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device enable_full_determinism() class DDPMPipelineFastTests(unittest.TestCase): @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(4, 8), layers_per_block=1, norm_num_groups=4, sample_size=8, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def test_fast_inference(self): device = "cpu" unet = self.dummy_uncond_unet scheduler = DDPMScheduler() ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(device) ddpm.set_progress_bar_config(disable=None) generator = torch.Generator(device=device).manual_seed(0) image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="np", return_dict=False)[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 8, 8, 3) expected_slice = np.array([0.0, 0.9996672, 0.00329116, 1.0, 0.9995991, 1.0, 0.0060907, 0.00115037, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_predict_sample(self): unet = self.dummy_uncond_unet scheduler = DDPMScheduler(prediction_type="sample") ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images generator = torch.manual_seed(0) image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="np")[0] image_slice = image[0, -3:, -3:, -1] image_eps_slice = image_eps[0, -3:, -3:, -1] assert image.shape == (1, 8, 8, 3) tolerance = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance @slow @require_torch_gpu class DDPMPipelineIntegrationTests(unittest.TestCase): def test_inference_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDPMScheduler.from_pretrained(model_id) ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddpm(generator=generator, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4200, 0.3588, 0.1939, 0.3847, 0.3382, 0.2647, 0.4155, 0.3582, 0.3385]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# Copyright (c) OpenMMLab. All rights reserved. from ._fast_stop_training_hook import FastStopTrainingHook # noqa: F401,F403 from ._utils import (demo_mm_inputs, demo_mm_proposals, demo_mm_sampling_results, get_detector_cfg, get_roi_head_cfg, replace_to_ceph) __all__ = [ 'demo_mm_inputs', 'get_detector_cfg', 'get_roi_head_cfg', 'demo_mm_proposals', 'demo_mm_sampling_results', 'replace_to_ceph' ]
# Copyright (c) OpenMMLab. All rights reserved. from ._fast_stop_training_hook import FastStopTrainingHook # noqa: F401,F403 from ._utils import (demo_mm_inputs, demo_mm_proposals, demo_mm_sampling_results, get_detector_cfg, get_roi_head_cfg) __all__ = [ 'demo_mm_inputs', 'get_detector_cfg', 'get_roi_head_cfg', 'demo_mm_proposals', 'demo_mm_sampling_results' ]
import os import pathlib from typing import Any, Callable, Optional, Tuple import PIL.Image from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class DTD(VisionDataset): """`Describable Textures Dataset (DTD) <https://www.robots.ox.ac.uk/~vgg/data/dtd/>`_. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. partition (int, optional): The dataset partition. Should be ``1 <= partition <= 10``. Defaults to ``1``. .. note:: The partition only changes which split each image belongs to. Thus, regardless of the selected partition, combining all splits will result in all images. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. """ _URL = "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz" _MD5 = "fff73e5086ae6bdbea199a49dfb8a4c1" def __init__( self, root: str, split: str = "train", partition: int = 1, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: self._split = verify_str_arg(split, "split", ("train", "val", "test")) if not isinstance(partition, int) and not (1 <= partition <= 10): raise ValueError( f"Parameter 'partition' should be an integer with `1 <= partition <= 10`, " f"but got {partition} instead" ) self._partition = partition super().__init__(root, transform=transform, target_transform=target_transform) self._base_folder = pathlib.Path(self.root) / type(self).__name__.lower() self._data_folder = self._base_folder / "dtd" self._meta_folder = self._data_folder / "labels" self._images_folder = self._data_folder / "images" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._image_files = [] classes = [] with open(self._meta_folder / f"{self._split}{self._partition}.txt") as file: for line in file: cls, name = line.strip().split("/") self._image_files.append(self._images_folder.joinpath(cls, name)) classes.append(cls) self.classes = sorted(set(classes)) self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._labels = [self.class_to_idx[cls] for cls in classes] def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}, partition={self._partition}" def _check_exists(self) -> bool: return os.path.exists(self._data_folder) and os.path.isdir(self._data_folder) def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=str(self._base_folder), md5=self._MD5)
import os import pathlib from typing import Any, Callable, Optional, Tuple import PIL.Image from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class DTD(VisionDataset): """`Describable Textures Dataset (DTD) <https://www.robots.ox.ac.uk/~vgg/data/dtd/>`_. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. partition (int, optional): The dataset partition. Should be ``1 <= partition <= 10``. Defaults to ``1``. .. note:: The partition only changes which split each image belongs to. Thus, regardless of the selected partition, combining all splits will result in all images. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. """ _URL = "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz" _MD5 = "fff73e5086ae6bdbea199a49dfb8a4c1" def __init__( self, root: str, split: str = "train", partition: int = 1, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: self._split = verify_str_arg(split, "split", ("train", "val", "test")) if not isinstance(partition, int) and not (1 <= partition <= 10): raise ValueError( f"Parameter 'partition' should be an integer with `1 <= partition <= 10`, " f"but got {partition} instead" ) self._partition = partition super().__init__(root, transform=transform, target_transform=target_transform) self._base_folder = pathlib.Path(self.root) / type(self).__name__.lower() self._data_folder = self._base_folder / "dtd" self._meta_folder = self._data_folder / "labels" self._images_folder = self._data_folder / "images" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._image_files = [] classes = [] with open(self._meta_folder / f"{self._split}{self._partition}.txt") as file: for line in file: cls, name = line.strip().split("/") self._image_files.append(self._images_folder.joinpath(cls, name)) classes.append(cls) self.classes = sorted(set(classes)) self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._labels = [self.class_to_idx[cls] for cls in classes] def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}, partition={self._partition}" def _check_exists(self) -> bool: return os.path.exists(self._data_folder) and os.path.isdir(self._data_folder) def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=str(self._base_folder), md5=self._MD5)
import numpy as np import pytest from absl.testing import parameterized from keras.src import backend from keras.src import layers from keras.src import ops from keras.src import testing class FlattenTest(testing.TestCase): @parameterized.named_parameters( [ {"testcase_name": "dense", "sparse": False}, {"testcase_name": "sparse", "sparse": True}, ] ) @pytest.mark.requires_trainable_backend def test_flatten(self, sparse): if sparse and not backend.SUPPORTS_SPARSE_TENSORS: pytest.skip("Backend does not support sparse tensors.") inputs = np.random.random((10, 3, 5, 5)).astype("float32") # Make the ndarray relatively sparse inputs = np.multiply(inputs, inputs >= 0.8) expected_output_channels_last = ops.convert_to_tensor( np.reshape(inputs, (-1, 5 * 5 * 3)) ) expected_output_channels_first = ops.convert_to_tensor( np.reshape(np.transpose(inputs, (0, 2, 3, 1)), (-1, 5 * 5 * 3)) ) if sparse: if backend.backend() == "tensorflow": import tensorflow as tf dense_to_sparse = tf.sparse.from_dense elif backend.backend() == "jax": import jax.experimental.sparse as jax_sparse dense_to_sparse = jax_sparse.BCOO.fromdense else: self.fail( f"Sparse is unsupported with backend {backend.backend()}" ) inputs = dense_to_sparse(inputs) expected_output_channels_last = dense_to_sparse( expected_output_channels_last ) expected_output_channels_first = dense_to_sparse( expected_output_channels_first ) # Test default data_format and channels_last self.run_layer_test( layers.Flatten, init_kwargs={}, input_data=inputs, input_sparse=True, expected_output=( expected_output_channels_last if backend.config.image_data_format() == "channels_last" else expected_output_channels_first ), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Flatten, init_kwargs={"data_format": "channels_last"}, input_data=inputs, input_sparse=True, expected_output=expected_output_channels_last, expected_output_sparse=sparse, run_training_check=not sparse, ) # Test channels_first self.run_layer_test( layers.Flatten, init_kwargs={"data_format": "channels_first"}, input_data=inputs, input_sparse=True, expected_output=expected_output_channels_first, expected_output_sparse=sparse, run_training_check=not sparse, ) @pytest.mark.requires_trainable_backend def test_flatten_with_scalar_channels(self): inputs = np.random.random((10,)).astype("float32") expected_output = ops.convert_to_tensor(np.expand_dims(inputs, -1)) # Test default data_format and channels_last self.run_layer_test( layers.Flatten, init_kwargs={}, input_data=inputs, expected_output=expected_output, ) self.run_layer_test( layers.Flatten, init_kwargs={"data_format": "channels_last"}, input_data=inputs, expected_output=expected_output, ) # Test channels_first self.run_layer_test( layers.Flatten, init_kwargs={"data_format": "channels_first"}, input_data=inputs, expected_output=expected_output, ) def test_flatten_with_dynamic_batch_size(self): input_layer = layers.Input(batch_shape=(None, 2, 3)) flattened = layers.Flatten()(input_layer) self.assertEqual(flattened.shape, (None, 2 * 3)) def test_flatten_with_dynamic_dimension(self): input_layer = layers.Input(batch_shape=(5, 2, None)) flattened = layers.Flatten()(input_layer) self.assertEqual(flattened.shape, (5, None))
import numpy as np import pytest from absl.testing import parameterized from keras.src import backend from keras.src import layers from keras.src import ops from keras.src import testing class FlattenTest(testing.TestCase, parameterized.TestCase): @parameterized.named_parameters( [ {"testcase_name": "dense", "sparse": False}, {"testcase_name": "sparse", "sparse": True}, ] ) @pytest.mark.requires_trainable_backend def test_flatten(self, sparse): if sparse and not backend.SUPPORTS_SPARSE_TENSORS: pytest.skip("Backend does not support sparse tensors.") inputs = np.random.random((10, 3, 5, 5)).astype("float32") # Make the ndarray relatively sparse inputs = np.multiply(inputs, inputs >= 0.8) expected_output_channels_last = ops.convert_to_tensor( np.reshape(inputs, (-1, 5 * 5 * 3)) ) expected_output_channels_first = ops.convert_to_tensor( np.reshape(np.transpose(inputs, (0, 2, 3, 1)), (-1, 5 * 5 * 3)) ) if sparse: if backend.backend() == "tensorflow": import tensorflow as tf dense_to_sparse = tf.sparse.from_dense elif backend.backend() == "jax": import jax.experimental.sparse as jax_sparse dense_to_sparse = jax_sparse.BCOO.fromdense else: self.fail( f"Sparse is unsupported with backend {backend.backend()}" ) inputs = dense_to_sparse(inputs) expected_output_channels_last = dense_to_sparse( expected_output_channels_last ) expected_output_channels_first = dense_to_sparse( expected_output_channels_first ) # Test default data_format and channels_last self.run_layer_test( layers.Flatten, init_kwargs={}, input_data=inputs, input_sparse=True, expected_output=( expected_output_channels_last if backend.config.image_data_format() == "channels_last" else expected_output_channels_first ), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Flatten, init_kwargs={"data_format": "channels_last"}, input_data=inputs, input_sparse=True, expected_output=expected_output_channels_last, expected_output_sparse=sparse, run_training_check=not sparse, ) # Test channels_first self.run_layer_test( layers.Flatten, init_kwargs={"data_format": "channels_first"}, input_data=inputs, input_sparse=True, expected_output=expected_output_channels_first, expected_output_sparse=sparse, run_training_check=not sparse, ) @pytest.mark.requires_trainable_backend def test_flatten_with_scalar_channels(self): inputs = np.random.random((10,)).astype("float32") expected_output = ops.convert_to_tensor(np.expand_dims(inputs, -1)) # Test default data_format and channels_last self.run_layer_test( layers.Flatten, init_kwargs={}, input_data=inputs, expected_output=expected_output, ) self.run_layer_test( layers.Flatten, init_kwargs={"data_format": "channels_last"}, input_data=inputs, expected_output=expected_output, ) # Test channels_first self.run_layer_test( layers.Flatten, init_kwargs={"data_format": "channels_first"}, input_data=inputs, expected_output=expected_output, ) def test_flatten_with_dynamic_batch_size(self): input_layer = layers.Input(batch_shape=(None, 2, 3)) flattened = layers.Flatten()(input_layer) self.assertEqual(flattened.shape, (None, 2 * 3)) def test_flatten_with_dynamic_dimension(self): input_layer = layers.Input(batch_shape=(5, 2, None)) flattened = layers.Flatten()(input_layer) self.assertEqual(flattened.shape, (5, None))
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray @_register_proto(proto_type_name='audio_ndarray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(BaseDoc): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] bytes_: Optional[bytes] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save(file_path='path/to/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = doc_2.url.load() doc_2.audio_tensor.save(file_path='path/to/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() """ ...
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray @_register_proto(proto_type_name='audio_ndarray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional from docarray import BaseDocument from docarray.typing import AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(BaseDocument): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] bytes_: Optional[bytes] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save(file_path='path/to/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = doc_2.url.load() doc_2.audio_tensor.save(file_path='path/to/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() """ ...
from typing import List import argparse import json parser = argparse.ArgumentParser(prog="Prepender docs/_versions.json") parser.add_argument( "--version", type=str, help="The version we wish to prepend (e.g. v0.18.0)", required=True, ) args = parser.parse_args() with open("./docs/_versions.json", encoding='utf-8') as f: versions: List[dict] = json.load(f) element = {k: v for k, v in args._get_kwargs()} if element != versions[0]: versions.insert(0, element) with open("./docs/_versions.json", "w", encoding='utf-8') as f: json.dump(versions, f)
from typing import List import argparse import json parser = argparse.ArgumentParser(prog="Prepender docs/_versions.json") parser.add_argument( "--version", type=str, help="The version we wish to prepend (e.g. v0.18.0)", required=True, ) args = parser.parse_args() with open("./docs/_versions.json") as f: versions: List[dict] = json.load(f) element = {k: v for k, v in args._get_kwargs()} if element != versions[0]: versions.insert(0, element) with open("./docs/_versions.json", "w") as f: json.dump(versions, f)
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import numpy as np def palette_val(palette): """Convert palette to matplotlib palette. Args: palette List[tuple]: A list of color tuples. Returns: List[tuple[float]]: A list of RGB matplotlib color tuples. """ new_palette = [] for color in palette: color = [c / 255 for c in color] new_palette.append(tuple(color)) return new_palette def get_palette(palette, num_classes): """Get palette from various inputs. Args: palette (list[tuple] | str | tuple | :obj:`Color`): palette inputs. num_classes (int): the number of classes. Returns: list[tuple[int]]: A list of color tuples. """ assert isinstance(num_classes, int) if isinstance(palette, list): dataset_palette = palette elif isinstance(palette, tuple): dataset_palette = [palette] * num_classes elif palette == 'random' or palette is None: state = np.random.get_state() # random color np.random.seed(42) palette = np.random.randint(0, 256, size=(num_classes, 3)) np.random.set_state(state) dataset_palette = [tuple(c) for c in palette] elif palette == 'coco': from mmdet.datasets import CocoDataset, CocoPanopticDataset dataset_palette = CocoDataset.PALETTE if len(dataset_palette) < num_classes: dataset_palette = CocoPanopticDataset.PALETTE elif palette == 'citys': from mmdet.datasets import CityscapesDataset dataset_palette = CityscapesDataset.PALETTE elif palette == 'voc': from mmdet.datasets import VOCDataset dataset_palette = VOCDataset.PALETTE elif mmcv.is_str(palette): dataset_palette = [mmcv.color_val(palette)[::-1]] * num_classes else: raise TypeError(f'Invalid type for palette: {type(palette)}') assert len(dataset_palette) >= num_classes, \ 'The length of palette should not be less than `num_classes`.' return dataset_palette
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import numpy as np import mmdet def palette_val(palette): """Convert palette to matplotlib palette. Args: palette List[tuple]: A list of color tuples. Returns: List[tuple[float]]: A list of RGB matplotlib color tuples. """ new_palette = [] for color in palette: color = [c / 255 for c in color] new_palette.append(tuple(color)) return new_palette def get_palette(palette, num_classes=None): """Get palette from various inputs. Args: palette (list[tuple]/str/tuple/:obj:`Color`): palette inputs Returns: list[tuple[int]]: A list of color tuples. """ if isinstance(palette, list): return palette elif isinstance(palette, tuple): assert isinstance(num_classes, int) return [palette] * num_classes elif palette == 'coco': return mmdet.datasets.CocoDataset.PALETTE elif palette == 'voc': return mmdet.datasets.VOCDataset.PALETTE elif palette == 'citys': return mmdet.datasets.CityscapesDataset.PALETTE elif palette == 'random' or palette is None: assert isinstance(num_classes, int) state = np.random.get_state() # random color np.random.seed(42) palette = np.random.randint(0, 256, size=(num_classes, 3)) np.random.set_state(state) return [tuple(c) for c in palette] elif mmcv.is_str(palette): assert isinstance(num_classes, int) return [mmcv.color_val(palette)[::-1]] * num_classes else: raise TypeError(f'Invalid type for palette: {type(palette)}')
# coding=utf-8 # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import requests # Configuration GITHUB_REPO = "huggingface/diffusers" GITHUB_RUN_ID = os.getenv("GITHUB_RUN_ID") SLACK_WEBHOOK_URL = os.getenv("SLACK_WEBHOOK_URL") def main(args): action_url = f"https://github.com/{GITHUB_REPO}/actions/runs/{GITHUB_RUN_ID}" if args.status == "success": hub_path = "https://huggingface.co/datasets/diffusers/benchmarks/blob/main/collated_results.csv" message = ( "✅ New benchmark workflow successfully run.\n" f"🕸️ GitHub Action URL: {action_url}.\n" f"🤗 Check out the benchmarks here: {hub_path}." ) else: message = ( "❌ Something wrong happened in the benchmarking workflow.\n" f"Check out the GitHub Action to know more: {action_url}." ) payload = {"text": message} response = requests.post(SLACK_WEBHOOK_URL, json=payload) if response.status_code == 200: print("Notification sent to Slack successfully.") else: print("Failed to send notification to Slack.") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--status", type=str, default="success", choices=["success", "failure"]) args = parser.parse_args() main(args)
# coding=utf-8 # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import requests # Configuration GITHUB_REPO = "huggingface/diffusers" GITHUB_RUN_ID = os.getenv("GITHUB_RUN_ID") SLACK_WEBHOOK_URL = os.getenv("SLACK_WEBHOOK_URL") def main(args): action_url = f"https://github.com/{GITHUB_REPO}/actions/runs/{GITHUB_RUN_ID}" if args.status == "success": hub_path = "https://huggingface.co/datasets/diffusers/benchmarks/blob/main/collated_results.csv" message = ( "✅ New benchmark workflow successfully run.\n" f"🕸️ GitHub Action URL: {action_url}.\n" f"🤗 Check out the benchmarks here: {hub_path}." ) else: message = ( "❌ Something wrong happened in the benchmarking workflow.\n" f"Check out the GitHub Action to know more: {action_url}." ) payload = {"text": message} response = requests.post(SLACK_WEBHOOK_URL, json=payload) if response.status_code == 200: print("Notification sent to Slack successfully.") else: print("Failed to send notification to Slack.") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--status", type=str, default="success", choices=["success", "failure"]) args = parser.parse_args() main(args)
"""Run smoke tests""" import sys from pathlib import Path import torch import torchvision from torchvision.io import decode_jpeg, read_file, read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.shape != (4, 471, 354): raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_torchvision_decode_jpeg(device: str = "cpu"): img_jpg_data = read_file(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) img_jpg = decode_jpeg(img_jpg_data, device=device) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") def smoke_test_compile() -> None: try: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") except RuntimeError: if sys.platform == "win32": print("Successfully caught torch.compile RuntimeError on win") elif sys.version_info >= (3, 11, 0): print("Successfully caught torch.compile RuntimeError on Python 3.11") else: raise def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() smoke_test_torchvision_decode_jpeg() if torch.cuda.is_available(): smoke_test_torchvision_decode_jpeg("cuda") smoke_test_torchvision_resnet50_classify("cuda") smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
"""Run smoke tests""" import sys from pathlib import Path import torch import torchvision from torchvision.io import decode_jpeg, read_file, read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.shape != (4, 471, 354): raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_torchvision_decode_jpeg_cuda(): img_jpg_data = read_file(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) img_jpg = decode_jpeg(img_jpg_data, device="cuda") if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") def smoke_test_compile() -> None: try: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") except RuntimeError: if sys.platform == "win32": print("Successfully caught torch.compile RuntimeError on win") elif sys.version_info >= (3, 11, 0): print("Successfully caught torch.compile RuntimeError on Python 3.11") else: raise def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() if torch.cuda.is_available(): smoke_test_torchvision_decode_jpeg_cuda() smoke_test_torchvision_resnet50_classify("cuda") smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
from typing import Dict, List, Optional, Set, Tuple, Union import pytest from docarray.typing import NdArray, TorchTensor from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._internal._typing import ( is_tensor_union, is_type_tensor, safe_issubclass, ) from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: from docarray.typing import TensorFlowTensor else: TensorFlowTensor = None @pytest.mark.parametrize( 'type_, is_tensor', [ (int, False), (TorchTensor, True), (NdArray, True), (AbstractTensor, True), (Optional[TorchTensor], False), (Union[TorchTensor, NdArray], False), (None, False), (Dict, False), ], ) def test_is_type_tensor(type_, is_tensor): assert is_type_tensor(type_) == is_tensor @pytest.mark.tensorflow @pytest.mark.parametrize( 'type_, is_tensor', [ (TensorFlowTensor, True), (Optional[TensorFlowTensor], False), ], ) def test_is_type_tensor_with_tf(type_, is_tensor): assert is_type_tensor(type_) == is_tensor @pytest.mark.parametrize( 'type_, is_union_tensor', [ (int, False), (TorchTensor, False), (NdArray, False), (Optional[TorchTensor], True), (Optional[NdArray], True), (Union[NdArray, TorchTensor], True), (Union[NdArray, TorchTensor, AbstractTensor], True), (Union[NdArray, TorchTensor, Optional[TorchTensor]], True), (Union[NdArray, TorchTensor, None], True), ], ) def test_is_union_type_tensor(type_, is_union_tensor): assert is_tensor_union(type_) == is_union_tensor @pytest.mark.tensorflow @pytest.mark.parametrize( 'type_, is_union_tensor', [ (TensorFlowTensor, False), (Optional[TensorFlowTensor], True), (Union[NdArray, TorchTensor, TensorFlowTensor], True), (Union[NdArray, TorchTensor, Optional[TensorFlowTensor]], True), ], ) def test_is_union_type_tensor_with_tf(type_, is_union_tensor): assert is_tensor_union(type_) == is_union_tensor @pytest.mark.parametrize( 'type_, cls, is_subclass', [ (List[str], object, False), (List[List[int]], object, False), (Set[str], object, False), (Dict, object, False), (Tuple[int, int], object, False), ], ) def test_safe_issubclass(type_, cls, is_subclass): assert safe_issubclass(type_, cls) == is_subclass
from typing import Dict, Optional, Union import pytest from docarray.typing import NdArray, TorchTensor from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._internal._typing import is_tensor_union, is_type_tensor from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: from docarray.typing import TensorFlowTensor else: TensorFlowTensor = None @pytest.mark.parametrize( 'type_, is_tensor', [ (int, False), (TorchTensor, True), (NdArray, True), (AbstractTensor, True), (Optional[TorchTensor], False), (Union[TorchTensor, NdArray], False), (None, False), (Dict, False), ], ) def test_is_type_tensor(type_, is_tensor): assert is_type_tensor(type_) == is_tensor @pytest.mark.tensorflow @pytest.mark.parametrize( 'type_, is_tensor', [ (TensorFlowTensor, True), (Optional[TensorFlowTensor], False), ], ) def test_is_type_tensor_with_tf(type_, is_tensor): assert is_type_tensor(type_) == is_tensor @pytest.mark.parametrize( 'type_, is_union_tensor', [ (int, False), (TorchTensor, False), (NdArray, False), (Optional[TorchTensor], True), (Optional[NdArray], True), (Union[NdArray, TorchTensor], True), (Union[NdArray, TorchTensor, AbstractTensor], True), (Union[NdArray, TorchTensor, Optional[TorchTensor]], True), (Union[NdArray, TorchTensor, None], True), ], ) def test_is_union_type_tensor(type_, is_union_tensor): assert is_tensor_union(type_) == is_union_tensor @pytest.mark.tensorflow @pytest.mark.parametrize( 'type_, is_union_tensor', [ (TensorFlowTensor, False), (Optional[TensorFlowTensor], True), (Union[NdArray, TorchTensor, TensorFlowTensor], True), (Union[NdArray, TorchTensor, Optional[TensorFlowTensor]], True), ], ) def test_is_union_type_tensor_with_tf(type_, is_union_tensor): assert is_tensor_union(type_) == is_union_tensor
from ...utils import is_torch_available if is_torch_available(): from .auraflow_transformer_2d import AuraFlowTransformer2DModel from .cogvideox_transformer_3d import CogVideoXTransformer3DModel from .dit_transformer_2d import DiTTransformer2DModel from .dual_transformer_2d import DualTransformer2DModel from .hunyuan_transformer_2d import HunyuanDiT2DModel from .latte_transformer_3d import LatteTransformer3DModel from .lumina_nextdit2d import LuminaNextDiT2DModel from .pixart_transformer_2d import PixArtTransformer2DModel from .prior_transformer import PriorTransformer from .stable_audio_transformer import StableAudioDiTModel from .t5_film_transformer import T5FilmDecoder from .transformer_2d import Transformer2DModel from .transformer_allegro import AllegroTransformer3DModel from .transformer_cogview3plus import CogView3PlusTransformer2DModel from .transformer_flux import FluxTransformer2DModel from .transformer_ltx import LTXVideoTransformer3DModel from .transformer_mochi import MochiTransformer3DModel from .transformer_sd3 import SD3Transformer2DModel from .transformer_temporal import TransformerTemporalModel
from ...utils import is_torch_available if is_torch_available(): from .auraflow_transformer_2d import AuraFlowTransformer2DModel from .cogvideox_transformer_3d import CogVideoXTransformer3DModel from .dit_transformer_2d import DiTTransformer2DModel from .dual_transformer_2d import DualTransformer2DModel from .hunyuan_transformer_2d import HunyuanDiT2DModel from .latte_transformer_3d import LatteTransformer3DModel from .lumina_nextdit2d import LuminaNextDiT2DModel from .pixart_transformer_2d import PixArtTransformer2DModel from .prior_transformer import PriorTransformer from .stable_audio_transformer import StableAudioDiTModel from .t5_film_transformer import T5FilmDecoder from .transformer_2d import Transformer2DModel from .transformer_allegro import AllegroTransformer3DModel from .transformer_cogview3plus import CogView3PlusTransformer2DModel from .transformer_flux import FluxTransformer2DModel from .transformer_mochi import MochiTransformer3DModel from .transformer_sd3 import SD3Transformer2DModel from .transformer_temporal import TransformerTemporalModel
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.losses import deserialize from keras.src.losses import get from keras.src.losses import serialize from keras.src.losses.loss import Loss from keras.src.losses.losses import CTC from keras.src.losses.losses import BinaryCrossentropy from keras.src.losses.losses import BinaryFocalCrossentropy from keras.src.losses.losses import CategoricalCrossentropy from keras.src.losses.losses import CategoricalFocalCrossentropy from keras.src.losses.losses import CategoricalHinge from keras.src.losses.losses import Circle from keras.src.losses.losses import CosineSimilarity from keras.src.losses.losses import Dice from keras.src.losses.losses import Hinge from keras.src.losses.losses import Huber from keras.src.losses.losses import KLDivergence from keras.src.losses.losses import LogCosh from keras.src.losses.losses import MeanAbsoluteError from keras.src.losses.losses import MeanAbsolutePercentageError from keras.src.losses.losses import MeanSquaredError from keras.src.losses.losses import MeanSquaredLogarithmicError from keras.src.losses.losses import Poisson from keras.src.losses.losses import SparseCategoricalCrossentropy from keras.src.losses.losses import SquaredHinge from keras.src.losses.losses import Tversky from keras.src.losses.losses import binary_crossentropy from keras.src.losses.losses import binary_focal_crossentropy from keras.src.losses.losses import categorical_crossentropy from keras.src.losses.losses import categorical_focal_crossentropy from keras.src.losses.losses import categorical_hinge from keras.src.losses.losses import circle from keras.src.losses.losses import cosine_similarity from keras.src.losses.losses import ctc from keras.src.losses.losses import dice from keras.src.losses.losses import hinge from keras.src.losses.losses import huber from keras.src.losses.losses import kl_divergence from keras.src.losses.losses import log_cosh from keras.src.losses.losses import mean_absolute_error from keras.src.losses.losses import mean_absolute_percentage_error from keras.src.losses.losses import mean_squared_error from keras.src.losses.losses import mean_squared_logarithmic_error from keras.src.losses.losses import poisson from keras.src.losses.losses import sparse_categorical_crossentropy from keras.src.losses.losses import squared_hinge from keras.src.losses.losses import tversky
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.losses import deserialize from keras.src.losses import get from keras.src.losses import serialize from keras.src.losses.loss import Loss from keras.src.losses.losses import CTC from keras.src.losses.losses import BinaryCrossentropy from keras.src.losses.losses import BinaryFocalCrossentropy from keras.src.losses.losses import CategoricalCrossentropy from keras.src.losses.losses import CategoricalFocalCrossentropy from keras.src.losses.losses import CategoricalHinge from keras.src.losses.losses import CosineSimilarity from keras.src.losses.losses import Dice from keras.src.losses.losses import Hinge from keras.src.losses.losses import Huber from keras.src.losses.losses import KLDivergence from keras.src.losses.losses import LogCosh from keras.src.losses.losses import MeanAbsoluteError from keras.src.losses.losses import MeanAbsolutePercentageError from keras.src.losses.losses import MeanSquaredError from keras.src.losses.losses import MeanSquaredLogarithmicError from keras.src.losses.losses import Poisson from keras.src.losses.losses import SparseCategoricalCrossentropy from keras.src.losses.losses import SquaredHinge from keras.src.losses.losses import Tversky from keras.src.losses.losses import binary_crossentropy from keras.src.losses.losses import binary_focal_crossentropy from keras.src.losses.losses import categorical_crossentropy from keras.src.losses.losses import categorical_focal_crossentropy from keras.src.losses.losses import categorical_hinge from keras.src.losses.losses import cosine_similarity from keras.src.losses.losses import ctc from keras.src.losses.losses import dice from keras.src.losses.losses import hinge from keras.src.losses.losses import huber from keras.src.losses.losses import kl_divergence from keras.src.losses.losses import log_cosh from keras.src.losses.losses import mean_absolute_error from keras.src.losses.losses import mean_absolute_percentage_error from keras.src.losses.losses import mean_squared_error from keras.src.losses.losses import mean_squared_logarithmic_error from keras.src.losses.losses import poisson from keras.src.losses.losses import sparse_categorical_crossentropy from keras.src.losses.losses import squared_hinge from keras.src.losses.losses import tversky
import os import pickle from pathlib import Path from typing import Optional, Tuple from jina import DocumentArray, Executor, requests from jina.excepts import PretrainedModelFileDoesNotExist class TFIDFTextEncoder(Executor): """ Encode text into tf-idf sparse embeddings """ def __init__( self, path_vectorizer: Optional[str] = None, batch_size: int = 2048, traversal_paths: Tuple[str] = ('r',), *args, **kwargs, ): """ :param path_vectorizer: path of the pre-trained tfidf sklearn vectorizer :param traversal_paths: fallback traversal path in case there is not traversal path sent in the request :param batch_size: fallback batch size in case there is not batch size sent in the request """ super().__init__(*args, **kwargs) if path_vectorizer is None: path_vectorizer = str( Path(__file__).parent / 'model/tfidf_vectorizer.pickle' ) self.path_vectorizer = path_vectorizer self.batch_size = batch_size self.traversal_paths = traversal_paths if os.path.exists(self.path_vectorizer): self.tfidf_vectorizer = pickle.load(open(self.path_vectorizer, 'rb')) else: raise PretrainedModelFileDoesNotExist( f'{self.path_vectorizer} not found, cannot find a fitted tfidf_vectorizer' ) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: dict = {}, **kwargs ): """ Generate the TF-IDF feature vector for all text documents. :param docs: documents sent to the encoder. The docs must have `text`. By default, the input `text` must be a `list` of `str`. :param parameters: dictionary to define the `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. """ if docs is None: return document_batches_generator = docs.batch( traversal_paths=parameters.get('traversal_paths', self.traversal_paths), batch_size=parameters.get('batch_size', self.batch_size), require_attr='text', ) for document_batch in document_batches_generator: iterable_of_texts = [d.text for d in document_batch] embedding_matrix = self.tfidf_vectorizer.transform(iterable_of_texts) for doc, doc_embedding in zip(document_batch, embedding_matrix): doc.embedding = doc_embedding
import os import pickle from pathlib import Path from typing import Optional, Tuple from jina import DocumentArray, Executor, requests from jina.excepts import PretrainedModelFileDoesNotExist from jina_commons.batching import get_docs_batch_generator class TFIDFTextEncoder(Executor): """ Encode text into tf-idf sparse embeddings """ def __init__( self, path_vectorizer: Optional[str] = None, batch_size: int = 2048, traversal_paths: Tuple[str] = ('r',), *args, **kwargs, ): """ :param path_vectorizer: path of the pre-trained tfidf sklearn vectorizer :param traversal_paths: fallback traversal path in case there is not traversal path sent in the request :param batch_size: fallback batch size in case there is not batch size sent in the request """ super().__init__(*args, **kwargs) if path_vectorizer is None: path_vectorizer = str( Path(__file__).parent / 'model/tfidf_vectorizer.pickle' ) self.path_vectorizer = path_vectorizer self.batch_size = batch_size self.traversal_paths = traversal_paths if os.path.exists(self.path_vectorizer): self.tfidf_vectorizer = pickle.load(open(self.path_vectorizer, 'rb')) else: raise PretrainedModelFileDoesNotExist( f'{self.path_vectorizer} not found, cannot find a fitted tfidf_vectorizer' ) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: dict = {}, **kwargs ): """ Generate the TF-IDF feature vector for all text documents. :param docs: documents sent to the encoder. The docs must have `text`. By default, the input `text` must be a `list` of `str`. :param parameters: dictionary to define the `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. """ if docs: document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get('traversal_paths', self.traversal_paths), batch_size=parameters.get('batch_size', self.batch_size), needs_attr='text', ) for document_batch in document_batches_generator: iterable_of_texts = [d.text for d in document_batch] embedding_matrix = self.tfidf_vectorizer.transform(iterable_of_texts) for doc, doc_embedding in zip(document_batch, embedding_matrix): doc.embedding = doc_embedding
import numpy as np import torch from docarray import Document, Image, Text from docarray.typing import ( AnyUrl, Embedding, ImageUrl, NdArray, Tensor, TextUrl, TorchEmbedding, TorchTensor, ) from docarray.typing.tensor import NdArrayEmbedding def test_multi_modal_doc_proto(): class MyMultiModalDoc(Document): image: Image text: Text class MySUperDoc(Document): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class MyDoc(Document): img_url: ImageUrl txt_url: TextUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: Tensor generic_torch_tensor: Tensor embedding: Embedding torch_embedding: TorchEmbedding[128] np_embedding: NdArrayEmbedding[128] doc = MyDoc( img_url='test.png', txt_url='test.txt', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), torch_embedding=torch.zeros((128,)), np_embedding=np.zeros((128,)), ) doc = MyDoc.from_protobuf(doc.to_protobuf()) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.torch_embedding == torch.zeros((128,))).all() assert isinstance(doc.torch_embedding, torch.Tensor) assert (doc.np_embedding == np.zeros((128,))).all() assert isinstance(doc.np_embedding, np.ndarray) assert (doc.embedding == np.zeros((3, 224, 224))).all()
import numpy as np import torch from docarray import Document, Image, Text from docarray.typing import ( AnyUrl, Embedding, ImageUrl, NdArray, Tensor, TextUrl, TorchTensor, ) def test_multi_modal_doc_proto(): class MyMultiModalDoc(Document): image: Image text: Text class MySUperDoc(Document): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class MyDoc(Document): img_url: ImageUrl txt_url: TextUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: Tensor generic_torch_tensor: Tensor embedding: Embedding doc = MyDoc( img_url='test.png', txt_url='test.txt', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), ) doc = MyDoc.from_protobuf(doc.to_protobuf()) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.embedding == np.zeros((3, 224, 224))).all()
""" Demo for using data iterator with Quantile DMatrix ================================================== .. versionadded:: 1.2.0 The demo that defines a customized iterator for passing batches of data into :py:class:`xgboost.QuantileDMatrix` and use this ``QuantileDMatrix`` for training. The feature is used primarily designed to reduce the required GPU memory for training on distributed environment. Aftering going through the demo, one might ask why don't we use more native Python iterator? That's because XGBoost requires a `reset` function, while using `itertools.tee` might incur significant memory usage according to: https://docs.python.org/3/library/itertools.html#itertools.tee. """ import cupy import numpy import xgboost COLS = 64 ROWS_PER_BATCH = 1000 # data is splited by rows BATCHES = 32 class IterForDMatrixDemo(xgboost.core.DataIter): """A data iterator for XGBoost DMatrix. `reset` and `next` are required for any data iterator, other functions here are utilites for demonstration's purpose. """ def __init__(self): """Generate some random data for demostration. Actual data can be anything that is currently supported by XGBoost. """ self.rows = ROWS_PER_BATCH self.cols = COLS rng = cupy.random.RandomState(numpy.uint64(1994)) self._data = [rng.randn(self.rows, self.cols)] * BATCHES self._labels = [rng.randn(self.rows)] * BATCHES self._weights = [rng.uniform(size=self.rows)] * BATCHES self.it = 0 # set iterator to 0 super().__init__() def as_array(self): return cupy.concatenate(self._data) def as_array_labels(self): return cupy.concatenate(self._labels) def as_array_weights(self): return cupy.concatenate(self._weights) def data(self): """Utility function for obtaining current batch of data.""" return self._data[self.it] def labels(self): """Utility function for obtaining current batch of label.""" return self._labels[self.it] def weights(self): return self._weights[self.it] def reset(self): """Reset the iterator""" self.it = 0 def next(self, input_data): """Yield next batch of data.""" if self.it == len(self._data): # Return 0 when there's no more batch. return 0 input_data(data=self.data(), label=self.labels(), weight=self.weights()) self.it += 1 return 1 def main(): rounds = 100 it = IterForDMatrixDemo() # Use iterator, must be `QuantileDMatrix`. # In this demo, the input batches are created using cupy, and the data processing # (quantile sketching) will be performed on GPU. If data is loaded with CPU based # data structures like numpy or pandas, then the processing step will be performed # on CPU instead. m_with_it = xgboost.QuantileDMatrix(it) # Use regular DMatrix. m = xgboost.DMatrix( it.as_array(), it.as_array_labels(), weight=it.as_array_weights() ) assert m_with_it.num_col() == m.num_col() assert m_with_it.num_row() == m.num_row() # Tree meethod must be `hist`. reg_with_it = xgboost.train( {"tree_method": "hist", "device": "cuda"}, m_with_it, num_boost_round=rounds, evals=[(m_with_it, "Train")], ) predict_with_it = reg_with_it.predict(m_with_it) reg = xgboost.train( {"tree_method": "hist", "device": "cuda"}, m, num_boost_round=rounds, evals=[(m, "Train")], ) predict = reg.predict(m) if __name__ == "__main__": main()
""" Demo for using data iterator with Quantile DMatrix ================================================== .. versionadded:: 1.2.0 The demo that defines a customized iterator for passing batches of data into :py:class:`xgboost.QuantileDMatrix` and use this ``QuantileDMatrix`` for training. The feature is used primarily designed to reduce the required GPU memory for training on distributed environment. Aftering going through the demo, one might ask why don't we use more native Python iterator? That's because XGBoost requires a `reset` function, while using `itertools.tee` might incur significant memory usage according to: https://docs.python.org/3/library/itertools.html#itertools.tee. """ import cupy import numpy import xgboost COLS = 64 ROWS_PER_BATCH = 1000 # data is splited by rows BATCHES = 32 class IterForDMatrixDemo(xgboost.core.DataIter): """A data iterator for XGBoost DMatrix. `reset` and `next` are required for any data iterator, other functions here are utilites for demonstration's purpose. """ def __init__(self): """Generate some random data for demostration. Actual data can be anything that is currently supported by XGBoost. """ self.rows = ROWS_PER_BATCH self.cols = COLS rng = cupy.random.RandomState(numpy.uint64(1994)) self._data = [rng.randn(self.rows, self.cols)] * BATCHES self._labels = [rng.randn(self.rows)] * BATCHES self._weights = [rng.uniform(size=self.rows)] * BATCHES self.it = 0 # set iterator to 0 super().__init__() def as_array(self): return cupy.concatenate(self._data) def as_array_labels(self): return cupy.concatenate(self._labels) def as_array_weights(self): return cupy.concatenate(self._weights) def data(self): """Utility function for obtaining current batch of data.""" return self._data[self.it] def labels(self): """Utility function for obtaining current batch of label.""" return self._labels[self.it] def weights(self): return self._weights[self.it] def reset(self): """Reset the iterator""" self.it = 0 def next(self, input_data): """Yield next batch of data.""" if self.it == len(self._data): # Return 0 when there's no more batch. return 0 input_data(data=self.data(), label=self.labels(), weight=self.weights()) self.it += 1 return 1 def main(): rounds = 100 it = IterForDMatrixDemo() # Use iterator, must be `QuantileDMatrix`. # In this demo, the input batches are created using cupy, and the data processing # (quantile sketching) will be performed on GPU. If data is loaded with CPU based # data structures like numpy or pandas, then the processing step will be performed # on CPU instead. m_with_it = xgboost.QuantileDMatrix(it) # Use regular DMatrix. m = xgboost.DMatrix( it.as_array(), it.as_array_labels(), weight=it.as_array_weights() ) assert m_with_it.num_col() == m.num_col() assert m_with_it.num_row() == m.num_row() # Tree meethod must be `hist`. reg_with_it = xgboost.train( {"tree_method": "hist", "device": "cuda"}, m_with_it, num_boost_round=rounds ) predict_with_it = reg_with_it.predict(m_with_it) reg = xgboost.train( {"tree_method": "hist", "device": "cuda"}, m, num_boost_round=rounds ) predict = reg.predict(m) numpy.testing.assert_allclose(predict_with_it, predict, rtol=1e6) if __name__ == "__main__": main()
"""Generate migrations for partner packages.""" import importlib from langchain_core.documents import BaseDocumentCompressor, BaseDocumentTransformer from langchain_core.embeddings import Embeddings from langchain_core.language_models import BaseLanguageModel from langchain_core.retrievers import BaseRetriever from langchain_core.vectorstores import VectorStore from langchain_cli.namespaces.migrate.generate.utils import ( COMMUNITY_PKG, find_subclasses_in_module, list_classes_by_package, list_init_imports_by_package, ) # PUBLIC API def get_migrations_for_partner_package(pkg_name: str) -> list[tuple[str, str]]: """Generate migrations from community package to partner package. This code works Args: pkg_name (str): The name of the partner package. Returns: List of 2-tuples containing old and new import paths. """ package = importlib.import_module(pkg_name) classes_ = find_subclasses_in_module( package, [ BaseLanguageModel, Embeddings, BaseRetriever, VectorStore, BaseDocumentTransformer, BaseDocumentCompressor, ], ) community_classes = list_classes_by_package(str(COMMUNITY_PKG)) imports_for_pkg = list_init_imports_by_package(str(COMMUNITY_PKG)) old_paths = community_classes + imports_for_pkg migrations = [ (f"{module}.{item}", f"{pkg_name}.{item}") for module, item in old_paths if item in classes_ ] return migrations
"""Generate migrations for partner packages.""" import importlib from typing import List, Tuple from langchain_core.documents import BaseDocumentCompressor, BaseDocumentTransformer from langchain_core.embeddings import Embeddings from langchain_core.language_models import BaseLanguageModel from langchain_core.retrievers import BaseRetriever from langchain_core.vectorstores import VectorStore from langchain_cli.namespaces.migrate.generate.utils import ( COMMUNITY_PKG, find_subclasses_in_module, list_classes_by_package, list_init_imports_by_package, ) # PUBLIC API def get_migrations_for_partner_package(pkg_name: str) -> List[Tuple[str, str]]: """Generate migrations from community package to partner package. This code works Args: pkg_name (str): The name of the partner package. Returns: List of 2-tuples containing old and new import paths. """ package = importlib.import_module(pkg_name) classes_ = find_subclasses_in_module( package, [ BaseLanguageModel, Embeddings, BaseRetriever, VectorStore, BaseDocumentTransformer, BaseDocumentCompressor, ], ) community_classes = list_classes_by_package(str(COMMUNITY_PKG)) imports_for_pkg = list_init_imports_by_package(str(COMMUNITY_PKG)) old_paths = community_classes + imports_for_pkg migrations = [ (f"{module}.{item}", f"{pkg_name}.{item}") for module, item in old_paths if item in classes_ ] return migrations
from __future__ import annotations import logging import os from datasets import load_dataset from sentence_transformers import SparseEncoder, SparseEncoderTrainer, SparseEncoderTrainingArguments from sentence_transformers.sparse_encoder import evaluation, losses from sentence_transformers.training_args import BatchSamplers # Set up logging logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): # Initialize the SPLADE model model_name = "sparse-embedding/splade-distilbert-base-uncased-init" model = SparseEncoder(model_name) # 2a. Load the NQ dataset: https://huggingface.co/datasets/sentence-transformers/natural-questions logging.info("Read the Natural Questions training dataset") full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Initialize the loss lambda_query = 5e-5 lambda_corpus = 3e-5 loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model=model, scale=20, similarity_fct=model.similarity), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, ) # Weight for document loss run_name = f"splade-distilbert-nq-fresh-lq{lambda_query}-lc{lambda_corpus}" os.makedirs(f"runs/{run_name}", exist_ok=True) dev_evaluator = evaluation.SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=16) os.makedirs(f"runs/{run_name}/eval", exist_ok=True) # Set up training arguments training_args = SparseEncoderTrainingArguments( output_dir=f"runs/{run_name}", num_train_epochs=1, per_device_train_batch_size=12, per_device_eval_batch_size=16, bf16=True, logging_steps=200, eval_strategy="steps", eval_steps=1650, save_strategy="steps", save_steps=1650, learning_rate=4e-5, run_name=run_name, seed=42, batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch load_best_model_at_end=True, metric_for_best_model="eval_NanoBEIR_mean_dot_ndcg@10", ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance again after training dev_evaluator(model, output_path=f"runs/{run_name}/eval", epoch=1) # 8. Save the trained & evaluated model locally os.makedirs(f"runs/{run_name}/final", exist_ok=True) model.save_pretrained(f"runs/{run_name}/final") model.push_to_hub(f"sparse-embedding/{run_name}", private=True) if __name__ == "__main__": main()
from __future__ import annotations import logging import os from datasets import load_dataset from sentence_transformers import SparseEncoder, SparseEncoderTrainer, SparseEncoderTrainingArguments from sentence_transformers.sparse_encoder import evaluation, losses from sentence_transformers.training_args import BatchSamplers # Set up logging logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): # Initialize the SPLADE model model_name = "sparse-embedding/splade-distilbert-base-uncased-init" model = SparseEncoder(model_name) # 2a. Load the NQ dataset: https://huggingface.co/datasets/sentence-transformers/natural-questions logging.info("Read the Natural Questions training dataset") full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Initialize the loss lambda_query = 5e-5 lambda_corpus = 3e-5 loss = losses.SpladeLoss( model=model, main_loss=losses.SparseMultipleNegativesRankingLoss(model=model, scale=20, similarity_fct=model.similarity), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, ) # Weight for document loss run_name = f"splade-distilbert-nq-fresh-lq{lambda_query}-lc{lambda_corpus}" os.makedirs(f"runs/{run_name}", exist_ok=True) dev_evaluator = evaluation.SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=16) os.makedirs(f"runs/{run_name}/eval", exist_ok=True) # Set up training arguments training_args = SparseEncoderTrainingArguments( output_dir=f"runs/{run_name}", num_train_epochs=1, per_device_train_batch_size=12, per_device_eval_batch_size=16, bf16=True, logging_steps=200, eval_strategy="steps", eval_steps=1650, save_strategy="steps", save_steps=1650, learning_rate=4e-5, run_name=run_name, seed=42, batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch load_best_model_at_end=True, metric_for_best_model="eval_NanoBEIR_mean_dot_ndcg@10", ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance again after training dev_evaluator(model, output_path=f"runs/{run_name}/eval", epoch=1) # 8. Save the trained & evaluated model locally os.makedirs(f"runs/{run_name}/final", exist_ok=True) model.save_pretrained(f"runs/{run_name}/final") model.push_to_hub(f"sparse-embedding/{run_name}", private=True) if __name__ == "__main__": main()
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.20.3' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.20.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# Copyright (c) OpenMMLab. All rights reserved. from .utils import (get_device, get_max_cuda_memory, is_cuda_available, is_mlu_available, is_mps_available, is_npu_available) __all__ = [ 'get_max_cuda_memory', 'get_device', 'is_cuda_available', 'is_mlu_available', 'is_mps_available', 'is_npu_available' ]
# Copyright (c) OpenMMLab. All rights reserved. from .utils import (get_device, get_max_cuda_memory, is_cuda_available, is_mlu_available, is_mps_available) __all__ = [ 'get_max_cuda_memory', 'get_device', 'is_cuda_available', 'is_mlu_available', 'is_mps_available' ]
""" Compute image embeddings """ import os from PIL import Image from sentence_transformers import SentenceTransformer, util def test_simple_encode(clip_vit_b_32_model: SentenceTransformer) -> None: model = clip_vit_b_32_model # Encode an image: image_filepath = os.path.join( os.path.dirname(os.path.realpath(__file__)), "../examples/applications/image-search/two_dogs_in_snow.jpg", ) img_emb = model.encode(Image.open(image_filepath)) # Encode text descriptions text_emb = model.encode(["Two dogs in the snow", "A cat on a table", "A picture of London at night"]) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb)[0] assert abs(cos_scores[0] - 0.3069) < 0.01 assert abs(cos_scores[1] - 0.1010) < 0.01 assert abs(cos_scores[2] - 0.1086) < 0.01
""" Compute image embeddings """ import unittest from sentence_transformers import SentenceTransformer, util import numpy as np from PIL import Image import os class ComputeEmbeddingsTest(unittest.TestCase): def setUp(self): self.model = SentenceTransformer('clip-ViT-B-32') def test_simple_encode(self): # Encode an image: image_filepath = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../examples/applications/image-search/two_dogs_in_snow.jpg") print(image_filepath) img_emb = self.model.encode(Image.open(image_filepath)) # Encode text descriptions text_emb = self.model.encode(['Two dogs in the snow', 'A cat on a table', 'A picture of London at night']) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb)[0] assert abs(cos_scores[0] - 0.3069) < 0.01 assert abs(cos_scores[1] - 0.1010) < 0.01 assert abs(cos_scores[2] - 0.1086) < 0.01
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='GridRCNN', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='GridRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', with_reg=False, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False), grid_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), grid_head=dict( type='GridHead', grid_points=9, num_convs=8, in_channels=256, point_feat_channels=64, norm_cfg=dict(type='GN', num_groups=36), loss_grid=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=15))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_radius=1, pos_weight=-1, max_num_grid=192, debug=False)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.03, nms=dict(type='nms', iou_threshold=0.3), max_per_img=100))) # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # training schedule max_epochs = 25 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 80, by_epoch=False, begin=0, end=3665), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[17, 23], gamma=0.1) ]
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='GridRCNN', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='GridRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', with_reg=False, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False), grid_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), grid_head=dict( type='GridHead', grid_points=9, num_convs=8, in_channels=256, point_feat_channels=64, norm_cfg=dict(type='GN', num_groups=36), loss_grid=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=15))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_radius=1, pos_weight=-1, max_num_grid=192, debug=False)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.03, nms=dict(type='nms', iou_threshold=0.3), max_per_img=100))) # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=3665, warmup_ratio=1.0 / 80, step=[17, 23]) runner = dict(type='EpochBasedRunner', max_epochs=25)
""" Computes embeddings """ from __future__ import annotations import numpy as np import pytest from sentence_transformers import SentenceTransformer @pytest.mark.parametrize("normalize_embeddings", (False, True)) @pytest.mark.parametrize("prompt_name", (None, "retrieval")) def test_encode_multi_process( stsb_bert_tiny_model: SentenceTransformer, normalize_embeddings: bool, prompt_name: str | None ) -> None: model = stsb_bert_tiny_model model.prompts = {"retrieval": "Represent this sentence for searching relevant passages: "} sentences = ["This is sentence {}".format(i) for i in range(40)] # Start the multi-process pool on e.g. two CPU devices & compute the embeddings using the pool pool = model.start_multi_process_pool(["cpu", "cpu"]) emb = model.encode_multi_process( sentences, pool, chunk_size=10, normalize_embeddings=normalize_embeddings, prompt_name=prompt_name ) model.stop_multi_process_pool(pool) assert emb.shape == (len(sentences), 128) # Make sure the embeddings aren't just all 0 assert emb.sum() != 0.0 # Compare against normal embeddings emb_normal = model.encode(sentences, normalize_embeddings=normalize_embeddings, prompt_name=prompt_name) diff = np.max(np.abs(emb - emb_normal)) assert diff < 0.001 # Ensure that after normalizing, the means are all almost 0, and otherwise not assert np.all(np.abs(emb.mean(1)) < 0.01) == normalize_embeddings
""" Computes embeddings """ from typing import Optional import numpy as np import pytest from sentence_transformers import SentenceTransformer @pytest.mark.parametrize("normalize_embeddings", (False, True)) @pytest.mark.parametrize("prompt_name", (None, "retrieval")) def test_encode_multi_process( stsb_bert_tiny_model: SentenceTransformer, normalize_embeddings: bool, prompt_name: Optional[str] ) -> None: model = stsb_bert_tiny_model model.prompts = {"retrieval": "Represent this sentence for searching relevant passages: "} sentences = ["This is sentence {}".format(i) for i in range(40)] # Start the multi-process pool on e.g. two CPU devices & compute the embeddings using the pool pool = model.start_multi_process_pool(["cpu", "cpu"]) emb = model.encode_multi_process( sentences, pool, chunk_size=10, normalize_embeddings=normalize_embeddings, prompt_name=prompt_name ) model.stop_multi_process_pool(pool) assert emb.shape == (len(sentences), 128) # Make sure the embeddings aren't just all 0 assert emb.sum() != 0.0 # Compare against normal embeddings emb_normal = model.encode(sentences, normalize_embeddings=normalize_embeddings, prompt_name=prompt_name) diff = np.max(np.abs(emb - emb_normal)) assert diff < 0.001 # Ensure that after normalizing, the means are all almost 0, and otherwise not assert np.all(np.abs(emb.mean(1)) < 0.01) == normalize_embeddings
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/schedules/schedule_1x.py', '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] image_size = (896, 896) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] norm_cfg = dict(type='BN', requires_grad=True) checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' # noqa model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( _delete_=True, type='EfficientNet', arch='b3', drop_path_rate=0.2, out_indices=(3, 4, 5), frozen_stages=0, norm_cfg=dict( type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), norm_eval=False, init_cfg=dict( type='Pretrained', prefix='backbone', checkpoint=checkpoint)), neck=dict( in_channels=[48, 136, 384], start_level=0, out_channels=256, relu_before_extra_convs=True, no_norm_on_lateral=True, norm_cfg=norm_cfg), bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), # training and testing settings train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=image_size), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=image_size, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=4, num_workers=4, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( optimizer=dict(lr=0.04), paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) # learning policy max_epochs = 12 param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # cudnn_benchmark=True can accelerate fix-size training env_cfg = dict(cudnn_benchmark=True) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (4 samples per GPU) auto_scale_lr = dict(base_batch_size=32)
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/schedules/schedule_1x.py', '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] image_size = (896, 896) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] norm_cfg = dict(type='BN', requires_grad=True) checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' # noqa model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( _delete_=True, type='EfficientNet', arch='b3', drop_path_rate=0.2, out_indices=(3, 4, 5), frozen_stages=0, norm_cfg=dict( type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), norm_eval=False, init_cfg=dict( type='Pretrained', prefix='backbone', checkpoint=checkpoint)), neck=dict( in_channels=[48, 136, 384], start_level=0, out_channels=256, relu_before_extra_convs=True, no_norm_on_lateral=True, norm_cfg=norm_cfg), bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), # training and testing settings train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=image_size), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=image_size, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=4, num_workers=4, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( optimizer=dict(lr=0.04), paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) # learning policy max_epochs = 12 param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # cudnn_benchmark=True can accelerate fix-size training env_cfg = dict(cudnn_benchmark=True) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (4 samples per GPU) auto_scale_lr = dict(base_batch_size=32)
from keras.src import regularizers from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.ActivityRegularization") class ActivityRegularization(Layer): """Layer that applies an update to the cost function based input activity. Args: l1: L1 regularization factor (positive float). l2: L2 regularization factor (positive float). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. """ def __init__(self, l1=0.0, l2=0.0, **kwargs): super().__init__( activity_regularizer=regularizers.L1L2(l1=l1, l2=l2), **kwargs ) self.supports_masking = True self.l1 = l1 self.l2 = l2 self.built = True def call(self, inputs): return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() base_config.pop("activity_regularizer", None) config = {"l1": self.l1, "l2": self.l2} return {**base_config, **config}
from keras.src import regularizers from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.ActivityRegularization") class ActivityRegularization(Layer): """Layer that applies an update to the cost function based input activity. Args: l1: L1 regularization factor (positive float). l2: L2 regularization factor (positive float). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. """ def __init__(self, l1=0.0, l2=0.0, **kwargs): super().__init__( activity_regularizer=regularizers.L1L2(l1=l1, l2=l2), **kwargs ) self.supports_masking = True self.l1 = l1 self.l2 = l2 def call(self, inputs): return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() base_config.pop("activity_regularizer", None) config = {"l1": self.l1, "l2": self.l2} return {**base_config, **config}
from typing import Dict, List from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.bridge.pydantic import ConfigDict class EmbeddingStartEvent(BaseEvent): """ EmbeddingStartEvent. Args: model_dict (dict): Model dictionary containing details about the embedding model. """ model_config = ConfigDict(protected_namespaces=("pydantic_model_",)) model_dict: dict @classmethod def class_name(cls) -> str: """Class name.""" return "EmbeddingStartEvent" class EmbeddingEndEvent(BaseEvent): """ EmbeddingEndEvent. Args: chunks (List[str]): List of chunks. embeddings (List[List[float]]): List of embeddings. """ chunks: List[str] embeddings: List[List[float]] @classmethod def class_name(cls) -> str: """Class name.""" return "EmbeddingEndEvent" class SparseEmbeddingStartEvent(BaseEvent): """ EmbeddingStartEvent. Args: model_dict (dict): Model dictionary containing details about the embedding model. """ model_config = ConfigDict(protected_namespaces=("pydantic_model_",)) model_dict: dict @classmethod def class_name(cls) -> str: """Class name.""" return "SparseEmbeddingStartEvent" class SparseEmbeddingEndEvent(BaseEvent): """ EmbeddingEndEvent. Args: chunks (List[str]): List of chunks. embeddings (List[List[float]]): List of embeddings. """ chunks: List[str] embeddings: List[Dict[int, float]] @classmethod def class_name(cls) -> str: """Class name.""" return "SparseEmbeddingEndEvent"
from typing import Dict, List from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.bridge.pydantic import ConfigDict class EmbeddingStartEvent(BaseEvent): """EmbeddingStartEvent. Args: model_dict (dict): Model dictionary containing details about the embedding model. """ model_config = ConfigDict(protected_namespaces=("pydantic_model_",)) model_dict: dict @classmethod def class_name(cls) -> str: """Class name.""" return "EmbeddingStartEvent" class EmbeddingEndEvent(BaseEvent): """EmbeddingEndEvent. Args: chunks (List[str]): List of chunks. embeddings (List[List[float]]): List of embeddings. """ chunks: List[str] embeddings: List[List[float]] @classmethod def class_name(cls) -> str: """Class name.""" return "EmbeddingEndEvent" class SparseEmbeddingStartEvent(BaseEvent): """EmbeddingStartEvent. Args: model_dict (dict): Model dictionary containing details about the embedding model. """ model_config = ConfigDict(protected_namespaces=("pydantic_model_",)) model_dict: dict @classmethod def class_name(cls) -> str: """Class name.""" return "SparseEmbeddingStartEvent" class SparseEmbeddingEndEvent(BaseEvent): """EmbeddingEndEvent. Args: chunks (List[str]): List of chunks. embeddings (List[List[float]]): List of embeddings. """ chunks: List[str] embeddings: List[Dict[int, float]] @classmethod def class_name(cls) -> str: """Class name.""" return "SparseEmbeddingEndEvent"
# Copyright (c) OpenMMLab. All rights reserved. from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d from .builder import build_linear_layer, build_transformer from .ckpt_convert import pvt_convert from .conv_upsample import ConvUpsample from .csp_layer import CSPLayer from .gaussian_target import gaussian_radius, gen_gaussian_target from .inverted_residual import InvertedResidual from .make_divisible import make_divisible from .misc import interpolate_as, sigmoid_geometric_mean from .normed_predictor import NormedConv2d, NormedLinear from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import (get_uncertain_point_coords_with_randomness, get_uncertainty) from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .res_layer import ResLayer, SimplifiedBasicBlock from .se_layer import DyReLU, SELayer from .transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DynamicConv, PatchEmbed, Transformer, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'ResLayer', 'gaussian_radius', 'gen_gaussian_target', 'DetrTransformerDecoderLayer', 'DetrTransformerDecoder', 'Transformer', 'build_transformer', 'build_linear_layer', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'make_divisible', 'InvertedResidual', 'SELayer', 'interpolate_as', 'ConvUpsample', 'CSPLayer', 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', 'nlc_to_nchw', 'pvt_convert', 'sigmoid_geometric_mean', 'preprocess_panoptic_gt', 'DyReLU', 'get_uncertain_point_coords_with_randomness', 'get_uncertainty' ]
# Copyright (c) OpenMMLab. All rights reserved. from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d from .builder import build_linear_layer, build_transformer from .ckpt_convert import pvt_convert from .conv_upsample import ConvUpsample from .csp_layer import CSPLayer from .gaussian_target import gaussian_radius, gen_gaussian_target from .inverted_residual import InvertedResidual from .make_divisible import make_divisible from .misc import interpolate_as, sigmoid_geometric_mean from .normed_predictor import NormedConv2d, NormedLinear from .panoptic_gt_processing import preprocess_panoptic_gt from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .res_layer import ResLayer, SimplifiedBasicBlock from .se_layer import DyReLU, SELayer from .transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DynamicConv, PatchEmbed, Transformer, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'ResLayer', 'gaussian_radius', 'gen_gaussian_target', 'DetrTransformerDecoderLayer', 'DetrTransformerDecoder', 'Transformer', 'build_transformer', 'build_linear_layer', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'make_divisible', 'InvertedResidual', 'SELayer', 'interpolate_as', 'ConvUpsample', 'CSPLayer', 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', 'nlc_to_nchw', 'pvt_convert', 'sigmoid_geometric_mean', 'preprocess_panoptic_gt', 'DyReLU' ]
from abc import abstractmethod from typing import Any, List, Optional from llama_index.core.base.llms.types import ChatMessage from llama_index.core.llms.llm import LLM from llama_index.core.schema import BaseComponent from llama_index.core.storage.chat_store import BaseChatStore, SimpleChatStore from llama_index.core.bridge.pydantic import Field, field_serializer, SerializeAsAny DEFAULT_CHAT_STORE_KEY = "chat_history" class BaseMemory(BaseComponent): """Base class for all memory types. NOTE: The interface for memory is not yet finalized and is subject to change. """ @classmethod def class_name(cls) -> str: """Get class name.""" return "BaseMemory" @classmethod @abstractmethod def from_defaults( cls, **kwargs: Any, ) -> "BaseMemory": """Create a chat memory from defaults.""" @abstractmethod def get(self, input: Optional[str] = None, **kwargs: Any) -> List[ChatMessage]: """Get chat history.""" @abstractmethod def get_all(self) -> List[ChatMessage]: """Get all chat history.""" @abstractmethod def put(self, message: ChatMessage) -> None: """Put chat history.""" async def aput(self, message: ChatMessage) -> None: """Put chat history.""" self.put(message) def put_messages(self, messages: List[ChatMessage]) -> None: """Put chat history.""" for message in messages: self.put(message) async def aput_messages(self, messages: List[ChatMessage]) -> None: """Put chat history.""" for message in messages: await self.aput(message) @abstractmethod def set(self, messages: List[ChatMessage]) -> None: """Set chat history.""" @abstractmethod def reset(self) -> None: """Reset chat history.""" class BaseChatStoreMemory(BaseMemory): """Base class for any . NOTE: The interface for memory is not yet finalized and is subject to change. """ chat_store: SerializeAsAny[BaseChatStore] = Field(default_factory=SimpleChatStore) chat_store_key: str = Field(default=DEFAULT_CHAT_STORE_KEY) @field_serializer("chat_store") def serialize_courses_in_order(self, chat_store: BaseChatStore) -> dict: res = chat_store.model_dump() res.update({"class_name": chat_store.class_name()}) return res @classmethod def class_name(cls) -> str: """Get class name.""" return "BaseChatStoreMemory" @classmethod @abstractmethod def from_defaults( cls, chat_history: Optional[List[ChatMessage]] = None, llm: Optional[LLM] = None, **kwargs: Any, ) -> "BaseChatStoreMemory": """Create a chat memory from defaults.""" def get_all(self) -> List[ChatMessage]: """Get all chat history.""" return self.chat_store.get_messages(self.chat_store_key) def put(self, message: ChatMessage) -> None: """Put chat history.""" # ensure everything is serialized self.chat_store.add_message(self.chat_store_key, message) async def aput(self, message: ChatMessage) -> None: """Put chat history.""" # ensure everything is serialized await self.chat_store.async_add_message(self.chat_store_key, message) def set(self, messages: List[ChatMessage]) -> None: """Set chat history.""" self.chat_store.set_messages(self.chat_store_key, messages) def reset(self) -> None: """Reset chat history.""" self.chat_store.delete_messages(self.chat_store_key)
from abc import abstractmethod from typing import Any, List, Optional from llama_index.core.base.llms.types import ChatMessage from llama_index.core.llms.llm import LLM from llama_index.core.schema import BaseComponent from llama_index.core.storage.chat_store import BaseChatStore, SimpleChatStore from llama_index.core.bridge.pydantic import Field, field_serializer, SerializeAsAny DEFAULT_CHAT_STORE_KEY = "chat_history" class BaseMemory(BaseComponent): """Base class for all memory types. NOTE: The interface for memory is not yet finalized and is subject to change. """ @classmethod def class_name(cls) -> str: """Get class name.""" return "BaseMemory" @classmethod @abstractmethod def from_defaults( cls, **kwargs: Any, ) -> "BaseMemory": """Create a chat memory from defaults.""" @abstractmethod def get(self, input: Optional[str] = None, **kwargs: Any) -> List[ChatMessage]: """Get chat history.""" @abstractmethod def get_all(self) -> List[ChatMessage]: """Get all chat history.""" @abstractmethod def put(self, message: ChatMessage) -> None: """Put chat history.""" async def aput(self, message: ChatMessage) -> None: """Put chat history.""" self.put(message) def put_messages(self, messages: List[ChatMessage]) -> None: """Put chat history.""" for message in messages: self.put(message) @abstractmethod def set(self, messages: List[ChatMessage]) -> None: """Set chat history.""" @abstractmethod def reset(self) -> None: """Reset chat history.""" class BaseChatStoreMemory(BaseMemory): """Base class for any . NOTE: The interface for memory is not yet finalized and is subject to change. """ chat_store: SerializeAsAny[BaseChatStore] = Field(default_factory=SimpleChatStore) chat_store_key: str = Field(default=DEFAULT_CHAT_STORE_KEY) @field_serializer("chat_store") def serialize_courses_in_order(self, chat_store: BaseChatStore) -> dict: res = chat_store.model_dump() res.update({"class_name": chat_store.class_name()}) return res @classmethod def class_name(cls) -> str: """Get class name.""" return "BaseChatStoreMemory" @classmethod @abstractmethod def from_defaults( cls, chat_history: Optional[List[ChatMessage]] = None, llm: Optional[LLM] = None, **kwargs: Any, ) -> "BaseChatStoreMemory": """Create a chat memory from defaults.""" def get_all(self) -> List[ChatMessage]: """Get all chat history.""" return self.chat_store.get_messages(self.chat_store_key) def put(self, message: ChatMessage) -> None: """Put chat history.""" # ensure everything is serialized self.chat_store.add_message(self.chat_store_key, message) async def aput(self, message: ChatMessage) -> None: """Put chat history.""" # ensure everything is serialized await self.chat_store.async_add_message(self.chat_store_key, message) def set(self, messages: List[ChatMessage]) -> None: """Set chat history.""" self.chat_store.set_messages(self.chat_store_key, messages) def reset(self) -> None: """Reset chat history.""" self.chat_store.delete_messages(self.chat_store_key)
from typing import Union from torch import nn import transformers import torch from PIL import Image class CLIPModel(nn.Module): def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None): super(CLIPModel, self).__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self): return "CLIPModel()" def forward(self, features): image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: Union[str, bool] = True): images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, return_tensors="pt", padding=padding) if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return dict(encoding) @property def tokenizer(self): return self.processor def save(self, output_path: str): self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str): return CLIPModel(model_name=input_path)
from typing import Union from torch import nn import transformers import torch from PIL import Image class CLIPModel(nn.Module): def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None): super(CLIPModel, self).__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self): return "CLIPModel()" def forward(self, features): image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: Union[str, bool] = True): images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, return_tensors="pt", padding=padding) if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return encoding @property def tokenizer(self): return self.processor def save(self, output_path: str): self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str): return CLIPModel(model_name=input_path)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import MagicMock, patch import pytest import torch import torch.nn as nn from torch.nn.parallel import DataParallel from torch.nn.parallel.distributed import DistributedDataParallel from mmengine.model.wrappers import (MMDataParallel, MMDistributedDataParallel, is_model_wrapper) from mmengine.registry import MODEL_WRAPPERS def mock(*args, **kwargs): pass @patch('torch.distributed._broadcast_coalesced', mock) @patch('torch.distributed.broadcast', mock) @patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock) def test_is_model_wrapper(): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(2, 2, 1) def forward(self, x): return self.conv(x) # _verify_model_across_ranks is added in torch1.9.0 so we should check # whether _verify_model_across_ranks is the member of torch.distributed # before mocking if hasattr(torch.distributed, '_verify_model_across_ranks'): torch.distributed._verify_model_across_ranks = mock model = Model() assert not is_model_wrapper(model) mmdp = MMDataParallel(model) assert is_model_wrapper(mmdp) mmddp = MMDistributedDataParallel(model, process_group=MagicMock()) assert is_model_wrapper(mmddp) torch_dp = DataParallel(model) assert is_model_wrapper(torch_dp) torch_ddp = DistributedDataParallel(model, process_group=MagicMock()) assert is_model_wrapper(torch_ddp) # test model wrapper registry @MODEL_WRAPPERS.register_module() class ModelWrapper(object): def __init__(self, module): self.module = module def forward(self, *args, **kwargs): return self.module(*args, **kwargs) model_wrapper = ModelWrapper(model) assert is_model_wrapper(model_wrapper) class TestMMDataParallel(TestCase): def setUp(self): """Setup the demo image in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) def train_step(self, x): return self.forward(x) def val_step(self, x): return self.forward(x) self.model = Model() def test_train_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without train_step attribute with pytest.raises(AssertionError): mmdp.train_step(torch.zeros([1, 1, 3, 3])) out = self.model.train_step(torch.zeros([1, 1, 3, 3])) assert out.shape == (1, 2, 3, 3) def test_val_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without val_step attribute with pytest.raises(AssertionError): mmdp.val_step(torch.zeros([1, 1, 3, 3])) out = self.model.val_step(torch.zeros([1, 1, 3, 3])) assert out.shape == (1, 2, 3, 3)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import MagicMock, patch import pytest import torch import torch.nn as nn from mmengine.model.wrappers import (MMDataParallel, MMDistributedDataParallel, is_model_wrapper) from mmengine.registry import MODEL_WRAPPERS def mock(*args, **kwargs): pass @patch('torch.distributed._broadcast_coalesced', mock) @patch('torch.distributed.broadcast', mock) @patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock) def test_is_model_wrapper(): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(2, 2, 1) def forward(self, x): return self.conv(x) # _verify_model_across_ranks is added in torch1.9.0 so we should check # whether _verify_model_across_ranks is the member of torch.distributed # before mocking if hasattr(torch.distributed, '_verify_model_across_ranks'): torch.distributed._verify_model_across_ranks = mock model = Model() assert not is_model_wrapper(model) mmdp = MMDataParallel(model) assert is_model_wrapper(mmdp) mmddp = MMDistributedDataParallel(model, process_group=MagicMock()) assert is_model_wrapper(mmddp) # test model wrapper registry @MODEL_WRAPPERS.register_module() class ModelWrapper(object): def __init__(self, module): self.module = module def forward(self, *args, **kwargs): return self.module(*args, **kwargs) model_wrapper = ModelWrapper(model) assert is_model_wrapper(model_wrapper) class TestMMDataParallel(TestCase): def setUp(self): """Setup the demo image in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) def train_step(self, x): return self.forward(x) def val_step(self, x): return self.forward(x) self.model = Model() def test_train_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without train_step attribute with pytest.raises(AssertionError): mmdp.train_step(torch.zeros([1, 1, 3, 3])) out = self.model.train_step(torch.zeros([1, 1, 3, 3])) assert out.shape == (1, 2, 3, 3) def test_val_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without val_step attribute with pytest.raises(AssertionError): mmdp.val_step(torch.zeros([1, 1, 3, 3])) out = self.model.val_step(torch.zeros([1, 1, 3, 3])) assert out.shape == (1, 2, 3, 3)
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. CT will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_ct_from_file.py path/to/sentences.txt """ import gzip import logging import math import sys from datetime import datetime import tqdm from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, SentenceTransformer, losses, models #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 128 num_epochs = 1 max_seq_length = 75 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_ct-improved{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("Train sentences: {}".format(len(train_sentences))) # A regular torch DataLoader and as loss we use losses.ContrastiveTensionLossInBatchNegatives train_dataloader = DataLoader(train_sentences, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.ContrastiveTensionLossInBatchNegatives(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. CT will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_ct_from_file.py path/to/sentences.txt """ import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer import logging from datetime import datetime import gzip import sys import tqdm from torch.utils.data import DataLoader #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 128 num_epochs = 1 max_seq_length = 75 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_ct-improved{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("Train sentences: {}".format(len(train_sentences))) # A regular torch DataLoader and as loss we use losses.ContrastiveTensionLossInBatchNegatives train_dataloader = DataLoader(train_sentences, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.ContrastiveTensionLossInBatchNegatives(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )